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Abstract
We propose a type system for lock-freedom in theπ-calculus,
which guarantees that certain communications will eventually suc-
ceed. Distinguishing features of our type system are: it can verify
lock-freedom of concurrent programs that have sophisticated re-
cursive communication structures; it can be fully automated; it is
hybrid, in that it combines a type system for lock-freedom with lo-
cal reasoning about deadlock-freedom, termination, and confluence
analyses. Moreover, the type system is parameterized by deadlock-
freedom/termination/confluence analyses, so that any methods (e.g.
type systems and model checking) can be used for those analyses.
A lock-freedom analysis tool has been implemented based on the
proposed type system, and tested for non-trivial programs.

1. Introduction
Verification of concurrent programs is very important. Concurrency
is common in recent distributed environments or multi-processor
machines, yet writing and debugging concurrent programs is hard
because of non-determinism, deadlock, livelock, etc. Many meth-
ods have been proposed recently for verification of concurrent pro-
grams, including model checking, type systems, and separation
logic. Although there are some promising reports such as verifi-
cation of termination of several thousands lines of multi-threaded
code [12], verification techniques for concurrent programs are still
premature, compared with those for sequential programs, for which
certain properties of millions of lines of code can be verified.

In this paper, we attack the problem of verifying concurrent
programs that create threads and communication channels dy-
namically. More specifically, we choose theπ-calculus as the
target language, and consider the problem of verifying the lock-
freedom property, which intuitively means that certain commu-
nications (or synchronizations) will eventually succeed (possibly
under some fairness assumption). Lock-freedom is important for
communication-centric computation models like theπ-calculus;
indeed, in the pureπ-calculus, most liveness properties can be
turned into the lock-freedom property. For example, the following
properties can be reduced to instances of lock-freedom: Will the
request of accessing a resource be eventually granted? In a client-
server system, will a client request be eventually received from the
server? And if so, will the server eventually send back an answer to
the client? In multi-threaded programs, can a thread eventually ac-
quire a lock? And if so, will the thread eventually release the lock?
The lock-freedom property has also applications to other verifi-
cation problems and program transformation, such as information
flow analysis and program slicing (dependency analysis in general).
Verification of liveness properties such as lock-freedom is notori-
ously hard in concurrency. In formalisms for mobile processes,
such as theπ-calculus, it is even harder, because of dynamic cre-
ation of threads and first-class channels. In these formalisms,type
systemshave emerged as a powerful means for disciplining and
controlling the behaviors of the processes.

Type systems for lock-freedom include [1, 22, 23, 37, 38]. An
automatic verification tool,TYPICAL [21], has been implemented
based on Kobayashi’s system [23]. The expressive power of such
type systems is, however, very limited. This shows up clearly, for
instance, in the treatment of recursion. For example, even primi-
tive recursive functions cannot be expressed in Kobayashi’s lock-
free type system, since it ignores value-dependent behaviors com-
pletely.

Related to lock-freedom is deadlock-freedom. In a system of
threads, deadlock freedom is the property that the system can re-
duce further, if at least one thread is not terminated. A more refined
form of deadlock can be given by focusing on certain special ac-
tions (prefixes, in theπ-calculus): here deadlock-freedom says that
the system can always reduce further if there is a thread with one
special action ready for execution. The latter form of deadlock has
been extensively studied by Kobayashi (see e.g., [24]); the resulting
system has been implemented as a part ofTYPICAL . Note that any
process is deadlock-free if it is run with a divergent process. Unlike
lock-freedom, deadlock-freedom is insufficient for applications to
information flow analysis or program slicing.

In this paper, we tackle lock-freedom by pursuing a different
route. We overcome limitations of previous type systems by com-
bining the lock-freedom analysis with two other analysis:deadlock-
freedomandtermination. The result, therefore, is not a “pure” type
system, but one that isparametricin the techniques employed to
ensure deadlock-freedom and termination. Such techniques may
themselves be based on type systems (and indeed in the paper we
indicate such type systems, or develop them when needed), but
could also use other methods (model checking, theorem provers,
etc.). The parameterization allows us to go beyond certain limits of
type systems, by appealing to other methods. For instance, a type
system, as a form of static analysis, may have difficulties in han-
dling value-dependent behaviours (even very simple ones), which
are more easily dealt with by other methods such as model check-
ing.

Roughly, we use the deadlock-freedom analysis to ensure that a
system can reduce if some of its expected communications have not
yet occurred. We then apply a termination analysis to discharge the
possibility of divergence and guarantee lock-freedom (i.e., the ex-
pected communication will indeed occur). The reasons for appeal-
ing to deadlock-freedom are that powerful type-based analyzers ex-
ist (notably Kobayashi’s systems [24]), and that deadlock-freedom
is a safety property, which is easier than liveness to verify in other
verification methods such as model checking.

A major challenge was to be able to apply the deadlock and
termination analysislocally, to subsystems of larger systems. The
local reasoning is particularly important for termination. A result
forcing a global termination analysis would not be very useful in
practice: first, valid concurrent programs may not terminate (e.g.,
operating systems); second, even if a program is terminating, it can
be extremely hard to verify it if the program is large, particularly in



languages for mobile processes such as theπ-calculus that subsume
higher-order formalisms such as theλ-calculus.

Very approximately, our hybrid rule for local reasoning looks as
follows:

|=DF P |=Ter P

∆ `LT P
(*)

where |=DF P and |=Ter P indicate, respectively, thatP is
deadlock-free and terminating, and∆ `LT P is a typing judg-
ment for lock-freedom. The type environment∆ captures condi-
tions, or “contracts”, on the wayP interacts with its environment,
of the kind “P will eventually send a message ona” and “if P
receives a message ona, then P is lock-free afterwards”. Such
contracts are necessary for the compositionality of the type sys-
tem for lock-freedom (i.e., local reasoning on lock-freedom). We
use Kobayashi’s lock freedom types [23], which refine those of
the simply-typedπ-calculus withchannel usages, to express the
contracts. Therefore we add rule (∗), as an “axiom”, to the rules of
Kobayashi’s lock freedom type system [23].

The contracts in∆, however, are completely ignored—and are
not guaranteed—in the premises of rule (∗). As a consequence, the
resulting type system is unsound. In other words, knowing thatP
is deadlock-free and terminating is not sufficient to guarantee com-
positionality and local reasoning. As an example of missing infor-
mation,P being terminating ensures thatP itself has no infinite re-
ductions; but it says nothing on the behaviour ofP after it receives
a message from other components in the system. (Indeed rule (∗) is
only sound if applied globally, to the whole system.)

The first refinement we make for the soundness of rule (∗) is
to replace deadlock-freedom and termination with more robust no-
tions, which we call, respectively,robust deadlock-freedom under
∆, written ∆ |=RD P , and robust termination, written |=RTer P .
These stronger notions approximately mean thatP is deadlock-free
or terminating after any substitution (P may be open, and there-
fore contain free variables), and any interaction with its environ-
ment;∆ |=RD P further ensures thatP fulfills certain obligations
in ∆. The problems of verifying robust deadlock-freedom and ro-
bust termination are more challenging than the ordinary ones, due
to the additional requirements (e.g., quantifications over substitu-
tions and transition sequences). Existing type systems for deadlock-
freedom, notably [24], do meet however the extra conditions for
robust deadlock-freedom. We also show how to tune type systems
for ordinary termination in a generic manner so to guarantee the
stronger property of robust termination. Specifically, we isolate
some conditions on a type system for deadlock-freedom or termi-
nation that allow us to turn it into one for robust deadlock-freedom
or robust termination. We should stress nevertheless that∆ |=RD P
and |=RTer P are semantic requirements: our type system is para-
metric on the verification methods that guarantee them—one need
not employ type systems.

Even with the above refinement of the deadlock-freedom and
termination conditions, the hybrid rule (∗) remains unsound. The
reason is, roughly, the same as why assume-guarantee reasoning in
concurrency often fails in the presence of circularity. In fact, the
judgment∆ `LT P can be considered a kind of assume-guarantee
reasoning, where∆ expresses both assumptions on the environ-
ment and guarantees aboutP ’s behavior. To prevent circular rea-
soning, we add a conditionnocap(∆) that intuitively ensures us
thatP is independent of its environment, in the sense thatP will
fulfill its obligations (to perform certain input/output actions) with-
out relying on its environment’s behavior. (For example, suppose
that there is an obligation to send a message on channela. The
processa[1], which sends1 ona, is fine, since it fulfills the obliga-
tion with no assumption. On the other hand, the processb(x). a[x],
which waits to receive a value onb before sendingx ona, is not al-
lowed since it fulfills the obligation onlyon the assumptionthat the

environment will send a message onb.) This leads to the following
hybrid rule:

∆ |=RD P |=RTer P nocap(∆)

∆ `LT P
(LT-HYB)

The resulting type system guarantees that any well-typed pro-
cessP is weakly lock-free, in the sense that if an input/output action
is declared inP as an action that should succeed, and ifP −→∗ Q,
then the action has already succeeded inP −→∗ Q or there is a fur-
ther reduction sequence fromQ in which the action will succeed.
This is similar to the way in which success of passing a test is de-
fined in fair should/must testing [5, 7, 29], (and also in accordance
with other definitions of similar forms of liveness forπ-calculus
such as [37]).

For example, consider the processServer |Client , where:

Client
def
= (νr1) (fact◦ [3, r1] | r◦1 (x). P1)

Server
def
= (νfact it) (∗fact (n, r). fact it [n, 1, r]
| ∗fact it (n, x, r).

if n = 0 then r[x] else fact it [n− 1, x× n, r])
The processServer creates an internal communication channel
fact it (used for computing factorial numbers in a tail-recursive
manner), and waits onfact for a request[n, r] on computing the
factorial of n. Upon receiving a request, it returns the result on
r. The processClient creates a fresh channelr1 for receiving a
reply, sends a request[3, r1] and then waits for the result onr1.
The client expects that the request will be eventually accepted (i.e.,
the output onfact should eventually succeed), and that the re-
sult will be eventually received (i.e., the output atfact and the
input atr1 should eventually succeed). To indicate these expecta-
tions, the two actions from the client are marked (symbol◦). These
properties cannot be verified by Kobayashi’s type system for lock-
freedom [23]. We can derive, however,∆ `DT Server for a type
environment∆, which says that, upon receiving a request,Server
either eventually sends a result or diverges. We can also verify
thatServer is terminating by using existing type systems for ter-
mination, such as [15]. Thus, by usingLT-HYB above, we infer
∆ `LT Server . Finally, with the typing rules for lock-freedom, we
derive∅ `LT (νfact) (Server |Client), which says that the client’s
request will be eventually accepted and the result will also be even-
tually received. Note that, as termination and deadlock-freedom are
applied locally, the above reasoning is valid even if the client is not
terminating (e.g.,P1 is divergent).

We have also considered a stronger form of lock-freedom, guar-
anteeing that the marked actions will eventually succeed on the as-
sumption that the scheduler is strongly fair (in the sense that if an
action is enabled infinitely often, then the action will indeed suc-
ceed). We show that our type system can be strengthened to guar-
antee the strong lock-freedom by adding a condition of partial con-
fluence to ruleLT-HYB above. Again, the partial confluence is only
required locally; the whole program need not be confluent.

The verification framework outlined above for lock-freedom
(including an automated robust termination analysis) has been im-
plemented as an extension ofTYPICAL program analysis tool (ex-
cept the extension to strong lock-freedom; adding this on top of the
present implementation would be tedious but not difficult). We have
succeeded in automatically verifying several non-trivial programs,
such as symbol tables and binary tree search. These examples are
non-trivial because lists and trees are implented as networks of pro-
cesses connected by channels, and they grow dynamically (both
channels and processes are dynamically created and linked). Recur-
sive structures of the kind illustrated in these examples are common
in programming languages for mobile processes (the examples in
fact, were taken or inspired from Pict programs).

The contributions of this paper are summarized as follows.



• The new type system for lock-freedom mentioned above, with
a proof of its soundness. The system is hybrid (combining anal-
yses for lock-freedom, deadlock-freedom, and termination),
parameterized by any robust deadlock-freedom/termination
analyzers, and allows local reasoning about termination and
deadlock-freedom. The proof of the soundness of the type
system is non-trivial because of the hybrid nature of the type
system.

• A further extension of the type system for strong lock-freedom,
by a combination with a form of confluence analysis. Again,
the type system is parameterized by any analyzer for partial
confluence, and enables local reasoning about confluence.

• A method for extending type systems for termination to guar-
antee robust termination.

• An implementation of an automated (weak) lock-freedom ver-
ifier based on the proposed method. It has been successfully
tested on a number of non-trivial examples.

The rest of this paper is structured as follows. Section 2 intro-
duces the target language of our type system, and gives formal defi-
nitions of deadlock-freedom, lock-freedom, and robust termination.
Section 3 introduces the new type system, obtained by combining
Kobayashi’s previous type system for lock-freedom with the hybrid
rules mentioned above. Section 4 proves the soundness of the type
system. Section 5 discusses how to extend type systems for termi-
nation to deal with the robust termination property. Section 6 briefly
reports implementation and experiments. Section 7 discusses ex-
tensions of our type system. Section 8 discusses related work and
Section 9 concludes.

2. Target Language
This section introduces the target language of our work: a polyadic
π-calculus [28] with conditionals.

2.1 Syntax

We writeL for the set oflinks (also calledchannels), andV for the
(disjoint) set ofvariables. We use meta-variablesa, b, c, . . . and
x, y, z, . . . for links and variables, respectively. We writeN for the
setL ∪ V ∪ {true, false} of names(sometimes calledvalues),
wheretrue andfalse are the usual boolean values. We use meta-
variablesu, v, w for names. The grammar is the following:

DEFINITION 2.1 (processes).The set of processes, ranged over by
P , is defined by:

P ::= 0 | vχ[ ew]. P | vχ(ey). P
| (P |Q) | ∗P | (νa) P | if v then P else Q

Here, χ is either ◦ or •, and ew abbreviates a possibly empty
sequencew1, . . . , wn.

The process0 does nothing. The processvχ[ ew]. P sends a tuple
consisting of valuesew on v, and then (after the tuple has been
received by some process) behaves likeP . The processvχ(ey). P
waits for a tuple of values onv, bindsey to them, and then behaves
like P . In the prefixes, the annotationχ in prefixes, which indicates
whether the action is expected to succeed (symbol◦) or not (symbol
•). (In the type inference of TyPiCal these annotations are actually
inferred, in the sense that if the analysis succeed then a set of
prefixes that will eventually succeed is marked, see Section 6.)
We call a prefixmarked if its annotation is◦. We usually omit
the • annotation, thus for examplea(x).P stands fora•(x). P .
ProcessP |Q executesP andQ in parallel, and∗P behaves like
infinitely many copies ofP running in parallel;(νa) P creates
a fresh communication channela, and then behaves likeP . The
processif v then P else Q behaves likeP if v is true andQ if
v is false.

The prefix (νa) is a binder for linka, and the input prefix
vχ(ey). P is a binder for variablesey. We writeFN(P ) for the set
of free names (i.e., free links and variables) inP . A processP is
closed if the set of free variables inP is empty. We often omit
trailing 0, and writevχ[ ew] for vχ[ ew].0. We also writevχ.P and
vχ.P for vχ[ ]. P andvχ( ). P respectively. In examples, we use an
extension of the above language with natural numbers, list, etc. as
they are straightforward to accommodate.

2.2 Typing

The type systems that we will propose are defined on top of the
simply-typedπ-calculus (ST), that we take as the basis for our
work. We believe that languages of more advanced type systems
could be used as basis; we preferredST because simple and natural.
The set ofsimple typesis given by:

S ::= Bool | ][S1, . . . , Sn]

][S1, . . . , Sn] is the type of channels that are used for transmitting
tuples consisting of values of typesS1, . . . , Sn. A type judgment
is of the formΓ `ST P . A type environmentΓ is a mapping from
names to simple types, with the constraint thattrue andfalse are
mapped toBool, and that the links are mapped to channel types.
Γ, ev :eS indicates the type environment obtained by extendingΓ
with the type assignmentsev :eS, with the understanding that for all
vi already defined inΓ it should beΓ(vi) = Si. The typing rules
are given in Figure 1.

2.3 Operational Semantics

We introduce the standard (early) labeled transition relationP
η−→

Q for theπ-calculus. Here,η, called a transition label, is either a
silent actionτ , an output action(νec) a[eb], or an input actiona[eb].
DEFINITION 2.2 (transition labels).The set of transition labels,
ranged over byη, is given by:

η ::= τ | (νec) a[eb] | a[eb]
Here,(νec) represents a (possibly empty) sequence(νc1) · · · (νcn) .

FN(η) andBN(η) are defined by:

FN(τ) = ∅ BN(τ) = ∅
FN((νec) a[eb]) = {a,eb} \ {ec} BN((νec) a[b]) = {ec}
FN(a[eb]) = {a,eb} BN(a[eb]) = ∅

DEFINITION 2.3. The labeled transition relation
η−→ is the least

relation closed under the rules in Figure 2, plus the symmetric of
the two rules for parallel composition.

A difference from the standard transition semantics is in the
treatment of replication. We distinguish between replicated input
processes and unrestricted replications, and ensure that a replicated
input can be copied only lazily (notice the difference between
TR-RIN and TR-REP). This distinction is required to make the
robust confluence condition defined in Section 3 not too restrictive.
We write

τ−→∗
for the reflexive and transitive closure of

τ−→;
we write P

τ−→ andP
τ−→∗

if there isP ′ s.t. P
τ−→ P ′ and

P
τ−→∗

P ′, respectively.
We extend the above transition relation to atyped transition

relation, to show how a type environment evolves when a process
performs a transition. We writeΓ `ST P

η−→ Γ′ `ST P ′ to indicate
how the type environmentΓ for P evolves under the transitions of
P . Further, we only consider transitions well-typed underΓ; this
means that, in an input, the values supplied toP should agree with
the types declared inΓ. Precisely,Γ `ST P

η−→ Γ′ `ST P ′ holds
if:

1. Γ `ST P ;



Γ `ST 0

Γ `ST P Γ `ST Q

Γ `ST P |Q
Γ `ST P

Γ `ST ∗P
Γ, a : ][eS] `ST P

Γ `ST (νa) P

Γ `ST P Γ(v) = ][eS] Γ( ew) = eS
Γ `ST vχ[ ew]. P

Γ, ey :eS `ST P Γ(v) = ][eS]
Γ `ST vχ(ey). P

Γ(v) = Bool Γ `ST P Γ `ST Q

Γ `ST if v then P else Q

Figure 1. Simple Type System

aχ[eb]. P a[eb]−→ P

(TR-OUT)
aχ(ey). P

a[eb]−→ [ey 7→ eb]P
(TR-IN)

∗aχ(ey). P
a[eb]−→ ∗aχ(ey). P | [ey 7→ eb]P

(TR-RIN)

if true then P else Q
τ−→ P
(TR-IFT)

if false then P else Q
τ−→ Q
(TR-IFF)

P
η−→ Q BN(η) ∩ FN(R) = ∅

P |R η−→ Q |R
(TR-PARL)

P1
(νec) a[eb]−→ Q1 P2

a[eb]−→ Q2 {ec} ∩ FN(P2) = ∅
P1 |P2

τ−→(νec) (Q1 |Q2)
(TR-COML)

P
(νec) d[eb]−→ Q a ∈ {eb} \ {d,ec}

(νa) P
(νa,ec) d[eb]−→ Q

(TR-OPEN)
P

η−→ Q a 6∈ FN(η) ∪BN(η)

(νa) P
η−→ (νa) Q

(TR-NEW)

∗P |P η−→ Q P is not an input process

∗P η−→ Q
(TR-REP)

Figure 2. Rules of the operational semantics

2. P
η−→ P ′;

3. if η = τ thenΓ = Γ′; otherwise ifη is an output(νec) a[eb] or
an inputa[eb] andΓ(a) = ][eS], thenΓ′ = Γ,eb : eS .

Note thatΓ `ST P
η−→ Γ′ `ST P ′ implies Γ′ `ST P ′. We write

Γ0 `ST P0
η1−→ · · · ηk−→ Pk to mean thatΓ0 `ST P0, and there are

Γ1, ..., Γk s.t. for all i < k it holds thatΓi `ST Pi
ηi+1−→ Γi+1 `ST

Pi+1.

2.4 Deadlock-Freedom and Lock-Freedom

We now define deadlock-freedom, lock-freedom, strong lock-
freedom, and robust termination. A prefix isat top levelif it is not
underneath another input/output prefix or underneath a replication.

DEFINITION 2.4 (deadlock-freedom).P isdeadlock-freeif, when-
everP

τ−→∗
Q andQ has at least one marked prefix at top level,

thenQ
τ−→.

The above definition of deadlock-freedom is essentially the same
as the one in [24]. It says that if a marked input/output is at top
level, the whole process can be reduced further.

We define lock-freedom by tagging the prefix, and the tran-
sitions originating from it. Deadlock-freedom indicates only the
possibility for the system to evolve further; on the other hand,
lock-freedom indicates the eventual success of marked actions at
top-level. In the definition of lock-freedom, we track the success
of a specific action (as several marked actions may simultaneously
appear at top-level) by tagging it. We then demand success for
all possible taggings. We calltaggeda process in which exactly
one unguarded and unreplicated prefix—the prefix that we wish to
track—has the special annotation2 (instead of◦ as in the marked
prefixes). Transitions of tagged processes are defined as for the un-
tagged ones, except that the labels of transitions emanating from
the tagged prefix are also tagged. For instance, we have:

a2(ey). P
a2[eb]−→ [ey 7→ eb]P

P1
(νec) a2[eb]−→ Q1 P2

a[eb]−→ Q2 {ec} ∩ FN(P2) = ∅
P1 |P2

τ2

−→(νec) (Q1 |Q2)

We call a taggedτ -transition, writtenP
τ2

−→ P ′, asuccess.

DEFINITION 2.5 ((weak) lock-freedom). A tagged processP is

successfulif wheneverP
τ−→∗

Q thenQ
τ−→∗ τ2

−→. (That is, no
matter howP evolves, the success transition can always be taken)
Given an untagged processP , thetagging of Pis the set of tagged
processes obtained fromP by replacing the annotation of a marked
prefix at top level with2. We writeTagging(P ) for the tagging of
P . ProcessP is (weakly) lock-freeif wheneverP

τ−→∗
Q then all

processes in the tagging ofQ are successful.

The above notion of lock-freedom is similar to Yoshida’s linear
liveness [37]: The property thatP eventually answersatx [37] can
be expressed as the lock-freedom ofP |x◦(y). In the definitions of
deadlock and lock freedom above, the tracked prefixes are at top
level. The case in which one wants to track also guarded prefixes
(for instance, in lock-freedom, ensuring that any marked prefix that
is not underneath a replication will eventually be consumed) can
be recovered by marking also the preceding prefixes (those that are
above). The resulting lock-freedom property roughly corresponds
to Acciai and Boreale’s notion of responsiveness [1].

A sequence of transitions
τ−→ or

τ2

−→ is full if it is finite and
ends with an irreducible process, or if it is infinite. A sequence of
transitions isstrongly fairif, intuitively, anyτ -action that is enabled
infinitely often will eventually succeed (see [3, 22] for a formal
definition of strong fairness in theπ-calculus). See Appendix A for
a note on the difference between weak and strong lock-freedom.

DEFINITION 2.6 (strong lock-freedom).P is strongly lock-freeif
wheneverP

τ−→∗
Q then every full and strongly fair transition

sequence of each process in the tagging ofQ contains the success

transition
τ2

−→.

We give some examples to clarify the difference between
deadlock-freedom, lock-freedom, and strong lock-freedom.



EXAMPLE 2.1. The following process is deadlock-free, but not
lock-free.

b◦( ) | a[b] | ∗a(y). a[y]

EXAMPLE 2.2. Consider the following processP :

b◦( ) | a[b]
| ∗a(y). (νc) (c[y] | c(y). y [ ] | c(y). a[y])

The subprocess on the 2nd line receivesb on a and either sends a
message onb or forwardsb to itself non-deterministically. Sincec
is freshly created everytimeb is received froma, the strong fairness
does not guarantee that a message is eventually sent onb. P is
thereforenot strongly lock-free. On the other hand, however, after
any number of forwardings, there is a chance for a message to be
sent onb; hence,P is weakly lock-free. See Appendix A also for
another example that is weakly lock-free but not strongly lock-free.

3. Type System for Lock-Freedom
We introduce the type systems for weak/strong lock-freedom. They
are obtained by augmenting Kobayashi’s type system [23] with hy-
brid rules appealing to deadlock/termination/confluence analyses.
We first review Kobayashi’s previous type system for (strong) lock-
freedom [23] (with some simplification) in Section 3.1. We then de-
fine robust deadlock-freedom, robust termination, and robust con-
fluence, and introduce the hybrid rules for combining deadlock-
freedom analysis, termination analysis, and confluence analysis to
strengthen the lock-freedom analysis.

After giving examples in Section 3.4, we prove type soundness
in Section 4.

3.1 Review of Previous Type System for Lock-Freedom

As mentioned in Section 1, to enable local reasoning about lock-
freedom in terms of deadlock and termination analyses, we need to
express some contracts between a process and its environment. We
reuse the type judgments of Kobayashi’s lock-freedom type sys-
tem [23] to express the contracts. A type judgment is of the form
∆ `LT P , where∆ is a type environment, which expresses both
requirements on the behavior ofP , and assumptions on its envi-
ronment. Ordinary channel types are extended withusages, which
express how each communication channel is used. For example,
]?.! [Bool] describes a channel that should be first used for receiving
a boolean once, and then for sending a boolean once. A channel of
type]? []! [Bool]] should be first used for receiving a channel once,
and then the received channel should be used once for sending a
boolean. (! and ? express an output and an input respectively, and
“.” denotes the sequential composition; the whole syntax of usages
is given later. )

In order to express both assumptions on the environment (like,
“a process can eventually receive a message from its environment”)
and guarantees by the process (like, “a process will certainly send a
message”), each action (! or ?) in a usage is further annotated with
capability levelsandobligation levels, which range over the set of
natural numbers extended with∞. If a capability level of an action
is finite, then that action is guaranteed to succeed (in other words,
its co-action will be provided by the environment) if it becomes
ready for execution (i.e., it is at top-level). If an obligation level of
an action is finite, then that action must become ready for execu-
tion, only by relying on capabilities of smaller levels. For example,
the type judgmenta : ]?∞0

[Bool], b : ]!1∞ [Bool] `LT P means that
P has a capability of level0 to receive a boolean on channela (but
not an obligation to receive it) , andP has an obligation of level1
to send a boolean onb. (Here, the superscript of! or ? is the obliga-
tion level, and the subscript is the capability level.) Thus,P can be
b[true] or a(x). b[x], but nota(x).0. Thanks to the abstraction of

process behavior by usages, the problem of checking lock-freedom
of a process is reduced to that of checking whether the usage of
each channel is consistent in the sense that, for each capability of
levelt, there is a corresponding obligation of level less than or equal
to t.

To understand how this kind of judgment can be used for com-
positional reasoning about lock-freedom, consider the (deadlocked)
processa◦(x). b[x] | b◦(x). a[x]. We have the following judgment
for subprocesses:

a : ]?00
[Bool], b : ]!1∞ [Bool] `LT a◦(x). b[x]

a : ]!1∞ [Bool], b : ]?00
[Bool] `LT b◦(x). a[x]

For the entire process, we can simply combine both type environ-
ments by combining usages pointwise:

a : ]?00 | !1∞ [Bool], b : ]!1∞ | ?00 [Bool] `LT a◦(x). b[x] | b◦(x). a[x]

Now, the capability level of the input ona (which is0) is smaller
than the obligation level of the corresponding output ona (which
is 1); this indicates a failure of assume-guarantee reasoning (the
assumption made by the left subprocess is not met by the guarantee
by the right subprocess). Thus, we know the process may not be
lock-free. On the other hand, if we replace the subprocess in the
righthand side witha[true]. b(x), then we get:

a : ]?00 | !00 [Bool], b : ]!11 | ?11 [Bool] `LT a◦(x). b[x] | a[true]. b◦(x)

The capability of each action is matched by the obligation of its
co-action, which implies that the process is lock-free. This is simi-
lar to the standard assume-guarantee reasoning; the employment of
such reasoning in the type system (to enable fully automated, com-
positional reasoning), together with the mobility of theπ-calculus,
however, inevitably make some technical details complex.

We now give a formal definition of the type systems for
deadlock-freedom and lock-freedom.

3.1.1 Usages

DEFINITION 3.1 (usages).The setU of usages, ranged over byU ,
is given by:

U ::= 0 | αt1
t2

.U | (U1 |U2) | ∗U
α ::=? |!

Here,t ranges overNat ∪ {∞} (whereNat is the set of natural
numbers).

The usage0 describes channels that cannot be used at all. The
usage?t1

t2
.U describes channels that can be first used for input, and

then used according toU . The usageU1 |U2 describes channels
that can be used according toU1 and U2, possibly in parallel.
The usage∗U describes channels that can be used according to
U infinitely often. We omit choice and recursive usages [23, 24] for
the sake of simplicity.

The usages form a tiny process calculus, which has only two

actions? and!. The transition relationU
lu−→ U ′ is defined below.

DEFINITION 3.2. The transition relationU
lu−→ U ′ (wherelu ∈

{!, ?, τ}) is the least relation closed under the following rules:

αt1
t2

.U
α−→ U

∗U |U lu−→ U ′

∗U lu−→ U ′

U1
lu−→ U ′1

U1 |U2
lu−→ U ′1 |U2

U2
lu−→ U ′2

U1 |U2
lu−→ U1 |U ′2

U1
!−→ U ′1 U2

?−→ U ′2

U1 |U2
τ−→ U ′1 |U ′2

U1
?−→ U ′1 U2

!−→ U ′2

U1 |U2
τ−→ U ′1 |U ′2

We need to define some relations/operations on usages. We first de-
fine the capability/obligation levels of a usage. Intuitively,capα(U)



describes what capability can be expected from the environment,
andobα(U) describes what obligation must be fulfilled for the en-
vironment. (Thus, a usage describes both “assume” condition and
“guarantee” condition in the assume-guarantee reasoning.) The re-
liability (Definition 3.5) of a usage requires that for each capability,
there is always a corresponding obligation.

DEFINITION 3.3 (capabilities).The input and output capability
levelsof usageU , writtencap?(U) andcap!(U), are defined by:

capα(0) = capα(αto
tc

.U) = ∞ capα(αto
tc

.U) = tc

capα(∗U) = capα(U)
capα(U1 |U2) = min(capα(U1), capα(U2))

DEFINITION 3.4 (obligations).The input and output obligation
levelsof a usageU , writtenob?(U) andob!(U), are defined by:

obα(0) = obα(αto
tc

.U) = ∞ obα(αto
tc

.U) = to

obα(∗U) = obα(U)
obα(U1 |U2) = min(obα(U1), obα(U2))

We writeob(U) for min(ob?(U), ob!(U)).

The predicaterel(U) expresses the consistency of usageU
mentioned above.

DEFINITION 3.5 (reliability). We write conα(U) whenobα(U) ≤
capα(U). We write con(U) when both con?(U) and con!(U) hold.
A usageU is reliable, written rel(U), if con(U ′) holds for anyU ′

such thatU
τ−→∗

U ′.

The subusage relationU1 ≤ U2 defined below means thatU1

expresses more liberal usage of channels thanU2, so that a channel
of usageU1 may be used as that of usageU2.

DEFINITION 3.6 (subusage). Thesubusage relation≤ on closed
usages is the largest binary relation on usages such that the follow-
ing conditions hold wheneverU1 ≤ U2.

1. U1 |U ≤ U2 |U for any usageU .

2. If U2
τ−→ U ′2, then there existsU ′1 such thatU1

τ−→ U ′1 and
U ′1 ≤ U ′2.

3. For eachα ∈ {?, !}, capα(U1) ≤ capα(U2) holds.
4. For eachα ∈ {?, !}, if conα(U1), thenobα(U1) ≥ obα(U2).

The following operation↑tU increases the obligation levels of
U up tot.

DEFINITION 3.7. An operation↑tU on usages is defined by:

↑t0 = 0 ↑tαt1
t2

.U = α
max(t,t1)
t2

.U
↑t(U1 |U2) = ↑tU1 | ↑tU2 ↑t(∗U) = ∗↑tU

3.1.2 Types

DEFINITION 3.8 (usage types). The set ofusage types(or simply
types, when there is no confusion with simple types) is given by:

L (usage types)::= Bool | ]U [eL]
TypeBool is the type of booleans. The type]U [eL] describes chan-
nels that should be used according toU for transmitting a tuple of
values of typeseL.

Relations and operations on usages are extended to those on
types.

DEFINITION 3.9 (subtyping). The subtyping relation≤ is the
least reflexive relation closed under the following rule:

U ≤ U ′

]U [eL] ≤ ]U′ [eL] (SUBT-CHAN)

DEFINITION 3.10. Theobligation levelsof typeL, writtenob?(L)
andob!(L), are defined byobα(Bool) = ∞ andobα(]U [eL]) =
obα(U). We writeob(L) for min(ob?(L), ob!(L)).

DEFINITION 3.11. Unary operations∗ and↑t on types is defined
by:
∗Bool = ↑tBool = Bool, ∗(]U [eL]) = ]∗U [eL], and↑t(]U [eL]) =
]↑tU [eL],
DEFINITION 3.12. A (partial) binary operation| on types is de-
fined by:
Bool | Bool = Bool, and
(]U1

[eL]) | (]U2
[eL]) = ](U1 |U2)[eL]. L1 | L2 is undefined if it does not

match any of the above rules.

DEFINITION 3.13. A unary operation↑ on types is defined by:
↑Bool = Bool and↑(]U [eL]) = ]↑U [eL], where↑U = ↑ob(U)+1U .

3.1.3 Typing

The operations and relations on types are pointwise extended to
those on type environments.

DEFINITION 3.14. A binary relation≤ on type environments is
defined by:∆1 ≤ ∆2 if and only if (i)dom(∆1) ⊇ dom(∆2), (ii)
∆1(v) ≤ ∆2(v) for eachv ∈ dom(∆2), and (iii) ob(∆1(v)) =
∞ for eachv ∈ dom(∆1)\dom(∆2).

DEFINITION 3.15. The operations| and ∗ on type environments
are defined by:

(∆1 |∆2)(v) =

8<: ∆1(v) |∆2(v) if v ∈ dom(∆1) ∩ dom(∆2)
∆1(v) if v ∈ dom(∆1)\dom(∆2)
∆2(v) if v ∈ dom(∆2)\dom(∆1)

(∗∆)(v) = ∗(∆(v))

The typing rules are shown in Figure 3. InLT-OUT, andLT-I N,
we use the operationv : ]

α
to
tc

[eL];∆ on type environments. It repre-

sents the type environment∆ defined by:

dom(∆) = {v} ∪ dom(∆)

∆(v) =

(
]
α

to
tc

.U
[eL] if ∆(v) = ]U [eL]

]
α

to
tc

[eL] if v 6∈ dom(∆)

∆(w) = ↑tc+1∆(w) for w ∈ dom(∆) \ {v}
We explain some key rules below. In the ruleLT-I N, the type en-

vironmentv : ]?0t [eL];∆ captures the condition thatv is first used for
input, and thenv and other channels are used according to∆. The
obligation level of the input action onv is 0, since the input is im-
mediately performed, without relying on any capabilities. For ex-
ample, ifa : ]!1∞ [Bool], b : ],[Bool!

0
∞]x : Bool `LT P , then we can

obtaina : ]?02.!1∞
[Bool], b : ]`LT [Bool!

3
∞]a◦(x). P by usingLT-I N.

Note that the obligation level of the output action onb has been
raised to3, sincea◦(x). P tries to exercise the capability of level2
to receive a value froma, before fulfilling the obligation onb.

The ruleLT-OUT for output is similar:v : ]!0t [eL];(∆1 | ew : ↑eL)
captures the condition thatv is first used for output. The partew : ↑eL expresses the usage ofew by the process that receivesew. The
operation↑ ensures that the obligation level of actions on channelsew is decreased by one whenew is passed onv. For example, let∆
be:

a : ]?∞0 | !∞0 []!2∞ [ ]], b : ]?∞0 | !∞0 []!1∞ [ ]].

Then we can derive∆ `LT a(x). b[x], but neither∆ `LT a(x). a[x]
nor ∆ `LT b(x). a[x]. This condition prevents a process from in-
finitely delegating obligations. While this is sufficient for ensuring
(strong) lock-freedom, it is too restrictive; for example, in a recur-
sive process∗a(n, x). (· · · a[n− 1, x] · · · ), the obligation level of



x must be∞. Attempts of overcoming this limitation have led us
to the hybrid type system in this paper.

In the rule LT-NEW, the conditionrel(U) checks that each
capability of an action is matched by an obligation of its co-action.
This serves as a ’sanity check’ for assume-guarantee reasoning. For
example, we can derive

b : ]!11 | ?11 [Bool] `LT (νa) (a◦(x). b[x] | a[true]. b◦(x)),

from

a : ]?00 | !00 [Bool], b : ]!11 | ?11 [Bool] `LT a◦(x). b[x] | a[true]. b◦(x),

but we cannot derive

b : ]!1∞ | ?00 [Bool] `LT (νa) (a◦(x). b[x] | b◦(x). a[x])

from

a : ]?00 | !1∞ [Bool], b : ]!1∞ | ?00 [Bool] `LT a◦(x). b[x] | b◦(x). a[x]

because the input obligation ona is not matched by the output
obligation ona.

The ruleT-WEAK allows us to replace a type environment∆
with ∆′ if ∆′ represents a more liberal usage of channels. For ex-
ample, froma : ]!0∞ [Bool] `LT P , we can derivea : ]!10

[Bool] `LT

P .

REMARK 3.1. The main omission from the original type system
for lock-freedom [23] is recursion and choice on usages. The omis-
sion of those features are just for the sake of simplicity, and the new
type system is sound in the presence of them. Recursion and choice
on usages are necessary for automatic type inference.

3.2 Robust Deadlock-Freedom/Termination/Confluence

To enable local reasoning in the new type system for lock-freedom
that we will present, we introduce a strengthening of the notions of
deadlock-freedom, termination, and confluence.

3.2.1 Robust Termination

We first define robust termination. For the sake of simplicity, we
define robust termination using simple type environments, rather
than lock-freedom type environments. A substitutionσ = [ ew/ex]
respectsΓ = ev :eS if σΓ = fσv :eS is well-defined. A substitutionσ
is closing forΓ if σ respectsΓ andσΓ has no variables. A process is
robustly terminating if it cannot diverge, after any sequence of tran-
sition that conforms to the base type systemST. The reason why,
in the definition of robust termination, we consider only transitions
that are well-typed under theST system (as opposed, for instance,
to the arbitrary untyped transitions of the operational semantics of
processes) is the following. We wish to apply the analysis of ro-
bust termination only locally, to subcomponents of larger systems.
These subcomponents are typed with termination types, but they
interact with the rest of the system whose components only respect
theST types.

DEFINITION 3.16 (robust termination).A processP is terminat-
ing if there is no infinite internal transition sequenceP

τ−→
P1

τ−→ P2
τ−→ · · ·. A closed processP is robustly terminat-

ing underΓ if Γ `ST P and, for anyQ, k, and η1, · · · ηk such
that Γ `ST P

η1−→ · · · ηk−→ Q, the derivativeQ is terminat-
ing. An (open) processP is robustly terminating underΓ, written
Γ |=RTer P , if σP is robustly terminating underσΓ for every clos-
ing substitutionσ for Γ.

3.2.2 Robust Deadlock-Freedom

We say that∆ is closed ifdom(∆) ∩ V = ∅. We writerel(L) if L
is a channel type]U [eL] andrel(U). We writerel(∆) if rel(∆(v))
for everyv ∈ dom(∆).

DEFINITION 3.17 (robust deadlock-freedom).The relation∆ |=RD

P is the largest relation such that∆ |=RD P implies all of the fol-
lowing conditions.

1. If ∆ is closed andrel(∆), then:

• P is deadlock-free

• If ob!(∆(a)) 6= ∞, then eitherP
(νec) a[eb]−→ or P

τ−→.

• If ob?(∆(a)) 6= ∞, then eitherP
a[eb]−→ or P

τ−→.

2. If [v 7→ a]∆ is well-defined, then[v 7→ a]∆ |=RD [v 7→ a]P .

3. If P
η−→ P ′ and, furthermore, whenη is an input, all names

received are fresh, then∆
η−→ ∆′ and ∆′ |=RD P ′ for some

∆′.

We say thatP is robustly deadlock-freeunder∆ if ∆ |=RD P holds.

The relation∆
η−→ ∆′ discussed above is defined by:

∆
τ−→ ∆

U
τ−→ U ′

∆, a : ]U [eL] τ−→ ∆, a : ]U′ [eL]
U

?−→ U ′

∆, a : ]U [eL] a[eb]−→ ∆ |eb :eL, a : ]U′ [eL]
U

!−→ U ′ ∆,ec : eLc ≤ ∆′ |eb :eL rel( eLc)

∆, a : ]U [eL] (νec) a[eb]−→ ∆′, a : ]U′ [eL]
3.2.3 Robust Confluence

We introduce the notion ofpartial confluence, which means that
anyτ -transition commutes with any other transitions. To formally
state the partial confluence, we assume that each prefix is uniquely

labeled as in [3], and extend the transition relation to
η,S−→ whereS

is the set of the labels of the prefixes involved in the transition. For
example, the rules for input and communication become:

aχ,l(ey). P
a[eb],{l}−→ [ey 7→ eb]P

P ′ is a relabeling ofP

∗aχ,l(ey). P
a[eb],{l}−→ ∗aχ,l(ey). P | [ey 7→ eb]P ′

P1
(νec) a[eb],S1−→ Q1 P2

a[eb],S2−→ Q2 {ec} ∩ FN(P2) = ∅
P1 |P2

τ,S1∪S2−→ (νec) (Q1 |Q2)

Robust confluence indicates partial confluence after any sequence
of transition that conforms to the base type systemST.

DEFINITION 3.18 (robust confluence).A processP is partially

confluent, if wheneverP1
τ,S1←− P

η,S2−→ P2, eitherη = τ ∧S1 = S2,

or P1
η,S2−→≡τ,S1←− P2. (Here,≡ is the least relation closed under the

commutativity and associativity of| .) A processP is robustly con-
fluentunderΓ, writtenΓ |=RConf P , if Γ `ST P and for any closing
substitutionσ that respectsΓ and for anyQ, k, andη1, · · · ηk such
that σΓ `ST σP

η1−→ · · · ηk−→ Q, the derivativeQ is partially
confluent.



∆1 `LT P t = ∞⇒ χ = •
v : ]!0t [eL];(∆1 | ew : ↑eL) `LT vχ[ ew]. P

(LT-OUT)
∆, ey :eL `LT P t = ∞⇒ χ = •

v : ]?0t [eL];∆ `LT vχ(ey). P
(LT-I N)

∅ `LT 0
(LT-ZERO)

∆1 `LT P1 ∆2 `LT P2

∆1 |∆2 `LT P1 |P2
(LT-PAR)

∆′ `LT P ∆ ≤ ∆′

∆ `LT P
(LT-WEAK)

∆ `LT P

∗∆ `LT ∗P (LT-REP)

∆, a : ]U [eL] `LT P rel(U)

∆ `LT (νa) P
(LT-NEW)

∆ `LT P ∆ `LT Q

∆ | (v : Bool) `LT if v then P else Q
(LT-I F)

Figure 3. Typing Rules for Lock-Freedom (without hybrid rules)

3.2.4 Verification Methods for Robust Deadlock-Freedom
and Confluence

While termination, deadlock-freedom, and confluence are fre-
quently discussed in the literature, we are not aware of previous
work that defines the robust counterparts above and verification
methods for them.

Robust deadlock-freedom is guaranteed by Kobayashi’s type
system for deadlock-freedom [24]:

THEOREM 3.1. If ∆ `∅ P in the type system of [24]1, then
∆ |=RD P .

The proof is similar to the type soundness proof in [24], hence
omitted. (A difference is that [24] prove the soundness based on
the reduction semantics, while we need to prove it based on the
labeled transition semantics.) In applications of robust deadlock-
freedom, it is often the case that the environment∆ needed is
of a restricted form, so that∆ |=RD P then boils down to the
verification of a few simple behavioral properties for which other
type systems and model checkers can also be used. For example, if
∆ is a : ]!0∞ [Bool], then∆ |=RD P only means thatP is deadlock-
free andP will eventually send a boolean ona unless it diverges.
Robust confluence is guaranteed, for instance, by types systems for
linear channels [25] and race-freedom [36]; other static analysis
methods such as model checking and abstract interpretation [16]
could also be used. Verification of robust termination is discussed
in Section 5.

3.3 Hybrid Typing Rules

We now introduce the new rulesLT-HYB (for weak lock-freedom),
andSLT-HYB (for strong lock-freedom).

∆ |=RD P Erase(∆) |=RTer P nocap(∆)

∆ `LT P
(LT-HYB)

∆ |=RD P Erase(∆) |=RTer P
Erase(∆) |=RConf P nocap(∆)

∆ `SLT P
(SLT-HYB)

Here,Erase(∆) is the simple type environment obtained from
∆ by removing all usage annotations. The conditionnocap(∆)
holds if, intuitively, ∆ describes a process that fulfills its obliga-
tions without relying on the environment. As mentioned in Sec-
tion 1, this is used to avoid circular, unsound, assume-guarantee
reasoning. is subtle; for nested channel types, the nocap condition
depends on whether a channel is used for input or output. For ex-
ample,nocap(]?0∞ []!0∞ [ ]]) holds butnocap(]!0∞ []!0∞ [ ]]) does not.

DEFINITION 3.19 (nocap).We writenocap(U) when all the ca-
pability levels inU are∞, and writenoob(U) when all the obli-
gation levels inU are∞. The relations are extended to those on

1 Kobayashi’s type system [24] uses pairs instead of tuples; so strictly
speaking, we need to encode tuples into pairs in the judgment∆ `∅ P .

types by the following rules.

nocap(Bool) noob(Bool)
nocap(U)

mode(U, ?) ⇒ nocap(eL)
mode(U, !) ⇒ noob(eL)

nocap(]U [eL])
noob(U)

mode(U, ?) ⇒ noob(eL)
mode(U, !) ⇒ nocap(eL)

noob(]U [eL])
Here,mode(U, α) means thatU containsα. We writenocap(∆)
whennocap(∆(v)) for anyv ∈ dom(∆).

Notice the interplay betweennocap and noob. For example,
noob(L) is required fornocap(]!0∞ [L]), sinceL is the type of a
channel that isexportedto the environment. On the other hand,
nocap(L) is required fornocap(]?0∞ [L]) sinceL is the type of a
channel that isimportedfrom the environment.

EXAMPLE 3.1. nocap(]?0∞ []!0∞ [ ]]) and nocap(]!0∞ []!∞0
[ ]]) hold.

nocap(]!0∞ []!0∞ [ ]]) does not hold.

EXAMPLE 3.2. ∆1 = a : ]?0∞ []!0∞ [ ]], b : ]?0∞ [ ] satisfiesnocap(∆1).
On the other hand,∆2 = a : ]?1∞ []!0∞ [ ]], b : ]?∞0

[ ] does not satisfy
nocap(∆2).

To see why thenocap(∆) condition is necessary, consider the
processP1 |P2, where

P1
def
= ∗a(x). b[x] P2

def
= a[c] | ∗b(x). a[x].

Let us define∆1 and∆2 by:

∆1
def
= a : ]∗?0∞ []!1∞ [ ]], b : ]∗!∞0 []!1∞ [ ]]

∆2
def
= a : ]∗!∞0 []!1∞ [ ]], b : ]∗?0∞ []!1∞ [ ]], c : ]!1∞ [ ]

Then, we have∆1 |=RD P1 and∆2 |=RD P2. P1 andP2 are robustly
terminating, i.e.,Erase(∆1) |=RTer P1 andErase(∆2) |=RTer P2.
If there were no other conditions, we would obtain∆1 `LT P1 and
∆2 `LT P2, from which the following wrong judgment would be
obtained:

∅ `LT (νc) (c◦ | (νa) (νb) (P1 |P2)).

The problem with the example is thatP1 andP2 assume each
other that the other process will fulfill an obligation to execute the
input ona or b, and to use the received channel for output.

Based on the observation above, we require bynocap(∆) that
P must not rely on the environment fulfilling any obligation.

REMARK 3.2. Weakening thenocap condition, or finding situa-
tions in which it can be removed, appears delicate. For instance,
the example ofP1 and P2 above might suggest thatnocap is
not needed ifLT-HYB is applied only once in a typing deriva-
tion. That is, however,unsound. Let P be ∗a(x). b.a[x] and ∆
beb : ]∗?∞0 [ ], a : ]∗?0∞.!∞0

[]!1∞ [Bool]]. Then we have∆ `DT P and
Erase(∆) |=RTer P . Without thenocap condition, we would get



∆ `LT P , from which we would obtain a wrong conclusion:

∅ `LT (νa, b) (P | ∗b | a[c] | c◦).
As this example suggests, if thenocap condition is weakened, the
condition of robust termination must be strengthened to recover
the type soundness. A more interesting weakening ofnocap is
mentioned in Section 9.

In the rule for strong lock-freedom, the robust confluence en-
sures that once a marked prefix is enabled, it cannot be disabled
by any other transitions. See Example 3.6 in Appendix A for an
non-trivial example, for which the ruleLT-HYB fails to guarantee
strong lock-freedom.

We write∆ `LT P if it is derivable by using the typing rules in
Section 3.1 andLT-HYB, and write∆ `SLT P if it is derivable by
usingSLT-HYB instead ofLT-HYB.

3.4 Examples

EXAMPLE 3.3. Recall the processServer in Section 1.

Server
def
=

(νfact it)
(∗fact (n, r). fact it [n, 1, r]
| ∗fact it (n, x, r).
if n = 0 then r[x] else fact it [n− 1, x× n, r])

Let us defineClients by:

Clients
def
= ∗(νr1) (fact

◦
[rnd(), r1] | r1

◦(x).0)

Here,rnd() is a primitive for generating random natural numbers.
Let ∆ befact : ]∗?0∞ [Nat, ]!1∞ [Nat]]. Then, we have:

∆ |=RD Server Erase(∆) |=RTer Server
Erase(∆) |=RConf Server nocap(∆)

Thus, by usingSLT-HYB, we obtain∆ `SLT Server . From this
judgment andfact : ]∗!∞0 [Nat, ]!1∞ [Nat]] `SLT Clients , we obtain:

∅ `SLT (νfact) (Server |Clients).

This means that all the clients can eventually receive replies. Note
that the whole process diverges (since there are infinitely many
clients), but we can derive strong lock-freedom by local reasoning
based onSLT-HYB.

EXAMPLE 3.4. Consider the following processBSystem.

BServer
def
= (νbcastit) (∗bcast(z). bcastit[z]

| ∗bcastit(z). if null(z) then 0
else let x = hd(z) in (x |x | bcastit[tl(z)]))

BSystem
def
= (νbcast, rec) (BServer

| ∗rec(z). if null(z) then 0
else let x = hd(z) in (x◦ | rec[tl(z)]))

| (νc1, c2, c3) ( rec◦[c1; c2; c3] | bcast◦[c1; c2; c3] | c1
◦ | c2

◦ | c3
◦)

This example uses lists as first-order values, with the usual oper-
ations for them. The system has two servers: the serverbcast(z),
which broadcast a message twice to each channel in the listz;
the serverrec(z), which listens on all the channels in the listz.
The two services are invoked with a list made of three channels
c1, c2, c3, on which the clients also receive. All receive messages,
in the serverrec and in the clients, are expected to succeed. The
success of the receive operation relies on the correct inspection of
the lists by the two recursive servers, including the correct use of
each channel in the lists (for instance, lock-freedom would fail if
bcast did not use, or used only once, some of the channels in its
list).

G
def
= ∗p(x, y, n, s).x(t, r).

if t = s then r[n] | p[x, y, n, s]
else if y = nil then r[n + 1]

| νc(p[c, nil, n + 1, t] | p[x, c, n, s])
else y [t, r]. p[x, y, n, s]

ST0
def
= (νp) (G | p[a, nil, 1, s0])

STm
def
= ST0 | ∗(νr1) (a◦[rnd string(), r1] | r1

◦(x).0)

Figure 4. A symbol table

Let ∆ = bcast : ]∗?0∞ []!1∞ | !1∞ [ ] List]. Then, we have:

∆ |=RD BServer Erase(∆) |=RTer BServer
Erase(∆) |=RConf BServer nocap(∆)

(Forwarding of a request frombcast to bcastit is necessary to
get the last condition. Actually, the forwarding can be removed if
nocap(∆) is extended tonocapΛ(∆) as discussed in Section 4.)
Thus, by usingSLT-HYB, we get∆ `SLT BServer. By applying
the rules for theLT type system to the rest of the process, we get
∅ `SLT BSystem.

EXAMPLE 3.5. This example is from [20]. It is about the imple-
mentation of a symbol table as a chain of cells. In Figure 4G is
a generator for cells;ST0 is the initial state of the symbol table
with only one cell;STm is the system in which the symbol ta-
ble and clients of it, wherernd string() is random generator of
strings, used for a compact representation of a potentially infinite
number of clients. The request and answer actions from the clients
are marked so as to indicate that we expect them to succeed in the
lock-freedom analysis.

Every cell of the chain stores a pair(n, s), wheres is a string
andn is a key identifying the position of the cell in the chain. A
cell is equipped with two channels so as to be connected to its
left and right neighbors. The first cell has a public left channela
to communicate with the environment and the last cell has a right
channelnil to mark the end of the chain. Once received a query
for string t, the table lets the request ripple down the chain until
eithert is found in a cell, or the end of the chain is reached, which
means thatt is a new string and thus a new cell is created to storet.
In both cases, the key associated tot is returned as a result. There is
parallelism in the system: many requests can be rippling down the
chain at the same time.

Let ∆ be:a : ]∗?1∞ [String, ]!2∞ [Nat]]. Then, we have:

∆ |=RD ST0 Erase(∆) |=RTer ST0

Erase(∆) |=RConf ST0 nocap(∆)

By usingSLT-HYB, we get∆ `SLT ST0. By using rules forLT type
system, we obtain∅ `SLT STm.

EXAMPLE 3.6. This example shows a binary tree data structure,
offering services for inserting and searching natural numbers. Each
node of the tree is implemented as a process that has: a state, given
by the integer stored in the node and pointers to the left and right
subtree and that contain, respectively, smaller and greater integers;
channels for the insert and search operations. In Figure 5,G is a
generator of new nodes, which can then grow and originate a tree,
and where:i ands will be the insertion and search channels;state
stores the state of the node. Initially the node is a leaf.TreeInit
is the initial tree, with an empty state and public channelsinsert
andsearch to communicate with the environment. Once received
a query for an integern, the tree lets the request ripple down the
nodes, following the order on the integers to find the right path,
until eithert is found in a node, or the end of the tree is reached,
which, in the case of an insert, means thatn is a new integer and



the node a leaf, and thus the leaf becomes a node that storesn and
two new leaves are created. As in the symbol table example, many
requests can be rippling down the tree at the same time; moreover,
requests can even overtake each other.

As to lock-freedom, the example is interesting for at least two
reasons. (1) The tree exhibits a syntactically challenging form. The
processG has a sophisticated structure of intertwined recursive
inputs: the replicated input atnewtree has outputs atnewtree
itself in its body; similarly, the replicated inputs ati ands have, in
the body, outputs at sibling channels (the names for interrogations
of the two following subtrees); further, also the imperative channel
state takes place in the recursions ati ands. (2) Semantically, the
tree is a dynamic structure, which can grow to finite but unbounded
length, depending on the number of requests it serves. Moreover,
the tree has a high parallelism involving independent threads of
activities and where: the paths followed the threads on the tree are
partially overlapping; threads can proceed at different speeds (i.e.,
requests can overtake each other). The number of steps that the tree
takes to serve a request from a client depends on the height of the
tree, on the number of internal threads in the tree, and on the value
of the request.

Let∆ beinsert : ]∗?0∞ [Nat, ]!1∞ [ ]], search : ]∗?0∞ [Nat, ]!1∞ [Bool]].
Then, we have:

∆ |=RD TreeInit Erase(∆) |=RTer TreeInit nocap(∆)

Thus, by usingLT-HYB, we obtain∆ `LT TreeInit. By applying
rules forLT to the rest of the system, we get∆ `LT System.

Note thatSLT-HYB is not applicable sinceTreeInit is not
robustly confluent (because, when multiple requests arrive simul-
taneously, there can be a race on the channelstate). Indeed, the
example is NOT strongly lock-free! A search request may never be
replied if the request is overtaken by insertion requests so often that
the tree grows faster than the search request goes down the tree. So,
a stronger scheduling assumption is necessary for this implementa-
tion to work properly.

In all the examples, robust termination is guaranteed by the type
system described in Section 5.

EXAMPLE 3.7. Figure 6 shows a strongly lock-free implementa-
tion of binary search trees. The serverTreeInit′ receives re-
quests along channela one by one. A request is either of the
form insert(n, r) or search(n, r). Unlike the system in Exam-
ple 3.6, requests cannot be overtaken, although there is still par-
allelism (multiple requests can go down the tree simultaneously).
TreeInit′ is robustly confluent; note that the onlyτ -transitions
insideTreeInit′ are on channelsleaf, node, left, andright,
and that the first two of them are replicated input channels, and the
others are linearized channels. Thus, we can derive

a : ]∗?1∞ [L] `SLT TreeInit
′

where

L
def
= 〈insert: [Nat, ]!2∞ [ ]], search: [Nat, ]!2∞ [Nat]]〉.

Here,L is a variant type describing requests of the forminsert(n, r)
or search(n, r). By using the typing rules forSLT, we can derive:

∅ `SLT System
′.

Thus, we can verify thatSystem′ is strongly lock-free.

4. Type Soundness
We show the soundness of the type system in this section.

The following theorems are the main results of this paper.

THEOREM 4.1 ((weak) lock-freedom).If ∅ `LT P , then P is
(weakly) lock-free.

THEOREM 4.2 (strong lock-freedom).If ∅ `SLT P , then P is
strongly lock-free.

The rest of this paper is devoted to the proofs of Theorems 4.1
and 4.2. Readers who are not interested in the proof may safely skip
the rest of this section.

Basically, as in the previous type system [23], Theorem 4.1 fol-
lows from type preservation, which means that typing is preserved
by any transition, andprogress, which means that if a tagged pro-

cessP is well-typed, thenP
τ−→∗ τ2

−→. The existence of the hy-
brid rule LT-HYB, however, poses significant challenges in the
proof. First, while it was enough to show type preservation byτ -
transitions in the previous type systems, because ofLT-HYB, we
have to show that typing is preserved byany transitions (includ-
ing output/input transitions). Second, in the type system discussed
so far, typing is actuallynot preserved by transitions, so that we
have to extend the type system in a non-trivial way. To see why,
suppose that a judgment∆ `LT P is derived by usingLT-HYB.
In order for the judgment derived byLT-HYB to be preserved by
transitions, we need to require that∆ |=RD P andnocap(∆) with
P

η−→ Q imply ∆′ |=RD Q andnocap(∆′) for some∆′. The latter
conditionnocap(∆′), however, does not hold in general. For exam-
ple, letP = (νc) (a[c] | ∗c( ) | c◦[ ]) and∆ = a : ]!0∞ []!∞0

[ ]], with
η = (νc) a[c] andQ = 0 | ∗c( ) | c◦[ ]. Then,Q is typed under
∆′ = a : ]0[]!∞0

[ ]], c : ]∗?0∞ | !∞0 [ ], but nocap(∆′) does not hold
becausec’s usage contains!∞0 .

To overcome the problem above, we first extend the type system
in Section 4.1. We then provetype preservationandprogressfor the
extended type system in Sections 4.2 and 4.3. Theorem 4.1 then
follows as a corollary of the two properties.

4.1 Extended Typing

A key observation to solve the above problem is that although
the type environment∆′ of Q contains a capability, that capa-
bility is matched byQ’s own obligation?0

∞, andQ does not ex-
pect any obligatory behavior from the environment; the transition

P
(νc) a[c]−→ Q has exported only a capability (to usec for output) to

the environment.
Based on the observation above, we extend the type judgment

with an additional parameterΛ, which expresses an assumption
about what capabilities/obligations the environment holds. The re-
sulting type judgment form is∆ `Λ

J P , whereJ ranges over
{DT, LT} as before. The conditionnocap(∆) in T-TER is replaced
by nocapΛ(∆).

Λ is a mapping from the setN of names to the set ofmodes,
defined by:

m (modes) ::= 0 |?a |!a |!?a

a ::= ε | o
Intuitively, Λ expresses how (for input or output) each channel may
be used by the environment ofP , and∆ `Λ

J P means thatP is
well-typed under that assumption. We writea1 : m1, . . . , an : mn

for the mappingΛ such thatΛ(ai) = mi and Λ(b) =!?o for
b 6∈ {a1, . . . , an}. We write ⊥ for the mappingΛ such that
Λ(a) =!?o for anya ∈ L. For the sake of simplicity, we assume
that variables are always mapped to!?o.

A modem can be considered an abstract of usages (which are
again abstractions of communication behaviors on each channel).
Intuitively, a : ?a means that the environment may perform an input
on a. The attributea expresses whether the process relies on the
environment performing the input.a : ?ε means that the process
definitely does not rely on the environment performing the input,
while a : ?o means that the process may rely on the environment.
We often omitε and just write?, !, !? for ?ε, !ε, !?ε.



G
def
= ∗newtree(i, s).(νstate)

�
state[leaf ]

| ∗i(n, r).state(x). /*** insertion ***/
match x with

leaf → /*** if t is a leaf, turns it into a node having two new leaves ***/
(νleft i, left s, right i, right s)�
newtree[left i, left s] | newtree[right i, right s] /*** create two leaves ***/

| state[node(n, left i, left s, right i, right s)] /*** change to an internal node ***/

| r[]
�

/*** notify the completion of insertion ***/

||node(n1, il, sl, ir, sr) → /*** if t is a node ***/�
if n = n1 then r[] /*** if n is in the node, then stop, to avoid duplicates ***/

else if n < n1 then il [n, r] /*** if n < t1 then insert n into the left subtree ***/

else ir [n, r] /*** otherwise, insert n into the right subtree ***/

| state[x]
�

| ∗s(n, r).state(x).(state[x] /*** search ***/
|match x with leaf → r[true]

|| node(n1, il, sl, ir, sr) → if n1 = n then r[false] else if n < n1 then sl [n, r] else sr [n, r])
�

TreeInit
def
= (νnewtree) (G | newtree[insert, search])

System
def
= (νinsert, search) (TreeInit | ∗(νr1) (insert

◦
[rnd(), r1] | r1

◦) | ∗(νr2) (search
◦
[rnd(), r2] | r2

◦(x)))

Figure 5. A binary tree

G′
def
= ∗leaf(x).x(req).

(match req with
insert(n, r) → (νleft, right) (r | node◦[n, x, left, right] | leaf◦[left] | leaf◦[right])

|| search(n, r) → r[false] | leaf◦[x])
| ∗node(n1, x, xl, xr).x(req).

(match req with
insert(n, r) →

if n = n1 then r | node◦[n1, x, xl, xr]
else if n < n1 then xl

◦[insert(n, r)]. node
◦
[n1, x, xl, xr]

else xr
◦[insert(n, r)]. node

◦
[n1, x, xl, xr]

|| search(n, r) →
if n = n1 then r[true] | node◦[n1, x, xl, xr]

else if n < n1 then xl
◦[search(n, r)]. node

◦
[n1, x, xl, xr]

else xr
◦[search(n, r)]. node

◦
[n1, x, xl, xr])

TreeInit′
def
= (νleaf, node) (G′ | leaf◦[a])

System′
def
= (νa) (TreeInit′ | ∗(νr1) (a◦[insert(rnd(), r1)] | r1

◦) | ∗(νr2) (a◦[search(rnd(), r2)] | r2
◦(x)))

Figure 6. A strongly lock-free implementation of binary trees

We define thesubmoderelationm1 ≤ m2 as shown below (An
upper mode is greater than a lower mode):
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We extend the submode relation to that on mode environments by:

Λ1 ≤ Λ2 ⇐⇒ ∀a ∈ L.Λ1(a) ≤ Λ2(a)

We replace the conditionnocap(∆) with the conditionnocapΛ(∆)
defined below.

DEFINITION 4.1. nocapm(L) is defined by:

nocapm(Bool)

!?ε ≤ m ∨ nocap(U) (mode(U, ?) ∧m ≤ !ε) ⇒ nocap(eL)
(mode(U, !) ∧m ≤?ε) ⇒ noob(eL)

nocapm(]U [eL])
We write nocapΛ(∆) if nocapΛ(a)(∆(a)) for eacha ∈ dom(∆).



∆ |=RD P ∆ |=RTer P nocapΛ(∆)

∆ `Λ
LT 〈P 〉T

(ELT-HYB)

∆1 `⊥LT P tc = ∞⇒ χ = •
v : ]!0tc

[L];(∆1 | ew : ↑eL) `⊥LT vχ[ ew]. P
(ELT-OUT)

∅ `Λ
LT 0

(ELT-ZERO)

∆, a : ]U [L] `Λ
LT P rel(U)

∆ `Λ{a7→!?o}
LT (νa) P

(ELT-NEW)

∆1 `Λ1
LT P1 ∆2 `Λ2

LT P2

Λ2 ≤ Modes(∆1) Λ1 ≤ Modes(∆2)

∆1 |∆2 `Λ1tΛ2
LT P1 |P2

(ELT-PAR)

∆′ `Λ′
LT P ∆ ≤ ∆′ Λ′ ≤ Λ

∆ `Λ
LT P

(ELT-WEAK)

∆ `⊥LT P

∗∆ `⊥LT ∗P
(ELT-REP)

∆, v : L `⊥LT P tc = ∞⇒ χ = •
v : ]?0tc

[L];∆ `⊥LT vχ(y). P
(ELT-IN)

∆ `⊥LT P ∆ `⊥LT Q

∆ | (v : Bool) `⊥LT if v then P else Q
(ELT-IF)

Figure 7. Extended Typing Rules for Lock-Freedom

For the example given in the beginning of this subsection,Q
is typed as∆′ `Λ

DT Q whereΛ′ = a : ?ε, c : !ε. By the definition
above,nocapΛ′(∆

′) holds.
We also extend the syntax of processes in order to make appli-

cations ofLT-HYB explicit.

P ::= · · · | 〈P 〉T

The typing rules for the extended judgments are given in Fig-
ure 7. A key change from the type system in Section 3 is that the
conditionnocap(∆) in T-TER has been replaced by a weaker con-
dition nocapΛ(∆). Note also that ruleELT-PAR requires (by the
conditionsΛ2 ≤ Modes(∆1) andΛ1 ≤ Modes(∆2)) thatP1 con-
forms to the assumptionΛ2 on the behavior ofP2’s environment,
and vice versa. Here,Modes(∆), defined below, maps the type en-
vironment to the corresponding mode environment.

DEFINITION 4.2. Modes(U) is defined by:

Modes(0) = 0

Modes(αt1
t2

.U) =

�
αo uModes(U) if t1 6= ∞
αε uModes(U) if t1 = ∞

Modes(U1 |U2) = Modes(U1) uModes(U2)
Modes(∗U) = Modes(U)

Here,m1 um2 is the greatest lower bound ofm1 andm2.
Modes(L) is defined by:

Modes(Bool) = 0
Modes(]U [eL]) = Modes(U)

Modes(∆) is defined by:

Modes(∆)(a) =

�
Modes(∆(a)) if a ∈ dom(∆)
0 otherwise

4.2 Type Preservation

We now show that the extended typing relation is preserved by
reduction.

A type environment and a mode environment may be changed
by the transition. For example, for the example given at the begin-
ning of the previous subsection,P ’s type environment and mode
environment are∆ = a : ]!0∞ []!∞0

[ ]] andΛ = a : ?ε, while those of
P ′ are∆′ = a : ]0[]!∞0

[ ]], c : ]∗?0∞ | !∞0 [ ] andΛ′ = c : !ε. Similarly,

suppose thata : ]?∞0
[]!1∞ [ ]] `Λ

LT P andP
a[b]−→ Q. SinceP imports

the capability and obligation onb by consuming the input capa-
bility on P , the type environment ofQ is a : ]0[]!1∞ [ ]], b : ]!1∞ [ ].
Such changes of type environments and mode environments are
captured by the relation∆

η−→ ∆′ defined in Section 3.2 and the

relationΛ
η−→ Λ′ defined below. We write〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉

for ∆
η−→ ∆′ andΛ

η−→ Λ′.

Λ
τ−→ Λ

Λ
a[eb]−→ Λ

Λ
(νec) a[eb]−→ Λ{ec 7→ e0} uModes(eb :eL)

Here,Λ1 u Λ2 is the greatest lower bound ofΛ1 and Λ2 (with
respect to the submode relation).

The predicateenabled(Λ, ∆, η) defined below means that the
transition η is enabled under the type environment∆ and the
mode environmentΛ. Note that, for example, the actiona[b] is not
possible ifΛ(a) = 0, because the environment cannot perform an
input action ona. That is expressed by the conditionΛ(a) ≤?ε in
the third rule below.

DEFINITION 4.3. The predicate enabled(Λ, ∆, η) is defined by:

enabled(Λ, ∆, τ)

∆(a) = ]U [eL] ∆ |eb :eL well-defined Λ ≤ Modes(a : ]!ε [
eL],eb :eL)

enabled(Λ, ∆, a[eb])
Λ(a) ≤?ε ∆(a) = ]U [eL]

enabled(Λ, ∆, (νec) a[eb])
Now we state the main lemma.

LEMMA 4.3 (type preservation).If ∆ `Λ
LT P , enabled(Λ, ∆, η),

andP
η−→ Q, then there exists∆′ andΛ′ such that∆′ `Λ′

LT Q and
〈Λ, ∆〉 η−→ 〈Λ′, ∆′〉.
Proof See Appendix B.2

4.3 Progress and Lock-Freedom

We write rel(∆) if dom(∆) ⊆ L and, for everya ∈ dom(∆),
if ∆(a) is ]U [eL] then rel(U). The progress property is stated as
follows.

LEMMA 4.4 (progress).Let P be a tagged process. If∅ `Λ
LT P ,

thenP
τ−→∗ τ2

−→.



Proof See Appendix C2
We can now prove the lock-freedom theorem (Theorem 4.1).

Proof of Theorem 4.1 Suppose that∅ `LT P andP
τ−→∗

Q. We
need to show that any processQ′ in the tagging ofQ is successful.
By Lemma 4.3, we have∅ `⊥LT Q′. (Note that replacement of◦
with 2 does not affect the typability.) SupposeQ′

τ−→∗
R. Then,

by using Lemma 4.3 again, we get∅ `⊥LT R. SinceR must be tagged
(note that only

τ−→ cannot discharge2), by using Lemma 4.4, we

getR
τ−→∗ τ2

−→. Thus,Q′ is successful.2
See Appendix D for the proof of Theorem 4.2.

5. Types for robust termination
In this section, we discuss type systems for guaranteeing robust
termination.Terminationof a term means that all its reduction se-
quences are of finite length.Robust terminationguarantees that
termination is maintained when the process interacts with its en-
vironment. Termination is strictly weaker than robust termination.
Consider for instance the term

P
def
= c[b] | c(x).(x | ∗a.x) (1)

The processP has one reduction only, and therefore it is termi-
nating. It is indeed typable in the simplest of the type systems in
[15]. However,P is not robustly terminating. It can interact with
other processes via the input atc and, in doing so, it may receivea
resulting in the non-terminating derivative

cb | a | ∗a.a

It is precisely because of input prefixes, as shown in this example,
that processes typable in [15] may not be robustly terminating.

The objective here is to guarantee robust termination by re-using
existing type systems for termination.

Precisely, we wish to add some extra conditions to the type
systems for termination capable of ensuring the stronger property
of robust termination. For the sake of simplicity, we impose a
restriction that replication can be applied only to input prefixes (so
that a process like∗a is forbidden).

We explain the idea of the extra condition on a very simple type
system for termination, namely the first of the type systems in [15],
which we recall (and revise) in the next subsection.

5.1 The type systems in [15], revisited

We recall the type systems in [15], as we appeal to them for
the termination analysis of most of the examples in this paper.
In [15] these type systems are expressedà la Church—each name
is assigned a type a priori—and exploit this in making use of some
special functions that scan the whole syntax of a process looking
for certain typed patterns of occurrences of names. We revise the
systems, using an approachà la Curry and avoiding these complex
functions.

There are four type systems in [15], plus combinations of some
of them. We discuss the first system, which is the simplest, and
the fourth, as it does not fit the condition for robust termination in
Lemma 5.2; we only hint at the others.

The first system,Lev, is obtained by making a mild modification
to the types and typing rules of the simply typedπ-calculus: alevel
information, which is a natural number, is added to each channel
type. The levels are used to define a weight for each process; the
type system guarantees that the weight strictly decreases under
reduction. The main constraint imposed by the type system is
roughly that, in a replicated input, the level of the input name
should be strictly greater than that of any name that is used in output
in the body of the replication (and that is not under some inner
replications). The weight of a process is the vector representing

the ordered multiset given the levels of all occurrences of outputs
that are not underneath a replication. For instance, a typing of the
processP in (1) would assignb a level that is the same as that ofx
but smaller than that ofa; the level ofc could be anything, as the
input at this channel is not replicated (there could also be several
outputs atx underneath the replication ata; if there were an output
at c, however, then the level ofc should be smaller than that ofa).
The grammar of the types ofLev is:

V ::= Bool | ]α[eV ] α ∈ Nat

A judgment inLev takes the formΘ `α
Lev P . The typing rules

ensure that in every outputv [ ew] in P that is not underneath a
replication, the level ofv is smaller thanα. We writeΘ `Lev P
if Θ `α

Lev P holds for some levelα. The typing rules are similar to
those of the simply-typedπ-calculus, except for the following rules
for output, input, and replicated input.

Θ(p) = ]α2 [eV ] Θ ` ev : eV Θ `α1
Lev P α2 < α1

Θ `α1
Lev p[ev].P

(LEV-OUT)

Θ(p) = ]α2 [eV ] Θ, ex : eV `α1
Lev P

Θ `α1
Lev p(ex).P

(LEV-IN)

Θ(p) = ]α2 [eV ] Θ, ex : eV `α2
Lev P

Θ `α1
Lev ∗p(ex).P

(LEV-RIN)

Note the difference betweenLEV-IN andLEV-RIN; the levelα1 of
the judgment does not change inLEV-IN, while in LEV-RIN, the
level of the judgment changes fromα1 to α2.

The main limitation ofLev is that, in certain cases, an input
∗p(ex). P cannot have outputs atp, or at names with the same type
asp, in the bodyP . The other type systems of [15] allow more free-
dom by using more sophisticated types and weight measure, and
exploiting techniques from term-rewriting based on lexicographi-
cal and multiset ordering.

In particular, the fourth type system,PO, introduces a notion
of partial order on channels. Roughly, the partial order makes it
possible to type patterns∗q(ey).(· · · p[ev] · · · ), where the output at
p is not under inner replications, in which the level ofp is equal to
that ofq (hence the pattern is not typable, for instance, in the system
Lev), but p is smaller thanq in the partial order.2 This pattern
appears in Example 3.6 of the symbol table (say precisely where)
and Example 3.6 of the binary tree (in the insert, the replicated
input ati followed by the outputs atil andir towards the children
nodes; and similarly in the search). Thus,PO judgments are of the
form Θ;R `α

PO P whereα is a level information andR a partial
order on the names inΘ. The type of a channel may be decorated
with a partial order, which expresses partial order requirements on
the tuples of values exchanged along that channel; for instance the
requirement that the second component should always be smaller
than the third, or smaller than a certain channel.3

5.2 Conditions for robust termination

As an example, we first illustrate the conditions for robust termina-
tion on the systemLev of the previous section.

Given a type environmentΘ, we writeCTypes(Θ) for the set of
channel types used inΘ. That is, for each channel type assignment

2 We are simplifying the explanation; for instance, the input ofq need not
be the first input of the replication.
3 The latter possibility, reminiscent of dependent types, was not actually
present in [15], but represents a straightforward extension, at least if names
with dependent types cannot be communicated; this possibility is needed in
the typing of binary tree example.



v : T in Θ we placeT and all channel type subcomponents ofT in
CTypes(Θ). For instance, ifT is ]α1 []α2 [Bool], Bool] thenT and
]α2 [Bool] should be inCTypes(Θ).

Let Erase be the function that strips off the level information
from theLev types and returns simple types. The condition that we
add for the robust termination of a processP underΓ (whereΓ is
anST type environment) is the following: there isΘ s.t.Θ `Lev P ,
Erase(Θ) = Γ, andErase is injective on all types used inΘ
(that is,CTypes(Θ)). Injectivity is maintained under the (Γ-typed)
transitions ofP because:

• Lev has the subject reduction property, therefore anyτ -derivative
of P remains typed inΘ;

• an input or output derivative ofP is typed under a type envi-
ronment that extendsΘ with types that already appear inΘ (for
instance, in case of the input of a fresh name atc, the type for
the fresh name is extracted from the type ofc in Θ).

The robust termination forP underΓ immediately follows from
the termination properties ofLev and the above invariance under
transitions, which guarantees typability inLev after any sequence
of ST-typed transitions.

In the processP of (1), which is not robustly terminating, the
above conditions fail because anyLev typing for P must have
assignmentsc : ]γ []β [ ]], a : ]α[ ] for levels α, β, and γ with
α > β; Erase is not injective onCTypes(Θ), for it returns the
same simple types on]β [ ] and]α[ ].

Generalizing the above reasoning, We define some abstract con-
ditions with which a type system for termination also guarantees ro-
bust termination; (Lemma 5.2); we then discuss refinements of the
conditions. (Section 5.3). We denote byTer a generic type system
for termination, and withΘ `Ter P a judgment inTer. ignoring
possible additional information in the judgment (such as the levels
of Lev), for this information is not relevant in the results below.
We recall thatST indicates the types and the type systems of the
simply-typedπ-calculus (Section 2). We assume that the judgment
is closed under renaming, i.e.,Θ, p : T `Ter P andq is fresh (i.e.,
it does not appear inΘ or P ), thenΘ, q : T `Ter [p 7→ q]P .

DEFINITION 5.1. Letf be a function from the types ofTer to those
of ST. We say thatΘ `Ter P is f -admissibleif both Θ `Ter P
and f(Θ) `ST P hold and, for all closingf(Θ)-substitutions
σ, wheneverσf(Θ) `ST σP

η1−→ · · · ηk−→ P ′, there isΘ′ s.t.
Θ′ `Ter P ′. (Wheref(Θ) is theST type environment obtained by
replacing each type assignmentv : T in Θ with v : f(T ).)

f -admissibility ensures us thatf can be used to turn a typing
Θ `Ter P into a validST typing and, furthermore, typing inTer
is preserved under (ST-typed) transitions, hence we have:

THEOREM 5.1. SupposeTer is a type system that guarantee termi-
nation (i.e., whenever∆ `Ter Q, for ∆ closed, thenQ terminates),
andf a function from the types ofTer to those ofST. If Θ `Ter P
is f -admissible thenP is robustly terminating underf(Θ).

Proof Straightforward.2
If Θ `Ter P andf(Θ) `ST P , and provided that the definition

of f is compositional, thenf -admissibility normally follows from
a Subject-Reduction theorem forTer and injectivity off on the set
of channel types used inΘ, that we indicate asCTypes(Θ) (that
is, we placeT each type that can be assigned to a channel and that
appears inΘ).

LEMMA 5.2. Given a type systemTer, and a functionf from the
types ofTer to those ofST (and mappingBool ontoBool), suppose
f andTer satisfy the following conditions:

1. wheneverΘ `Ter P alsof(Θ) `ST P ;

2. wheneverΘ `Ter P , with Θ closed, andP
η−→ P ′ and,

furthermore, whenη is an input, all names received are fresh
(i.e., these names do not appear inΘ), then there isΘ′ closed
s.t. Θ′ `Ter P ′ with CTypes(Θ′) ⊆ CTypes(Θ). Moreover,
in the case of input with fresh names, sayη = a[ev], it should
bef(Θ)(a) = ][f(Θ′)(ev)] andΘ(p) = Θ′(p) for all names
p 6∈ {a, ev}.

3. wheneverΘ `Ter P andΘ(p) = Θ(q) alsoΘ `Ter [q 7→ p]P ;

Then for anyΘ andP , if f is injective onCTypes(Θ) thenΘ `Ter

P is f -admissible.

In the lemma, the first condition ensures us thatf converts a
valid judgment inTer into one valid inST. The second condition is
a Subject-Reduction property forTer on transitions; the remaining
requirements, such asCTypes(Θ′) ⊆ CTypes(Θ), essentially en-
sure that the types of fresh names received in an input or emitted in
an output along a channela can be deduced from the type ofa. The
third condition says thatTer maintains typability under substitu-
tion of names with names of the same type. In the conclusions, the
injectivity condition onf is only on the initial type environment for
P . It does not affect other environments that appear in the deriva-
tion of Θ `Ter P ; therefore the types of the restricted names ofP
need not be subject to the condition.

Proof We prove thatΘ `Ter P is f -admissible. First, by condi-
tion (1) of the lemma, bothΘ `Ter P andf(Θ) `ST P hold.

Consider now a closingf(Θ)-substitutionσ. We haveσf(Θ) `ST

σP . The substitutionσ replaces each variablex in f(Θ) with ei-
ther a value that is defined inf(Θ) with the same type asx, or
with a fresh name. Sincef is injective, the same property holds if
σ is applied toΘ, therefore using also condition (3) of the lemma,
we also haveσΘ `Ter σP . (Note that ifσ replacesx with a fresh
name thenf(Θ)(x) is a channel type and therefore alsoΘ(x) is a
channel type, by the definition off and its injectivity.)

We now show that wheneverΘ `Ter P , with Θ closed andf
injective onCTypes(Θ), andf(Θ) `ST P

η−→ P ′, then there is
Θ′ closed withΘ′ `Ter P ′ andf injective onCTypes(Θ′). This
would ensure us the remaining condition forf -admissibility (on the
typability of all typed derivatives of a closed process).

If η is not an input, then this follows by condition (2) of the
lemma. Suppose nowη is an input, saya[v] and v is a name
(the case of monadic input is simpler to explain, the general case
of polyadic input is however similar). Ifv is fresh then asser-
tion follows from condition (2) of the lemma as before. Suppose
now v appears inΘ, and letw be a fresh name. We also have

f(Θ) `ST P
a[w]−→ P ′′, for someP ′′ with P ′ = [v 7→ w]P ′′.

Again by condition (2) of the lemma we deduce that there is
Θ′ s.t. Θ′ `Ter P ′′ with CTypes(Θ′) ⊆ CTypes(Θ). Now, if
f(Θ)(a) = ][T ], then T must also be the type ofv in f(Θ)

(because we havef(Θ) `ST P
a[v]−→ P ′) and, since it must be

f(Θ)(a) = ][f(Θ′)(w)], typeT is also the type ofw in f(Θ′).
Further, sincev does not appear in the names of the inputa[w], the
type ofv is alsoT in f(Θ′). By the injectivity off , we deduce that
the types ofv andw are the same inΘ′. We can therefore apply
condition (3) of the lemma and inferΘ′ `Ter [v 7→ w]P ′′ = P ′. 2

Lemma 5.2 is applicable to the system for termination in [34],
This system usesST types together with some syntactic conditions
on processes; it is straightforward to put these syntactic conditions
into the type system, obtaining a refinement ofST that satisfies
the hypothesis of the lemma. Lemma 5.2 is also applicable and
to all but one of the four type systems in [15] (the functionf
of Lemma 5.2 can be taken to be theErase function mentioned
earlier in the section that strips off levels and other termination
information). An exception is the systemPO, with partial orders.



We discuss refinements of the lemma that can handlePO and the
system of [38] in the next section.

5.3 Discussions and refinements

Injectivity in Lemma 5.2 The main constraint in Lemma 5.2 is
the injectivity off . This says that the channel types that appear in
Θ (that is, the types of the free names ofP and, recursively, of the
names that can be communicated along them) should be the same
whenever the corresponding simple types are the same.

This requirement may be demanding when the processes have
many free names with the same simple type, as the termination
analysis may need to distinguish some of them. For instance, in a
CCS-like process, where all names have the same type, the injec-
tivity condition onf would amount to requiring that all free names
should have the same termination type (whereas restricted names
can have arbitrary type). Thus we would be unable to distinguish
the process∗a.b | a, which is robustly terminating, from the pro-
cess∗a.a | a, which is non-terminating, as the namea andb have
the same simple type. (The type system with levelsLev, mentioned
above, recognizes∗a.b | a as terminating, by assigning to namea
a level greater than that ofb, and in doing so it indeed violates the
injectivity condition.)

However, as shown by the example in (1), what makes robust
termination harder than termination is channel aliasing on inputs,
occurring when a process receives channels that it already pos-
sessed. We can thus improve Lemma 5.2 by requiring a milder form
of injectivity for f . LetOT (Θ `Ter P ) be the set of the channel
types which are assigned to the variables ofP in a typing derivation
of Θ `Ter P (assuming that such derivation is unique). We replace
the injectivity condition of Lemma 5.2 with the following:

for all T ∈ OT (Θ `Ter P ) ∩ CTypes(Θ) andS ∈ CTypes(Θ),
if f(T ) = f(S) thenS = T .

(2)
This is weaker because usuallyOT (Θ `Ter P ) will be signifi-
cantly smaller thanCTypes(Θ). For instance, ifP is a CCS-like
process, thenOT (Θ `Ter P ) is always empty, for anyΘ. Fur-
ther, a variable need not be taken into account when computing
OT (Θ `Ter P ) if no aliasing on that variable is possible (that
is, after instantiation, the variable cannot become equal to another
name in the process). In dialect of theπ-calculus such asπI [32],
aliasing is forbidden altogether since only fresh names can be trans-
mitted, henceOT (Θ `Ter P ) is always empty. In general, any
technique for computing the aliasing set of a variable (the set of
names with which the variable could be instantiated), such as con-
trol flow analysis and abstract interpretation [4, 16], can be helpful
to further improve (2).

Another way of weakening the injectivity condition onCTypes(Θ)
of Lemma 5.2 is to impose a distinction on the types of free names
of a process that “accidentally” have the same simple types. This
could be achieved in various ways. An example is to adopt named
forms of types, as for instance in Milner’ssorting system[28],
where types have a name and type equality is given by name equal-
ity. Milner’s sorting systems is indeed the “by-name” equivalent of
the “structural”ST system. Using a sorting, names with the same
simple type can be distinguished by giving different names to their
types. There is in fact amost precise sortingfor any processP ;
that is, a sorting environment in which two names have the type
only if this is necessaryfor the typing of the process (therefore the
two names must have the same type in any sorting environment in
which P is typable). Computing the most precise sorting can be
done in polynomial time, using a variant of the algorithm for type
inference inST. All results and examples shown in this paper using
ST as a base typing can be transplanted to the sorting system.

Another possibility, equivalent to adopting a sorting, is to add
dummy components to the values exchanged on certain channels

(for instance, in the previous example of∗a.b | a, we could takeb as
a name along whichpairs of unit values are exchanged). However,
when the robust termination analysis is applied to a subcomponent
P of a larger system, a type distinction on two namesa andb that
is needed for the robust termination ofP might be forbidden by
usages of the names in other processes (for instance, both names
could appear in outputs along the same channel, in which case,
unless the type of this channel is polymorphic,a andb must have
the same type). For these situations, we discuss in Appendix E a
modification of the type systems in [15], where levels are replaced
by intervals.

Intervals We outline an extension of the type systems in [15] that
improves their expressiveness, both for the termination and for the
robust-termination analysis. We explain it on the system of pure
levelsLev. We replace levels withintervals. An interval, written
[n, m] for n ≤ m, indicates a non-empty set of consecutive natural
numbers. A type assignmentx : ][n,m][V ] intuitively means that
x can be instantiated with any channel whose level is betweenn
andm. Typing rules remain similar. Intervals, however, allow us
to have a form of subtyping, given by interval containment. For
instance,Θ ` p : ][n,m][V ] holds if the interval assigned top in Θ
is contained in the interval[n, m]. Any process typable in [15] is
typable in our type system, by replacing each leveln with interval
[n, n]. We can however type terms such as

a(x).0 | a[b] | a[c] | ∗b.c
which is not typable in [15] (for typing the replication,b should
have a level higher thanc, which is impossible as both can instanti-
atex; with intervals it suffices to require that the interval forx con-
tains those forb andc). More importantly, we can take advantage
of intervals in the conditions for robust termination. For instance,
in (2) the type equalityS = T can be replaced by the subtyp-
ing requirementS ≤ T . Other similar weakenings are possible in
Lemma 5.2. We omit the details for lack of space.

Substitutions in Lemma 5.2 Another possible source of failure in
Lemma 5.2 is the substitution condition (3). This fails on the sys-
temPO of [15], with the partial orders, because legal substitutions in
PO must respect, besides types, also the partial order. Condition (3)
also fails in Yoshida, Berger, and Honda’s type system for termina-
tion [38], as it makes use of graph types with linearity information,
and on linear types only a limited form of substitution holds. For
this problem, the condition on aliasing mentioned earlier can again
be useful. For instance, in languages without aliasing such asπI
condition (3) can be dropped, together with the requirements in the
final sentence of condition (2) (“Moreover, in the case ...”). Thus
Lemma 5.2 is applicable to the system in [38], which is formalized
on a variant ofπI. Besides via the control of aliasing, another way
of applying Lemma 5.2 to the systemPO is to require, in condition
(3) of the lemma and in its conclusion, that the environmentΘ is
undecorated. Here, if a typeT does not contain partial order re-
quirements, thenT is undecorated. Similarly, an environmentΘ is
undecorated if all its types (i.e.,CTypes(Θ)) are undecorated. This
maintains the typability of Example 3.6. (Indeed, the names with a
decorated type are often just a few and restricted, hence they do not
appear in the initial type environment.)

6. Implementation
We have implemented the new weak lock-freedom analysis as a
feature ofTYPICAL Version 1.6.0 [21].TYPICAL takes as an input
a program written in theπ-calculus (extended with data structures
such as pairs and lists), and marks all input/output prefixes that are
guaranteed to succeed. The strong lock-freedom analysis has not
been implemented yet.



(new fact_it in
*fact?x.(let n=fst(x) in let reply=snd(x) in

fact_it!(n, (1, reply)))
| *fact_it?x.(let n=fst(x) in

let acc = fst(snd(x)) in let reply=snd(snd(x)) in
if n=0 then reply!acc
else fact_it!(n - 1,(acc * n,reply))))

| *(new r in fact!(n, r) | r?result.print!result)

Figure 8. A sample input forTYPICAL

(new fact_it in
*fact?x.(let n=fst(x) in let reply=snd(x) in

fact_it!(n, (1, reply)))
| *fact_it?x.(let n=fst(x) in

let acc = fst(snd(x)) in let reply=snd(snd(x)) in
if n=0 then reply!acc

else fact_it!(n - 1,(acc * n,reply))))
| *(new r in fact!!(n, r) | r??result.print!result)

Figure 9. The output produced byTYPICAL

Figure 8 shows a sample input program forTYPICAL . An out-
put processa[v] is written asa!v, and an input processa(x). P is
written asa?x.P . and Figure 9 is the output produced by the pro-
gram. Input and output operations that are guaranteed to succeed
are marked by?? and!! respectively.

The original type system for lock-freedom (reviewed in Sec-
tion 3.1) had been implemented already [23, 24]. A major chal-
lenge in the implementation of the new system was to automate
verification of the robust termination property. We have modified
the type systems of Deng and Sangiorgi [15], so that the resulting
systems can guarantee robust termination, and also so to make them
more suited for automatic verification (e.g., using heuristic and in-
complete algorithms when the original ones were NP-complete).
We also integrated them with a termination analysis based on size-
change graphs [2]. See the extended version for details. For robust
termination, we added an extra requirement for the injectivity off
(recall Theorem 5.1 and Lemma 5.2). The implementation of ro-
bust termination analysis inTYPICAL and its difference from [15]
are summarized as follows.

• As summarized in Section 5.1, in all the four type systems of
Deng and Sangiorgi [15], level information assigned to each
channel type plays a central role in guaranteeing termination.
In the TYPICAL implementation, a level variable is attached
to each channel type, and constraints on the level variables are
generated and solved.

• The second type system of [15] allows a process of the form
∗c(x). (· · · p[v] · · · ) either if c has a greater level thanp, or
if c andp have the same level andv is always smaller thanx
with respect to the order on natural numbers. This feature can be
used for typing primitive recursion. In theTYPICAL implemen-
tation, the size change relation between arguments of channels
(e.g.,x andv above) is generated, and then the consistency of
the size change relation is checked using a size change termi-
nation library [2]. Thanks to this extension, the resulting type
system is more expressive than the original type system [15];
For example, we can handle non-primitive recursion such as an
Ackermann function server.

• The third type system of [15] is NP-complete [14]. Thus, we
use a heuristic, incomplete algorithm to handle it.

• The fourth type system of [15] allows a process of the form
∗c(y). (· · · p[v] · · · ) either ifc has a greater level thanp, or if c
andp have the same level, andc is greater thanp with respect
to a certain partial order on channels. We have implemented a
separate analysis to infer the channel creation order, and use it
as the partial order.

We have carried out preliminary experiments to test the feasi-
bility of our lock-freedom analysis. Table 1 summarizes the result.
“factorial,” “broadcast,” and “btree” are the examples discussed
in Section 3.4. “stable” is a variation of the symbol table exam-
ple taken from [15]. “eventchan” is an implementation of event
channels, which was originally a sample program of Pict [30], and
rewritten forTYPICAL . Those programs are available in the distri-
bution ofTYPICAL [21].

All the programs have been verified successfully. The second
column shows running times for robust termination analysis only.
The third column shows those for the whole (weak) lock-freedom
analysis of programs having annotations on where the bybrid rule
should be applied (i.e., the result of runningTYPICAL with “-
wl” option). The rightmost column shows running times for lock-
freedom analysis of programs without the annotations (i.e., the
result of runningTYPICAL with “-wlauto” option). Given non-
annotated programs,TYPICAL with “-wlauto” option first per-
forms deadlock-freedom analysis and lock-freedom analysis (with-
out using the hybrid rule). By comparing the results,TYPICAL
heurstically inserts annotations on where the hybrid rule should be
applied. It then re-run lockfreedom analysis for the annotated pro-
grams. Thus, the current “-wlauto” mode is 2–3 times slower than
the “-wl” mode. As can be seen in the table, the new components
(dealing with termination) run fast; most of the analysis time is
spent by the other components (dealing with deadlock- and lock-
freedom). We have also tested robust termination analysis for all
the examples given in [15], and confirmed that they were verified
successfully.

7. Discussions
This section informally discusses further extensions of our type
system. We also describe some idea for using model checkers to
verify robust deadlock-freedom.

7.1 Relaxing Robust Termination/Confluence

One of the main advantages of our hybrid rules is that deadlock-
freedom, termination, and confluence are required only locally, for
the processes on which the hybrid rules are applied. The require-
ment may be, however, still too demanding. For example, consider
a process:

(νf) (f [a] | ∗f (n, r). (if n = 0 then r else f [n− 1, r] |P )).

Suppose thatP does not read fromf . The process will eventually
send a message ona, no matter whetherP diverges. Our hybrid
rules are, however, applicable only whenP is also terminating (and
partially confluent, in the case ofSLT-HYB).

To overcome the limitation above, we can replace robust
deadlock-freedom/termination/confluence with the following ro-
bust ◦-deadlock-freedom/termination/confluence, which are only

concerned with marked actions. We write
τ◦−→ for theτ -transition

on a marked prefix or an if-expression.

DEFINITION 7.1 (robust◦-deadlock-freedom).The relation∆ |=RD◦
P is the largest relation such that∆ |=RD◦ P implies all of the fol-
lowing conditions.

1. If ∆ is closed andrel(∆), then:

• If P has a marked prefix at top level, thenP
τ◦−→.



termination analysis lock-freedom analysis lock-freedom analysis (auto)
factorial 0.01 sec 0.02 sec 0.02 sec
broadcast 0.01 sec 0.05 sec 0.13 sec
btree 0.02 sec 5.47 sec 10.62 sec
stable 0.01sec 0.11 sec 0.22 sec
eventchan 0.03 sec 0.20 sec 0.62 sec

Table 1. Analysis time (measured on a machine with Intel Pentium 1.2GHz and 500MB memory)

• If hasob!(∆(a)), then eitherP
(νec) a[eb]−→ or P

τ◦−→.

• If hasob?(∆(a)), then eitherP
a[eb]−→ or P

τ◦−→.

2. If [v 7→ a]∆ is well-defined, then[v 7→ a]∆ |=RD◦ [v 7→ a]P .

3. If P
η−→ P ′ and, furthermore, whenη is an input, all names

received are fresh, then∆
η−→ ∆′ and ∆′ |=RD P ′ for some

∆′.

We say thatP is robustly◦-deadlock-freeunder∆ if ∆ |=RD◦ P
holds.

DEFINITION 7.2 (robust◦-termination).A processP is◦-terminating

if there is no infinite transition sequence of the formP
τ◦−→ P1

τ◦−→
P2

τ◦−→ · · ·. An (open) processP is robustly ◦-terminating un-
der Γ, written Γ |=RTer◦ P , if Γ `ST P , and for every closing
substitutionσ for Γ and for anyQ, k, and η1, · · · ηk such that
σΓ `ST σP

η1−→ · · · ηk−→ Q, the derivativeQ is ◦-terminating.

DEFINITION 7.3 (robust◦-confluence).A processP is partially

◦-confluent, if wheneverP1
τ◦←− P

η−→ P2, either η =
τ◦−→

∧P1 ≡ P2, or P1
η−→≡ τ◦←− P2. A processP is robustly ◦-

confluentunder Γ, written Γ |=RConf P , if Γ `ST P and for
any closing substitutionσ that respectsΓ and for anyQ, k, and
η1, · · · ηk such thatσΓ `ST σP

η1−→ · · · ηk−→ Q, the derivativeQ
is partially ◦-confluent.

The extended hybrid rules are

∆ |=RD◦ P Erase(∆) |=RTer◦ P nocap(∆)

∆ `LT P
(LT-HYBE)

∆ |=RD◦ P Erase(∆) |=RTer◦ P
Erase(∆) |=RConf◦ P nocap(∆)

∆ `SLT P
(SLT-HYBE)

It is not difficult to adopt verification methods of robust deadlock-
freedom/termination/confluence to the corresponding robust◦ con-
ditions. For robust◦-deadlock-freedom, we can modify Kobayashi’s
type system for deadlock-freedom [24], so that a prefix is marked if
and only if its capability level is finite. For robust◦-termination, we
can first perform program slicing to eliminate communications that
are not affect marked actions, and then apply robust termination
analysis. For robust◦-confluence, we can still use type systems for
linear channels [25] and race-freedom [36].

7.2 Relaxing thenocap condition

The present side conditionnocap(∆) for LT-HYB is sometimes
too restrictive for local reasoning. For example, consider
Client |Server1 |Server2, whereClient sends a request toServer1,
which consultsServer2 to answer the request. Then, we have to
apply LT-HYB to Server1 |Server2 rather thanServer1 alone,

sinceServer1’s type environment would contain a capability to
consultServer2.

One approach to relaxing (or eliminating, actually) thenocap
condition is to impose a stronger requirement on robust deadlock-

freedom. We modify the definition of∆
(νec) a[eb]−→ ∆′ as follows.

U
!−→ U ′ ∆,ec : eLc ≤ ∆′ |eb : ↑eL rel( eLc)

∆, a : ]U [eL] (νec) a[eb]−→ ∆′, a : ]U′ [eL]
The only change is in the second premise, where↑ is applied toeL. This ensures that the level of an obligation is decreased by one

whenever it is passed through channels. For example,

a : ]?∞0
[]!1∞ [Bool]], b : ]!2∞ [Bool]

a[b]−→ a : ]0[]!1∞ [Bool]]

hold, but

a : ]?∞0
[]!1∞ [Bool]], b : ]!1∞ [Bool]

a[b]−→ a : ]0[]!1∞ [Bool]]

does not.
We strengthen robust deadlock-freedom and robust termination

as follows.

DEFINITION 7.4 (robust strong◦-deadlock-freedom).The rela-
tion ∆ |=SRD◦ P is the largest relation such that∆ |=SRD◦ P
implies all of the following conditions.

1. If ∆ is closed andP has a marked prefix at top-level, then one
of the following conditions holds:

• P
τ◦−→

• cap?(∆(a)) < ob!(∆(a)) andP
a◦[eb]−→

• cap!(∆(a)) < ob?(∆(a)) andP
(νec) a◦[eb]−→

2. If ∆ is closed andob!(∆(a)) 6= ∞, then one of the following
conditions holds:

• P
τ◦−→

• P
(νec) a[eb]−→

• cap?(∆(d)) < ob!(∆(a)) andP
d◦[eb]−→

• cap!(∆(d)) < ob!(∆(a)) andP
(νec) d

◦
[eb]−→

3. If ∆ is closed andob?(∆(a)) 6= ∞, then one of the following
conditions holds:

• P
τ◦−→

• P
a[eb]−→

• cap?(∆(d)) < ob?(∆(a)) andP
d◦[eb]−→

• cap!(∆(d)) < ob?(∆(a)) andP
(νec) d

◦
[eb]−→

4. If [v 7→ a]∆ is well-defined, then[v 7→ a]∆ |=SRD◦ [v 7→ a]P .



5. If P
η−→ P ′ and, furthermore, whenη is an input, all names

received are fresh, then∆
η−→ ∆′ and∆′ |=SRD◦ P ′ for some

∆′.

We say thatP is robustly and strongly◦-deadlock-freeunder∆ if
∆ |=SRD◦ P holds.

DEFINITION 7.5 (robust strong◦-termination).A transition ismarked
if it is an input, output, orτ -transition on a marked prefix or if
it is a reduction on an if-expression. A processP is strongly ◦-
terminatingif there is no infinite internal sequence of marked (in-
put, output, orτ ) transitions. An (open) processP is robustly and
strongly◦-terminating underΓ, writtenΓ |=RSTer◦ P , if Γ `ST P ,
and for every closing substitutionσ for Γ and for anyQ, k, and
η1, · · · ηk such thatσΓ `ST σP

η1−→ · · · ηk−→ Q, the derivativeQ
is strongly◦-terminating.

We conjecture that the following hybrid rules are sound.

∆ |=SRD◦ P Erase(∆) |=RSTer◦ P

∆ `LT P
(LT-HYBE2)

∆ |=SRD◦ P Erase(∆) |=RSTer◦ P Erase(∆) |=RConf P

∆ `SLT P
(SLT-HYBE2)

7.3 Using Model Checkers for Robust Deadlock-Freedom

In Section 3.2, we mentioned that types systems, notably Kobayashi’s
one [24] can be used for verification of robust deadlock-freedom.
In certain special cases, however, we can appeal to model checkers.
This is an important advantage since type systems for deadlock-
freedom usually ignore value-dependent behaviors. For example,
Kobayashi’s type system [24] cannot verify the robust deadlock-
freedom of:

(if x > 0 then a◦ else 0) | (if x > 0 then a◦ else 0)

On the other hand, model checkers can verify it instantly.
We consider here∆ is of the forma : ]U [ ] whereU is of the

following restricted form.

U ::= 0 | !t∞.U | ?t
∞.U

In this case, the verification problem of∆ |=RD P can be reduced
to the ordinary model checking problemP |= u2l(a, U) ∧OnlyA
in modalµ-calculus, whereu2l(a, U) is given by:

u2l(a,0) = νX.(¬〈a〉 ∧ ¬〈a〉 ∧ [τ ]X)
u2l(a, !t∞.U) =8><>:

νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X)
(if t = ∞)

νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X ∧ (〈a〉 ∨ 〈τ〉))
(if t 6= ∞)

u2l(a, ?t
∞.U) =8><>:
νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X)

(if t = ∞)
νX.(¬〈a〉 ∧ ([a]u2l(a, U)) ∧ [τ ]X ∧ (〈a〉 ∨ 〈τ〉))

(if t 6= ∞)

OnlyA, which means that the process never performs an input or
an output on names other thana, is

νX.(∧b∈L\{a}(¬〈b〉 ∧ ¬〈b〉) ∧ [a]X ∧ [a]X ∧ [τ ]X).

It is not difficult to extend the above translation for a type envi-
ronment with multiple names:a1 : ]U1

[ ], . . . , an : ]Un
[ ]. To deal

with a more general case, we need to use logics for mobile pro-
cesses [9, 13].

As for model checking tools, there are some for mobile process
calculi [19]. For some restricted case, we may also be able to use
other model checking tools such as SPIN [31].

8. Related Work
Several type systems for lock-freedom (sometimes referred to by
different names) have been already proposed [1, 22, 23, 33, 37, 38].
Our type system substantially improves the expressiveness of pre-
vious type systems; for instance, it can handle non-trivial recur-
sive structures (e.g., the binary trees as in Example 3.6), and value-
dependent behaviors. This is possible through a parameterization
that appeals to other analyzers, in particular those for deadlock free-
dom (so that more powerful analyzers make the lock-freedom type
system more powerful too). Most of the previous type systems [22,
23, 33, 37, 38] do not handle recursion (such as those given in Sec-
tion 3.4) well: if a channel is passed as an argument of a recursive
call, lock-freedom on that channel is not guaranteed. Acciai and
Boreale [1] recently proposed a type system that can handle a lim-
ited form of recursion, but does not seem to work for non-trivial
recursive structures like the binary tree Example 3.6, and imper-
ative structures such as locks and reference cells. In Acciai and
Boreale’s type system, reasoning about termination ishardwired
into the type system for lock-freedom. In contrast, our type system
is parameterized by termination analysis, so that we can incorpo-
rate any other techniques for proving termination (in fact, in the
implementation, we have already incorporated the technique based
on size change graphs [2]). Yoshida, Berger, and Honda’s type sys-
tem [38] can guarantee termination and a form of lock-freedom for
encodings of simply-typedλ-terms. Our type system can also guar-
antee lock-freedom of those processes, using [34] or [38] for the
robust-termination analysis (and the extension of theDT type sys-
tem in [24]). As already mentioned, the system [38] cannot handle
recursion well. Another important point is that none of the previous
type systems for lock-freedom, except Kobayashi’s one [23], has
been implemented. In fact, most of the type systems classify chan-
nels into a few usage patterns, and prepare separate typing rules for
each of the usage patterns. Thus, verification based on those type
systems would not be possible without heavy program annotations.

Type systems for deadlock-freedom have been studied ex-
tensively [6, 24, 35]. As already mentioned, deadlock-freedom is
weaker than lock-freedom, so that those type systems alone cannot
be used for lock-freedom analysis. For example, the divergent pro-
cess obtained by replacingfact it [n− 1, x× n, r] in Example 3.3
with fact it [n, x× n, r] is deadlock-free.

The idea of reducing verification of lock-freedom to verifica-
tion of robust termination is a reminiscence of Cook et al.’s work
on reducing verification of liveness properties to that of fair termi-
nation [11]. The target language of their work is a sequential, im-
perative language and is quite different from our language, which
is concurrent and allows dynamic creation of communication chan-
nels and threads. The used techniques are also quite different; they
use model checking while we use types. It is not clear whether their
technique can be effectively used for verification of lock-freedom
in our language.

In general, model checking can be used for verification of lock-
freedom. The current model checking technology does not seem,
however, mature enough for automatic verification of liveness prop-
erties of concurrent programs that have infinite states and create
threads and channels dynamically.

There are a number of methods for proving termination of
programs, and they have been extensively studied in the context
of term rewriting systems and sequential programs. The point of
parameterizing our type system for lock-freedom by the robust
termination property was to reuse those techniques for termination



verification, instead of developing a sophisticated type system that
can reason about both termination and deadlock within the single
type system.

Demangeon et al. [14] discuss the complexity of type inference
problems for variants of Deng and Sangiorgi’s type systems [15].
In particular, they show that the third and fourth type systems of
[15] are NP-complete and propose variants of them that admit
polynomial-time type inference algorithms, at the price of reducing
the expressiveness in certain cases (e.g., the binary tree example
cannot be handled). Our current termination analysis algorithm in
TYPICAL makes use of heuristic, incomplete algorithms, based on
the original ones in [15] and which further integrate [15] with the
size-change termination analysis [2].

Parameterized, or hybrid, type systems of this kind presented in
this paper are fairly rare in the literature, mainly due to the diffi-
culties in combining the analyses. For instance, in Leroy’s modular
module system [27] a type system for module is presented that is
parametric on the type system used for the core language. This is
quite different from ours, as the judgments of the two type sys-
tems are similar and, most important, the world on which the two
type systems operate—modules and core languages—are stratified,
hence clearly separated. Among the approaches to combining type
systems with other verification methods for concurrent programs,
the closest to ours is probably Chaki et al. [10], where a type sys-
tem is used to extract CCS processes as abstract models of theπ-
calculus, and then a model checker verifies such models. In our
case, by contrast, the parameterization in the typing rules make the
different analyses closely intertwined and make it possible local ap-
plications of the parameterized analyses. Caires [8] recently pro-
posed a generic type system for theπ-calculus, whose judgment is
defined semantically; thus, the type system can be freely combined
with other verification methods. It is however generally difficult
to develop a completely semantic type system for complex prop-
erties like lock-freedom. Our approach (where robust deadlock-
freedom/termination/confluence are semantically defined) is a mix-
ture of the syntactic and semantic approaches to defining type sys-
tems.

9. Conclusion and Future Work
We have proposed a hybrid type system for lock-freedom. Un-
like the previous type systems for lock-freedom, our type system
can handle non-trivial recursive communication structures and can
be fully automated. The key development was the special rules
LT-HYB and SLT-HYB for combining four different analyses:
lock-freedom, robust deadlock-freedom, robust termination, and
robust confluence analyses. The rules allows local reasoning about
deadlock-freedom, termination and confluence, thus avoiding ap-
plication of those analyses to the whole program. We have also in-
troduced the notion of robust termination, and presented a generic
method for strengthening type systems for termination to guarantee
robust termination.

The proposed verification framework has been implemented as
an extension ofTYPICAL and tested for non-trivial programs such
as symbol tables and concurrent binary tree search.

An interesting direction for future work would be more integra-
tion with other verification techniques inTYPICAL program analy-
sis tool, to take full advantage of our hybrid, parametrized type sys-
tem. For example, since our type system is parameterized by veri-
fication methods for robust termination and deadlock-freedom, we
can possibly use model checking techniques for proving termina-
tion [12] and deadlock-freedom (recall the discussion in Section 7).
Since type-based analysis seems in general more efficient but inac-
curate, a typical combination would be to first apply type-based
analyses and then use model checking in case programs cannot be
verified using types.

Future work also includes an application of the new lock-
freedom analysis to dependency analyses, such as information flow
analysis and program slicing [17, 18, 23]. To see why lock-freedom
analysis is related to information flow analysis, consider an in-
put processa(x). public [”Succeeded!”]. Note that it leaks infor-
mation about whether or not the communication ona succeeds
through channelpublic. So, if it is unknown whether a communi-
cation on a high security channela succeeds, only communications
on high security channels are allowed after that communication,
which are too restrictive. (In a sequential language, it corresponds
to the restriction that once a high-security variable is accessed,
only high-security computation is allowed afterwards). Thus, the
previous type systems for information flow analysis of concurrent
programs [17, 23] have been built on top of some form of type
systems for (weak) lock-freedom. Information flow analysis can
be made more accurate by replacing the underlying type systems
for lock-freedom with ours. Resource usage analysis [26] is also
built on top of lock-freedom analysis; hence it can benefit from the
lock-freedom analysis in this paper.
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Appendix

A. On the Difference between Weak and Strong
Lock-Freedom

Experts in concurrency will easily recognize the difference between
weak lock-freedom and strong lock-freedom: Weak lock-freedom
combines safety and liveness guarantees, by requiring that a system
never reaches a state where a marked action is at top-level, but
there is no sequence ofτ -actions in which the marked action is
consumed. On other hand, strong lock-freedom is a purely liveness
property that says that if a marked action is at top-level, the action
will eventually be consumed.

The example below (inspired by [12]) shows the difference
between weak lock-freedom and strong lock-freedom. Consider
the following processP :

s[10]
| ∗f (x). s(x). (if x = 0 then r | s[0] else s[x− 1] | f [r])
| ∗g.s(x). s[10]
| ∗(νa) (f [a] | a◦)
| ∗g

There are two servers, which are listening onf andg respectively.
The server onf makes recursive calls while decrementing the value
of s, until the value ofs reaches0. When the value reaches0, it
sends a reply onr. On the other hand, the server ong simply resets
the value ofs to 10. The process(νa) (f [a] | a◦) is a client for the
server.

The process isweaklylock-free, since after any number ofτ -
transitions, the server onf can return a message ona if it is solely
scheduled. The process is, however, notstronglylock-free, because
if requests onf andg are processed in an interleaving manner (note
that it is a strongly fair scheduling), then the value ofs may never
reaches0.

Another example of the difference between weak and strong
lock-freedom is the process in Example 3.6. In fact, using our type
systems, we can prove weak lock-freedom of the process, but not
its strong lock-freedom.

B. Proof of Type Preservation (Lemma 4.3)
LEMMA B.1. 1. nocap0(L) holds for anyL.
2. SupposeL1 | L2 is well-defined. If nocapm(L1) and nocapm(L2),

then nocapm(L1 | L2).
3. If nocapm(L) andL ≤ L1 | L2, then nocapm(L1).
4. SupposeL1 | L2 is well-defined. Ifnoob(L1), then nocapModes(L1)(L2)

holds.
5. If nocapm1

(L) and nocapm2
(L), then nocapm1um2

(L).

Proof Since the other properties follow immediately from the
definition, we show only the 4th property. The case whereL1 =
Bool is trivial. SupposeL1 = ]U1

[eL]. In this case,L2 = ]U2
[eL]. Let

m = Modes(L1). Sincenoob(L1), we have:

!?ε ≤ m m ≤! ⇒ nocap(L) m ≤? ⇒ noob(L)

So, we obtainnocapm(L2) as required.2

LEMMA B.2. Suppose nocapΛ(∆) holds. If〈Λ, ∆〉 l−→ 〈Λ′, ∆′〉
and enabled(Λ, ∆, l), then nocapΛ′(∆

′) holds.

Proof The proof proceeds by case analysis onl.

• Casel = τ :
In this case, we have either〈Λ′, ∆′〉 = 〈Λ, ∆〉, or:

Λ′ = Λ U
τ−→ U ′

∆ = ∆1, a : ]U [eL] ∆′ = ∆1, a : ]U′ [eL]



The former case is trivial. In the latter case, by the last con-
dition, (i) nocap(U) impliesnocap(U ′) and (ii) mode(U ′, α)
impliesmode(U, α). Thus,nocapm(]U [eL]) impliesnocapm(]U′ [eL]).
By the definition ofnocapΛ(∆), nocapΛ(∆′) follows immedi-
ately fromnocapΛ(∆).

• Casel = a[eb]: In this case, we have:

Λ′ = Λ U
?−→ U ′

∆ = ∆1, a : ]U [eL] ∆′ = ∆1 |eb :eL, a : ]U′ [eL]
By the conditionnocapΛ(∆) andU

?−→ U ′, we have

nocapΛ(∆1, a : ]U′ [eL]).
Moreover, sinceΛ(a) ≤!, we also havenocap(eL), which im-
plies nocapΛ(eb :eL). Therefore, by using Lemma B.1, we get
nocapΛ(∆′) as required.

• Casel = (νec) a[eb]: In this case, we have:

Λ(a) ≤? U
!−→ U ′

∆ = ∆1, a : ]U [eL] ∆′ = ∆′
1, a : ]U′ [eL]

∆1,ec : eLc ≤ ∆′
1 | (eb :eL) Λ′ = Λ{ec 7→ e0} uModes(eb :eL)

From Λ(a) ≤?ε andnocapΛ(∆(a)), we getnoob(eL). By the

conditionU
!−→ U ′ andnocapΛ(∆), we havenocapΛ(a : ]U′ [eL]).

Since a 6∈ eb (note that we do not have recursive types),
Modes(eb :eL)(x) = 0. Therefore, we haveΛ(a) = Λ′(a),
which implies nocapΛ′(a : ]U′ [eL]). Thus, it remains to show
nocapΛ′(∆

′
1). By Lemma B.1(5), it suffices to show:

nocapΛ{ec7→e0}(∆′
1) nocapModes(eb :eL)(∆′

1).

By using Lemma B.1(1), we getnocapΛ{ec7→e0}(ec : eLc). Combin-

ing it with the factnocapΛ(∆1), we obtainnocapΛ{ec7→e0}(∆1,ec : eLc).
Thus, by using Lemma B.1(3), we obtainnocapΛ{ec7→e0}(∆′

1).

It remains only to shownocapModes(eb :eL)(∆′
1). Ford 6∈ {eb}, we

haveModes(eb :eL)(d) = 0, so that
nocapModes(eb :eL)(d)(∆

′
1(d)) follows from Lemma B.1(1). Forbi,

nocapModes(Li)
(∆′

1(bi)) follows fromnoob(eL) and Lemma B.1(4).

2

DEFINITION B.1. We write〈Λ, ∆〉 ≤ 〈Λ′, ∆′〉 whenΛ′ ≤ Λ and
∆ ≤ ∆′.

LEMMA B.3. If 〈Λ1, ∆1〉 ≤ 〈Λ′1, ∆′
1〉 l−→ 〈Λ′2, ∆′

2〉 and
enabled(Λ1, ∆1, l), then there existΛ2 and∆2 such that

〈Λ1, ∆1〉 l−→ 〈Λ2, ∆2〉 ≤ 〈Λ′2, ∆′
2〉.

Proof We first note thatU1 ≤ U ′1
l−→ U ′2 implies that there

existsU2 such thatU1
l−→ U2 ≤ U ′2. Therefore, the case forl = τ

follows immediately.

• Casel = a[eb]: In this case, we have:

∆′
1 = ∆′

11, a : ]U′1
[eL] ∆′

2 = ∆′
11 |eb :eL, a : ]U′2

[eL]
U ′1

?−→ U ′2 Λ′2 = Λ′1

By the condition∆1 ≤ ∆′
1, we also have:

∆1 = ∆11, a : ]U1
[eL] ∆11 ≤ ∆′

11 U1 ≤ U ′1

By the conditionU1 ≤ U ′1
?−→ U ′2, there existsU2 such that

U1
?−→ U2 ≤ U ′2. The required result holds forΛ2 = Λ1 and

∆2 = ∆11 |eb :eL, a : ]U2
[eL]. Note that∆11 |eb :eL is well-defined

by the assumptionenabled(Λ1, ∆1, l).

• Casel = (νec) a[eb]: In this case, we have:

∆′
1 = ∆′

11, a : ]U′1
[eL] ∆′

2 = ∆′
21, a : ]U′2

[eL]
∆′

11,ec : eLc ≤ ∆′
21 |eb :eL U ′1

!−→ U ′2
Λ′2 = Λ′1{ec 7→ e0} uModes(eb :eL)

By the condition∆1 ≤ ∆′
1, we also have:

∆1 = ∆11, a : ]U1
[eL] ∆11 ≤ ∆′

11 U1 ≤ U ′1

By the conditionU1 ≤ U ′1
!−→ U ′2, there existsU2 such

that U1
!−→ U2 ≤ U ′2. Let ∆2 = ∆′

21, a : ]U2
[eL] and

Λ2 = Λ1{ec 7→ e0} + Modes(eb :eL). Then, by using the fact
∆11,ec : eLc ≤ ∆′

11,ec : eLc ≤ ∆′
21 |eb :eL, we get:

〈Λ1, ∆1〉 l−→ 〈Λ2, ∆2〉.
We also haveΛ′2 ≤ Λ2 and∆2 ≤ ∆′

2 as required.

2

LEMMA B.4 (substitution lemma).Suppose that∆ | a : L is well-
defined. If∆, x : L `⊥LT P , then∆ | a : L `⊥LT [x 7→ a]P .

Proof Induction on derivation of∆, a : L `J P . 2

LEMMA B.5. If 〈Λ, (∆, d : ]U [σ])〉 l−→ (Λ′, ∆′) andd ∈ FN(l)\
SN(l), then there existsΛ′′ such that〈Λ, ∆〉 (νd) l−→ (Λ′′, ∆′) and
Λ′ ≤ Λ′′.

Proof By the definition of the transition relation for type environ-
ments, we have:

l = (νec) a[eb] U1
!−→ U ′1

∆ = ∆1, a : ]U1
[eL] ∆1, d : ]U [σ],ec : eLc ≤ ∆′ |eb :eL

Λ′ = Λ{ec 7→ e0} uModes(eb :eL)
Let Λ′′ = Λ{d 7→ 0,ec 7→ e0} + Modes(eb :eL). Then, we have

〈Λ, ∆〉 (νd) l−→ 〈Λ′′, ∆′〉 andΛ′ ≤ Λ′′ as required.2

LEMMA B.6. If 〈Λ, ∆〉 (νec) a[eb]−→ 〈Λ′, ∆′〉, then there exists∆′′

such that Modes(∆) ≤ Modes(∆′ \ {ec}) and ∆′′ ≤ ∆′ with

〈Λ, ∆〉 (νec) a[eb]−→ 〈Λ′, ∆′′〉.
Proof Modes(∆)(v) ≤ Modes(∆′) fails only if Modes(∆)(v) =
αε andModes(∆′)(v) = αo. Let ∆′′(v) be the type obtained from
∆′(v) by replacing all finite obligation levels with∞ for suchv,
and∆′′(v) = ∆′(v) for otherv. Then,∆′′ satisfies the required
conditions.2

Proof of Lemma 4.3 Double induction on the derivation of transi-

tionP
l−→ Q and the derivation of∆ `Λ

LT P . (In other words, well-

founded induction on the pair of the derivation trees forP
l−→ Q

and∆ `Λ
LT P .)

Case analysis on the last rule used for deriving∆ `Λ
LT P .

• CaseELT-HYB: By the typing rule, we have:

∆ |=RD P Erase(∆) |=RTer P nocapΛ(∆)

By the definition of|=RD andenabled(Λ, ∆, η), there exists∆′

such that∆
l−→ ∆′ and∆′ |=RD Q. Moreover, there exists

Λ′ such that〈Λ, ∆〉 l−→ 〈Λ′, ∆′〉. By the definition of|=RTer

andP
l−→ Q, we haveErase(∆′) |=RTer Q. By Lemma B.2,

we also havenocapΛ′(∆
′). Thus, we get∆′ `Λ′

LT Q by using
ELT-HYB.



• CaseELT-WEAK: By the typing rule, we have:

∆1 `Λ1
LT P 〈Λ, ∆〉 ≤ 〈Λ1, ∆1〉

The assumptionenabled(Λ, ∆, l) and the above conditions im-
ply enabled(Λ1, ∆1, l). By the induction hypothesis, there must

existΛ′1 and∆′
1 such that〈Λ1, ∆1〉 l−→ 〈Λ′1, ∆′

1〉 and∆′
1 `Λ′1

LT

Q. By Lemma B.3, there existΛ′ and∆′ such that〈Λ, ∆〉 l−→
〈Λ′, ∆′〉 ≤ 〈Λ′1, ∆′

1〉. Thus, by usingT-WEAK, we get∆′ `Λ′
LT

Q and〈Λ, ∆〉 l−→ 〈Λ′, ∆′〉 as required.
• CaseELT-OUT: In this case, we have:

P = aχ[eb]. Q l = atc [eb]
∆ = a : ]!0tc

[eL];(∆1 |eb : ↑eL) ∆1 `LT Q

Λ = ⊥
Let ∆′ = ∆1 | a : ]0[eL] andΛ′ = Λ+Modes(eb :eL) = ⊥. Then,

we have〈Λ, ∆〉 a[eb]−→ 〈Λ′, ∆′〉 and∆′ `Λ′
LT Q as required.

• CaseELT-IN: In this case, we have:

P = aχ(ey). P1 l = a[eb]
Q = [ey 7→ eb]P1 Λ = ⊥

∆ = a : ]?0tc
[eL];∆1 ∆1, ey :eL `LT P1

By Lemma B.4, we have∆1 | (eb :eL) `LT Q. (Note that
∆1 | (eb :eL) is well-defined sinceenabled(Λ, ∆, l) holds.) Let
∆′ be ∆1 |eb :eL if a ∈ dom(∆1) and ∆1 |eb :eL | a : ]0[eL]
otherwise. LetΛ′ be ⊥. Then, we have∆′ `Λ′

LT Q and

〈Λ, ∆〉 l−→ 〈Λ′, ∆′〉 as required.
• CaseELT-PAR: We have:

P = P1 |P2 ∆ = ∆1 |∆2

∆1 `Λ1
LT P1 ∆2 `Λ2

LT P2

Λ2 ≤ Modes(∆1) Λ1 ≤ Modes(∆2)
Λ = Λ1 t Λ2

We perform case analysis on the rule used for derivingP
l−→

Q.

CaseTR-PARL: In this case, we have:

Q = P ′1 |P2 P1
l−→ P ′1

By the induction hypothesis, we have

〈Λ1, ∆1〉 l−→ 〈Λ′1, ∆′
1〉 ∆′

1 `Λ′1
LT P ′1

for someΛ′1 and ∆′
1. Let Λ′2 be Λ2{ec 7→ f!?o} if l =

(νec) a[eb] andΛ′2 be Λ2 otherwise. Ifl = (νec) a[eb], then
without loss of generality, we can assume thatec does not

appear inP2, so that∆2 `Λ′2
LT P2 holds. Let∆′ = ∆′

1 |∆2

andΛ′ = Λ′1 t Λ′2. We need to show∆′ `Λ′
LT P ′1 |P2 and

〈Λ, ∆〉 l−→ 〈Λ′, ∆′〉.
∆′ `Λ′

LT P ′1 |P2 follows if we showΛ′1 ≤ Modes(∆2)
andΛ′2 ≤ Modes(∆′

1).

− Λ′1 ≤ Modes(∆2) follows immediately if l = τ or
l = a[eb]. If l = (νec) a[eb], thenΛ′1(d) ≤ Λ1(d) ≤
Modes(∆2(d)) for d ∈ dom(Λ′1) \ {ec}. Forci, we can
assume without loss of generality thatci 6∈ dom(∆2),
which impliesModes(∆2)(ci) = 0. Therefore,Λ′1 ≤
Modes(∆2) holds.

− Λ′2 = Λ2 ≤ Modes(∆1) = Modes(∆′
1) holds if l = τ .

If l = (νec) a[eb], by Lemma B.6, we can also assume that
Modes(∆1) ≤ Modes(∆′

1\{ec}). So,Λ′2 ≤ Modes(∆′
1)

follows from

Λ2{ec :f!?o} ≤ Modes(∆1){ec :f!?o} ≤ Modes(∆′
1).

If l = a[eb], then we haveModes(∆1) uModes(eb :eL) ≤
Modes(∆′

1). By the assumptionenabled(Λ, ∆, l), we
haveΛ2 ≤ Λ ≤ Modes(eb :eL). From this andΛ2 ≤
Modes(∆1), we getΛ2 ≤ Modes(∆1)uModes(eb :eL) ≤
Modes(∆′

1).

It remains to show〈Λ, ∆〉 l−→ 〈Λ′, ∆′〉. The case where
l = τ or l = a[eb] is trivial. Supposel = (νec) a[eb]. By the

condition〈Λ1, ∆1〉 l−→ 〈Λ′1, ∆′
1〉, we have:

Λ′1 = Λ1{ec 7→ e0} uModes(eb :eL) U1
!−→ U ′1

∆1 = ∆11, a : ]U1
[eL] ∆′

1 = ∆′
11, a : ]U′1

[eL]
∆11,ec : eLc ≤ ∆′

11 |eb :eL
We can assume without loss of generality thatec 6∈ dom(∆2)
and a ∈ dom(∆2) (otherwise adda : ]0[eL] to ∆2). So,
∆2 = ∆21, a : ]U2

[eL] for some∆21 and U2. Then, we

have∆11 |∆21,ec : eLc ≤ (∆′
11 |∆21) |eb :eL. SinceΛ2 ≤

Modes(eb :eL), we also have:

Λ′ = Λ′1 t Λ′2
= (Λ1{ec 7→ e0} uModes(eb :eL)) t (Λ2{ec 7→ f!?o})
= (Λ1{ec 7→ e0} t Λ2{ec 7→ f!?o})

u(Modes(eb :eL) t Λ2{ec 7→ f!?o})
= (Λ1 t Λ2){ec 7→ e0} uModes(eb :eL)
= Λ{ec 7→ e0} uModes(eb :eL).

Hence, we have〈Λ, ∆〉 l−→ 〈Λ′, ∆′〉 as required.
CaseTR-PARR: Similar to the case forTR-PARL.
CaseTR-COML: In this case, we have:

P = P1 |P2 Q = (νec) (P ′1 |P ′2)
P1

(νec) a[b]−→ P ′1 P2
a[eb]−→ P ′2

By the induction hypothesis, we have:

〈Λ1, ∆1〉 (νec) a[eb]−→ 〈Λ′1, ∆′
1〉 ∆′

1 `Λ′1
LT P ′1

〈Λ2, ∆2〉 a[eb]−→ 〈Λ2, ∆
′
2〉 ∆′

2 `Λ2
LT P ′2

From the above conditions, we also obtain:

∆1 = ∆11, a : ]U1
[eL] ∆′

1 = ∆′
11, a : ]U′1

[eL]
Λ′1 = Λ1{ec 7→ e0} uModes(eb :eL) ∆11,ec : eLc ≤ ∆′

11 |eb :eL
∆2 = ∆21, a : ]U2

[eL] ∆′
2 = ∆21 |eb :eL, a : ]U′2

[eL]
U1

!−→ U ′1 U2
?−→ U ′2

Let Λ′2 = Λ2{ec 7→ f!?o}. Then, we can assume thatec do not

appear inP2, so that∆2 `Λ′2
LT P2 and∆′

2 `Λ′2
LT P ′2 hold. Let

∆′′ = ∆′
11 |∆21 |eb :eL, a : ]U′1 |U′2 [

eL] andΛ′′ = Λ′1 t Λ′2.

We first show∆′′ `Λ′′
LT P ′1 |P ′2, which will follow if we

showΛ′1 ≤ Modes(∆′
2) andΛ′2 ≤ Modes(∆′

1). Without
loss of generality, we can assumeec 6∈ dom(∆2). Therefore,
by the conditionsΛ′1 = Λ1{ec 7→ e0} u Modes(eb :eL) and
Λ1 ≤ Modes(∆2), we have

Λ′1 ≤ Modes(∆2) + Modes(eb :eL) ≤ Modes(∆′
2).



By Lemma B.6, we can also assumeModes(∆1) ≤ Modes(∆′\
{ec}, so that we have:

Λ′2 ≤ Modes(∆1){ec 7→ f!?o}
≤ Modes(∆′

1).

So, by usingELT-PAR, we obtain∆′′ `Λ′′
LT P ′1 |P ′2. By ap-

plying ELT-WEAK, we obtain∆11 |∆21, a : ]U′1 |U′2 [
eL],ec : eLc `Λ′′

LT

P ′1 |P ′2. Let ∆′ = ∆11 |∆21, a : ]U′1 |U′2 [
eL] and Λ′ =

Λ′′{ec 7→ f!?o}. Then, by usingELT-NEW, we get∆′ `Λ′′{ec7→f!?o}
LT

P ′1 |P ′2. We get∆′ `Λ
LT P ′1 |P ′2 by usingELT-WEAK, be-

cause ford 6∈ {ec}, we have:

Λ′′(d) ≤ (Λ′1 t Λ′2)(d)

≤ ((Λ1{ec 7→ e0} uModes(eb :eL)) t Λ2)(d)
≤ (Λ1 t Λ2)(d)
≤ Λ(d).

It remains to check〈Λ, ∆〉 τ−→ 〈Λ, ∆′〉, which follows
immediately fromU1 |U2

τ−→ U ′1 |U ′2.

• CaseELT-NEW: We have:

P = (νa) P1 ∆, a : ]U [eL] `Λ1
LT P1

rel(U) Λ1{a 7→!?o} = Λ

We perform case analysis on the rule used for deriving

P
l−→ Q.

CaseTR-OPEN: In this case,l = (νa) l′ andP1
l′−→ Q. By

the induction hypothesis, we have

〈Λ1, (∆, a : ]U [eL])〉 l−→ (Λ′1, ∆
′) ∆′ `Λ′1

LT Q

By Lemma B.5, there existsΛ′ such that(Λ, ∆)
(νa) l′−→

(Λ′, ∆′) andΛ′1 ≤ Λ′. By usingELT-WEAK, we obtain
∆′ `Λ′

LT Q as required.
CaseTR-NEW: In this case, we haveQ = (νa) Q1 and

P1
l−→ Q1 with a 6∈ FN(l) ∪ BN(l). By the induction

hypothesis, we have:

〈Λ1, (∆, a : ]U [eL])〉 l−→ 〈Λ′1, (∆′, a : ]U′ [eL])〉
∆′, a : ]U′ [eL] `Λ′1

LT Q1

By the conditiona 6∈ FN(l) ∪BN(l), we have:

〈Λ1{a 7→!?o}, ∆〉 l−→ 〈Λ′1{a 7→!?o}, ∆′〉 U ≤ U ′

From the last condition andrel(U), we obtainrel(U ′).

So, by usingELT-NEW, we get:∆′ `Λ′1{a 7→!?o}
LT Q. The

required result holds forΛ′ = Λ′1{a 7→!?o}.
• CaseELT-REP: In this case,P

l−→ Q must have been derived
by usingTR-REP or TR-RIN. We show only the former case;
the latter case is similar. We have:

P = ∗P1 ∗P1 |P1
l−→ Q

∆1 `⊥LT P1 ∆ = ∗∆1 Λ = ⊥
By using ELT-REP and ELT-PAR, we obtain∗∆1 |∆1 `⊥LT
∗P1 |P1. Since∆ = ∗∆1 ≤ ∗∆1 |∆1 holds, we get∆ `⊥LT
∗P1 |P1. By the induction hypothesis, there exist∆′ and Λ′

such that∆′ `Λ′
LT Q and〈∆, Λ〉 l−→ 〈∆′, Λ′〉.

• CasesELT-IF: Similar to the case forELT-REP.

2

We introduce a relation¹ on processes below.¹ is the least
reflexive and transitive relation closed under the ruleE[(νa) P ] ¹

(νa) E[P ]. Here, E ranges over the set ofevaluation contexts,
defined by:

E ::= [ ] | (E |P ) | (P |E) | (νa) E

(Note thatE does not contain〈[ ]〉T ; so we disallow〈(νa) P 〉T ¹
(νa) 〈P 〉T .)

Typing is also preserved by¹.

LEMMA B.7. If ∆ `Λ
LT P andP ¹ P ′, then∆ `Λ

LT P ′.

Proof This follows by straightforward induction on the derivation
of P ¹ Q. 2

C. Proof of Progress (Lemma 4.4)
We write rel(∆) if dom(∆) ⊆ L and for eacha ∈ L \
{true, false}, ∆(a) is of the form]U [eL] andrel(U).

We extend the syntax of processes by adding explicitly typed
processes〈P 〉∆,Λ:

P ::= · · · | 〈P 〉∆,Λ

The typing rule for〈P 〉∆,Λ is:

∆ `Λ
LT P

∆ `Λ
LT 〈P 〉∆,Λ

(T-TPROC)

LEMMA C.1. If nocapΛ(∆), rel(∆′), and ∆′ `Λ′
L E[〈P 〉∆,Λ],

thenrel(∆).

Proof We first note that if∆′ `Λ′
L E[〈P 〉∆,Λ] then, Λ(a) ≤

Λ′(a) for any a ∈ dom(∆) ∩ dom(∆′). To show the lemma, it
suffices to show the following, stronger property.

If (i) nocapΛ(∆), (ii) rel(∆′(a)) for every a ∈ {a ∈
dom(∆) ∩ dom(∆′) | ¬nocap(∆(a))}, and (iii) ∆′ `Λ′

LT

E[〈P 〉∆,Λ], thenrel(∆).

We show it by induction on derivation of∆′ `Λ′
LT E[〈P 〉∆,Λ],

with case analysis on the last rule used. Since the other cases are
trivial, we show only the case where the last rule isT-PAR and
E = E1 |Q. In this case, we have:

∆′
1 `Λ′1

LT E1[〈P 〉∆,Λ] ∆′
2 `Λ′2

LT Q
Λ′1 ≤ Modes(∆′

2) Λ′2 ≤ Modes(∆′
1)

Λ′ = Λ′1 t Λ′2

By the induction hypothesis, it suffices to show thatrel(∆′
1(a))

holds for everya ∈ {a ∈ dom(∆)∩dom(∆′
1) | ¬nocap(∆(a))},

Supposea ∈ {a ∈ dom(∆) ∩ dom(∆′
1) | ¬nocap(∆(a))}.

Then, by the assumptionnocapΛ(∆), it must be the case that
!?ε ≤ Λ(a) ≤ Λ′1(a). By the conditionΛ′1 ≤ Modes(∆′

2),
it must be the case thatnoob(∆′

2(a)). Thus,rel(∆′
2(a)) follows

from the conditionrel(∆′(a)). (Here, we have used the fact that if
rel(U1 |U2) andnoob(U2), thenrel(U1).) 2

We write #(P ) for the size of processP (i.e., the number of
process constructors inP ). The progress property (Lemma 4.4)
follows as a corollary of the following lemma.

LEMMA C.2. Suppose:

1. ∆′ `Λ′
LT E[〈P 〉∆,Λ],

2. rel(∆′), and
3. a 6∈ BN(E[P ]).

Then,ob!(∆(a)) = n(6= ∞) impliesE[P ]
τ−→∗(νec) a[eb]−→ for someec andeb, andob?(∆(a)) = n impliesE[P ]

τ−→∗ a[eb]−→ for someeb.



Proof The proof proceeds by well-founded induction on(n, #(P )),
where the well-founded order is defined by(n, m) < (n′, m′) ⇐⇒
(n < n′) ∨ (n = n′ ∧ m < m′). We perform case analysis on
the structure ofP . We show only the case forob!(∆(a)) = n; the
other case is similar. Without loss of generality, we can assume that
the last rule used for deriving∆ `Λ

LT P is notT-WEAK, since if the
last rule isT-WEAK, we can find∆1 andΛ′′ such that∆1 `Λ′′

LT P ,
∆′ `Λ′

LT E[〈P 〉∆1,Λ′′ ], andob!(∆(a)) ≤ n holds. (Hence, more
formally, the whole proof is by induction on(n, #(P ), m), where
m is the number of the last applications ofT-WEAK for deriving
∆ `Λ

LT P .) Note that the proof below is a little informal (e.g., in
the treatment of contexts) and sketchy; Except for the case where
P = 〈P1〉T , the proof is almost the same as the corresponding
theorem for the previous type system [23].

• CaseP = 〈P1〉T : In this case,∆ |=RD P1, ∆ |=RTer P1,
andnocapΛ(∆). By Lemma C.1, we haverel(∆). Hence, from
Lemma 4.3 with∆ |=RD P1 and the conditions∆ |=RTer P , we

obtainP1
τ−→∗(νec′) a[eb]−→ . Thus, we haveE[P ]

τ−→∗(νec) a[b]−→ as
required.

• CaseP = 0: This case cannot happen.
• CaseP = a1

χ[ed]. P1: If a1 = a, then the result follows
immediately. Supposea1 6= a. By the typing rules, we have:

∆ = a1 : ]!0t [eL];(∆1 | ed : ↑eL) ∆1 `⊥LT P1 t < n

By the induction hypothesis (note that we can assume without
loss of generality thata1 is not bound inE[P ] since otherwise
we can move the binder(νa1) to the outermost place by using

Lemma B.7 and remove it), we haveE[P ]
τ−→∗

E1[P ]
a1 [eb]−→,

whereP is not involved in the transitions.E1[P ] must be of the
form E2[P, a1(ey). Q1]. Let Q = E3[P1, [ey 7→ eb]Q1]. (Here,
we have extended evaluation contexts to those with multiple
holes.) By Lemma 4.3 and the typing rules, we have:

∆′′ `Λ′′
LT E3[〈P1〉∆1,Λ1 , 〈[ey 7→ eb]Q1〉∆2,Λ2 ];

〈∆′, Λ′〉 τ−→∗ 〈∆′′, Λ′′〉.
Moreover,ob!(∆1(a)) ≤ n or ob!(∆2(a)) ≤ n − 1 holds. In
both cases, the result follows immediately from the induction
hypothesis (note that#(P1) < #(P ) in the former case).

• CaseP = a1
χ(ey). P1: Similar to the above case.

• CaseP = ∗P1: By the condition∆ `Λ
J P , there must exist

∆1 such that∆1 `⊥J P1 and∆ ≤ ∗∆1. The latter condition
impliesob!(∆1(a)) ≤ n. By ∆′ `Λ′

J E[P | 〈P1〉∆1,⊥] and the

induction hypothesis, we getE[P |P1]
(νec) a[eb]−→ . The required

resultE[P ]
(νec) a[eb]−→ is obtained by usingTR-REP.

• CaseP is P1 |P2, (νc) P1, or if a then P1 else P2: Trivial
by the induction hypothesis.

2

Proof of Lemma 4.4 Suppose thatQ is tagged and∅ `Λ
LT Q. If

the tagged process is inside〈·〉T , i.e., if Q is of the formE[〈Q′〉T ],
where Q is tagged, then∆ |=RD Q′, Erase∆ |=RTer Q′, and
nocapΛ∆ for some∆ and Λ. The latter condition implies that

rel(∆). Thus,Q′
τ−→∗ τ2

−→.
If the tagged process is not inside〈·〉T , then Q must be of

the formE1[(νa) E2[a
2(ex). Q′]] or E1[(νa) E2[a

2[ev]. Q′]]. We
show only the former case below, as the latter case is similar. By
Lemma B.7 and the typing rules, we have:

a : ]U [eL] `Λ
LT E1[E2[a

2(ex). Q′]] rel(U)

By the typing rules, it must be the case thatcap?(U) 6= ∞.
By rel(U), we get ob!(U) 6= ∞. By Lemma C.2, we have

E1[E2[a
2(ex). Q′]]

τ−→∗ a[ev]−→. Thus, we have

E1[E2[a
2(ex). Q′]]

τ−→∗ τ2

−→, which impliesP
τ−→∗ τ2

−→. 2

D. Proof of Theorem 4.2
Theorem 4.2 follows as a corollary of the following lemma, which
is similar to Lemma C.2.

LEMMA D.1. Suppose:

1. ∆′ `Λ′
SLT E[〈P 〉∆,Λ],

2. rel(∆′), and
3. a 6∈ BN(E[P ]).

If ob!(∆(a)) = t 6= ∞, then in any full, strongly fair reduction

sequence ofE[P ], there is a processQ that satisfiesQ
(νec) a[eb]−→ for

someec andeb. Similarly, if ob?(∆(a)) = t 6= ∞, then in any full,
strongly fair reduction sequence ofE[P ], there is a processQ that

satisfiesQ
a[eb]−→ for someeb.

Proof The proof proceeds in the same manner as that of Lemma C.2,
by well-founded induction on(t, #(P )), where the well-founded
order is defined by(n, m) < (n′, m′) ⇐⇒ (n < n′) ∨ (n =
n′ ∧ m < m′). Since the other cases are similar to the proof
of Lemma C.2, we show only the case forP = 〈P0〉T . In
this case, by Lemmas 4.3 with the conditions∆ |=RD P and

Erase(∆) |=RTer P , there exists a reduction sequenceP0
τ,S−→

P1
τ−→ · · · τ−→ Pn

(νec) a[eb]−→ . Consider any full, strongly fair

reduction sequence fromE[〈P0〉T ], and letP0
η1,S′1−→ Q1

η2,S′2−→
Q2

η3,S′3−→ · · · be the corresponding, local transition sequence of

P0. We shall show that there existsm such thatQm
(νec′) a[eb′]−→ ,

by induction onn. The case wheren = 0 is trivial. Suppose

n > 0. SinceP0 is robustly confluent, the transition
τ,S−→ is con-

tinuously enabled until it occurs. Therefore, there must existm

such that
ηm,S′m−→ =

τ,S−→. Moreover, there exists a transition sequence

P1
η1,S′1−→ R1

η2,S′2−→ · · · ηm−1,S′m−1−→ Rm−1 ≡ Qm. Thus, there is a
full, strongly fair reduction sequence

E[P1]
τ−→ E1[R1]

τ−→ · · · τ−→ Em−1[Rm−1]
τ−→ Em[Rm]

τ−→ · · · ,

whereRm+k ≡ Qm+k+1 for k ≥ 0. By the induction hypothesis,

there existsj such thatRj
(νec′) a[eb′]−→ . If j ≥ m, thenQj+1

(νec′) a[eb′]−→
as required. Ifj < m andRm cannot make an output transition on
a, then there must existsi(j < i ≤ m) such thatS′i contains the

label of an output prefix ona. Thus,Qi−1
(νec′) a[eb′]−→ as required.2

Proof of Theorem 4.2 Suppose that∅ `SLT P andP
τ−→∗

Q.
It suffices to show (i) ifQ = E1[(νa) E2[a

◦(ex). Q1]], then
E1[E2[a

◦(ex). Q1]] is reduced to a process of the formE[a[ev]. Q2]
in any full, strongly fair reduction sequence, and (ii) ifQ =
E1[(νa) E2[a

◦[ev]. Q1]], then E1[E2[a
◦[ev]. Q1]] is reduced to a

process of the formE[a(ey). Q2] in any full, strongly fair reduction
sequence. (Note that if the above conditions hold, any marked ac-
tion will be enabled infinitely often.) We show only (i); the proof
of (ii) is similar. SupposeQ = E1[(νa) E2[a

◦(ex). Q1]]. Then
by Lemma 4.3, we have∅ `⊥SLT Q. By the typing rules, it must
be the case thata : ]U [eL] `Λ

SLT E1[E2[a
◦(ex). Q1]] and rel(U),

which also impliesob!(U) 6= ∞. Thus, by using Lemma D.1,
E1[E2[a

◦(ex). Q1]] must be reduced to a process of the form
E[a[ev]. Q2] in any full, strongly fair reduction sequence.2



E. Intervals
We sketch here an extension of the type systems in [15] that im-
proves the expressiveness of their termination analysis (and hence
also of the robust-termination analysis). We mainly explain the ex-
tension on the first of the type systems in [15], namely the system
of pure levelsLev; we are very brief on the others, as the modifica-
tions needed are similar.

The extension is obtained by replacing the levels of [15] with
intervals. An interval is written[n, m], for n ≤ m, and indicates a
non-empty set of consecutive natural numbers. A type assignment
x : ][n,m][V ] intuitively means thatx can be instantiated with any
channel whose level is betweenn andm. Although in practice we
may gain precision by maintaining levels for the types of the chan-
nels, for convenience of presentation we treat levels themselves as
intervals; thus leveln corresponds to the interval[n, n].

We recall that the channel types are types that can be assigned to
the channels, and the values types are the types that can be assigned
to the values communicated along the channels. In this section, we
call activean output that is not underneath a replication. In an input
v(ex) or an outputv [ ew] we callv thesubjectof the prefix.

Notations We useµ to range over intervals. For intervalsµ1 =
[n, m] andµ2 = [r, s] we writeµ1 ⊆ µ2 if r ≤ n andm ≤ s; and
µ1 < µ2 if m ≤ r. If Θ(p) = ]µ[eV ] then we callµ the interval of
p in Θ (or simply theinterval ofp , if Θ is clear from the context).

The first type system In theLev type system each channel type is
assigned a level. We replace the levels with the intervals. Thus the
grammar of the types, called theinterval types, is:

V ::= Bool | ]µ[eV ] types

whereµ is an interval. Judgments are of the formΘ `µ P . It is
intended thatΘ `µ P should imply that for every active output
v [ ew] in P , the interval ofv must be smaller thanµ.

We write V1 ≤ V2 if V1 = V2, or V = ]µ1 [fW ] andV =

]µ2 [fW ] with µ1 ⊆ µ2. We write Θ ` v : V if Θ(v) ≤ V .
With these notations for the intervals and for the subtyping on the
intervals, the rules can remain, notationally, the same as inLev
(of course, with intervals in place of levels). We report below the
interesting rules, namely those for output, input, and replicated
input:

Θ(p) = ]µ2 [eV ] Θ ` ev : eV Θ `µ1
Ter P µ2 < µ1

Θ `µ1
Ter p[ev].P

(IT-OUT)

Θ(p) = ]µ2 [eV ] Θ, ex : eV `µ1
Ter P

Θ `µ1
Ter p(ex).P

(IT-I N)

Θ(p) = ]µ2 [eV ] Θ, ex : eV `µ2
Ter P

Θ `µ1
Ter ∗p(ex).P

(IT-RIN)

The resulting type system is strictly more expressive than the
level systemLev. Any process typable inLev is typable in our type
system, by replacing each leveln with interval[n, n]. On the other
hand, the use of intervals in place of levels allows us to have some
(limited) form of polymorphism with respect to the levels, so that a
term such as

a(x).0 | a[b] | a[c] | ∗b.c
is typable in our type system but not in [15].

The following lemma is important. It shows that we can safely
replace a variable with a channel whose interval is contained in that
of the variable.

LEMMA E.1. If Θ, v : V ′ `µ P andV ≤ V ′, thenΘ, v : V `µ P .

Proof Induction on derivation ofΘ, v : V ′ `µ
Ter P . 2

With the use of the lemma above, the proof of termination for
the well-typed closed processes of the new system can be given
along the lines of the corresponding theorem in systemLev.

The second type systemThe systemLev allows nesting of in-
puts but forbids all forms of recursive inputs, that is, replications
∗a(x).P with the bodyP having active outputs ata. The other
type systems of [15] allow us to relax this restriction. In the second
type system, for instance, the bodyP can have active outputsa[v],
but v must be provably smaller thanx with respect to some pre-
defined well founded ordering on values; thus the value received
at the replicated inputa(x) is greater than the value emitted in
any active output ata that is underneath the replication. For in-
stance, if the communicated values are integers, then this holds for
∗a(x).a[x− 1]. A mechanism is assumed for evaluating (possibly
open) natural number expressions, which allows us to derive asser-
tions such asx − 1 < x, or x − 29 + 4 ∗ 7 < x. This evaluation
mechanism is an orthogonal issue, independent from the type sys-
tem.

In the corresponding type system with intervals, judgments are
of the formΘ `(µ,ex) P . It is intended thatΘ `(µ,ex) P should
imply that for an active outputv [ ew] in P , either (a) the interval ofv
is smaller thanµ, or (b) the interval ofv in Θ, sayλ, is consecutive
to µ (that is, if λ = [n, m] andµ = [r, s] thenm = r), but each
componentwi of the tuple carried byv is provably smaller than the
corresponding componentxi of ex. With this in mind, the rules are
similar to those for the first type system previously discussed.

The third type system The third type system of [15] exploits
some of the structure of the processes. Precisely, it takes into
account sequences of inputs underneath a replication. In this way,
intuitively, one can consider thesumof the levels of such inputs
(rather than the level of a single input as in previous type systems),
and then compare this against the active outputs in the body of the
sequence. Callκ such a sequence of inputs, andP the body (i.e., the
process underneathκ). We have to compare the weight ofκ, written
wt(κ), against the weight ofP , writtenwt(P ). In [15], where types
have just levels,wt(P ) is the vector〈nk, nk−1, · · · , n1〉, where
eachnh represents the number of occurrences of outputs that are
not underneath a replication and whose subject is a name of level
h; thenk is the highest level on which the process has non-zero
output occurrences4. This definition of weight is extended to input
patterns by taking into account the levels of all input subjects; i.e.,
if κ is p1(fx1). · · · .pn(fxn), thenwt(κ) is the vectorial sum of all
levels of the namesph.

In our case, since we have intervals in place of pure levels, we
have to be conservative. Thuswt(κ) is the lowest possible sum
given by the intervals (that is, we use the same vectorial sum as
before but each interval[n, m] of an input subject ofκ contributes
its infimum n), whereaswt(P ) is the highest possible sum given
by the intervals (that is, each interval[n, m] of the subject of an
active output inP contributes its supremumm). Usingω to range
over vectors, judgments are of the formΘ `ω P ; it is intended that
Θ `ω P holds ifwt(P ) is not greater thanω.

The fourth type system The fourth type system of [15] is the
systemPO discussed in Section 5. The use of partial orders on
names is an orthogonal issue with respect to the choice of having
type systems based on levels or on intervals, therefore we do not
discuss it any further here.

4 This definition makes sense in in [15] where the type systems are formu-
latedà la Church—each name is assigned a type a priori; in a formulation
à la Curry the definition should be given with respect to a given typing
derivation forP .


