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We propose a type system for lock-freedom in the π-calculus, which guarantees that certain com-
munications will eventually succeed. Distinguishing features of our type system are: it can verify
lock-freedom of concurrent programs that have sophisticated recursive communication structures;
it can be fully automated; it is hybrid, in that it combines a type system for lock-freedom with
local reasoning about deadlock-freedom, termination, and confluence analyses. Moreover, the
type system is parameterized by deadlock-freedom/termination/confluence analyses, so that any
methods (e.g. type systems and model checking) can be used for those analyses. A lock-freedom
analysis tool has been implemented based on the proposed type system, and tested for non-trivial
programs.
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1. INTRODUCTION

Verification of concurrent programs is very important. Concurrency is common in
recent distributed environments or multi-processor machines, yet writing and de-
bugging concurrent programs is hard because of non-determinism, deadlock, live-
lock, etc. Many methods have been proposed recently for verification of concurrent
programs, including model checking, type systems, and separation logic. Although
there are some promising reports such as verification of termination of several thou-
sands lines of multi-threaded code [Cook et al. 2007], verification techniques for con-
current programs are still premature, compared with those for sequential programs,
for which certain properties of millions of lines of code can be verified.

In this paper, we attack the problem of verifying concurrent programs that create
threads and communication channels dynamically. More specifically, we choose the
π-calculus [Sangiorgi and Walker 2001] as the target language, and consider the
problem of verifying the lock-freedom property, which intuitively means that cer-
tain communications (or synchronizations) will eventually succeed (possibly under
some fairness assumption). Lock-freedom is important for communication-centric
computation models like the π-calculus; indeed, in the pure π-calculus, most live-
ness properties can be turned into the lock-freedom property. For example, the

1A preliminary summary of this paper has appeared in Proceedings of CAV 2008, Springer LNCS
5123, pp.80-93, 2008.
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following properties can be reduced to instances of lock-freedom: Will the request
of accessing a resource be eventually granted? In a client-server system, will a
client request be eventually received from the server? And if so, will the server
eventually send back an answer to the client? In multi-threaded programs, can a
thread eventually acquire a lock? And if so, will the thread eventually release the
lock? The lock-freedom property has also applications to other verification prob-
lems and program transformation, such as information flow analysis and program
slicing (dependency analysis in general) [Honda et al. 2000; Honda and Yoshida
2007; Kobayashi 2005a]. Verification of liveness properties such as lock-freedom is
notoriously hard in concurrency. In formalisms for mobile processes, such as the
π-calculus, it is even harder, because of dynamic creation of threads and first-class
channels. In these formalisms, type systems have emerged as a powerful means for
disciplining and controlling the behaviors of the processes.

Type systems for lock-freedom include [Kobayashi 2002; 2005a; Acciai and Bo-
reale 2008; Yoshida 2002; Yoshida et al. 2004]. An automatic verification tool,
TyPiCal [Kobayashi 2005b], has been implemented based on Kobayashi’s sys-
tem [Kobayashi 2005a]. The expressive power of such type systems is, however,
very limited. This shows up clearly, for instance, in the treatment of recursion.
For example, even primitive recursive functions cannot be expressed in Kobayashi’s
lock-free type system, since it ignores value-dependent behaviors completely.

Related to lock-freedom is deadlock-freedom. In a system of threads, deadlock
freedom is the property that the system can reduce further, if at least one thread
is not terminated. A more refined form of deadlock can be given by focusing on
certain special actions (prefixes, in the π-calculus): here deadlock-freedom says
that the system can always reduce further if there is a thread with one special ac-
tion ready for execution. The latter form of deadlock has been extensively studied
by Kobayashi (see e.g., [Kobayashi 2006]); the resulting system has been imple-
mented as a part of TyPiCal. Note that any process is deadlock-free if it is run
with a divergent process. Unlike lock-freedom, deadlock-freedom is insufficient for
applications to information flow analysis or program slicing.

In this paper, we tackle lock-freedom by pursuing a different route. We overcome
limitations of previous type systems by combining the lock-freedom analysis with
two other analyses: deadlock-freedom and termination. The result, therefore, is
not a “pure” type system, but one that is parametric in the techniques employed
to ensure deadlock-freedom and termination. Such techniques may themselves be
based on type systems (and indeed in the paper we indicate such type systems, or
develop them when needed), but could also use other methods (model checking,
theorem provers, etc.). The parameterization allows us to go beyond certain limits
of type systems, by appealing to other methods. For instance, a type system, as a
form of static analysis, may have difficulties in handling value-dependent behaviors
(even very simple ones), which are more easily dealt with by other methods such
as model checking (see Section 7.3 for such an example).

Roughly, we use the deadlock-freedom analysis to ensure that a system can reduce
if some of its expected communications have not yet occurred. We then apply
a termination analysis to discharge the possibility of divergence and guarantee
lock-freedom (i.e., the expected communication will indeed occur). The reasons
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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for appealing to deadlock-freedom are that powerful type-based analyzers exist
(notably Kobayashi’s systems [Kobayashi 2006]), and that deadlock-freedom is a
safety property, which is easier than liveness to verify in other verification methods
such as model checking.

A major challenge was to be able to apply the deadlock and termination anal-
ysis locally, to subsystems of larger systems. The local reasoning is particularly
important for termination. A result forcing a global termination analysis would
not be very useful in practice: first, valid concurrent programs may not terminate
(e.g., operating systems); second, even if a program is terminating, it can be ex-
tremely hard to verify it if the program is large, particularly in languages for mobile
processes such as the π-calculus that subsume higher-order formalisms such as the
λ-calculus.

Very approximately, our hybrid rule for local reasoning looks as follows:

|=DF P |=Ter P

∆ `LT P
(*)

where |=DF P and |=Ter P indicate, respectively, that P is deadlock-free and termi-
nating, and ∆ `LT P is a typing judgment for lock-freedom. The type environment
∆ captures conditions, or “contracts”, on the way P interacts with its environment,
of the kind “P will eventually send a message on a” and “if P receives a message
on a, then P is lock-free afterwards”. Such contracts are necessary for the composi-
tionality of the type system for lock-freedom (i.e., local reasoning on lock-freedom).
We use Kobayashi’s lock freedom types [Kobayashi 2005a], which refine those of
the simply-typed π-calculus with channel usages, to express the contracts. There-
fore we add rule (∗), as an “axiom”, to the rules of Kobayashi’s lock freedom type
system [Kobayashi 2005a].

The contracts in ∆, however, are completely ignored—and are not guaranteed—
in the premises of rule (∗). As a consequence, the resulting type system is unsound.
In other words, knowing that P is deadlock-free and terminating is not sufficient
to guarantee compositionality and local reasoning. As an example of missing in-
formation, P being terminating ensures that P itself has no infinite reductions;
but it says nothing on the behaviour of P after it receives a message from other
components in the system. (Indeed rule (∗) is only sound if applied globally, to the
whole system.)

The first refinement we make for the soundness of rule (∗) is to replace deadlock-
freedom and termination with more robust notions, which we call, respectively,
robust deadlock-freedom under ∆, written ∆ |=RD P , and robust termination, writ-
ten |=RTer P . These stronger notions approximately mean that P is deadlock-free or
terminating after any substitution (P may be open, and therefore contain free vari-
ables), and any interaction with its environment; ∆ |=RD P further ensures that P
fulfills certain obligations in ∆. The problems of verifying robust deadlock-freedom
and robust termination are more challenging than the ordinary ones, due to the
additional requirements (e.g., quantifications over substitutions and transition se-
quences). Existing type systems for deadlock-freedom, notably [Kobayashi 2006],
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do meet however the extra conditions for robust deadlock-freedom. We also show
how to tune type systems for ordinary termination in a generic manner so to guar-
antee the stronger property of robust termination. Specifically, we isolate some
conditions on a type system for termination that allow us to turn it into one for
robust termination. We should stress nevertheless that ∆ |=RD P and |=RTer P are
semantic requirements: our type system is parametric on the verification methods
that guarantee them—one need not employ type systems.

Even with the above refinement of the deadlock-freedom and termination con-
ditions, the hybrid rule (∗) remains unsound. The reason is, roughly, the same
as why assume-guarantee reasoning in concurrency often fails in the presence of
circularity. In fact, the judgment ∆ `LT P can be considered a kind of assume-
guarantee reasoning, where ∆ expresses both assumptions on the environment and
guarantees about P ’s behavior. To prevent circular reasoning, we add a condition
nocap(∆) that intuitively ensures us that P is independent of its environment, in
the sense that P will fulfill its obligations (to perform certain input/output actions)
without relying on its environment’s behavior. (For example, suppose that there is
an obligation to send a message on channel a. The process a[1], which sends 1 on
a, is fine, since it fulfills the obligation with no assumption. On the other hand, the
process b(x). a[x], which waits to receive a value on b before sending x on a, is not
allowed since it fulfills the obligation only on the assumption that the environment
will send a message on b.) This leads to the following hybrid rule:

∆ |=RD P |=RTer P nocap(∆)
∆ `LT P

(LT-Hyb)

The resulting type system guarantees that any well-typed process P is weakly
lock-free, in the sense that if an input/output action is declared in P as an action
that should succeed, and if P −→∗ Q, then the action has already succeeded in
P −→∗ Q or there is a further reduction sequence from Q in which the action will
succeed. This is similar to the way in which success of passing a test is defined
in fair should/must testing [Brinksma et al. 1995; Natarajan and Cleaveland 1995;
Boreale et al. 1999], (and also in accordance with other definitions of similar forms
of liveness for π-calculus such as [Yoshida 2002]).

For example, consider the process Server |Client , where:

Client def= (νr1) (fact◦ [3, r1] | r◦1 (x). P1)
Server def= (νfact it) (∗fact (n, r). fact it [n, 1, r]

| ∗fact it (n, x, r). if n = 0 then r[x] else fact it [n− 1, x× n, r])

The process Server creates an internal communication channel fact it (used for
computing factorial numbers in a tail-recursive manner), and waits on fact for a
request [n, r] on computing the factorial of n. Upon receiving a request, it returns
the result on r. The process Client creates a fresh channel r1 for receiving a reply,
sends a request [3, r1] and then waits for the result on r1. The client expects that
the request will be eventually accepted (i.e., the output on fact should eventually
succeed), and that the result will be eventually received (i.e., the output at fact and
the input at r1 should eventually succeed). To indicate these expectations, the two
actions from the client are marked (symbol ◦). These properties cannot be verified
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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by Kobayashi’s type system for lock-freedom [Kobayashi 2005a]. We can derive,
however, ∆ |=RD Server for a type environment ∆, which says that, upon receiving a
request, Server either eventually sends a result or diverges. We can also verify that
Server is terminating by using existing type systems for termination, such as [Deng
and Sangiorgi 2006]. Thus, by using LT-Hyb above, we infer ∆ `LT Server . Finally,
with the typing rules for lock-freedom, we derive ∅ `LT (νfact) (Server |Client),
which says that the client’s request will be eventually accepted and the result will
also be eventually received. Note that, as termination and deadlock-freedom are
applied locally, the above reasoning is valid even if the client is not terminating
(e.g., P1 is divergent).

We have also considered a stronger form of lock-freedom, guaranteeing that the
marked actions will eventually succeed on the assumption that the scheduler is
strongly fair (in the sense that if an action is enabled infinitely often, then the
action will indeed succeed). We show that our type system can be strengthened
to guarantee the strong lock-freedom by adding a condition of partial confluence
to rule LT-Hyb above. Again, the partial confluence is only required locally; the
whole program need not be confluent.

The verification framework outlined above for lock-freedom (including an auto-
mated robust termination analysis) has been implemented as an extension of TyP-
iCal program analysis tool (except the extension to strong lock-freedom; adding
this on top of the present implementation would be tedious but not difficult). We
have succeeded in automatically verifying several non-trivial programs, such as
symbol tables and binary tree search. These examples are non-trivial because lists
and trees are implemented as networks of processes connected by channels, and
they grow dynamically (both channels and processes are dynamically created and
linked). Recursive structures of the kind illustrated in these examples are common
in programming languages for mobile processes (the examples in fact, were taken
or inspired from Pict programs [Pierce and Turner 2000]).

The contributions of this paper are summarized as follows.

—The new type system for lock-freedom mentioned above, with a proof of
its soundness. The system is hybrid (combining analyses for lock-freedom,
deadlock-freedom, and termination), parameterized by any robust deadlock-
freedom/termination analyzers, and allows local reasoning about termination and
deadlock-freedom. The proof of the soundness of the type system is non-trivial
because of the hybrid nature of the type system.

—A further extension of the type system for strong lock-freedom, by a combination
with a form of confluence analysis. Again, the type system is parameterized by
any analyzer for partial confluence, and enables local reasoning about confluence.

—A method for extending type systems for termination to guarantee robust termi-
nation.

—An implementation of an automated (weak) lock-freedom verifier based on the
proposed method. It has been successfully tested on non-trivial examples.

The rest of this article is structured as follows. Section 2 introduces the target
language of our type system, and gives formal definitions of deadlock-freedom,
lock-freedom, and robust termination. Section 3 introduces the new type system,
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obtained by combining Kobayashi’s previous type system for lock-freedom with
the hybrid rules mentioned above. Section 4 proves the soundness of the type
system. Section 5 discusses how to extend type systems for termination to deal
with the robust termination property. Section 6 briefly reports implementation
and experiments. Section 7 discusses extensions of our type system. Section 8
discusses related work and Section 9 concludes.

2. TARGET LANGUAGE

This section introduces the target language of our work: a polyadic π-calculus [Mil-
ner 1993] with conditionals.

2.1 Syntax

We write L for the set of links (also called channels), and V for the (disjoint) set
of variables. We use meta-variables a, b, c, . . . and x, y, z, . . . for links and variables,
respectively. We write N for the set L ∪ V ∪ {true, false} of names (sometimes
called values), where true and false are the usual boolean values. We use meta-
variables u, v, w for names. The grammar is the following:

Definition 2.1 (Processes). The set of processes, ranged over by P , is defined
by:

P ::= 0 | vχ[w̃]. P | vχ(ỹ). P | (P |Q) | ∗P | (νa) P | if v then P else Q

Here, χ is either ◦ or •, and w̃ abbreviates a possibly empty sequence w1, . . . , wn.

The process 0 does nothing. The process vχ[w̃]. P sends a tuple consisting of values
w̃ on v, and then (after the tuple has been received by some process) behaves like
P . The process vχ(ỹ). P waits for a tuple of values on v, binds ỹ to them, and
then behaves like P . The annotation χ in prefixes indicates whether the action
is expected to succeed (symbol ◦) or not (symbol •). (In the type inference of
TyPiCal these annotations are actually inferred, in the sense that if the analysis
succeeds then a set of prefixes that will eventually succeed is marked, see Section 6.)
We call a prefix marked if its annotation is ◦. We usually omit the • annotation,
thus for example a(x).P stands for a•(x). P . Process P |Q executes P and Q in
parallel, and ∗P behaves like infinitely many copies of P running in parallel; (νa)P
creates a fresh communication channel a, and then behaves like P . The process
if v then P else Q behaves like P if v is true and Q if v is false.

The prefix (νa) is a binder for link a, and the input prefix vχ(ỹ). P is a
binder for variables ỹ. As usual, we identify processes up to renamings of bound
names/variables, and implicitly apply α-conversion. We write FN(P ) for the set
of free names (i.e., free links and variables) in P . A process P is closed if the set of
free variables in P is empty. We often omit trailing 0, and write vχ[w̃] for vχ[w̃].0.
We also write vχ.P and vχ.P for vχ[ ]. P and vχ( ). P respectively. In examples, we
use an extension of the above language with natural numbers, list, etc. as they are
straightforward to accommodate.

Remark 2.2. The choice operator is omitted for the sake of simplicity. We believe
that the overall ideas of the hybrid type system are applicable to other variants of
the π-calculus.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Γ `ST 0

Γ `ST P Γ `ST Q

Γ `ST P |Q
Γ `ST P

Γ `ST ∗P
Γ(v) = Bool Γ `ST P Γ `ST Q

Γ `ST if v then P else Q

Γ `ST P Γ(v) = ][eS] Γ( ew) = eS
Γ `ST vχ[ ew]. P

Γ, ey :eS `ST P Γ(v) = ][eS]
Γ `ST vχ(ey). P

Γ, a : ][eS] `ST P

Γ `ST (νa) P

Fig. 1. Simple Type System

2.2 Typing

The type systems that we will propose are defined on top of the simply-typed π-
calculus (ST), that we take as the basis for our work. We believe that languages of
more advanced type systems could be used as basis; we preferred ST because simple
and natural. The set of simple types is given by:

S ::= Bool | ][S1, . . . , Sn]

][S1, . . . , Sn] is the type of channels that are used for transmitting tuples consisting
of values of types S1, . . . , Sn. A type judgment is of the form Γ `ST P . A type
environment Γ is a mapping from names to simple types, with the constraint that
true and false are mapped to Bool, and that the links are mapped to channel
types. Γ, ṽ : S̃ indicates the type environment obtained by extending Γ with the
type assignments ṽ : S̃, with the understanding that for all vi already defined in Γ
it should be Γ(vi) = Si. The typing rules are given in Figure 1.

2.3 Operational Semantics

We introduce the standard (early) labeled transition relation P
η−→ Q for the

π-calculus. Here, η, called a transition label, is either a silent action τ (which
represents an internal communication), an output action (νc̃) a [̃b], or an input action
a [̃b].

Definition 2.3 (Transition labels). The set of transition labels, ranged over by η,
is given by:

η ::= τ | (νc̃) a [̃b] | a [̃b]

Here, (νc̃) represents a (possibly empty) sequence (νc1) · · · (νcn) .
SN(η), FN(η) and BN(η) are defined by:

SN(τ) = ∅ SN((νc̃) a [̃b]) = SN(a [̃b]) = {a}
FN(τ) = ∅ BN(τ) = ∅
FN((νc̃) a [̃b]) = {a, b̃} \ {c̃} BN((νc̃) a[b]) = {c̃}
FN(a [̃b]) = {a, b̃} BN(a [̃b]) = ∅

We consider only transition labels η that satisfy SN(η) ⊆ FN(η).

Definition 2.4. The labeled transition relation
η−→ is the least relation closed

under the rules in Figure 2, plus the symmetric of the two rules for parallel com-
position.

A difference from the standard transition semantics is in the treatment of repli-
cation. We distinguish between replicated input processes and unrestricted repli-
cations, and ensure that a replicated input can be copied only lazily (notice the
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aχ[eb]. P a[eb]−→ P
(Tr-Out)

aχ(ey). P
a[eb]−→ [ey 7→ eb]P

(Tr-In)
∗aχ(ey). P

a[eb]−→ ∗aχ(ey). P | [ey 7→ eb]P
(Tr-RIn)

if true then P else Q
τ−→ P

(Tr-IfT)
if false then P else Q

τ−→ Q
(Tr-IfF)

P
η−→ Q BN(η) ∩ FN(R) = ∅

P |R η−→ Q |R
(Tr-ParL)

P1
(νec) a[eb]−→ Q1 P2

a[eb]−→ Q2 {ec} ∩ FN(P2) = ∅
P1 |P2

τ−→(νec) (Q1 |Q2)
(Tr-ComL)

P
(νec) d[eb]−→ Q a ∈ {eb} \ {d, ec}

(νa) P
(νa,ec) d[eb]−→ Q

(Tr-Open)

P
η−→ Q a 6∈ FN(η) ∪BN(η)

(νa) P
η−→ (νa) Q

(Tr-New)

∗P |P η−→ Q P is not an input process

∗P η−→ Q
(Tr-Rep)

Fig. 2. Rules of the operational semantics

difference between Tr-RIn and Tr-Rep). This distinction is required to make the
robust confluence condition defined in Section 3 not too restrictive. We write τ−→∗

for the reflexive and transitive closure of τ−→; we write P
τ−→ and P

τ−→∗
if there

exists a process P ′ s.t. P
τ−→ P ′ and P

τ−→∗
P ′, respectively.

We extend the above transition relation to a typed transition relation, to show
how a type environment evolves when a process performs a transition. We write
Γ `ST P

η−→ Γ′ `ST P ′ to indicate how the type environment Γ for P evolves under
the transitions of P . Further, we only consider transitions well-typed under Γ;
this means that, in an input, the values supplied to P should agree with the types
declared in Γ. Precisely, Γ `ST P

η−→ Γ′ `ST P ′ holds if:

(1) Γ `ST P ;

(2) P
η−→ P ′;

(3) if η = τ then Γ = Γ′; otherwise if η is an output (νc̃) a [̃b] or an input a [̃b] and
Γ(a) = ][S̃], then Γ, b̃ : S̃ is well-defined and Γ′ = Γ, b̃ : S̃ .

Note that Γ `ST P
η−→ Γ′ `ST P ′ implies Γ′ `ST P ′. We write Γ0 `ST P0

η1−→ · · · ηk−→
Pk to mean that Γ0 `ST P0, and there are Γ1, ..., Γk s.t. for all i < k it holds that
Γi `ST Pi

ηi+1−→ Γi+1 `ST Pi+1.

Remark 2.5. The reason why we use the transition semantics instead of a re-
duction semantics is that we need to talk about interactions of a process with the
environment, for defining and reasoning about the robust termination and deadlock-
freedom (the relations |=RD and |=RTer mentioned in Section 1).

2.4 Deadlock-Freedom and Lock-Freedom

We now define deadlock-freedom, lock-freedom, and strong lock-freedom. A prefix
is at top level if it is not underneath another input/output prefix or underneath a
replication.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Definition 2.6 (Deadlock-freedom). P is deadlock-free if, whenever P
τ−→∗

Q

and Q has at least one marked prefix at top level, then Q
τ−→.

The above definition of deadlock-freedom is essentially the same as the one in
[Kobayashi 2006]. It says that if a marked input/output is at top level, the whole
process can be reduced further.

We define lock-freedom by tagging the prefix, and the transitions originating from
it. Deadlock-freedom indicates only the possibility for the system to evolve further;
on the other hand, lock-freedom indicates the eventual success of marked actions at
top-level. In the definition of lock-freedom, we track the success of a specific action
(as several marked actions may simultaneously appear at top-level) by tagging it.
We then demand success for all possible taggings. We call tagged a process in which
exactly one unguarded and unreplicated prefix—the prefix that we wish to track—
has the special annotation 2 (instead of ◦ as in the marked prefixes). Transitions
of tagged processes are defined as for the untagged ones, except that the labels
of transitions emanating from the tagged prefix are also tagged. For instance, we
have:

a2(ỹ). P
a2[eb]−→ [ỹ 7→ b̃]P

P1
(νec) a2[eb]−→ Q1 P2

a[eb]−→ Q2 {c̃} ∩ FN(P2) = ∅
P1 |P2

τ2

−→(νc̃) (Q1 |Q2)

We call a tagged τ -transition, written P
τ2

−→ P ′, a success.

Definition 2.7 (Weak lock-freedom). A tagged process P is successful if when-

ever P
τ−→∗

Q then Q
τ−→∗ τ2

−→. (That is, no matter how P evolves, the success
transition can always be taken) Given an untagged process P , the tagging of P is
the set of tagged processes obtained from P by replacing the annotation of a marked
prefix at top level with 2. Process P is (weakly) lock-free if whenever P

τ−→∗
Q

then all processes in the tagging of Q are successful.

The above notion of lock-freedom is similar to Yoshida’s linear liveness [Yoshida
2002]: The property that P eventually answers at x [Yoshida 2002] can be ex-
pressed as the lock-freedom of P |x◦(y). In the definitions of deadlock and lock
freedom above, the tracked prefixes are at top level. The case in which one wants
to track also guarded prefixes (for instance, in lock-freedom, ensuring that any
marked prefix that is not underneath a replication will eventually be consumed)
can be recovered by marking also the preceding prefixes (those that are above).
The resulting lock-freedom property roughly corresponds to Acciai and Boreale’s
notion of responsiveness [Acciai and Boreale 2008].

A sequence of transitions τ−→ or τ2

−→ is full if it is finite and ends with an
irreducible process, or if it is infinite. A sequence of transitions is strongly fair
if, intuitively, any τ -action that is enabled infinitely often will eventually succeed
(see Kobayashi [2002] and Bidinger and Compagnoni [2009] for a formal definition
of strong fairness in the π-calculus).

Definition 2.8 (Strong lock-freedom). P is strongly lock-free if whenever P
τ−→∗

Q then every full and strongly fair transition sequence of each process in the tagging
of Q contains the success transition τ2

−→.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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We give some examples to clarify the difference between deadlock-freedom, lock-
freedom, and strong lock-freedom.

Example 2.1. Consider the following process.

b◦( ) | a[b] | ∗a(y). a[y]

The process is deadlock-free, since a reduction on a is always enabled. It is however
not lock-free, as the input on b never succeeds. 2

Experts in concurrency will easily recognize the difference between weak lock-
freedom and strong lock-freedom: Weak lock-freedom combines safety and liveness
guarantees, by requiring that a system never reaches a state where a marked action
is at top-level, but there is no sequence of τ -actions in which the marked action is
consumed. On the other hand, strong lock-freedom is a purely liveness property
that says that if a marked action is at top-level, the action will eventually be con-
sumed. The example below shows the difference between weak lock-freedom and
strong lock-freedom.

Example 2.2. Consider the following process P :

b◦( ) | a[b] | ∗a(y). (νc) (c[y] | c(y). y [ ] | c(y). a[y])

The rightmost subprocess (∗a(y). · · ·) receives b on a and either sends a message on b
or forwards b to itself non-deterministically. Since c is freshly created everytime b is
received from a, the strong fairness does not guarantee that a message is eventually
sent on b, and P is therefore not strongly lock-free. On the other hand, however,
after any number of forwardings, there is a chance for a message to be sent on b;
hence, P is weakly lock-free. 2

The example below was inspired by Cook et al. [2007].

Example 2.3. Consider the following process P :

s[10]
| ∗f (r). s(x). (if x = 0 then r | s[0] else s[x− 1] | f [r])
| ∗g.s(x). s[10]
| ∗(νa) (f [a] | a◦)
| ∗g

There are two servers, which are listening on f and g respectively. The server
listening on f makes recursive calls while decrementing the value of s, until the
value of s reaches 0. When the value reaches 0, it sends a reply on r. On the other
hand, the server on g simply resets the value of s to 10. The process (νa) (f [a] | a◦)
is a client for the server.

The process is weakly lock-free, since after any number of τ -transitions, the server
on f can return a message on a if it is solely scheduled. The process is, however, not
strongly lock-free, because if requests on f and g are processed in an interleaving
manner (note that it is a strongly fair scheduling), then the value of s may never
reach 0. 2

Example 3.11 in Section 3.4 gives another example that shows the difference
between weak lock-freedom and strong lock-freedom.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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3. TYPE SYSTEM FOR LOCK-FREEDOM

We introduce the type systems for weak/strong lock-freedom. They are obtained
by augmenting Kobayashi’s type system [Kobayashi 2005a] with hybrid rules ap-
pealing to deadlock/termination/confluence analyses. We first review Kobayashi’s
previous type system for (strong) lock-freedom [Kobayashi 2005a] (with some sim-
plification) in Section 3.1. We then define robust deadlock-freedom, robust termina-
tion, and robust confluence, and introduce the hybrid rules for combining deadlock-
freedom analysis, termination analysis, and confluence analysis to strengthen the
lock-freedom analysis.

3.1 Review of Previous Type System for Lock-Freedom

As mentioned in Section 1, to enable local reasoning about lock-freedom in terms
of deadlock and termination analyses, we need to express some contracts between
a process and its environment. We reuse the type judgments of Kobayashi’s lock-
freedom type system [Kobayashi 2005a] to express the contracts. A type judgment
is of the form ∆ `LT P , where ∆ is a type environment, which expresses both
requirements on the behavior of P , and assumptions on its environment. Ordinary
channel types are extended with usages, which express how each communication
channel is used. For example, ]?.! [Bool] describes a channel that should be first
used for receiving a boolean once, and then for sending a boolean once. A channel
of type ]? []! [Bool]] should be first used for receiving a channel once, and then the
received channel should be used once for sending a boolean. (! and ? express an
output and an input respectively, and “.” denotes the sequential composition; the
whole syntax of usages is given later.)

In order to express both assumptions on the environment (like, “a process can
eventually receive a message from its environment”) and guarantees by the process
(like, “a process will certainly send a message”), each action (! or ?) in a usage
is further annotated with capability levels and obligation levels, which range over
the set of natural numbers extended with ∞. If a capability level of an action is
finite, then that action can be assumed to succeed (in other words, it is assumed
that its co-action will be provided by the environment) whenever it becomes ready
for execution (i.e., it is at top-level). If the level is infinite (∞), then no such
assumption can be made. If an obligation level of an action is finite, then that
action must become ready for execution, only by relying on capabilities of smaller
levels (thus, levels are used for expressing dependencies between capabilities and
obligations). If the level is infinite (∞), then there is no such obligation. For
example, the type judgment a : ]?∞0 [Bool], b : ]!1∞ [Bool] `LT P means that P has a
capability of level 0 to receive a boolean on channel a (but not an obligation to
receive it), and P has an obligation of level 1 to send a boolean on b. (Here, the
superscript of ! or ? is the obligation level, and the subscript is the capability level.)
Thus, P can be b[true] or a(x). b[x], but not a(x).0. Thanks to the abstraction
of process behavior by usages, the problem of checking lock-freedom of a process is
reduced to that of checking whether the usage of each channel is consistent in the
sense that, for each capability of level t, there is a corresponding obligation of level
less than or equal to t.

In the terminology of assume-guarantee reasoning, a capability on an action may
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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be understood as an assumption that the environment will (or, has an obligation to)
do its co-action, and an obligation on an action as a guarantee for the environment.
A lower capabability level expresses a stronger assumption on the environment,
while a lower obligation level expresses a stronger guarantee for the environment.
To avoid a circular assume-guarantee reasoning, the condition is imposed that an
obligation (or, a guarantee) can depend only on capabilities (or assumptions) of
smaller levels.

To understand how usages, capabilities, and obligations can be used for
compositional reasoning about lock-freedom, consider the (deadlocked) process
a◦(x). b[x] | b◦(x). a[x]. We have the following judgment for subprocesses:

a : ]?0
0
[Bool], b : ]!1∞ [Bool] `LT a◦(x). b[x]

a : ]!1∞ [Bool], b : ]?0
0
[Bool] `LT b◦(x). a[x]

The first judgment means that the process will provide an input on a (because the
obligation level of the usage of a is 0), and that the process will also provide an
output on b (because the obligation level of the output on b is 1), but that the
output on b being provided may depend on the assumption that the input on a will
succeed (because the capability level of the input on a is smaller than the obligation
level of the output on b). For the entire process, we can simply combine both type
environments by combining usages pointwise:

a : ]?0
0 | !1∞ [Bool], b : ]!1∞ | ?0

0
[Bool] `LT a◦(x). b[x] | b◦(x). a[x]

Now, the capability level of the input on a (which is 0) is smaller than the obligation
level of the corresponding output on a (which is 1); this indicates a failure of assume-
guarantee reasoning (the assumption made by the left subprocess is not met by the
guarantee by the right subprocess). Thus, we know the process may not be lock-
free. On the other hand, if we replace the subprocess in the righthand side with
a[true]. b(x), then we get:

a : ]?0
0 | !00 [Bool], b : ]!11 | ?1

1
[Bool] `LT a◦(x). b[x] | a[true]. b◦(x)

The capability of each action is matched by the obligation of its co-action, which im-
plies that the process is lock-free. This is similar to the standard assume-guarantee
reasoning; the employment of such reasoning in the type system (to enable fully
automated, compositional reasoning), together with the mobility of the π-calculus,
however, inevitably make some technical details complex.

Figure 3 summarizes (a slightly simplified version of) Kobayashi’s type system
for lock-freedom.

The usage 0 describes channels that cannot be used at all. The usage ?t1
t2 .U

describes channels that can be first used for input, and then used according to
U . Similarly, the usage !t1t2 .U describes channels that can be first used for output,
and then used according to U . The usage U1 |U2 describes channels that can be
used according to U1 and U2, possibly in parallel. The usage ∗U describes channels
that can be used according to U infinitely often. We omit choice and recursive
usages [Kobayashi 2005a; 2006] for the sake of simplicity.

Type Bool is the type of booleans. The type ]U [L̃] describes channels that should
be used according to U for transmitting a tuple of values of types L̃.

In the definition of type environments, we impose the constraint that the names
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Hybrid Type System for Lock-Freedom · 13

Syntax:

U (usages) ::= 0 | αt1
t2

.U | (U1 |U2) | ∗U
α (actions) ::= ? |!

t (levels) ∈ Nat ∪ {∞}
L (usage types) ::= Bool | ]U [eL]

∆ (type environments) ::= v1 : L1, . . . , vn : Ln

Operations:

↑t0 = 0 ↑tαt1
t2

.U = α
max(t,t1)
t2

.U

↑t(U1 |U2) = ↑tU1 | ↑tU2 ↑t(∗U) = ∗↑tU

↑0 = 0 ↑αt1
t2

.U = αt1+1
t2

.U

↑(U1 |U2) = ↑U1 | ↑U2 ↑(∗U) = ∗↑U

↑Bool = Bool ↑tBool = Bool ∗Bool = Bool

↑(]U [eL]) = ]↑U [eL] ↑t(]U [eL]) = ]↑tU [eL] ∗(]U [eL]) = ]∗U [eL]

Bool | Bool = Bool ]U1
[eL] | ]U2

[eL] = ]U1 |U2
[eL]

(∗∆)(v) = ∗(∆(v))

(∆1 |∆2)(v) =

8
<
:

∆1(v) |∆2(v) if v ∈ dom(∆1) ∩ dom(∆2)
∆1(v) if v ∈ dom(∆1)\dom(∆2)
∆2(v) if v ∈ dom(∆2)\dom(∆1)

(v : ]
α

to
tc

[eL];∆)(w) =

8
>><
>>:

]
α

to
tc

.U
[eL] if w = v ∧∆(v) = ]U [eL]

]
α

to
tc

[eL] if w = v ∧ v 6∈ dom(∆)

↑tc+1∆(w) if w ∈ dom(∆) \ {v}
Subtyping:

Top(Bool)

U ≤ 0

Top(]U [eL]) Bool ≤ Bool

U ≤ U ′

]U [eL] ≤ ]U′ [eL]
Li ≤ L′i (for i = 1, . . . , m) Top(Lk) (for k = m + 1, . . . , n)

v1 : L1, . . . , vm : Lm, vm+1 : Lm+1, . . . , vn : Ln ≤ v1 : L′1, . . . , vm : L′m

Typing:
∆1 `LT P tc = ∞⇒ χ = •

v : ]!0tc
[eL];(∆1 | ew : ↑eL) `LT vχ[ ew]. P

(LT-Out)

∆, ey :eL `LT P tc = ∞⇒ χ = •
v : ]?0tc

[eL];∆ `LT vχ(ey). P

(LT-In)

∅ `LT 0
(LT-Zero)

∆1 `LT P1 ∆2 `LT P2

∆1 |∆2 `LT P1 |P2

(LT-Par)

∆′ `LT P ∆ ≤ ∆′

∆ `LT P
(LT-Weak)

∆ `LT P

∗∆ `LT ∗P
(LT-Rep)

∆, a : ]U [eL] `LT P rel(U)

∆ `LT (νa) P
(LT-New)

∆ `LT P ∆ `LT Q

∆ | (v : Bool) `LT if v then P else Q
(LT-If)

Fig. 3. Kobayashi’s type system for lock-freedom [Kobayashi 2005a]
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14 · N. Kobayashi and D. Sangiorgi

true and false are always mapped to Bool, and that any links are mapped to
channel types. We often omit the bindings true : Bool and false : Bool, and write
∅ for the type environment true : Bool, false : Bool.

We explain some key typing rules below. In the rule LT-In, the type environ-
ment v : ]?0

t
[L̃];∆ captures the condition that v is first used for input, and then v and

other channels are used according to ∆. The obligation level of the input action on
v is 0, since the input is immediately performed, without relying on any capabili-
ties. For example, if a : ]!1∞ [Bool], b : ]!0∞ [Bool], x : Bool `LT P , then we can obtain
a : ]?0

2.!1∞
[Bool], b : ]!3∞ [Bool] `LT a◦(x). P by using LT-In. Note that the obligation

level of the output action on b has been raised to 3, since a◦(x). P tries to exercise
the capability of level 2 to receive a value from a, before fulfilling the obligation on
b.

The rule LT-Out for output is similar: v : ]!0t [L̃];(∆1 | w̃ : ↑L̃) captures the condi-
tion that v is first used for output. The part w̃ : ↑L̃ expresses the usage of w̃ by the
process that receives w̃. The operation ↑ ensures that the obligation level of actions
on channels w̃ is decreased by one when w̃ is passed on v. For example, we can
derive a : ]?0

0
[]!2∞ [ ]], b : ]!10 []!1∞ [ ]] `LT a(x). b[x], but not a : ]?0

0.!00
[]!2∞ [ ]] `LT a(x). a[x].

Although x is received as a channel of type ]!2∞ [ ], it has to be sent as a channel
of type ]!1∞ [ ], with the obligation level being decremented. This condition pre-
vents a process from infinitely delegating obligations. While this is sufficient for
ensuring (strong) lock-freedom, it is too restrictive; for example, in a recursive pro-
cess ∗a(n, x). (· · · a[n− 1, x] · · · ), the obligation level of x must be ∞. Attempts of
overcoming this limitation have led us to the hybrid type system in this paper.

In the rule LT-New, the condition rel(U), which is defined below (in Defini-
tion 3.4), checks that each capability of an action is matched by an obligation of
its co-action. This serves as a “sanity check” for assume-guarantee reasoning. For
example, we can derive

b : ]!11 | ?1
1
[Bool] `LT (νa) (a◦(x). b[x] | a[true]. b◦(x)),

from

a : ]?0
0 | !00 [Bool], b : ]!11 | ?1

1
[Bool] `LT a◦(x). b[x] | a[true]. b◦(x),

but we cannot derive

b : ]!1∞ | ?0
0
[Bool] `LT (νa) (a◦(x). b[x] | b◦(x). a[x])

from

a : ]?0
0 | !1∞ [Bool], b : ]!1∞ | ?0

0
[Bool] `LT a◦(x). b[x] | b◦(x). a[x]

because the input obligation on a is not matched by the output obligation on a.
The rule LT-Weak allows us to replace a type environment ∆ with ∆′ if ∆′

represents a more liberal usage of channels. For example, from a : ]!0∞ [Bool] `LT P ,
we can derive a : ]!10 [Bool] `LT P . The subusage U ≤ U ′ used in the definition of
∆ ≤ ∆′ means that U represents a more liberal usage of channels than U ′. The
definition of the subusage relation U ≤ U ′ is rather complex, hence omitted; see
Kobayashi [2005a]. We list here some derived rules for U ≤ U ′ (U ∼ U ′ means
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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U ≤ U ′ and U ′ ≤ U):

U ∼ U |0 U1 |U2 ∼ U2 |U1 U1 | (U2 |U3) ∼ (U1 |U2) |U3

α∞tc
.U ≤ 0

t′o ≤ to tc ≤ t′c U ≤ U ′

αto
tc

.U ≤ α
t′o
t′c

.U ′
U1 ≤ U ′

1 U2 ≤ U ′
2

U1 |U2 ≤ U ′
1 |U ′

2

The rules on the first line say that the usages form the commutative monoid with
the operation | and the unit element 0. The leftmost rule on the second line says
that if the obligation level is infinite, then there is no obligation, so that a channel
of that usage need not be used at all. The rule in the middle of the second line
allows us to replace an obligation with a stronger one (i.e. an obligation of a smaller
level), and a capability (or an assumption on the environment) with a weaker one.

We now define the relation rel(U) by using auxiliary operations and relations. In
the definitions below, α denotes the dual action of α, i.e., α =! if α =?, and α =?
if α =!.

Definition 3.1. The transition relation U
lu−→ U ′ (where lu ∈ {!, ?, τ}) is the

least relation closed under the following rules:

αt1
t2 .U

α−→ U
∗U |U lu−→ U ′

∗U lu−→ U ′
U1

lu−→ U ′
1

U1 |U2
lu−→ U ′

1 |U2

U2
lu−→ U ′

2

U1 |U2
lu−→ U1 |U ′

2

U1
!−→ U ′

1 U2
?−→ U ′

2

U1 |U2
τ−→ U ′

1 |U ′
2

U1
?−→ U ′

1 U2
!−→ U ′

2

U1 |U2
τ−→ U ′

1 |U ′
2

Definition 3.2 (Capabilities). The input and output capability levels of usage U ,
written cap?(U) and cap!(U), are defined by:

capα(0) = capα(αto
tc

.U) =∞ capα(αto
tc

.U) = tc
capα(∗U) = capα(U) capα(U1 |U2) = min(capα(U1), capα(U2))

Definition 3.3 (Obligations). The input and output obligation levels of a usage
U , written ob?(U) and ob!(U), are defined by:

obα(0) = obα(αto
tc

.U) =∞ obα(αto
tc

.U) = to
obα(∗U) = obα(U) obα(U1 |U2) = min(obα(U1), obα(U2))

Definition 3.4 (Reliability). We write conα(U) when obα(U) ≤ capα(U). U is
consistent, written con(U), if both con?(U) and con !(U) hold. A usage U is reliable,
written rel(U), if con(U ′) holds for any U ′ such that U

τ−→∗
U ′.

Intuitively, capα(U) represents the level of the strongest assumption (thus, the
lowest capability level) made about whether a co-action of α is provided by some
process, and obα(U) represents the level of the strongest obligation to do the action
α. The predicate rel(U) means that all the assumptions made in U are met by the
corresponding obligations (or, guarantees).
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Example 3.1. Let U be ?1
2.?

0
2 | !21 | !22. Then, the set {U ′ | U τ−→∗

U ′} is:

{U, ?0
2 |0 | !22, ?0

2 | !21 |0, 0 |0 |0}.
rel(U) holds since con(U ′) holds for each element U ′ of the set above. For example,
for U , capα(U) and obα(U) are calculated as follows.

cap?(U) = min(cap?(?
1
2.?

0
2), cap?(!21), cap?(!22)) = min(2,∞,∞) = 2

cap!(U) = min(cap!(?
1
2.?

0
2), cap!(!21), cap!(!22)) = min(∞, 1, 2) = 1

ob?(U) = min(ob?(?1
2.?0

2), ob?(!21), ob?(!22)) = min(1,∞,∞) = 1
ob!(U) = min(ob?(?1

2.?
0
2), ob?(!21), ob?(!22)) = min(∞, 2, 2) = 2

con(U) holds because ob!(U) ≤ cap?(U) and ob?(U) ≤ cap!(U) hold. 2

Example 3.2. Consider the following process P :

a(x). x[ ] | (νr) (a[r] | r◦( )).

It is typed as follows.

∅ ` 0
x : ]!0∞ [ ] ` x[ ]

a : ]?0∞
[]!0∞ [ ]] ` a(x). x[ ]

∅ ` 0
a : ]!00 []!0∞ [ ]], r : ]!1∞ [ ] ` a[r]

a : ]!∞0 []!0∞ [ ]], r : ]!1∞ [ ] ` a[r]

∅ ` 0
r : ]?0

1
[ ] ` r◦( )

r : ]?∞1 [ ] ` r◦( )

a : ]!∞0 []!0∞ [ ]], r : ]!1∞ | ?∞1 [ ] ` a[r] | r◦( )

a : ]!∞0 []!0∞ [ ]] ` (νr) (a[r] | r◦( ))

a : ]?0∞ | !∞0 []!0∞ [ ]] ` a(x). x[ ] | (νr) (a[r] | r◦( ))

2

Remark 3.5. The main omission from the original type system for lock-
freedom [Kobayashi 2005a] is recursion and choice on usages. The omission of
those features are just for the sake of simplicity, and the new type system is sound
in the presence of them. Recursion and choice on usages are necessary for automatic
type inference.

3.2 Robust Deadlock-Freedom/Termination/Confluence

To enable local reasoning in the new type system for lock-freedom that we will
present, we introduce a strengthening of the notions of deadlock-freedom, termina-
tion, and confluence.

3.2.1 Robust Termination. We first define robust termination. For the sake of
simplicity, we define robust termination using simple type environments, rather
than lock-freedom type environments. A substitution σ = [w̃/x̃] respects Γ = ṽ : S̃
if σΓ = σ̃v : S̃ is well-defined. A substitution σ is closing for Γ if σ respects Γ and
σΓ has no variables. A process is robustly terminating if it cannot diverge, after
any sequence of transitions that conform to the base type system ST. The reason
why, in the definition of robust termination, we consider only transitions that are
well-typed under the ST system (as opposed, for instance, to the arbitrary untyped
transitions of the operational semantics of processes) is the following. We wish to
apply the analysis of robust termination only locally, to subcomponents of larger
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systems. These subcomponents are typed with termination types, but they interact
with the rest of the system whose components only respect the ST types.

Definition 3.6 (Robust termination). A process P is terminating if there is no
infinite internal transition sequence P

τ−→ P1
τ−→ P2

τ−→ · · ·. A closed process P
is robustly terminating under Γ if Γ `ST P and, for any Q, k, and η1, · · · ηk such
that Γ `ST P

η1−→ · · · ηk−→ Q, the derivative Q is terminating. An (open) process P
is robustly terminating under Γ, written Γ |=RTer P , if σP is robustly terminating
under σΓ for every closing substitution σ for Γ.

Example 3.3. Let P be a[c] | a(x). (∗b.x | b). P is terminating, as the only τ -
transition sequence is

P
τ−→ 0 | (∗b.c | b) τ−→ 0 | ((∗b.c | c) |0).

P is however not robustly terminating under a : ][][ ]], b : ][ ], c : ][ ], since P has a
transition:

P
a[b]−→ a[c] | (∗b.b | b)

and the reduct is not terminating. 2

3.2.2 Robust Deadlock-Freedom. We say that ∆ is closed if dom(∆) ∩ V = ∅.
We write rel(L) if either L = Bool, or L is a channel type ]U [L̃] and rel(U). We
write rel(∆) if rel(∆(v)) for every v ∈ dom(∆).

In the definition of robust deadlock-freedom below, the first condition say that P
is deadlock-free when it is executed by itself, and that P either fulfills its obligations
or reduces further. The other conditions say that the robust deadlock-freedom is
preserved by substitutions and transitions. The relation ∆

η−→ ∆′ used in the
definition expresses the increase/decrease of capabilities/obligations in ∆ by the

transition η. For example, a : ]?0∞
[]!1∞ [Bool]]

a[b]−→ a : ]0[]!1∞ [Bool]], b : ]!1∞ [Bool] holds
(where the usage 0 indicates that the channel cannot be used at all).

Definition 3.7 (Robust deadlock-freedom). The relation ∆ |=RD P is the largest
relation such that ∆ |=RD P implies all of the following conditions.

(1) If ∆ is closed and rel(∆), then:
—P is deadlock-free

—If ob!(∆(a)) 6=∞, then either P
(νec) a[eb]−→ or P

τ−→.

—If ob?(∆(a)) 6=∞, then either P
a[eb]−→ or P

τ−→.
(2) If [v 7→ a]∆ is well-defined, then [v 7→ a]∆ |=RD [v 7→ a]P .

(3) If P
η−→ P ′ and, furthermore, when η is an input, all names received are fresh,

then ∆
η−→ ∆′ and ∆′ |=RD P ′ for some ∆′.

We say that P is robustly deadlock-free under ∆ if ∆ |=RD P holds.

The relation ∆
η−→ ∆′ discussed above is defined by:

∆ τ−→ ∆
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U
τ−→ U ′

∆, a : ]U [L̃] τ−→ ∆, a : ]U ′ [L̃]

U
?−→ U ′

∆, a : ]U [L̃]
a[eb]−→ ∆ | b̃ : L̃, a : ]U ′ [L̃]

U
!−→ U ′ ∆, c̃ : L̃c ≤ ∆′ | b̃ : L̃ rel(L̃c)

∆, a : ]U [L̃]
(νec) a[eb]−→ ∆′, a : ]U ′ [L̃]

Example 3.4. Let ∆ be a : ]?0∞
[]!1∞ [Bool]]. In order for ∆ |=RD P to hold, ei-

ther P
a[b]−→ P ′ or P

τ−→ P ′ must hold for some P ′ and b by the 3rd clause of
condition (1) of Definition 3.7. In the former case, ∆′ |=RD P ′ must hold for
∆′ = a : ]0[]!1∞ [Bool]], b : ]!1∞ [Bool] by condition (3), which implies that P ′ must
eventually send a boolean on b unless it diverges. As a whole, ∆ |=RD P means that
P will eventually perform an input on a, and then send a boolean on the received
channel, unless P at some point diverges.

Thus, all of the following three processes are robustly deadlock-free under ∆
(where Ω is a divergent process (νc) (c | ∗c.c)):

a(x). x[true] a(x). Ω Ω

The following process is however not robustly deadlock-free:

a(x). (νc) (c | c.0 | c.x[true]),

because after receiving a channel x on a, the process may be blocked without
sending a boolean on x. 2

3.2.3 Robust Confluence. We introduce the notion of partial confluence, which
means that any τ -transition commutes with any other transitions. To formally
state the partial confluence, we assume that each prefix is uniquely labeled as in
Bidinger and Compagnoni [2009], and extend the transition relation to

η,S−→ where
S is the set of the labels of the prefixes involved in the transition. For example, the
rules for input and communication become:

aχ,ξ(ỹ). P
a[eb],{ξ}−→ [ỹ 7→ b̃]P

P ′ is a relabeling of P

∗aχ,ξ(ỹ). P
a[eb],{ξ}−→ ∗aχ,ξ(ỹ). P | [ỹ 7→ b̃]P ′

P1
(νec) a[eb],S1−→ Q1 P2

a[eb],S2−→ Q2 {c̃} ∩ FN(P2) = ∅
P1 |P2

τ,S1∪S2−→ (νc̃) (Q1 |Q2)

Robust confluence indicates partial confluence after any sequence of transitions that
conform to the base type system ST.
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Definition 3.8 (Robust confluence). A process P is partially confluent, if when-

ever P1
τ,S1←− P

η,S2−→ P2, either η = τ ∧ S1 = S2, or P1
η,S2−→≡τ,S1←− P2. (Here, ≡ is

the least relation closed under the commutativity and associativity of | .) A pro-
cess P is robustly confluent under Γ, written Γ |=RConf P , if Γ `ST P and for any
closing substitution σ that respects Γ and for any Q, k, and η1, · · · ηk such that
σΓ `ST σP

η1−→ · · · ηk−→ Q, the derivative Q is partially confluent.

Example 3.5. Let P be a | a.b. P is not partially confluent, as the transitions
P

τ−→ 0 | b and P
a−→ 0 | a.b do not commute. The process (νa)P is however

robustly confluent under b : ][ ]. The process Server in Section 1 is also robustly
confluent under fact : ][Nat, ][Nat]]. 2

3.2.4 Verification Methods for Robust Deadlock-Freedom and Confluence.
While termination, deadlock-freedom, and confluence are frequently discussed in
the literature, we are not aware of previous work that defines the robust counter-
parts above and verification methods for them.

Robust deadlock-freedom is guaranteed by Kobayashi’s type system for deadlock-
freedom [Kobayashi 2006]:

Theorem 3.9. If ∆ `∅ P in the type system of Kobayashi [2006]2, then ∆ |=RD

P .

The proof is similar to the type soundness proof in Kobayashi [2006], hence omitted.
(A difference is that Kobayashi [2006] proves the soundness based on the reduction
semantics, while we need to prove it based on the labeled transition semantics.) In
applications of robust deadlock-freedom, it is often the case that the environment ∆
needed is of a restricted form, so that ∆ |=RD P then boils down to the verification
of a few simple behavioral properties for which other type systems and model
checkers can also be used. For example, if ∆ is a : ]!0∞ [Bool], then ∆ |=RD P only
means that P is deadlock-free and P will eventually send a boolean on a unless it
diverges. Robust confluence is guaranteed, for instance, by types systems for linear
channels [Kobayashi et al. 1999] and race-freedom [Terauchi and Aiken 2008]; other
static analysis methods such as model checking and abstract interpretation [Feret
2005] could also be used. Verification of robust termination is discussed in Section 5.

3.3 Hybrid Typing Rules

We now introduce the new rules LT-Hyb (for weak lock-freedom), and SLT-Hyb
(for strong lock-freedom).

∆ |=RD P Erase(∆) |=RTer P nocap(∆)
∆ `LT P

(LT-Hyb)

∆ |=RD P Erase(∆) |=RTer P Erase(∆) |=RConf P nocap(∆)
∆ `SLT P

(SLT-Hyb)

2Kobayashi’s type system [Kobayashi 2006] uses pairs instead of tuples; so strictly speaking, we
need to encode tuples into pairs in the judgment ∆ `∅ P .
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Here, Erase(∆) is the simple type environment obtained from ∆ by removing all
usage annotations. The condition nocap(∆) holds if, intuitively, ∆ describes a pro-
cess that fulfills its obligations without relying on the environment. As mentioned
in Section 1, this is used to avoid circular, unsound, assume-guarantee reasoning.
The definition is subtle; for nested channel types, the nocap condition depends on
whether a channel is used for input or output. For example, nocap(]?0∞

[]!0∞ [ ]]) holds
but nocap(]!0∞ []!0∞ [ ]]) does not.

Definition 3.10 (nocap). We write nocap(U) when all the (syntactic occurrences
of) capability levels in U are ∞, and write noob(U) when all the (syntactic
occurrences of) obligation levels in U are ∞. The relations are extended to those
on types, which are inductively defined by the following rules.

nocap(Bool)
(NoCap-Bool)

nocap(U) mode(U, ?)⇒ nocap(L̃) mode(U, !)⇒ noob(L̃)

nocap(]U [L̃])
(NoCap-Ch)

noob(Bool)
(NoOb-Bool)

noob(U) mode(U, ?)⇒ noob(L̃) mode(U, !)⇒ nocap(L̃)

noob(]U [L̃])
(NoOb-Ch)

Here, mode(U,α) means that U contains α. We write nocap(∆) when nocap(∆(v))
for any v ∈ dom(∆).

Notice the interplay between nocap and noob. For example, noob(L) is required
for nocap(]!0∞ [L]), since L is the type of a channel that is exported to the environment.
On the other hand, nocap(L) is required for nocap(]?0∞

[L]) since L is the type of a
channel that is imported from the environment.

Example 3.6. nocap(]0[L̃]) and noob(]0[L̃]) hold for any L̃; since neither
mode(0, ?) nor mode(0, !) holds, the second and third premises of rules NoCap-Ch
and NoOb-Ch are void.

nocap(]?0∞
[]!0∞ [ ]]) can be derived from nocap(]!0∞ [ ]) by using NoCap-Ch.

nocap(]!0∞ []!∞0 [ ]]) can be derived from noob(]!∞0 [ ]) by using NoCap-Ch. Note that
nocap(]!0∞ []!0∞ [ ]]) does not hold: the rightmost premise of NoCap-Ch requires
noob(]!0∞ [ ]), but that is not the case.

2

Example 3.7. ∆1 = a : ]?0∞
[]!0∞ [ ]], b : ]?0∞

[ ] satisfies nocap(∆1). On the other
hand, ∆2 = a : ]?1∞

[]!0∞ [ ]], b : ]?∞0 [ ] does not satisfy nocap(∆2). 2
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To see why the nocap(∆) condition is necessary, consider the process P1 |P2,
where

P1
def= ∗a(x). b[x] P2

def= a[c] | ∗b(x). a[x].

Let us define ∆1 and ∆2 by:

∆1
def= a : ]∗?0∞

[]!1∞ [ ]], b : ]∗!∞0 []!1∞ [ ]]

∆2
def= a : ]∗!∞0 []!1∞ [ ]], b : ]∗?0∞

[]!1∞ [ ]], c : ]!1∞ [ ]

Then, we have ∆1 |=RD P1 and ∆2 |=RD P2. P1 and P2 are robustly terminating, i.e.,
Erase(∆1) |=RTer P1 and Erase(∆2) |=RTer P2. If there were no other conditions, we
would obtain ∆1 `LT P1 and ∆2 `LT P2, from which the following wrong judgment
would be obtained:

∅ `LT (νc) (c◦ | (νa) (νb) (P1 |P2)).

The problem with the example is that P1 and P2 assume each other that the
other process will fulfill an obligation to execute the input on a or b, and to use the
received channel for output.

Based on the observation above, we require by nocap(∆) that P must not rely
on the environment fulfilling any obligation.

Remark 3.11. Weakening the nocap condition, or finding situations in which
it can be removed, appears delicate. For instance, the example of P1 and P2

above might suggest that nocap is not needed if LT-Hyb is applied only once
in a typing derivation. That is, however, unsound. Let P be ∗a(x). b.a[x] and ∆
be b : ]∗?∞0 [ ], a : ]∗?0

∞.!∞0
[]!1∞ [Bool]]. Then we have ∆ |=RD P and Erase(∆) |=RTer P .

Without the nocap condition, we would get ∆ `LT P , from which we would obtain
a wrong conclusion:

∅ `LT (νa, b) (P | ∗b | a[c] | c◦).
As this example suggests, if the nocap condition is weakened, the condition of
robust termination must be strengthened to recover the type soundness. A more
interesting weakening of nocap is mentioned in Section 9.

In the rule for strong lock-freedom, the robust confluence ensures that once a
marked prefix is enabled, it cannot be disabled by any other transitions. See Ex-
ample 3.11 for an non-trivial example, for which the rule LT-Hyb fails to guarantee
strong lock-freedom.

We write ∆ `LT P if it is derivable by using the typing rules in Section 3.1
and LT-Hyb, and write ∆ `SLT P if it is derivable by using SLT-Hyb instead of
LT-Hyb.

3.4 Examples

This section shows several examples to demonstrate our hybrid type system.
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Example 3.8. Recall the process Server in Section 1.

Server def=
(νfact it)
(∗fact (n, r). fact it [n, 1, r]
| ∗fact it (n, x, r).
if n = 0 then r[x] else fact it [n− 1, x× n, r])

Let us define Clients by:

Clients def= ∗(νr1) (fact
◦
[rnd(), r1] | r1

◦(x).0)

Here, rnd() is a primitive for generating random natural numbers.
Let ∆ be fact : ]∗?0∞

[Nat, ]!0∞ [Nat]]. Then, we have:

∆ |=RD Server Erase(∆) |=RTer Server Erase(∆) |=RConf Server nocap(∆)

Thus, by using SLT-Hyb, we obtain ∆ `SLT Server .
On the other hand, Clients is typed as follows:

fact : ]!∞0 [Nat, ]!0∞ [Nat]], r1 : ]!1∞ [Nat] ` fact
◦
[rnd(), r1] r1 : ]?∞1 [Nat] ` r1

◦(x).0

fact : ]!∞0 [Nat, ]!0∞ [Nat]], r1 : ]!1∞ | ?∞1 [Nat] ` fact
◦
[rnd(), r1] | r1

◦(x).0

fact : ]!∞0 [Nat, ]!0∞ [Nat]] ` (νr1) (fact
◦
[rnd(), r1] | r1

◦(x).0)

fact : ]∗!∞0 [Nat, ]!0∞ [Nat]] ` Clients

From the judgments for Server and Clients above, we obtain:

∅ `SLT (νfact) (Server |Clients).

This means that all the clients can eventually receive replies. Note that the whole
process diverges (since there are infinitely many clients), but we can derive strong
lock-freedom by local reasoning based on SLT-Hyb. 2

Example 3.9. Consider the following process BSystem.

BServer
def= (νbcastit) (∗bcast(z). bcastit[z]

| ∗bcastit(z). if null(z) then 0
else let x = hd(z) in (x |x | bcastit[tl(z)]))

BSystem
def= (νbcast, rec) (BServer

| ∗rec(z). if null(z) then 0
else let x = hd(z) in (x◦ | rec[tl(z)]))

| (νc1, c2, c3) ( rec◦[c1; c2; c3] | bcast◦[c1; c2; c3] | c1
◦ | c2

◦ | c3
◦)

This example uses lists as first-order values, with the usual operations for them.
The system has two servers: the server bcast(z), which broadcast a message twice
to each channel in the list z; the server rec(z), which listens on all the channels in
the list z. The two services are invoked with a list made of three channels c1, c2, c3,
on which the clients also receive. All the receive operations on c1, c2, c3 are expected
to succeed. The success of the receive operations relies on the correct inspection of
the lists by the two recursive servers, including the correct use of each channel in the
lists (for instance, lock-freedom would fail if bcast did not use, or used only once,
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G
def
= ∗p(x, y, n, s).x(t, r).

if t = s then r [n] | p[x, y, n, s]
else if y = nil then r [n + 1] | νc(p[c, nil, n + 1, t] | p[x, c, n, s])

else y [t, r]. p[x, y, n, s]

ST0
def
= (νp) (G | p[a, nil, 1, s0])

STm
def
= ST0 | ∗(νr1) (a◦[rnd string(), r1] | r1

◦(x).0)

Fig. 4. A symbol table

some of the channels in its list). Forwarding of a request from bcast to bcastit
is necessary to get the last condition. Actually, the forwarding can be removed if
nocap(∆) is extended to nocapΛ(∆) as discussed in Section 4.

Let ∆ = bcast : ]∗?0∞
[]!0∞ | !0∞ [ ] List]. Then, we have:

∆ |=RD BServer Erase(∆) |=RTer BServer Erase(∆) |=RConf BServer nocap(∆)

Thus, by using SLT-Hyb, we get ∆ `SLT BServer. By applying the rules for the
LT type system to the rest of the process, we get ∅ `SLT BSystem. 2

Example 3.10. This example is from [Jones 1993]. It is about the implemen-
tation of a symbol table as a chain of cells. In Figure 4, G is a generator for cells;
ST0 is the initial state of the symbol table with only one cell; STm is the system
consisting of the symbol table and clients of it, where rnd string() is random gen-
erator of strings, used for a compact representation of a potentially infinite number
of clients. The request and answer actions from the clients are marked so as to
indicate that we expect them to succeed in the lock-freedom analysis.

Every cell of the chain stores a pair (n, s), where s is a string and n is a key
identifying the position of the cell in the chain. A cell is equipped with two channels
so as to be connected to its left and right neighbors. The first cell has a public
left channel a to communicate with the environment and the last cell has a right
channel nil to mark the end of the chain. Once received a query for string t, the
table lets the request ripple down the chain until either t is found in a cell, or the
end of the chain is reached, which means that t is a new string and thus a new cell
is created to store t. In both cases, the key associated to t is returned as a result.
There is parallelism in the system: many requests can be rippling down the chain
at the same time.

Let ∆ be: a : ]∗?0∞
[String, ]!0∞ [Nat]]. Then, we have:

∆ |=RD ST0 Erase(∆) |=RTer ST0 Erase(∆) |=RConf ST0 nocap(∆)

By using SLT-Hyb, we get ∆ `SLT ST0. By using rules for LT type system, we
obtain ∅ `SLT STm. 2

Example 3.11. This example shows a binary search tree data structure, offering
services for inserting and searching natural numbers. Each node of the tree is
implemented as a process that has: a state, given by the integer stored in the node
and pointers to the left and right subtree and that contain, respectively, smaller
and greater integers; channels for the insert and search operations. In Figure 5, G
is a generator of new nodes, which can then grow and originate a tree, and where: i
and s will be the insertion and search channels; state stores the state of the node.
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Initially the node is a leaf. TreeInit is the initial tree, with an empty state and
public channels insert and search to communicate with the environment. Once
received a query for an integer n, the tree lets the request ripple down the nodes,
following the order on the integers to find the right path, until either t is found in
a node, or the end of the tree is reached, which, in the case of an insert, means
that n is a new integer and the node a leaf, and thus the leaf becomes a node that
stores n and two new leaves are created. As in the symbol table example, many
requests can be rippling down the tree at the same time; moreover, requests can
even overtake each other.

As to lock-freedom, the example is interesting for at least two reasons. (1) The
tree exhibits a syntactically challenging form. The process G has a sophisticated
structure of intertwined recursive inputs: the replicated input at newtree has out-
puts at newtree itself in its body; similarly, the replicated inputs at i and s have,
in the body, outputs at sibling channels (the names for interrogations of the two
following subtrees); further, also the imperative channel state takes place in the
recursions at i and s. (2) Semantically, the tree is a dynamic structure, which can
grow to finite but unbounded length, depending on the number of requests it serves.
Moreover, the tree has a high parallelism involving independent threads of activities
and where: the paths followed by the threads on the tree are partially overlapping;
threads can proceed at different speeds (i.e., requests can overtake each other). The
number of steps that the tree takes to serve a request from a client depends on the
height of the tree, on the number of internal threads in the tree, and on the value
of the request.

Let ∆ be insert : ]∗?0∞
[Nat, ]!0∞ [ ]], search : ]∗?0∞

[Nat, ]!0∞ [Bool]]. Then, we have:

∆ |=RD TreeInit Erase(∆) |=RTer TreeInit nocap(∆)

Thus, by using LT-Hyb, we obtain ∆ `LT TreeInit. By applying rules for LT to
the rest of the system, we get ∆ `LT System.

Note that SLT-Hyb is not applicable since TreeInit is not robustly confluent
(because, when multiple requests arrive simultaneously, there can be a race on the
channel state). Indeed, the example is NOT strongly lock-free! A search request
may never be replied if the request is overtaken by insertion requests so often that
the tree grows faster than the search request goes down the tree. Thus, a stronger
scheduling assumption is necessary for this implementation to work properly.

2

In all the examples, robust termination is guaranteed by the type system described
in Section 5.

Example 3.12. In Example 3.11 we showed an implementation of a binary
search tree that is weakly, but not strongly, lock-free. Figure 6 shows a strongly
lock-free implementation. The server TreeInit′ receives requests along channel a
one by one. A request is either of the form insert(n, r) or search(n, r). Unlike
the system in Example 3.11, requests cannot be overtaken, although there is still
parallelism (multiple requests can go down the tree simultaneously). TreeInit′ is
robustly confluent; note that the only τ -transitions inside TreeInit′ are on chan-
nels leaf, node, left, and right, and that the first two of them are replicated
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G
def
= ∗newtree(i, s).(νstate)

ş
state[leaf ]

| ∗i(n, r).state(x). /*** insertion ***/

match x with
leaf →

/*** if t is a leaf, turns it into a node having two new leaves ***/

(νleft i, left s, right i, right s)ş
newtree[left i, left s]

| newtree[right i, right s] /*** create two leaves ***/

| state[node(n, left i, left s, right i, right s)]
/*** change to an internal node ***/

| r []
ť

/*** notify the completion of insertion ***/

|| node(n1, il, sl, ir, sr) → /*** if t is a node ***/ş
if n = n1 then r []

/*** if n is in the node, then stop, to avoid duplicates ***/

else if n < n1 then il [n, r]
/*** if n < t1 then insert n into the left subtree ***/

else ir [n, r]
/*** otherwise, insert n into the right subtree ***/

| state[x]
ť

| ∗s(n, r).state(x).(state[x] /*** search ***/

|match x with
leaf → r [false]
|| node(n1, il, sl, ir, sr) →

if n1 = n then r [true] else if n < n1 then sl [n, r] else sr [n, r])
ť

TreeInit
def
= (νnewtree) (G | newtree[insert, search])

System
def
= (νinsert, search)

(TreeInit | ∗(νr1) (insert
◦
[rnd(), r1] | r1

◦) | ∗(νr2) (search
◦
[rnd(), r2] | r2

◦(x)))

Fig. 5. A binary tree

input channels, and the others are linearized channels. Thus, we can derive

a : ]∗?0∞
[L] `SLT TreeInit′

where

L
def= 〈insert : [Nat, ]!0∞ [ ]], search : [Nat, ]!0∞ [Nat]]〉.

Here, L is a variant type describing requests of the form insert(n, r) or search(n, r).
By using the typing rules for SLT, we can derive:

∅ `SLT System′.
Thus, we can verify that System′ is strongly lock-free. 2

4. TYPE SOUNDNESS

We show the soundness of the type system in this section. The following theorems
are the main results of this paper.

Theorem 4.1 (weak lock-freedom). If ∅ `LT P , then P is (weakly) lock-
free.
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G′ def
= ∗leaf(x).x(req).

(match req with
insert(n, r) →

(νleft, right) (r | node◦[n, x, left, right] | leaf◦[left] | leaf◦[right])
|| search(n, r) → r [false] | leaf◦[x])

| ∗node(n1, x, xl, xr).x(req).
(match req with

insert(n, r) →
if n = n1 then r | node◦[n1, x, xl, xr]

else if n < n1 then xl
◦[insert(n, r)]. node

◦
[n1, x, xl, xr]

else xr
◦[insert(n, r)]. node

◦
[n1, x, xl, xr]

|| search(n, r) →
if n = n1 then r [true] | node◦[n1, x, xl, xr]

else if n < n1 then xl
◦[search(n, r)]. node

◦
[n1, x, xl, xr]

else xr
◦[search(n, r)]. node

◦
[n1, x, xl, xr])

TreeInit′ def
= (νleaf, node) (G′ | leaf◦[a])

System′ def
= (νa) (TreeInit′

| ∗(νr1) (a◦[insert(rnd(), r1)] | r1
◦) | ∗(νr2) (a◦[search(rnd(), r2)] | r2

◦(x)))

Fig. 6. A strongly lock-free implementation of binary trees

Theorem 4.2 (strong lock-freedom). If ∅ `SLT P , then P is strongly lock-
free.

The rest of this paper is devoted to the proofs of Theorems 4.1 and 4.2. Readers
who are not interested in the proof may safely skip the rest of this section.

Basically, as in the previous type system [Kobayashi 2005a], Theorem 4.1 follows
from type preservation, which means that typing is preserved by any transition, and
progress, which means that if a tagged process P is well-typed, then P

τ−→∗ τ2

−→.
The existence of the hybrid rule LT-Hyb, however, poses significant challenges in
the proof. First, while it was enough to show type preservation by τ -transitions
in the previous type systems, because of LT-Hyb, we have to show that typing
is preserved by any transitions (including output/input transitions). Second, in
the type system discussed so far, typing is actually not preserved by transitions,
so that we have to extend the type system in a non-trivial way. To see why,
suppose that a judgment ∆ `LT P is derived by using LT-Hyb. In order for the
judgment derived by LT-Hyb to be preserved by transitions, we need to require
that ∆ |=RD P and nocap(∆) with P

η−→ Q imply ∆′ |=RD Q and nocap(∆′) for
some ∆′. The latter condition nocap(∆′), however, does not hold in general. For
example, let P = (νc) (a[c] | ∗c( ) | c◦[ ]) and ∆ = a : ]!0∞ []!∞0 [ ]], with η = (νc) a[c]
and Q = 0 | ∗c( ) | c◦[ ]. Then, Q is typed under ∆′ = a : ]0[]!∞0 [ ]], c : ]∗?0∞ | !∞0 [ ], but
nocap(∆′) does not hold because c’s usage contains !∞0 .

To overcome the problem above, we first extend the type system in Section 4.1.
We then prove type preservation and progress for the extended type system in
Sections 4.2 and 4.3. Theorem 4.1 then follows as a corollary of the two properties.
Theorem 4.2 is proved in Appendix C.
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4.1 Extended Typing

A key observation to solve the above problem is that although the type environment
∆′ of Q contains a capability, that capability is matched by Q’s own obligation ?0

∞,
and Q does not expect any obligatory behavior from the environment; the transition

P
(νc) a[c]−→ Q has exported only a capability (to use c for output) to the environment.
Based on the observation above, we extend the type judgment with an additional

parameter Λ, which expresses an assumption about what capabilities/obligations
the environment owns. The resulting type judgment form is ∆ `Λ

LT P . The condition
nocap(∆) in LT-Hyb is replaced by nocapΛ(∆).

Λ is a mapping from the set N of names to the set of modes, defined by:

m (modes) ::= 0 |?a |!a |!?a

a ::= ε | o
Intuitively, Λ expresses how (for input or output) each channel may be used by the
environment of P , and ∆ `Λ

LT P means that P is well-typed under that assumption.
We write a1 : m1, . . . , an : mn for the mapping Λ such that Λ(ai) = mi and Λ(b) =!?o
for b 6∈ {a1, . . . , an}. We write ⊥ for the mapping Λ such that Λ(a) =!?o for every
a ∈ L. For the sake of simplicity, we assume that variables are always mapped to
!?o.

A mode m can be considered an abstraction of usages (which are again abstrac-
tions of communication behaviors on each channel). Intuitively, a : ?a means that
the environment may perform an input on a. The attribute a expresses whether
the process relies on the environment performing the input. a : ?ε means that the
process definitely does not rely on the environment performing the input, while
a : ?o means that the process may rely on the environment. We often omit ε and
just write ?, !, !? for ?ε, !ε, !?ε.

We define the submode relation m1 ≤ m2 as shown below (An upper mode is
greater than a lower mode):

!?o
HHHHH

´
´

´
´

!?ε !o ?o
½

½
½½

³³³³³³³³³

@
@@

@
@@

!ε ?ε

¡
¡

@
@

0

We extend the submode relation to that on mode environments by:

Λ1 ≤ Λ2 ⇐⇒ ∀a ∈ L.Λ1(a) ≤ Λ2(a)

We replace the condition nocap(∆) with the condition nocapΛ(∆) defined below.

Definition 4.3. nocapm(L) is defined by:
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∆ |=RD P ∆ |=RTer P nocapΛ(∆)

∆ `Λ
LT 〈P 〉T

(ELT-Hyb)
∆1 `⊥LT P tc = ∞⇒ χ = •

v : ]!0tc
[L];(∆1 | ew : ↑eL) `⊥LT vχ[ ew]. P

(ELT-Out)

∅ `Λ
LT 0

(ELT-Zero)

∆, a : ]U [L] `Λ
LT P rel(U)

∆ `Λ{a7→!?o}
LT (νa) P

(ELT-New)

∆′ `Λ′
LT P ∆ ≤ ∆′ Λ′ ≤ Λ

∆ `Λ
LT P

(ELT-Weak)
∆ `⊥LT P

∗∆ `⊥LT ∗P
(ELT-Rep)

∆, v : L `⊥LT P tc = ∞⇒ χ = •
v : ]?0tc

[L];∆ `⊥LT vχ(y). P
(ELT-In)

∆ `⊥LT P ∆ `⊥LT Q

∆ | (v : Bool) `⊥LT if v then P else Q
(ELT-If)

∆1 `Λ1
LT P1 ∆2 `Λ2

LT P2 Λ2 ≤ Modes(∆1) Λ1 ≤ Modes(∆2)

∆1 |∆2 `Λ1tΛ2
LT P1 |P2

(ELT-Par)

Fig. 7. Extended Typing Rules for Lock-Freedom

nocapm(Bool)

!?ε ≤ m ∨ nocap(U) (mode(U, ?) ∧m ≤ !ε)⇒ nocap(L̃)
(mode(U, !) ∧m ≤?ε)⇒ noob(L̃)

nocapm(]U [L̃])

We write nocapΛ(∆) if nocapΛ(a)(∆(a)) for each a ∈ dom(∆).

For the example given in the beginning of this subsection, Q is typed as ∆′ `Λ′
DT Q

where Λ′ = a : ?ε, c : !ε. By the definition above, nocapΛ′(∆′) holds.
We also extend the syntax of processes in order to make applications of LT-Hyb

explicit.

P ::= · · · | 〈P 〉T

The typing rules for the extended judgments are given in Figure 7. A key change
from the type system in Section 3 is that the condition nocap(∆) in LT-Hyb has
been replaced by a weaker condition nocapΛ(∆). Note also that rule ELT-Par re-
quires (by the conditions Λ2 ≤ Modes(∆1) and Λ1 ≤ Modes(∆2)) that P1 conforms
to the assumption Λ2 on the behavior of P2’s environment, and vice versa. Here,
Modes(∆), defined below, maps the type environment to the corresponding mode
environment.

Definition 4.4. Modes(U) is defined by:

Modes(0) = 0

Modes(αt1
t2 .U) =

{
αo uModes(U) if t1 6=∞
αε uModes(U) if t1 =∞

Modes(U1 |U2) = Modes(U1) uModes(U2)
Modes(∗U) = Modes(U)

Here, m1 um2 is the greatest lower bound of m1 and m2.
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Modes(L) is defined by:

Modes(Bool) = 0
Modes(]U [L̃]) = Modes(U).

Modes(∆) is defined by:

Modes(∆)(a) =
{

Modes(∆(a)) if a ∈ dom(∆)
0 otherwise.

4.2 Type Preservation

We now show that the extended typing relation is preserved by reduction.
A type environment and a mode environment may be changed by the transition.

For instance, for the example given at the beginning of the previous subsection,
P ’s type environment and mode environment are ∆ = a : ]!0∞ []!∞0 [ ]] and Λ = a : ?ε,
while those of Q are ∆′ = a : ]0[]!∞0 [ ]], c : ]∗?0∞ | !∞0 [ ] and Λ′ = a : ?ε, c : !ε. Similarly,

suppose that a : ]?∞0 []!1∞ [ ]] `Λ
LT P and P

a[b]−→ Q. Since P imports the capability and
obligation on b by consuming the input capability on P , the type environment of Q
is a : ]0[]!1∞ [ ]], b : ]!1∞ [ ]. Such changes of type environments and mode environments

are captured by the relation ∆
η−→ ∆′ defined in Section 3.2 and the relation

Λ
η−→ Λ′ defined below. We write 〈Λ,∆〉 η−→ 〈Λ′, ∆′〉 for ∆

η−→ ∆′ and Λ
η−→ Λ′.

Λ τ−→ Λ

Λ
a[eb]−→ Λ

Λ
(νec) a[eb]−→ Λ{c̃ 7→ 0̃} uModes(̃b : L̃)

Here, Λ1uΛ2 is the greatest lower bound of Λ1 and Λ2 (with respect to the submode
relation).

The predicate enabled(Λ, ∆, η) defined below means that the transition η is en-
abled under the type environment ∆ and the mode environment Λ. Note that,
for example, the action a[b] is not possible if Λ(a) = 0, because the environment
cannot perform an input action on a. That is expressed by the condition Λ(a) ≤?ε

in the third rule below.

Definition 4.5. The predicate enabled(Λ, ∆, η) is defined by:

enabled(Λ, ∆, τ)

∆(a) = ]U [L̃] ∆ | b̃ : L̃ well-defined Λ ≤ Modes(a : ]!ε [L̃], b̃ : L̃)

enabled(Λ,∆, a [̃b])

Λ(a) ≤?ε ∆(a) = ]U [L̃]

enabled(Λ, ∆, (νc̃) a [̃b])
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Now we state the main lemma.

Lemma 4.6 type preservation. If ∆ `Λ
LT P , enabled(Λ, ∆, η), and P

η−→ Q,
then there exists ∆′ and Λ′ such that ∆′ `Λ′

LT Q and 〈Λ,∆〉 η−→ 〈Λ′, ∆′〉.
Proof. See Appendix A. 2

4.3 Progress and Lock-Freedom

The progress property is stated as follows.

Lemma 4.7 progress. Let P be a tagged process. If ∅ `Λ
LT P , then P

τ−→∗ τ2

−→.

Proof. See Appendix B 2

We can now prove the lock-freedom theorem (Theorem 4.1).

Proof Theorem 4.1. Suppose that ∅ `LT P and P
τ−→∗

Q. We need to show
that any process Q′ in the tagging of Q is successful. By Lemma 4.6, we have
∅ `⊥LT Q′. (Note that replacement of ◦ with 2 does not affect the typability.)
Suppose Q′ τ−→∗

R. Then, by using Lemma 4.6 again, we get ∅ `⊥LT R. Since R

must be tagged (note that only τ−→ cannot discharge 2), by using Lemma 4.7, we

get R
τ−→∗ τ2

−→. Thus, Q′ is successful. 2

See Appendix C for the proof of Theorem 4.2.

5. TYPES FOR ROBUST TERMINATION

In this section, we discuss type systems for guaranteeing robust termination. Termi-
nation of a term means that all its reduction sequences are of finite length. Robust
termination (Definition 3.6) guarantees that termination is maintained when the
process interacts with its environment. Termination is strictly weaker than robust
termination. Consider for instance the term

P
def= c[b] | c(x).(x | ∗a.x) (1)

The process P has one reduction only, and therefore it is terminating. It is indeed
typable in the simplest of the type systems in [Deng and Sangiorgi 2006]. However,
P is not robustly terminating. It can interact with other processes via the input at
c and, in doing so, it may receive a resulting in the non-terminating derivative

c[b] | a | ∗a.a

It is precisely because of input prefixes, as shown in this example, that processes
typable in [Deng and Sangiorgi 2006] (as well as other type systems for termination)
may not be robustly terminating.

The objective here is to guarantee robust termination by re-using existing type
systems for termination. Precisely, we wish to add some extra conditions to the
type systems for termination capable of ensuring the stronger property of robust
termination. For the sake of simplicity, we impose a restriction that replication
can be applied only to input prefixes (so that a process like ∗a is forbidden). This
restriction does not affect the expressiveness of the calculus and is indeed very
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common in languages based on the π-calculus; dealing with arbitrary replications
would complicate substantially the termination type systems.

We explain the idea of the extra conditions on a very simple type system for
termination, namely the first of the type systems in [Deng and Sangiorgi 2006],
which we recall (and revise) in the next subsection.

5.1 The type systems in [Deng and Sangiorgi 2006], revisited

We recall the type systems in [Deng and Sangiorgi 2006], as we appeal to them for
the termination analysis of most of the examples in this paper. In [Deng and San-
giorgi 2006] these type systems are expressed à la Church—each name is assigned
a type a priori—and exploit this in making use of some special functions that scan
the whole syntax of a process looking for certain typed patterns of occurrences of
names. We revise the systems, using an approach à la Curry and avoiding these
complex functions.

There are four type systems in [Deng and Sangiorgi 2006], plus combinations of
some of them. We discuss the first system, which is the simplest, and the fourth,
as it does not fit the condition for robust termination in Lemma 5.3; we only hint
at the others.

The first system, Lev, is obtained by making a mild modification to the types and
typing rules of the simply typed π-calculus: a level information, which is a natural
number, is added to each channel type. The levels are used to define a weight for
each process. We call active an output that is not underneath a replication. The
weight of a process is the multiset consisting of the levels of all active outputs. The
type system guarantees that the weight strictly decreases under reduction (with
respect to the standard multiset ordering), by imposing the constraint that, in a
replicated input, the level of the input name should be strictly greater than that
of any name that is used in output in the body of the replication (and that is not
under some inner replications). For instance, a typing of the process P in (1)
would assign b a level that is the same as that of x but smaller than that of a; the
level of c could be anything, as the input at this channel is not replicated (there
could also be several outputs at x underneath the replication at a; if there were an
output at c, however, then the level of c should be smaller than that of a). The
grammar of the types of Lev is:

V ::= Bool | ]n[Ṽ ] n ∈ Nat

A judgment in Lev takes the form Θ `n
Lev P . We write Θ `Lev P if Θ `n

Lev P
holds for some level n. Intuitively, n in a judgment Θ `n

Lev P represents the level
of the innermost replication enclosing P , so that the level of every active output
must be smaller than n. The typing rules are similar to those of the simply-typed
π-calculus, except for the following rules for output, input, and replicated input.

Θ(p) = ]n2 [Ṽ ] Θ ` ṽ : Ṽ Θ `n1
Lev P n2 < n1

Θ `n1
Lev p[ṽ].P

(Lev-Out)

Θ(p) = ]n2 [Ṽ ] Θ, x̃ : Ṽ `n1
Lev P

Θ `n1
Lev p(x̃).P

(Lev-In)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



32 · N. Kobayashi and D. Sangiorgi

Θ(p) = ]n2 [Ṽ ] Θ, x̃ : Ṽ `n2
Lev P

Θ `n1
Lev ∗p(x̃).P

(Lev-RIn)

The rule Lev-Out ensures that the levels of all active outputs are smaller than n.
Note the difference between Lev-In and Lev-RIn; the level n1 of the judgment
does not change in Lev-In, while in Lev-RIn, the level of the judgment changes
from n1 to n2 (as the innermost replication enclosing P is ∗p(x̃), which has level
n2).

Example 5.1. Recall the process P given at the beginning of this section:

c[b] | c(x).(x | ∗a.x).

It is typed as follows.

Θ `1
Lev c[b]

Θ, x : ]0[ ] `1
Lev x

Θ, x : ]0[ ] `1
Lev x

Θ, x : ]0[ ] `1
Lev ∗a.x

Θ, x : ]0[ ] `1
Lev x | ∗a.x

Θ `1
Lev c(x).(x | ∗a.x)

Θ `1
Lev P

Here, Θ = a : ]1[ ], c : ]0[]0[ ]]. 2

The main limitation of Lev is that, in certain cases, an input ∗p(x̃). P cannot
have outputs at p, or at names with the same type as p, in the body P . Because of
this limitation, for instance, Example 3.10 cannot be typed (note that p is used for
output in the body of the replicated input ∗p(x, y, n, s). ). The other type systems
of [Deng and Sangiorgi 2006] allow more freedom by using more sophisticated
types and weight measure, and exploiting techniques from term-rewriting based on
lexicographical and multiset ordering.

In particular, the fourth type system, PO, introduces a notion of partial or-
der on channels. Roughly, the partial order makes it possible to type patterns
∗q(ỹ).(· · · p[ṽ] · · · ), where the output at p is not under inner replications, in which
the level of p is equal to that of q (hence the pattern is not typable, for instance,
in the system Lev), but p is smaller than q in the partial order.3 This pattern
appears in Example 3.11 of the binary tree (in the insert, the replicated input at
i followed by the outputs at il and ir towards the children nodes; and similarly
in the search). Thus, PO judgments are of the form Θ;R `n

PO P where n is a level
information and R a partial order on the names in Θ. The type of a channel may be
decorated with a partial order, which expresses partial order requirements on the
tuples of values exchanged along that channel; for instance the requirement that
the second component should always be smaller than the third, or smaller than a
certain channel.4

3We are simplifying the explanation; for instance, the input of q need not be the first input of the
replication.
4The latter possibility, reminiscent of dependent types, was not actually present in [Deng and
Sangiorgi 2006], but represents a straightforward extension, at least if names with dependent
types cannot be communicated; this possibility is needed in the typing of binary tree example.
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5.2 Conditions for robust termination

As an example, we first illustrate the conditions for robust termination on the
system Lev of the previous section.

Given a type environment Θ, we write CTypes(Θ) for the set of channel types used
in Θ. That is, for each channel type assignment v :T in Θ we place T and all channel
type subcomponents of T in CTypes(Θ). For instance, if T is ]n1 []n2 [Bool], Bool]
then T and ]n2 [Bool] should be in CTypes(Θ).

Let Erase be the function that strips off the level information from the Lev types
and returns simple types. The condition that we add for the robust termination of
a process P under Γ (where Γ is an ST type environment) is the following: there
is Θ s.t. Θ `Lev P , Erase(Θ) = Γ, and Erase is injective on all types used in Θ
(that is, CTypes(Θ)). Injectivity is maintained under the (Γ-typed) transitions of
P because:

—Lev has the subject reduction property, therefore any τ -derivative of P remains
typed in Θ;

—an input or output derivative of P is typed under a type environment that extends
Θ with types that already appear in Θ (for instance, in case of the input of a
fresh name at c, the type for the fresh name is extracted from the type of c in
Θ).

The robust termination for P under Γ immediately follows from the termination
properties of Lev and the above invariance under transitions, which guarantees
typability in Lev after any sequence of ST-typed transitions.

In the process P of (1), which is not robustly terminating, the above conditions
fail because any Lev typing for P must have assignments c : ]`[]m[ ]], a : ]n[ ] for
levels `, m, and n with n > m; Erase is not injective on CTypes(Θ), for it returns
the same simple types on ]m[ ] and ]n[ ].

Generalizing the above reasoning, we define some abstract conditions with which
a type system for termination also guarantees robust termination (Lemma 5.3); we
then discuss refinements of the conditions (Section 5.3).

We denote by Ter a generic type system for termination, and with Θ `Ter P a
judgment in Ter, ignoring possible additional information in the judgment (such
as the levels of Lev), for this information is not relevant in the results below. We
assume that the judgment is closed under renaming, i.e., if Θ, p :T `Ter P and q is
fresh (i.e., it does not appear in Θ or P ), then Θ, q : T `Ter [p 7→ q]P .

Definition 5.1. Let f be a function from the types of Ter to those of ST. We say
that Θ `Ter P is f -admissible if both Θ `Ter P and f(Θ) `ST P hold and, for all
substitutions σ that are closing for f(Θ), whenever σf(Θ) `ST σP

η1−→ · · · ηk−→ P ′,
there is a closed Θ′ s.t. Θ′ `Ter P ′. (Where f(Θ) is the ST type environment
obtained by replacing each type assignment v : T in Θ with v : f(T ).)

f -admissibility ensures us that f can be used to turn a typing Θ `Ter P into a valid
ST typing and, furthermore, typing in Ter is preserved under (ST-typed) transitions,
hence we have:

Theorem 5.2. Suppose Ter is a type system that guarantee termination (i.e.,
whenever ∆ `Ter Q, for ∆ closed, then Q terminates), and f a function from
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the types of Ter to those of ST. If Θ `Ter P is f -admissible then P is robustly
terminating under f(Θ).

Proof. Let σ be a closing substitution for f(Θ). it suffices to show that
σf(Θ) `ST σP

η1−→ · · · ηk−→ P ′ implies that P ′ is terminating. By the definition
of f -admissibility, there exists Θ′ such that Θ′ `Ter P ′. By the assumption that
Ter guarantees termination, P ′ is terminating. 2

If Θ `Ter P and f(Θ) `ST P , and provided that the definition of f is composi-
tional, then f -admissibility normally follows from a Subject-Reduction theorem for
Ter and injectivity of f on CTypes(Θ) (that, we recall, is the set of channel types
used in Θ).

Lemma 5.3. Given a type system Ter, and a function f from the types of Ter to
those of ST (and mapping Bool onto Bool), suppose f and Ter satisfy the following
conditions:

(1 ) whenever Θ `Ter P also f(Θ) `ST P ;

(2 ) whenever Θ `Ter P , with Θ closed, and P
η−→ P ′ and, furthermore, when

η is an input, all names received are fresh (i.e., these names do not appear
in Θ), then there is Θ′ closed s.t. Θ′ `Ter P ′ with CTypes(Θ′) ⊆ CTypes(Θ).
Moreover, in the case of input with fresh names, say η = a[ṽ], it should be
f(Θ)(a) = ][f(Θ′)(ṽ)] and Θ(p) = Θ′(p) for all names p 6∈ {a, ṽ}.

(3 ) whenever Θ `Ter P and Θ(p) = Θ(q) also Θ `Ter [q 7→ p]P ;

Then for any Θ and P , if f is injective on CTypes(Θ) then Θ `Ter P is f -admissible.

In the lemma, the first condition ensures us that f converts a valid judgment in
Ter into one valid in ST. The second condition is a Subject-Reduction property for
Ter on transitions; CTypes(Θ′) ⊆ CTypes(Θ) essentially ensures that the types of
fresh names received in an input or emitted in an output along a channel a can be
deduced from the type of a. The third condition says that Ter maintains typability
under substitution of names with names of the same type. In the conclusions, the
injectivity condition on f is only on the initial type environment for P . It does not
affect other environments that appear in the derivation of Θ `Ter P ; therefore the
types of the restricted names of P need not be subject to the condition.

Proof. We prove that Θ `Ter P is f -admissible. First, by condition (1) of the
lemma, both Θ `Ter P and f(Θ) `ST P hold.

Consider now a substitution σ that is closing for f(Θ). We have σf(Θ) `ST σP .
The substitution σ replaces each variable x in f(Θ) with either a value that is
defined in f(Θ) with the same type as x, or with a fresh name. Since f is injective,
the same property holds if σ is applied to Θ, therefore using also condition (3) of
the lemma, we also have σΘ `Ter σP . (Note that if σ replaces x with a fresh name
then f(Θ)(x) is a channel type and therefore also Θ(x) is a channel type, by the
definition of f and its injectivity.)

We now show that whenever Θ `Ter P , with Θ closed and f injective on
CTypes(Θ), and f(Θ) `ST P

η−→ P ′, then there is Θ′ closed with Θ′ `Ter P ′

and f injective on CTypes(Θ′). This would ensure us the remaining condition for
f -admissibility (on the typability of all typed derivatives of a closed process).
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If η is not an input, then this follows by condition (2) of the lemma. Suppose
now η is an input, say a[v] and v is a name (the case of monadic input is simpler
to explain, the general case of polyadic input is however similar). If v is fresh then
assertion follows from condition (2) of the lemma as before. Suppose now v appears

in Θ, and let w be a fresh name. We also have f(Θ) `ST P
a[w]−→ P ′′, for some P ′′

with P ′ = [v 7→ w]P ′′. Again by condition (2) of the lemma we deduce that there
is Θ′ s.t. Θ′ `Ter P ′′ with CTypes(Θ′) ⊆ CTypes(Θ). Now, if f(Θ)(a) = ][T ], then

T must also be the type of v in f(Θ) (because we have f(Θ) `ST P
a[v]−→ P ′) and,

since it must be f(Θ)(a) = ][f(Θ′)(w)], type T is also the type of w in f(Θ′).
Further, since v does not appear in the names of the input a[w], the type of v
is also T in f(Θ′). By the injectivity of f , we deduce that the types of v and w
are the same in Θ′. We can therefore apply condition (3) of the lemma and infer
Θ′ `Ter [v 7→ w]P ′′ = P ′. 2

Lemma 5.3 is applicable to the system for termination in [Sangiorgi 2006]. This
system uses ST types together with some syntactic conditions on processes; it is
straightforward to put these syntactic conditions into the type system, obtaining
a refinement of ST that satisfies the hypothesis of the lemma. Lemma 5.3 is also
applicable and to all but one of the four type systems in [Deng and Sangiorgi 2006],
where the function f in the lemma can be taken to be the Erase function mentioned
earlier in the section that strips off levels and other termination information. As
an example, we discuss the type system Lev that we also used for Example 5.1.
Condition (1) holds: function f just strips off the levels, hence f(Θ) `ST P follows
from the fact that the Lev system is a refinement of the ST system and as such
already encompassing all type checks in ST. For condition (2), if P is well-typed
under Θ in Lev, and P makes a transition that represents an internal movement or
an output where only free channels or booleans are sent, then in the transition the
set of free channels does not increase and therefore the derivative process remains
well-typed under Θ. If the action is an input a[ṽ] where ṽ are fresh channels and
Θ(a) is ]n[T̃ ], then the derivative will be typed in an environment Θ′ that extends
Θ with the types ṽ : T̃ for the newly arrived channels. Moreover, the types for the
ṽ can be deduced from that of a, thus the Erase function f satisfies f(Θ)(a) =
f(Θ′)(a) = ][f(Θ′)(ṽ)]. The case of an output in which some of the channels
emitted are bound, that is, they are extruded channels, is similar, as the extruded
names are fresh and their type is determined by that of the channel along which
the output occurs. Finally, condition (3) of the lemma holds because the type
checks in Lev on names simply involve looking up the type of a name in the type
environment; the identity of the names is irrelevant, and may be modified as long
as the type remains the same.

An exception for Lemma 5.3 is the system PO of [Deng and Sangiorgi 2006], with
partial orders. We discuss refinements of the lemma that can handle PO and the
system of [Yoshida et al. 2004] in the next section.

5.3 Discussions and refinements

Injectivity in Lemma 5.3. The main constraint in Lemma 5.3 is the injectivity of
f . This says that the channel types that appear in Θ (that is, the types of the free
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names of P and, recursively, of the names that can be communicated along them)
should be the same whenever the corresponding simple types are the same.

This requirement may be demanding when the processes have many free names
with the same simple type, as the termination analysis may need to distinguish
some of them. For instance, in a CCS-like process, where all names have the same
type, the injectivity condition on f would amount to requiring that all free names
should have the same termination type (whereas restricted names can have arbitrary
type). Thus we would be unable to distinguish the process ∗a.b | a, which is robustly
terminating, from the process ∗a.a | a, which is non-terminating, as the name a and
b have the same simple type. (The type system with levels Lev, mentioned above,
recognizes ∗a.b | a as terminating, by assigning to name a a level greater than that
of b, and in doing so it indeed violates the injectivity condition.)

However, as shown by the example in (1), what makes robust termination harder
than termination is channel aliasing on inputs, occurring when a process receives
channels that it already possessed. We can thus improve Lemma 5.3 by requiring
a milder form of injectivity for f . Let OT (Θ `Ter P ) be the set of the channel
types which are assigned to the variables of P in a typing derivation of Θ `Ter P
(assuming that such derivation is unique). We replace the injectivity condition of
Lemma 5.3 with the following:

for all T ∈ OT (Θ `Ter P ) ∩ CTypes(Θ) and S ∈ CTypes(Θ),
if f(T ) = f(S) then S = T . (2)

This is weaker because usually OT (Θ `Ter P ) will be significantly smaller than
CTypes(Θ). For instance, if P is a CCS-like process, then OT (Θ `Ter P ) is al-
ways empty, for any Θ. Further, a variable need not be taken into account when
computing OT (Θ `Ter P ) if no aliasing on that variable is possible (that is, after
instantiation, the variable cannot become equal to another name in the process).
In dialects of the π-calculus such as πI [Sangiorgi 1996], aliasing is forbidden alto-
gether since only fresh names can be transmitted, hence OT (Θ `Ter P ) is always
empty. In general, any technique for computing the aliasing set of a variable (the
set of names with which the variable could be instantiated), such as control flow
analysis and abstract interpretation [Bodei et al. 1998; Feret 2005], can be helpful
to further improve (2).

Another way of weakening the injectivity condition on CTypes(Θ) of Lemma 5.3
is to impose a distinction on the types of free names of a process that “accidentally”
have the same simple types. This could be achieved in various ways. An example
is to adopt named forms of types, as for instance in Milner’s sorting system [Mil-
ner 1993], where types have a name and type equality is given by name equality.
Milner’s sorting systems is indeed the “by-name” equivalent of the “structural” ST
system. Using a sorting, names with the same simple type can be distinguished by
giving different names to their types. There is in fact a most precise sorting for
any process P ; that is, a sorting environment in which two names have the type
only if this is necessary for the typing of the process (therefore the two names must
have the same type in any sorting environment in which P is typable). Computing
the most precise sorting can be done in polynomial time, using a variant of the
algorithm for type inference in ST. All results and examples shown in this paper
using ST as a base typing can be transplanted to the sorting system.
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Another possibility, equivalent to adopting a sorting, is to add dummy compo-
nents to the values exchanged on certain channels (for instance, in the previous
example of ∗a.b | a, we could take b as a name along which pairs of unit values
are exchanged). However, when the robust termination analysis is applied to a
subcomponent P of a larger system, a type distinction on two names a and b that
is needed for the robust termination of P might be forbidden by usages of the
names in other processes (for instance, both names could appear in outputs along
the same channel, in which case, unless the type of this channel is polymorphic, a
and b must have the same type). For these situations, we discuss in Appendix D
a modification of the type systems in Deng and Sangiorgi [2006], where levels are
replaced by intervals.

Substitutions in Lemma 5.3. Another possible source of failure in Lemma 5.3
is the substitution condition (3). This fails on the system PO of [Deng and San-
giorgi 2006], with the partial orders, because legal substitutions in PO must respect,
besides types, also the partial order. Condition (3) also fails in Yoshida, Berger,
and Honda’s type system for termination [Yoshida et al. 2004], as it makes use of
graph types with linearity information, and on linear types only a limited form of
substitution holds. For this problem, the condition on aliasing mentioned earlier
can again be useful. For instance, in languages without aliasing such as πI con-
dition (3) can be dropped, together with the requirements in the final sentence of
condition (2) (“Moreover, in the case ...”). Thus Lemma 5.3 is applicable to the
system in Yoshida et al. [2004], which is formalized on a variant of πI. Besides via
the control of aliasing, another way of applying Lemma 5.3 to the system PO is to
require, in condition (3) of the lemma and in its conclusion, that the environment
Θ is undecorated. Here, if a type T does not contain partial order requirements,
then T is undecorated. Similarly, an environment Θ is undecorated if all its types
(i.e., CTypes(Θ)) are undecorated. This maintains the typability of Example 3.11.
(Indeed, the names with a decorated type are often just a few and restricted, hence
they do not appear in the initial type environment.)

6. IMPLEMENTATION

We have implemented the new weak lock-freedom analysis as a feature of TyPiCal
Version 1.6.0 [Kobayashi 2005b]. TyPiCal takes as an input a program written in
the π-calculus (extended with data structures such as pairs and lists), and marks
all input/output prefixes that are guaranteed to succeed. The strong lock-freedom
analysis has not been implemented yet.

Figure 8 shows a sample input program for TyPiCal, corresponding to the
process in Example 3.8. An output process a[v] is written as a!v, and an input
process a(x). P is written as a?x.P . and Figure 9 is the output produced by the
program. Input and output operations that are guaranteed to succeed are marked
by ?? and !! respectively.

The original type system for lock-freedom (reviewed in Section 3.1) had been
implemented already [Kobayashi 2005a; 2006]. A major challenge in the implemen-
tation of the new system was to automate verification of the robust termination
property. We have modified the type systems of Deng and Sangiorgi [2006], so that
the resulting systems can guarantee robust termination, and also so to make them
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(new fact_it in

*fact?x.(let n=fst(x) in let reply=snd(x) in

fact_it!(n, (1, reply)))

| *fact_it?x.(let n=fst(x) in

let acc = fst(snd(x)) in let reply=snd(snd(x)) in

if n=0 then reply!acc

else fact_it!(n - 1,(acc * n,reply))))

| *(new r in fact!(n, r) | r?result.print!result)

Fig. 8. A sample input for TyPiCal

(new fact_it in

*fact?x.(let n=fst(x) in let reply=snd(x) in

fact_it!(n, (1, reply)))

| *fact_it?x.(let n=fst(x) in

let acc = fst(snd(x)) in let reply=snd(snd(x)) in

if n=0 then reply!acc

else fact_it!(n - 1,(acc * n,reply))))

| *(new r in fact!!(n, r) | r??result.print!result)

Fig. 9. The output produced by TyPiCal

more suited for automatic verification (e.g., using heuristic and incomplete algo-
rithms when the original ones were NP-complete). The implementation of robust
termination analysis in TyPiCal and its difference from [Deng and Sangiorgi 2006]
are summarized as follows.

—As summarized in Section 5.1, in all the four type systems of Deng and Sangiorgi
[2006], level information assigned to each channel type plays a central role in
guaranteeing termination. In the TyPiCal implementation, a level variable is
attached to each channel type, and constraints on the level variables are generated
and solved. For robust termination, we have also added an extra requirement for
the injectivity of f (recall Theorem 5.2 and Lemma 5.3).

—The second type system of Deng and Sangiorgi [2006] allows a process of the
form ∗c(x). (· · · p[v] · · · ) either if c has a greater level than p, or if c and p have
the same level and v is always smaller than x with respect to the order on
natural numbers. This feature can be used for typing primitive recursion. In
the TyPiCal implementation, the size change relation between arguments of
channels (e.g., x and v above) is generated, and then the consistency of the size
change relation is checked using a size change termination library [Ben-Amram
and Lee 2007]. Thanks to this extension, the resulting type system is more
expressive than the original type system [Deng and Sangiorgi 2006]; For example,
we can handle non-primitive recursion such as an Ackermann function server.

—The third type system of Deng and Sangiorgi [2006] is NP-complete [Demangeon
et al. 2008]. Thus, we use a heuristic, incomplete algorithm to handle it.

—The fourth type system of Deng and Sangiorgi [2006] allows a process of the form
∗c(y). (· · · p[v] · · · ) either if c has a greater level than p, or if c and p have the
same level, and c is greater than p with respect to a certain partial order on
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termination analysis lock-freedom analysis lock-freedom analysis (auto)

factorial 0.01 sec 0.02 sec 0.02 sec

broadcast 0.01 sec 0.05 sec 0.13 sec

btree 0.02 sec 5.47 sec 10.62 sec

stable 0.01sec 0.11 sec 0.22 sec

eventchan 0.03 sec 0.20 sec 0.62 sec

Table I. Analysis time (measured on a machine with Intel Pentium 1.2GHz and 500MB memory)

channels. We have implemented a separate analysis to infer the channel creation
order, and use it as the partial order.

We have carried out preliminary experiments to test the feasibility of our lock-
freedom analysis. Table I summarizes the result. “factorial,” “broadcast,” and
“btree” are the examples discussed in Section 3.4. “stable” is a variation of the sym-
bol table example taken from Deng and Sangiorgi [2006]. “eventchan” is an imple-
mentation of event channels, which was originally a sample program of Pict [Pierce
and Turner 2000], and rewritten for TyPiCal. Those programs are available in
the distribution of TyPiCal [Kobayashi 2005b].

All the programs have been verified successfully. The second column shows run-
ning times for robust termination analysis only. The third column shows those for
the whole (weak) lock-freedom analysis of programs having annotations on where
the bybrid rule should be applied (i.e., the result of running TyPiCal with “-
wl” option). The rightmost column shows running times for lock-freedom analysis
of programs without the annotations (i.e., the result of running TyPiCal with
“-wlauto” option). Given non-annotated programs, TyPiCal with “-wlauto” op-
tion first performs deadlock-freedom analysis and lock-freedom analysis (without
using the hybrid rule). By comparing the results, TyPiCal heuristically inserts
annotations on where the hybrid rule should be applied. It then re-run lockfree-
dom analysis for the annotated programs. Thus, the current “-wlauto” mode is 2–3
times slower than the “-wl” mode. As can be seen in the table, the new components
(dealing with termination) run fast; most of the analysis time is spent by the other
components (dealing with deadlock- and lock-freedom). We have also tested robust
termination analysis for all the examples given in Deng and Sangiorgi [2006], and
confirmed that they were verified successfully.

7. DISCUSSIONS

This section informally discusses further extensions of our type system. We also
describe some ideas for using model checkers to verify robust deadlock-freedom.

7.1 Relaxing Robust Termination/Confluence

One of the main advantages of our hybrid rules is that deadlock-freedom, termi-
nation, and confluence are required only locally, for the processes on which the
hybrid rules are applied. The requirement may be, however, still too demanding.
For example, consider a process:

(νf) (f [rnd(), a] | ∗f (n, r). (if n = 0 then r else f [n− 1, r] |P )).
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Suppose that P does not read from f . The process will eventually send a message
on a, no matter whether P diverges. Our hybrid rules are, however, applicable only
when P is also terminating (and partially confluent, in the case of SLT-Hyb).

To overcome the limitation above, we can modify the definitions of robust
deadlock-freedom/termination/confluence, so that only marked actions are taken

into account. We write τ◦−→ for the τ -transition on a marked prefix or an if-
expression. The definitions of robust deadlock-freedom and termination can be
modified as follows.

Definition 7.1 (robust ◦-deadlock-freedom). The relation ∆ |=RD◦ P is the largest
relation such that ∆ |=RD◦ P implies all of the following conditions.

(1) If ∆ is closed and rel(∆), then:

—If P has a marked prefix at top level, then P
τ◦−→.

—If ob!(∆(a)) 6=∞, then either P
(νec) a[eb]−→ or P

τ◦−→.

—If ob?(∆(a)) 6=∞, then either P
a[eb]−→ or P

τ◦−→.
(2) If [v 7→ a]∆ is well-defined, then [v 7→ a]∆ |=RD◦ [v 7→ a]P .

(3) If P
η−→ P ′ and, furthermore, when η is an input, all names received are fresh,

then ∆
η−→ ∆′ and ∆′ |=RD P ′ for some ∆′.

We say that P is robustly ◦-deadlock-free under ∆ if ∆ |=RD◦ P holds.

Definition 7.2 robust ◦-termination. A process P is ◦-terminating if there is no
infinite transition sequence of the form P

τ◦−→ P1
τ◦−→ P2

τ◦−→ · · ·. An (open)
process P is robustly ◦-terminating under Γ, written Γ |=RTer◦ P , if Γ `ST P , and
for every closing substitution σ for Γ and for any Q, k, and η1, · · · ηk such that
σΓ `ST σP

η1−→ · · · ηk−→ Q, the derivative Q is ◦-terminating.

By using the robust ◦-deadlock-freedom and termination, the hybrid rule
LT-Hyb can be modified as follows.

∆ |=RD◦ P Erase(∆) |=RTer◦ P nocap(∆)
∆ `LT P

(LT-HybE)

A similar modification is possible for the rule SLT-Hyb for strong lock-freedom.
It is not difficult to adopt verification methods of robust deadlock-freedom,

termination, and confluence to the corresponding robust ◦ conditions. For ro-
bust ◦-deadlock-freedom, we can modify Kobayashi’s type system for deadlock-
freedom [Kobayashi 2006], so that a prefix is marked if and only if its capability
level is finite. For robust ◦-termination, we can first perform program slicing to
eliminate communications that do not affect marked actions, and then apply ro-
bust termination analysis.

7.2 Relaxing the nocap condition

The present side condition nocap(∆) for LT-Hyb is sometimes too restrictive for
local reasoning. For example, consider Client |Server1 |Server2, where Client sends
a request to Server1, which consults Server2 to answer the request. Then, we have
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to apply LT-Hyb to Server1 |Server2 rather than Server1 alone, since Server1’s
type environment would contain a capability to consult Server2.

One approach to relaxing (or eliminating, actually) the nocap condition is to im-
pose a stronger requirement on robust deadlock-freedom. We modify the definition

of ∆
(νec) a[eb]−→ ∆′ as follows.

U
!−→ U ′ ∆, c̃ : L̃c ≤ ∆′ | b̃ : ↑L̃ rel(L̃c)

∆, a : ]U [L̃]
(νec) a[eb]−→ ∆′, a : ]U ′ [L̃]

The only change is in the second premise, where ↑ is applied to L̃. This ensures
that the level of an obligation is decreased by one whenever it is passed through
channels. For example,

a : ]?∞0 []!1∞ [Bool]], b : ]!2∞ [Bool]
a[b]−→ a : ]0[]!1∞ [Bool]]

hold, but

a : ]?∞0 []!1∞ [Bool]], b : ]!1∞ [Bool]
a[b]−→ a : ]0[]!1∞ [Bool]]

does not.
We strengthen robust deadlock-freedom and robust termination as follows.

Definition 7.3 robust strong ◦-deadlock-freedom. The relation ∆ |=SRD◦ P is the
largest relation such that ∆ |=SRD◦ P implies all of the following conditions.

(1) If ∆ is closed and P has a marked prefix at top-level, then one of the following
conditions holds:
—P

τ◦−→
—cap?(∆(a)) < ob!(∆(a)) and P

a◦[eb]−→
—cap!(∆(a)) < ob?(∆(a)) and P

(νec) a◦[eb]−→
(2) If ∆ is closed and ob!(∆(a)) 6=∞, then one of the following conditions holds:

—P
τ◦−→

—P
(νec) a[eb]−→

—cap?(∆(d)) < ob!(∆(a)) and P
d◦[eb]−→

—cap!(∆(d)) < ob!(∆(a)) and P
(νec) d

◦
[eb]−→

(3) If ∆ is closed and ob?(∆(a)) 6=∞, then one of the following conditions holds:

—P
τ◦−→

—P
a[eb]−→

—cap?(∆(d)) < ob?(∆(a)) and P
d◦[eb]−→

—cap!(∆(d)) < ob?(∆(a)) and P
(νec) d

◦
[eb]−→

(4) If [v 7→ a]∆ is well-defined, then [v 7→ a]∆ |=SRD◦ [v 7→ a]P .

(5) If P
η−→ P ′ and, furthermore, when η is an input, all names received are fresh,

then ∆
η−→ ∆′ and ∆′ |=SRD◦ P ′ for some ∆′.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



42 · N. Kobayashi and D. Sangiorgi

We say that P is robustly and strongly ◦-deadlock-free under ∆ if ∆ |=SRD◦ P holds.

Definition 7.4 robust strong ◦-termination. A transition is marked if it is an in-
put, output, or τ -transition on a marked prefix or if it is a reduction on an if-
expression. A process P is strongly ◦-terminating if there is no infinite internal
sequence of marked (input, output, or τ) transitions. An (open) process P is ro-
bustly and strongly ◦-terminating under Γ, written Γ |=RSTer◦ P , if Γ `ST P , and
for every closing substitution σ for Γ and for any Q, k, and η1, · · · ηk such that
σΓ `ST σP

η1−→ · · · ηk−→ Q, the derivative Q is strongly ◦-terminating.

We conjecture that the following hybrid rule is sound.

∆ |=SRD◦ P Erase(∆) |=RSTer◦ P

∆ `LT P
(LT-HybE2)

7.3 Using Model Checkers for Robust Deadlock-Freedom

In Section 3.2, we mentioned that types systems, notably Kobayashi’s
one [Kobayashi 2006] can be used for verification of robust deadlock-freedom. In cer-
tain special cases, however, we can appeal to model checkers. This is an important
advantage since type systems for deadlock-freedom usually ignore value-dependent
behaviors. For example, Kobayashi’s type system [Kobayashi 2006] cannot verify
the robust deadlock-freedom of:

(if x > 0 then a◦ else 0) | (if x > 0 then a◦ else 0)

On the other hand, model checkers can verify it instantly.
We consider here ∆ is of the form a : ]U [ ] where U is of the following restricted

form.

U ::= 0 | !t∞.U | ?t
∞.U

In this case, the verification problem of ∆ |=RD P can be reduced to the ordi-
nary model checking problem P |= u2l(a, U) ∧ OnlyA in modal µ-calculus, where
u2l(a, U) is given by:

u2l(a,0) = νX.(¬〈a〉 ∧ ¬〈a〉 ∧ [τ ]X)
u2l(a, !t∞.U) =




νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X)
(if t =∞)

νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X ∧ (〈a〉 ∨ 〈τ〉))
(if t 6=∞)

u2l(a, ?t
∞.U) =




νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X)
(if t =∞)

νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X ∧ (〈a〉 ∨ 〈τ〉))
(if t 6=∞)

u2l(a,0) means that a is used for neither input nor output. u2l(a, !∞∞.U) means
that a can first be used only for output, and after output, a must be used according
to U . If t 6= ∞, u2l(a, !t∞.U) also requires (by the subformula 〈a〉 ∨ 〈τ〉) that the
process must use a for output unless it diverges.
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OnlyA, which means that the process never performs an input or an output on
names other than a, is

νX.(∧b∈L\{a}(¬〈b〉 ∧ ¬〈b〉) ∧ [a]X ∧ [a]X ∧ [τ ]X).

It is not difficult to extend the above translation for a type environment with
multiple names: a1 : ]U1

[ ], . . . , an : ]Un
[ ]. To deal with a more general case, we need

to use logics for mobile processes [Caires and Cardelli 2003; Dam 1996].
As for model checking tools, there are some for mobile process calculi [Hugo Vieira

and Viegas 2005]. For some restricted case, we may also be able to use other model
checking tools such as SPIN [Holzmann 2003].

8. RELATED WORK

Several type systems for lock-freedom (sometimes referred to by different names)
have been already proposed [Kobayashi 2002; 2005a; Yoshida 2002; Acciai and Bo-
reale 2008; Sangiorgi 1999; Yoshida et al. 2004]. Our type system substantially
improves the expressiveness of previous type systems; for instance, it can handle
non-trivial recursive structures (e.g., the binary trees as in Example 3.11), and
value-dependent behaviors. This is possible through a parameterization that ap-
peals to other analyzers, in particular those for deadlock freedom (so that more
powerful analyzers make the lock-freedom type system more powerful too). Most
of the previous type systems [Kobayashi 2002; 2005a; Yoshida 2002; Yoshida et al.
2004; Sangiorgi 1999] do not handle recursion (such as those given in Section 3.4)
well: if a channel is passed as an argument of a recursive call, lock-freedom on
that channel is not guaranteed. Acciai and Boreale [2008] recently proposed a type
system that can handle a limited form of recursion, but does not seem to work
for non-trivial recursive structures like the binary tree Example 3.11, and imper-
ative structures such as locks and reference cells. In Acciai and Boreale’s type
system, reasoning about termination is hardwired into the type system for lock-
freedom. In contrast, our type system is parameterized by termination analysis,
so that we can incorporate any other techniques for proving termination (in fact,
in the implementation, we have already incorporated the technique based on size
change graphs [Ben-Amram and Lee 2007]). Yoshida, Berger, and Honda’s type
system [Yoshida et al. 2004] can guarantee termination and a form of lock-freedom
for encodings of simply-typed λ-terms. Our type system can also guarantee lock-
freedom of those processes, using [Sangiorgi 2006] or [Yoshida et al. 2004] for the
robust-termination analysis (and the extension of the DT type system in [Kobayashi
2006]). As already mentioned, the system [Yoshida et al. 2004] cannot handle re-
cursion well. Another important point is that none of the previous type systems
for lock-freedom, except Kobayashi’s one [2005a], has been implemented. In fact,
most of the type systems classify channels into a few usage patterns, and prepare
separate typing rules for each of the usage patterns. Thus, verification based on
those type systems would not be possible without heavy program annotations.

Type systems for deadlock-freedom have been studied extensively [Kobayashi
2006; Suenaga and Kobayashi 2007; Boyapati et al. 2002]. As already mentioned,
deadlock-freedom is weaker than lock-freedom, so that those type systems alone
cannot be used for lock-freedom analysis. For example, the divergent process ob-
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tained by replacing fact it [n− 1, x× n, r] in Example 3.8 with fact it [n, x× n, r]
is deadlock-free.

The idea of reducing verification of lock-freedom to verification of robust termi-
nation is a reminiscence of Cook et al.’s work on reducing verification of liveness
properties to that of fair termination [Cook et al. 2007]. The target language of
their work is a sequential, imperative language and is quite different from our lan-
guage, which is concurrent and allows dynamic creation of communication channels
and threads. The used techniques are also quite different; they use model checking
while we use types. It is not clear whether their technique can be effectively used
for verification of lock-freedom in our language.

In general, model checking can be used for verification of lock-freedom. The
current model checking technology does not seem, however, mature enough for au-
tomatic verification of liveness properties of concurrent programs that have infinite
states and create threads and channels dynamically.

There are a number of methods for proving termination of programs, and they
have been extensively studied in the context of term rewriting systems and sequen-
tial programs. The point of parameterizing our type system for lock-freedom by
the robust termination property was to reuse those techniques for termination ver-
ification, instead of developing a sophisticated type system that can reason about
both termination and deadlock within the single type system.

Demangeon et al. [2008] discuss the complexity of type inference problems for
variants of Deng and Sangiorgi’s type systems [2006]. In particular, they show that
the third and fourth type systems of Deng and Sangiorgi [2006] are NP-complete and
propose variants of them that admit polynomial-time type inference algorithms, at
the price of reducing the expressiveness in certain cases (e.g., the binary tree exam-
ple cannot be handled). Our current termination analysis algorithm in TyPiCal
makes use of heuristic, incomplete algorithms, based on the original ones in [Deng
and Sangiorgi 2006] and which further integrate [Deng and Sangiorgi 2006] with
the size-change termination analysis [Ben-Amram and Lee 2007].

Parameterized, or hybrid, type systems of this kind presented in this paper are
fairly rare in the literature, mainly due to the difficulties in combining the analy-
ses. For instance, in Leroy’s modular module system [Leroy 2000] a type system for
module is presented that is parametric on the type system used for the core lan-
guage. This is quite different from ours, as the judgments of the two type systems
are similar and, most important, the world on which the two type systems operate—
modules and core languages—are stratified, hence clearly separated. Among the
approaches to combining type systems with other verification methods for concur-
rent programs, the closest to ours is probably Chaki et al. [2002], where a type
system is used to extract CCS processes as abstract models of the π-calculus, and
then a model checker verifies such models. In our case, by contrast, the parame-
terization in the typing rules makes the different analyses closely intertwined and
makes it possible local applications of the parameterized analyses. Caires [2007]
recently proposed a generic type system for the π-calculus, whose judgment is
defined semantically; thus, the type system can be freely combined with other veri-
fication methods. It is however generally difficult to develop a completely semantic
type system for complex properties like lock-freedom. Our approach (where robust
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deadlock-freedom/termination/confluence are semantically defined) is a mixture of
the syntactic and semantic approaches to defining type systems.

9. CONCLUSION AND FUTURE WORK

We have proposed a hybrid type system for lock-freedom. Unlike the previous
type systems for lock-freedom, our type system can handle non-trivial recursive
communication structures and can be fully automated. The key development was
the special rules LT-Hyb and SLT-Hyb for combining four different analyses:
lock-freedom, robust deadlock-freedom, robust termination, and robust confluence
analyses. The rules allow local reasoning about deadlock-freedom, termination and
confluence, thus avoiding application of those analyses to the whole program. We
have also introduced the notion of robust termination, and presented a generic
method for strengthening type systems for termination to guarantee robust termi-
nation.

The proposed verification framework has been implemented as an extension of
TyPiCal and tested for non-trivial programs such as symbol tables and concurrent
binary tree search.

An interesting direction for future work would be more integration with other
verification techniques in TyPiCal program analysis tool, to take full advantage
of our hybrid, parametrized type system. For example, since our type system is pa-
rameterized by verification methods for robust termination and deadlock-freedom,
we can possibly use model checking techniques for proving termination [Cook et al.
2007] and deadlock-freedom (recall the discussion in Section 7). Since type-based
analysis seems in general more efficient but inaccurate, a typical combination would
be to first apply type-based analyses and then use model checking in case programs
cannot be verified using types.

Future work also includes an application of the new lock-freedom analysis to de-
pendency analyses, such as information flow analysis and program slicing [Honda
and Yoshida 2007; Honda et al. 2000; Kobayashi 2005a]. To see why lock-freedom
analysis is related to information flow analysis, consider an input process:
a(x). public [”Succeeded!”]. Note that it leaks information about whether or not the
communication on a succeeds through channel public. Therefore, if it is unknown
whether a communication on a high security channel a succeeds, only communi-
cations on high security channels are allowed after that communication, which are
too restrictive. (In a sequential language, it corresponds to the restriction that
once a high-security variable is accessed, only high-security computation is allowed
afterwards). Thus, the previous type systems for information flow analysis of con-
current programs [Honda et al. 2000; Kobayashi 2005a] have been built on top of
some form of type systems for (weak) lock-freedom. Information flow analysis can
be made more accurate by replacing the underlying type systems for lock-freedom
with ours. Resource usage analysis [Kobayashi et al. 2006] is also built on top of
lock-freedom analysis; hence it can benefit from the lock-freedom analysis in this
paper.
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A. PROOF OF TYPE PRESERVATION (LEMMA 4.6)

We first prove properties of the predicate nocapm defined in Definition 4.3.

Lemma A.1. (1 ) nocap0(L) holds for any L.
(2 ) Suppose L1 | L2 is well-defined. If nocapm(L1) and nocapm(L2), then

nocapm(L1 | L2).
(3 ) If nocapm(L) and L ≤ L1 | L2, then nocapm(L1).
(4 ) Suppose L1 | L2 is well-defined. If noob(L1), then nocapModes(L1)(L2) holds.
(5 ) If nocapm1

(L) and nocapm2
(L), then nocapm1um2

(L).

Proof. Since the other properties follow immediately from the definition, we
show only the 4th property. The case where L1 = Bool is trivial. Suppose L1 =
]U1

[L̃]. In this case, L2 = ]U2
[L̃]. Let m = Modes(L1). Since noob(L1), we have:

!?ε ≤ m m ≤! ⇒ nocap(L̃) m ≤? ⇒ noob(L̃)

So, we obtain nocapm(L2) as required. 2

Lemma A.2. Suppose nocapΛ(∆) holds. If 〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉 and
enabled(Λ,∆, η), then nocapΛ′(∆′) holds.

Proof. The proof proceeds by case analysis on η.

—Case η = τ :
In this case, we have either 〈Λ′, ∆′〉 = 〈Λ,∆〉, or:

Λ′ = Λ U
τ−→ U ′

∆ = ∆1, a : ]U [L̃] ∆′ = ∆1, a : ]U ′ [L̃]

The former case is trivial. In the latter case, by the last condition, (i) nocap(U)
implies nocap(U ′) and (ii) mode(U ′, α) implies mode(U,α). Thus, nocapm(]U [L̃])
implies nocapm(]U ′ [L̃]). By the definition of nocapΛ(∆), nocapΛ(∆′) follows im-
mediately from nocapΛ(∆).

—Case η = a [̃b]: In this case, we have:

Λ′ = Λ U
?−→ U ′

∆ = ∆1, a : ]U [L̃] ∆′ = ∆1 | b̃ : L̃, a : ]U ′ [L̃]

By the condition nocapΛ(∆) and U
?−→ U ′, we have

nocapΛ(∆1, a : ]U ′ [L̃]).

Moreover, since Λ(a) ≤!, we also have nocap(L̃), which implies nocapΛ(̃b : L̃).
Therefore, by using Lemma A.1(2), we get nocapΛ(∆′) as required.

—Case η = (νc̃) a [̃b]: In this case, we have:

Λ(a) ≤? U
!−→ U ′

∆ = ∆1, a : ]U [L̃] ∆′ = ∆′
1, a : ]U ′ [L̃]

∆1, c̃ : L̃c ≤ ∆′
1 | (̃b : L̃) Λ′ = Λ{c̃ 7→ 0̃} uModes(̃b : L̃)
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From Λ(a) ≤?ε and nocapΛ(∆(a)), we get noob(L̃). By the condition U
!−→ U ′

and nocapΛ(∆), we have nocapΛ(a : ]U ′ [L̃]). Since a 6∈ b̃ (note that we do not
have recursive types), Modes(̃b : L̃)(x) = 0. Therefore, we have Λ(a) = Λ′(a),
which implies nocapΛ′(a : ]U ′ [L̃]). Thus, it remains to show nocapΛ′(∆′

1). By
Lemma A.1(5), it suffices to show:

nocapΛ{ec 7→e0}(∆
′
1) nocapModes(eb :eL)(∆

′
1).

By using Lemma A.1(1), we get nocapΛ{ec 7→e0}(c̃ : L̃c). Combining it with the fact
nocapΛ(∆1), we obtain nocapΛ{ec 7→e0}(∆1, c̃ : L̃c). Thus, by using Lemma A.1(3),
we obtain nocapΛ{ec 7→e0}(∆

′
1).

It remains only to show nocapModes(eb :eL)(∆
′
1). For d 6∈ {b̃}, we have

Modes(̃b : L̃)(d) = 0, so that
nocapModes(eb :eL)(d)(∆

′
1(d)) follows from Lemma A.1(1). For bi,

nocapModes(Li)(∆
′
1(bi)) follows from noob(L̃) and Lemma A.1(4).

2

Definition A.3. We write 〈Λ, ∆〉 ≤ 〈Λ′,∆′〉 when Λ′ ≤ Λ and ∆ ≤ ∆′.

Lemma A.4. If 〈Λ1,∆1〉 ≤ 〈Λ′1, ∆′
1〉

η−→ 〈Λ′2, ∆′
2〉 and enabled(Λ1, ∆1, l), then

there exist Λ2 and ∆2 such that 〈Λ1, ∆1〉 η−→ 〈Λ2,∆2〉 ≤ 〈Λ′2, ∆′
2〉.

Proof. We first note that U1 ≤ U ′
1

α−→ U ′
2 implies that there exists U2 such

that U1
α−→ U2 ≤ U ′

2. Therefore, the case for η = τ follows immediately.

—Case η = a [̃b]: In this case, we have:

∆′
1 = ∆′

11, a : ]U ′1
[L̃] ∆′

2 = ∆′
11 | b̃ : L̃, a : ]U ′2

[L̃]

U ′
1

?−→ U ′
2 Λ′2 = Λ′1

By the condition ∆1 ≤ ∆′
1, we also have:

∆1 = ∆11, a : ]U1
[L̃] ∆11 ≤ ∆′

11 U1 ≤ U ′
1

By the condition U1 ≤ U ′
1

?−→ U ′
2, there exists U2 such that U1

?−→ U2 ≤ U ′
2.

The required result holds for Λ2 = Λ1 and ∆2 = ∆11 | b̃ : L̃, a : ]U2
[L̃]. Note that

∆11 | b̃ : L̃ is well-defined by the assumption enabled(Λ1, ∆1, l).

—Case η = (νc̃) a [̃b]: In this case, we have:

∆′
1 = ∆′

11, a : ]U ′1
[L̃] ∆′

2 = ∆′
21, a : ]U ′2

[L̃] ∆′
11, c̃ : L̃c ≤ ∆′

21 | b̃ : L̃

U ′
1

!−→ U ′
2 Λ′2 = Λ′1{c̃ 7→ 0̃} uModes(̃b : L̃)

By the condition ∆1 ≤ ∆′
1, we also have:

∆1 = ∆11, a : ]U1
[L̃] ∆11 ≤ ∆′

11 U1 ≤ U ′
1

By the condition U1 ≤ U ′
1

!−→ U ′
2, there exists U2 such that U1

!−→ U2 ≤ U ′
2.

Let ∆2 = ∆′
21, a : ]U2

[L̃] and Λ2 = Λ1{c̃ 7→ 0̃}+ Modes(̃b : L̃). Then, by using the
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fact ∆11, c̃ : L̃c ≤ ∆′
11, c̃ : L̃c ≤ ∆′

21 | b̃ : L̃, we get:

〈Λ1, ∆1〉 η−→ 〈Λ2,∆2〉.
We also have Λ′2 ≤ Λ2 and ∆2 ≤ ∆′

2 as required.

2

Lemma A.5 substitution lemma. Suppose that ∆ | a : L is well-defined.
If ∆, x : L `⊥LT P , then ∆ | a : L `⊥LT [x 7→ a]P .

Proof. Induction on derivation of ∆, a : L `J P . 2

Lemma A.6. If 〈Λ, (∆, d : ]U [σ])〉 η−→ (Λ′,∆′) and d ∈ FN(η) \ SN(η), then

there exists Λ′′ such that 〈Λ, ∆〉 (νd) η−→ (Λ′′,∆′) and Λ′ ≤ Λ′′.

Proof. By the definition of the transition relation for type environments, we
have:

η = (νc̃) a [̃b] U1
!−→ U ′

1 ∆ = ∆1, a : ]U1
[L̃]

∆1, d : ]U [σ], c̃ : L̃c ≤ ∆′ | b̃ : L̃ Λ′ = Λ{c̃ 7→ 0̃} uModes(̃b : L̃)

Let Λ′′ = Λ{d 7→ 0, c̃ 7→ 0̃}+Modes(̃b : L̃). Then, we have 〈Λ, ∆〉 (νd) η−→ 〈Λ′′, ∆′〉 and
Λ′ ≤ Λ′′ as required. 2

Lemma A.7. If 〈Λ, ∆〉 (νec) a[eb]−→ 〈Λ′,∆′〉, then there exists ∆′′ such that

Modes(∆) ≤ Modes(∆′ \ {c̃}) and ∆′′ ≤ ∆′ with 〈Λ, ∆〉 (νec) a[eb]−→ 〈Λ′, ∆′′〉.
Proof. Modes(∆)(v) ≤ Modes(∆′) fails only if Modes(∆)(v) = αε and

Modes(∆′)(v) = αo. Let ∆′′(v) be the type obtained from ∆′(v) by replacing
all finite obligation levels with ∞ for such v, and ∆′′(v) = ∆′(v) for other v. Then,
∆′′ satisfies the required conditions. 2

Proof Lemma 4.6. Double induction on the derivation of transition P
η−→ Q

and the derivation of ∆ `Λ
LT P . (In other words, well-founded induction on the pair

of the derivation trees for P
η−→ Q and ∆ `Λ

LT P .)
Case analysis on the last rule used for deriving ∆ `Λ

LT P .

—Case ELT-Hyb: By the typing rule, we have:

∆ |=RD P Erase(∆) |=RTer P nocapΛ(∆)

By the definition of |=RD and enabled(Λ, ∆, η), there exists ∆′ such that ∆
η−→ ∆′

and ∆′ |=RD Q. Moreover, there exists Λ′ such that 〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉. By the
definition of |=RTer and P

η−→ Q, we have Erase(∆′) |=RTer Q. By Lemma A.2,
we also have nocapΛ′(∆′). Thus, we get ∆′ `Λ′

LT Q by using ELT-Hyb.
—Case ELT-Weak: By the typing rule, we have:

∆1 `Λ1
LT P 〈Λ,∆〉 ≤ 〈Λ1, ∆1〉

The assumption enabled(Λ, ∆, l) and the above conditions imply
enabled(Λ1, ∆1, l). By the induction hypothesis, there must exist Λ′1 and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Hybrid Type System for Lock-Freedom · 51

∆′
1 such that 〈Λ1, ∆1〉 η−→ 〈Λ′1, ∆′

1〉 and ∆′
1 `Λ′1

LT Q. By Lemma A.4, there
exist Λ′ and ∆′ such that 〈Λ, ∆〉 η−→ 〈Λ′,∆′〉 ≤ 〈Λ′1,∆′

1〉. Thus, by using
ELT-Weak, we get ∆′ `Λ′

LT Q and 〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉 as required.
—Case ELT-Out: In this case, we have:

P = aχ [̃b]. Q η = atc [̃b] ∆ = a : ]!0tc
[L̃];(∆1 | b̃ : ↑L̃)

∆1 `LT Q Λ = ⊥

Let ∆′ = ∆1 | a : ]0[L̃] and Λ′ = Λ + Modes(̃b : L̃) = ⊥. Then, we have 〈Λ, ∆〉 a[eb]−→
〈Λ′, ∆′〉 and ∆′ `Λ′

LT Q as required.
—Case ELT-In: In this case, we have:

P = aχ(ỹ). P1 η = a [̃b] Q = [ỹ 7→ b̃]P1

Λ = ⊥ ∆ = a : ]?0
tc

[L̃];∆1 ∆1, ỹ : L̃ `LT P1

By Lemma A.5, we have ∆1 | (̃b : L̃) `LT Q. (Note that ∆1 | (̃b : L̃) is well-
defined since enabled(Λ,∆, l) holds.) Let ∆′ be ∆1 | b̃ : L̃ if a ∈ dom(∆1) and
∆1 | b̃ : L̃ | a : ]0[L̃] otherwise. Let Λ′ be ⊥. Then, we have ∆′ `Λ′

LT Q and
〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉 as required.

—Case ELT-Par: We have:

P = P1 |P2 ∆ = ∆1 |∆2 ∆1 `Λ1
LT P1 ∆2 `Λ2

LT P2

Λ2 ≤ Modes(∆1) Λ1 ≤ Modes(∆2) Λ = Λ1 t Λ2

We perform case analysis on the rule used for deriving P
η−→ Q.

—Case Tr-ParL: In this case, we have:

Q = P ′1 |P2 P1
η−→ P ′1

By the induction hypothesis, we have

〈Λ1, ∆1〉 η−→ 〈Λ′1,∆′
1〉 ∆′

1 `Λ′1
LT P ′1

for some Λ′1 and ∆′
1. Let Λ′2 be Λ2{c̃ 7→ !̃?o} if η = (νc̃) a [̃b] and Λ′2 be Λ2

otherwise. If η = (νc̃) a [̃b], then without loss of generality, we can assume that
c̃ does not appear in P2, so that ∆2 `Λ′2

LT P2 holds. Let ∆′ = ∆′
1 |∆2 and

Λ′ = Λ′1 t Λ′2. We need to show ∆′ `Λ′
LT P ′1 |P2 and 〈Λ, ∆〉 η−→ 〈Λ′,∆′〉.

∆′ `Λ′
LT P ′1 |P2 follows if we show Λ′1 ≤ Modes(∆2) and Λ′2 ≤ Modes(∆′

1).
—Λ′1 ≤ Modes(∆2) follows immediately if η = τ or η = a [̃b]. If η = (νc̃) a [̃b],

then Λ′1(d) ≤ Λ1(d) ≤ Modes(∆2(d)) for d ∈ dom(Λ′1) \ {c̃}. For ci, we
can assume without loss of generality that ci 6∈ dom(∆2), which implies
Modes(∆2)(ci) = 0. Therefore, Λ′1 ≤ Modes(∆2) holds.

—Λ′2 = Λ2 ≤ Modes(∆1) = Modes(∆′
1) holds if η = τ . If η = (νc̃) a [̃b], by

Lemma A.7, we can also assume that Modes(∆1) ≤ Modes(∆′
1 \ {c̃}). So,

Λ′2 ≤ Modes(∆′
1) follows from

Λ2{c̃ : !̃?o} ≤ Modes(∆1){c̃ : !̃?o} ≤ Modes(∆′
1).
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If η = a [̃b], then we have Modes(∆1) uModes(̃b : L̃) ≤ Modes(∆′
1). By the

assumption enabled(Λ, ∆, l), we have Λ2 ≤ Λ ≤ Modes(̃b : L̃). From this and
Λ2 ≤ Modes(∆1), we get Λ2 ≤ Modes(∆1) uModes(̃b : L̃) ≤ Modes(∆′

1).
It remains to show 〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉. The case where η = τ or η = a [̃b]
is trivial. Suppose η = (νc̃) a [̃b]. By the condition 〈Λ1, ∆1〉 η−→ 〈Λ′1, ∆′

1〉, we
have:

Λ′1 = Λ1{c̃ 7→ 0̃} uModes(̃b : L̃) U1
!−→ U ′

1 ∆1 = ∆11, a : ]U1
[L̃]

∆′
1 = ∆′

11, a : ]U ′1
[L̃] ∆11, c̃ : L̃c ≤ ∆′

11 | b̃ : L̃

We can assume without loss of generality that c̃ 6∈ dom(∆2) and a ∈ dom(∆2)
(otherwise add a : ]0[L̃] to ∆2). So, ∆2 = ∆21, a : ]U2

[L̃] for some ∆21 and U2.
Then, we have ∆11 |∆21, c̃ : L̃c ≤ (∆′

11 |∆21) | b̃ : L̃. Since Λ2 ≤ Modes(̃b : L̃), we
also have:

Λ′ = Λ′1 t Λ′2
= (Λ1{c̃ 7→ 0̃} uModes(̃b : L̃)) t (Λ2{c̃ 7→ !̃?o})
= (Λ1{c̃ 7→ 0̃} t Λ2{c̃ 7→ !̃?o}) u (Modes(̃b : L̃) t Λ2{c̃ 7→ !̃?o})
= (Λ1 t Λ2){c̃ 7→ 0̃} uModes(̃b : L̃)
= Λ{c̃ 7→ 0̃} uModes(̃b : L̃).

Hence, we have 〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉 as required.
—Case Tr-ParR: Similar to the case for Tr-ParL.
—Case Tr-ComL: In this case, we have:

P = P1 |P2 Q = (νc̃) (P ′1 |P ′2)
P1

(νec) a[b]−→ P ′1 P2
a[eb]−→ P ′2

By the induction hypothesis, we have:

〈Λ1, ∆1〉 (νec) a[eb]−→ 〈Λ′1, ∆′
1〉 ∆′

1 `Λ′1
LT P ′1

〈Λ2, ∆2〉 a[eb]−→ 〈Λ2,∆′
2〉 ∆′

2 `Λ2
LT P ′2

From the above conditions, we also obtain:

∆1 = ∆11, a : ]U1
[L̃] ∆′

1 = ∆′
11, a : ]U ′1

[L̃] U1
!−→ U ′

1

∆2 = ∆21, a : ]U2
[L̃] ∆′

2 = ∆21 | b̃ : L̃, a : ]U ′2
[L̃] U2

?−→ U ′
2

Λ′1 = Λ1{c̃ 7→ 0̃} uModes(̃b : L̃) ∆11, c̃ : L̃c ≤ ∆′
11 | b̃ : L̃

Let Λ′2 = Λ2{c̃ 7→ !̃?o}. Then, we can assume that c̃ do not appear in P2, so
that ∆2 `Λ′2

LT P2 and ∆′
2 `Λ′2

LT P ′2 hold. Let ∆′′ = ∆′
11 |∆21 | b̃ : L̃, a : ]U ′1 |U ′2 [L̃] and

Λ′′ = Λ′1tΛ′2. We first show ∆′′ `Λ′′
LT P ′1 |P ′2, which will follow if we show Λ′1 ≤

Modes(∆′
2) and Λ′2 ≤ Modes(∆′

1). Without loss of generality, we can assume
c̃ 6∈ dom(∆2). Therefore, by the conditions Λ′1 = Λ1{c̃ 7→ 0̃}uModes(̃b : L̃) and
Λ1 ≤ Modes(∆2), we have

Λ′1 ≤ Modes(∆2) + Modes(̃b : L̃) ≤ Modes(∆′
2).
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By Lemma A.7, we can also assume Modes(∆1) ≤ Modes(∆′ \ {c̃}, so that we
have:

Λ′2 ≤ Modes(∆1){c̃ 7→ !̃?o} ≤ Modes(∆′
1).

So, by using ELT-Par, we obtain ∆′′ `Λ′′
LT P ′1 |P ′2. By applying

ELT-Weak, we obtain ∆11 |∆21, a : ]U ′1 |U ′2 [L̃], c̃ : L̃c `Λ′′
LT P ′1 |P ′2. Let ∆′ =

∆11 |∆21, a : ]U ′1 |U ′2 [L̃] and Λ′ = Λ′′{c̃ 7→ !̃?o}. Then, by using ELT-New, we

get ∆′ `Λ′′{ec 7→f!?o}
LT P ′1 |P ′2. We get ∆′ `Λ

LT P ′1 |P ′2 by using ELT-Weak, because
for d 6∈ {c̃}, we have:

Λ′′(d) ≤ (Λ′1 t Λ′2)(d)
≤ ((Λ1{c̃ 7→ 0̃} uModes(̃b : L̃)) t Λ2)(d)
≤ (Λ1 t Λ2)(d)
≤ Λ(d).

It remains to check 〈Λ, ∆〉 τ−→ 〈Λ,∆′〉, which follows immediately from
U1 |U2

τ−→ U ′
1 |U ′

2.
—Case ELT-New: We have:

P = (νa)P1 ∆, a : ]U [L̃] `Λ1
LT P1

rel(U) Λ1{a 7→!?o} = Λ

We perform case analysis on the rule used for deriving P
η−→ Q.

—Case Tr-Open: In this case, η = (νa) η′ and P1
η′−→ Q. By the induction

hypothesis, we have

〈Λ1, (∆, a : ]U [L̃])〉 η−→ (Λ′1,∆
′) ∆′ `Λ′1

LT Q

By Lemma A.6, there exists Λ′ such that (Λ,∆)
(νa) η′−→ (Λ′,∆′) and Λ′1 ≤ Λ′.

By using ELT-Weak, we obtain ∆′ `Λ′
LT Q as required.

—Case Tr-New: In this case, we have Q = (νa)Q1 and P1
η−→ Q1 with a 6∈

FN(l) ∪BN(l). By the induction hypothesis, we have:

〈Λ1, (∆, a : ]U [L̃])〉 η−→ 〈Λ′1, (∆′, a : ]U ′ [L̃])〉 ∆′, a : ]U ′ [L̃] `Λ′1
LT Q1

By the condition a 6∈ FN(l) ∪BN(l), we have:

〈Λ1{a 7→!?o}, ∆〉 η−→ 〈Λ′1{a 7→!?o}, ∆′〉 U ≤ U ′

From the last condition and rel(U), we obtain rel(U ′). So, by using ELT-New,
we get: ∆′ `Λ′1{a 7→!?o}

LT Q. The required result holds for Λ′ = Λ′1{a 7→!?o}.
—Case ELT-Rep: In this case, P

η−→ Q must have been derived by using Tr-Rep
or Tr-RIn. We show only the former case; the latter case is similar. We have:

P = ∗P1 ∗P1 |P1
η−→ Q ∆1 `⊥LT P1 ∆ = ∗∆1 Λ = ⊥

By using ELT-Rep and ELT-Par, we obtain ∗∆1 |∆1 `⊥LT ∗P1 |P1. Since ∆ =
∗∆1 ≤ ∗∆1 |∆1 holds, we get ∆ `⊥LT ∗P1 |P1. By the induction hypothesis, there
exist ∆′ and Λ′ such that ∆′ `Λ′

LT Q and 〈∆, Λ〉 η−→ 〈∆′,Λ′〉.
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—Cases ELT-If: Similar to the case for ELT-Rep.

2

We introduce a relation ¹ on processes below. ¹ is the least reflexive and transi-
tive relation closed under the rule E[(νa)P ] ¹ (νa)E[P ]. Here, E ranges over the
set of evaluation contexts, defined by:

E ::= [ ] | (E |P ) | (P |E) | (νa) E

(Note that E does not contain 〈[ ]〉T ; so we disallow 〈(νa)P 〉T ¹ (νa) 〈P 〉T .)
Typing is also preserved by ¹.

Lemma A.8. If ∆ `Λ
LT P and P ¹ P ′, then ∆ `Λ

LT P ′.

Proof. This follows by straightforward induction on the derivation of P ¹ Q.
2

B. PROOF OF PROGRESS (LEMMA 4.7)

We extend the syntax of processes by adding explicitly typed processes 〈P 〉∆,Λ:

P ::= · · · | 〈P 〉∆,Λ

The typing rule for 〈P 〉∆,Λ is:

∆ `Λ
LT P

∆ `Λ
LT 〈P 〉∆,Λ

(LT-TProc)

Lemma B.1. If nocapΛ(∆), rel(∆′), and ∆′ `Λ′
L E[〈P 〉∆,Λ], then rel(∆).

Proof. We first note that if ∆′ `Λ′
L E[〈P 〉∆,Λ] then, Λ(a) ≤ Λ′(a) for any

a ∈ dom(∆) ∩ dom(∆′). To show the lemma, it suffices to show the following,
stronger property.

If (i) nocapΛ(∆), (ii) rel(∆′(a)) for every a ∈ {a ∈ dom(∆) ∩ dom(∆′) |
¬nocap(∆(a))}, and (iii) ∆′ `Λ′

LT E[〈P 〉∆,Λ], then rel(∆).

We show it by induction on derivation of ∆′ `Λ′
LT E[〈P 〉∆,Λ], with case analysis on

the last rule used. Since the other cases are trivial, we show only the case where
the last rule is ELT-Par and E = E1 |Q. In this case, we have:

∆′
1 `Λ′1

LT E1[〈P 〉∆,Λ] ∆′
2 `Λ′2

LT Q
Λ′1 ≤ Modes(∆′

2) Λ′2 ≤ Modes(∆′
1) Λ′ = Λ′1 t Λ′2

By the induction hypothesis, it suffices to show that rel(∆′
1(a)) holds for every

a ∈ {a ∈ dom(∆) ∩ dom(∆′
1) | ¬nocap(∆(a))}, Suppose a ∈ {a ∈ dom(∆) ∩

dom(∆′
1) | ¬nocap(∆(a))}. Then, by the assumption nocapΛ(∆), it must be the

case that !?ε ≤ Λ(a) ≤ Λ′1(a). By the condition Λ′1 ≤ Modes(∆′
2), it must be

the case that noob(∆′
2(a)). Thus, rel(∆′

2(a)) follows from the condition rel(∆′(a)).
(Here, we have used the fact that if rel(U1 |U2) and noob(U2), then rel(U1).) 2

We write #(P ) for the size of process P (i.e., the number of process constructors
in P ). The progress property (Lemma 4.7) follows as a corollary of the following
lemma.
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Lemma B.2. Suppose (i) ∆′ `Λ′
LT E[〈P 〉∆,Λ], (ii) rel(∆′), and (iii) a 6∈

BN(E[P ]). Then, ob!(∆(a)) = n(6= ∞) implies E[P ] τ−→∗(νec) a[eb]−→ for some c̃ and

b̃, and ob?(∆(a)) = n implies E[P ] τ−→∗ a[eb]−→ for some b̃.

Proof. The proof proceeds by well-founded induction on (n, #(P )), where the
well-founded order is defined by (n,m) < (n′,m′) ⇐⇒ (n < n′) ∨ (n = n′ ∧m <
m′). We perform case analysis on the structure of P . We show only the case for
ob!(∆(a)) = n; the other case is similar. Without loss of generality, we can assume
that the last rule used for deriving ∆ `Λ

LT P is not ELT-Weak, since if the last rule
is ELT-Weak, we can find ∆1 and Λ′′ such that ∆1 `Λ′′

LT P , ∆′ `Λ′
LT E[〈P 〉∆1,Λ′′ ],

and ob!(∆(a)) ≤ n holds. (Hence, more formally, the whole proof is by induction
on (n, #(P ),m), where m is the number of the last applications of ELT-Weak
for deriving ∆ `Λ

LT P .) Note that the proof below is a little informal (e.g., in
the treatment of contexts) and sketchy; Except for the case where P = 〈P1〉T ,
the proof is almost the same as the corresponding theorem for the previous type
system [Kobayashi 2005a].

—Case P = 〈P1〉T : In this case, ∆ |=RD P1, ∆ |=RTer P1, and nocapΛ(∆). By
Lemma B.1, we have rel(∆). Hence, from Lemma 4.6 with ∆ |=RD P1 and the con-

ditions ∆ |=RTer P , we obtain P1
τ−→∗(νec′) a[eb]−→ . Thus, we have E[P ] τ−→∗(νec) a[b]−→

as required.
—Case P = 0: This case cannot happen.
—Case P = a1

χ[d̃]. P1: If a1 = a, then the result follows immediately. Suppose
a1 6= a. By the typing rules, we have:

∆ = a1 : ]!0t [L̃];(∆1 | d̃ : ↑L̃) ∆1 `⊥LT P1 t < n

By the induction hypothesis (note that we can assume without loss of generality
that a1 is not bound in E[P ] since otherwise we can move the binder (νa1) to
the outermost place by using Lemma A.8 and remove it), we have E[P ] τ−→∗

E1[P ]
a1 [eb]−→, where P is not involved in the transitions. E1[P ] must be of the form

E2[P, a1(ỹ). Q1]. Let Q = E3[P1, [ỹ 7→ b̃]Q1]. (Here, we have extended evaluation
contexts to those with multiple holes.) By Lemma 4.6 and the typing rules, we
have:

∆′′ `Λ′′
LT E3[〈P1〉∆1,Λ1 , 〈[ỹ 7→ b̃]Q1〉∆2,Λ2 ] 〈∆′, Λ′〉 τ−→∗ 〈∆′′, Λ′′〉

Moreover, ob!(∆1(a)) ≤ n or ob!(∆2(a)) ≤ n− 1 holds. In both cases, the result
follows immediately from the induction hypothesis (note that #(P1) < #(P ) in
the former case).

—Case P = a1
χ(ỹ). P1: Similar to the above case.

—Case P = ∗P1: By the condition ∆ `Λ
J P , there must exist ∆1 such that

∆1 `⊥J P1 and ∆ ≤ ∗∆1. The latter condition implies ob!(∆1(a)) ≤ n. By

∆′ `Λ′
J E[P | 〈P1〉∆1,⊥] and the induction hypothesis, we get E[P |P1]

(νec) a[eb]−→ .

The required result E[P ]
(νec) a[eb]−→ is obtained by using Tr-Rep.
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—Case P is P1 |P2, (νc)P1, or if a then P1 else P2: Trivial by the induction
hypothesis.

2

Proof Lemma 4.7. Suppose that Q is tagged and ∅ `Λ
LT Q. If the tagged process

is inside 〈·〉T , i.e., if Q is of the form E[〈Q′〉T ], where Q is tagged, then ∆ |=RD Q′

and Erase(∆) |=RTer Q′ with nocapΛ∆ for some ∆ and Λ. The latter condition

implies that rel(∆). Thus, Q′ τ−→∗ τ2

−→.
If the tagged process is not inside 〈·〉T , then Q must be of the form

E1[(νa) E2[a2(x̃). Q′]] or E1[(νa) E2[a2[ṽ]. Q′]]. We show only the former case be-
low, as the latter case is similar. By Lemma A.8 and the typing rules, we have:

a : ]U [L̃] `Λ
LT E1[E2[a2(x̃). Q′]] rel(U)

By the typing rules, it must be the case that cap?(U) 6= ∞. By rel(U), we get

ob!(U) 6=∞. By Lemma B.2, we have E1[E2[a2(x̃). Q′]] τ−→∗ a[ev]−→. Thus, we have

E1[E2[a2(x̃). Q′]] τ−→∗ τ2

−→, which implies P
τ−→∗ τ2

−→. 2

C. PROOF OF THEOREM 4.2

Theorem 4.2 follows as a corollary of the following lemma, which is similar to
Lemma B.2.

Lemma C.1. Suppose (i) ∆′ `Λ′
SLT E[〈P 〉∆,Λ], (ii) rel(∆′), and (iii) a 6∈

BN(E[P ]). If ob!(∆(a)) = t 6= ∞, then in any full, strongly fair reduction se-

quence of E[P ], there is a process Q that satisfies Q
(νec) a[eb]−→ for some c̃ and b̃.

Similarly, if ob?(∆(a)) = t 6= ∞, then in any full, strongly fair reduction sequence

of E[P ], there is a process Q that satisfies Q
a[eb]−→ for some b̃.

Proof. The proof proceeds in the same manner as that of Lemma B.2, by
well-founded induction on (t,#(P )), where the well-founded order is defined by
(n,m) < (n′,m′)⇐⇒ (n < n′)∨(n = n′∧m < m′). Since the other cases are similar
to the proof of Lemma B.2, we show only the case for P = 〈P0〉T . In this case,
by Lemma 4.6 with the conditions ∆ |=RD P and Erase(∆) |=RTer P , there exists a

reduction sequence P0
τ,S−→ P1

τ−→ · · · τ−→ Pn
(νec) a[eb]−→ . Consider any full, strongly

fair reduction sequence from E[〈P0〉T ], and let P0
η1,S′1−→ Q1

η2,S′2−→ Q2
η3,S′3−→ · · · be the

corresponding, local transition sequence of P0. We shall show that there exists m

such that Qm
(νec′) a[eb′]−→ , by induction on n. The case where n = 0 is trivial. Suppose

n > 0. Since P0 is robustly confluent, the transition
τ,S−→ is continuously enabled

until it occurs. Therefore, there must exist m such that
ηm,S′m−→ =

τ,S−→. Moreover,

there exists a transition sequence P1
η1,S′1−→ R1

η2,S′2−→ · · · ηm−1,S′m−1−→ Rm−1 ≡ Qm.
Thus, there is a full, strongly fair reduction sequence

E[P1]
τ−→ E1[R1]

τ−→ · · · τ−→ Em−1[Rm−1]
τ−→ Em[Rm] τ−→ · · · ,

where Rm+k ≡ Qm+k+1 for k ≥ 0. By the induction hypothesis, there exists j

such that Rj
(νec′) a[eb′]−→ . If j ≥ m, then Qj+1

(νec′) a[eb′]−→ as required. If j < m and
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Rm cannot make an output transition on a, then there must exist i (j < i ≤ m)

such that S′i contains the label of an output prefix on a. Thus, Qi−1
(νec′) a[eb′]−→ as

required. 2

Proof Theorem 4.2. Suppose that ∅ `SLT P and P
τ−→∗

Q. It suffices to show
(i) if Q = E1[(νa)E2[a◦(x̃). Q1]], then E1[E2[a◦(x̃). Q1]] is reduced to a process
of the form E[a[ṽ]. Q2] in any full, strongly fair reduction sequence, and (ii) if
Q = E1[(νa)E2[a◦[ṽ]. Q1]], then E1[E2[a◦[ṽ]. Q1]] is reduced to a process of the
form E[a(ỹ). Q2] in any full, strongly fair reduction sequence. (Note that if the
above conditions hold, any marked action will be enabled infinitely often.) We
show only (i); the proof of (ii) is similar. Suppose Q = E1[(νa)E2[a◦(x̃). Q1]].
Then by Lemma 4.6, we have ∅ `⊥SLT Q. By the typing rules, it must be the case
that a : ]U [L̃] `Λ

SLT E1[E2[a◦(x̃). Q1]] and rel(U), which also implies ob!(U) 6= ∞.
Thus, by using Lemma C.1, E1[E2[a◦(x̃). Q1]] must be reduced to a process of the
form E[a[ṽ]. Q2] in any full, strongly fair reduction sequence. 2

D. INTERVALS

We sketch here an extension of the type systems in [Deng and Sangiorgi 2006] that
improves the expressiveness of their termination analysis (and hence also of the
robust-termination analysis). We mainly explain the extension on the first of the
type systems in [Deng and Sangiorgi 2006], namely the system of pure levels Lev;
we are very brief on the others, as the modifications needed are similar.

The extension is obtained by replacing the levels of [Deng and Sangiorgi 2006]
with intervals. An interval is written [n,m], for n ≤ m, and indicates a non-empty
set of consecutive natural numbers. A type assignment x : ][n,m][V ] intuitively
means that x can be instantiated with any channel whose level is between n and m.
Although in practice we may gain precision by maintaining levels for the types of
the channels, for convenience of presentation we treat levels themselves as intervals;
thus level n corresponds to the interval [n, n].

We recall that the channel types are types that can be assigned to the channels,
and the values types are the types that can be assigned to the values communicated
along the channels. In an input v(x̃) or an output v [w̃] we call v the subject of the
prefix.

Notations. We use µ to range over intervals. For intervals µ1 = [n,m] and
µ2 = [r, s] we write µ1 ⊆ µ2 if r ≤ n and m ≤ s; and µ1 < µ2 if m ≤ r. If
Θ(p) = ]µ[Ṽ ] then we call µ the interval of p in Θ (or simply the interval of p, if
Θ is clear from the context).

The first type system. In the Lev type system each channel type is assigned a
level. We replace the levels with the intervals. Thus the grammar of the types,
called the interval types, is:

V ::= Bool | ]µ[Ṽ ] types

where µ is an interval. Judgments are of the form Θ `µ P . It is intended that
Θ `µ P should imply that for every active output v [w̃] in P , the interval of v must
be smaller than µ.
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We write V1 ≤ V2 if V1 = V2, or V = ]µ1 [W̃ ] and V = ]µ2 [W̃ ] with µ1 ⊆ µ2. We
write Θ ` v : V if Θ(v) ≤ V . With these notations for the intervals and for the
subtyping on the intervals, the rules can remain, notationally, the same as in Lev
(of course, with intervals in place of levels). We report below the interesting rules,
namely those for output, input, and replicated input:

Θ(p) = ]µ2 [Ṽ ] Θ ` ṽ : Ṽ Θ `µ1
Ter P µ2 < µ1

Θ `µ1
Ter p[ṽ].P

(IT-Out)

Θ(p) = ]µ2 [Ṽ ] Θ, x̃ : Ṽ `µ1
Ter P

Θ `µ1
Ter p(x̃).P

(IT-In)

Θ(p) = ]µ2 [Ṽ ] Θ, x̃ : Ṽ `µ2
Ter P

Θ `µ1
Ter ∗p(x̃).P

(IT-RIn)

The resulting type system is strictly more expressive than the level system Lev.
Any process typable in Lev is typable in our type system, by replacing each level n
with interval [n, n]. On the other hand, the use of intervals in place of levels allows
us to have some (limited) form of polymorphism with respect to the levels, so that
a term such as

a(x).0 | a[b] | a[c] | ∗b.c
is typable in our type system but not in [Deng and Sangiorgi 2006] (for typing the
replication, b should have a level higher than c, which is impossible as both can
instantiate x; with intervals it suffices to require that the interval for x contains
those for b and c).

Further, we can take advantage of intervals in the conditions for robust termina-
tion. For instance, in (2) of Section 5.3, the type equality S = T can be replaced
by the subtyping requirement S ≤ T . Other similar weakenings are possible in
Lemma 5.3.

The following lemma is important. It shows that we can safely replace a variable
with a channel whose interval is contained in that of the variable.

Lemma D.1. If Θ, v : V ′ `µ P and V ≤ V ′, then Θ, v : V `µ P .

Proof. Induction on derivation of Θ, v : V ′ `µ
Ter P . 2

With the use of the lemma above, the proof of termination for the well-typed
closed processes of the new system can be given along the lines of the corresponding
theorem in system Lev.

The second type system. The system Lev allows nesting of inputs but forbids
all forms of recursive inputs, that is, replications ∗a(x).P with the body P having
active outputs at a. The other type systems of [Deng and Sangiorgi 2006] allow us
to relax this restriction. In the second type system, for instance, the body P can
have active outputs a[v], but v must be provably smaller than x with respect to
some pre-defined well founded ordering on values; thus the value received at the
replicated input a(x) is greater than the value emitted in any active output at a
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that is underneath the replication. For instance, if the communicated values are
integers, then this holds for ∗a(x).a[x− 1]. A mechanism is assumed for evaluating
(possibly open) natural number expressions, which allows us to derive assertions
such as x−1 < x, or x−29+4∗7 < x. This evaluation mechanism is an orthogonal
issue, independent from the type system.

In the corresponding type system with intervals, judgments are of the form
Θ `(µ,ex) P . It is intended that Θ `(µ,ex) P should imply that for an active output
v [w̃] in P , either (a) the interval of v is smaller than µ, or (b) the interval of v in Θ,
say λ, is consecutive to µ (that is, if λ = [n,m] and µ = [r, s] then m = r), but each
component wi of the tuple carried by v is provably smaller than the corresponding
component xi of x̃. With this in mind, the rules are similar to those for the first
type system previously discussed.

The third type system. The third type system of [Deng and Sangiorgi 2006] ex-
ploits some of the structure of the processes. Precisely, it takes into account se-
quences of inputs underneath a replication. In this way, intuitively, one can consider
the sum of the levels of such inputs (rather than the level of a single input as in pre-
vious type systems), and then compare this against the active outputs in the body
of the sequence. Call κ such a sequence of inputs, and P the body (i.e., the process
underneath κ). We have to compare the weight of κ, written wt(κ), against the
weight of P , written wt(P ). In Deng and Sangiorgi [2006], where types have just
levels, wt(P ) is the vector 〈nk, nk−1, · · · , n1〉, where each nh represents the number
of occurrences of outputs that are not underneath a replication and whose subject
is a name of level h; then k is the highest level on which the process has non-zero
output occurrences5. This definition of weight is extended to input patterns by
taking into account the levels of all input subjects; i.e., if κ is p1(x̃1). · · · .pn(x̃n),
then wt(κ) is the vectorial sum of all levels of the names ph.

In our case, since we have intervals in place of pure levels, we have to be conser-
vative. Thus wt(κ) is the lowest possible sum given by the intervals (that is, we
use the same vectorial sum as before but each interval [n,m] of an input subject of
κ contributes its infimum n), whereas wt(P ) is the highest possible sum given by
the intervals (that is, each interval [n,m] of the subject of an active output in P
contributes its supremum m). Using ω to range over vectors, judgments are of the
form Θ `ω P ; it is intended that Θ `ω P holds if wt(P ) is not greater than ω.

The fourth type system. The fourth type system of [Deng and Sangiorgi 2006]
is the system PO discussed in Section 5. The use of partial orders on names is an
orthogonal issue with respect to the choice of having type systems based on levels
or on intervals, therefore we do not discuss it any further here.

5This definition makes sense in Deng and Sangiorgi [2006] where the type systems are formulated
à la Church—each name is assigned a type a priori; in a formulation à la Curry the definition
should be given with respect to a given typing derivation for P .
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