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Abstract

We propose a type system for lock-freedom in thealculus,
which guarantees that certain communications will eventually suc-
ceed. Distinguishing features of our type system are: it can verify
lock-freedom of concurrent programs that have sophisticated re-
cursive communication structures; it can be fully automated; it is
hybrid, in that it combines a type system for lock-freedom with lo-

cal reasoning about deadlock-freedom, termination, and confluence

analyses. Moreover, the type system is parameterized by deadlock
freedom/termination/confluence analyses, so that any methods (e.g
type systems and model checking) can be used for those analyse
A lock-freedom analysis tool has been implemented based on the
proposed type system, and tested for non-trivial programs.

1. Introduction

Verification of concurrent programs is very important. Concurrency
is common in recent distributed environments or multi-processor
machines, yet writing and debugging concurrent programs is hard
because of non-determinism, deadlock, livelock, etc. Many meth-
ods have been proposed recently for verification of concurrent pro-
grams, including model checking, type systems, and separation
logic. Although there are some promising reports such as verifi-
cation of termination of several thousands lines of multi-threaded
code [12], verification techniques for concurrent programs are still
premature, compared with those for sequential programs, for which
certain properties of millions of lines of code can be verified.

In this paper, we attack the problem of verifying concurrent
programs that create threads and communication channels dy
namically. More specifically, we choose thecalculus as the
target language, and consider the problem of verifying the lock-
freedom property, which intuitively means that certain commu-
nications (or synchronizations) will eventually succeed (possibly
under some fairness assumption). Lock-freedom is important for
communication-centric computation models like thecalculus;
indeed, in the purer-calculus, most liveness properties can be
turned into the lock-freedom property. For example, the following
properties can be reduced to instances of lock-freedom: Will the
request of accessing a resource be eventually granted? In a client
server system, will a client request be eventually received from the
server? And if so, will the server eventually send back an answer to
the client? In multi-threaded programs, can a thread eventually ac-
quire a lock? And if so, will the thread eventually release the lock?
The lock-freedom property has also applications to other verifi-
cation problems and program transformation, such as information
flow analysis and program slicing (dependency analysis in general).
Verification of liveness properties such as lock-freedom is notori-
ously hard in concurrency. In formalisms for mobile processes,
such as ther-calculus, it is even harder, because of dynamic cre-
ation of threads and first-class channels. In these formalityps,
systemshave emerged as a powerful means for disciplining an
controlling the behaviors of the processes.
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Type systems for lock-freedom include [1,22,23,37,38]. An
automatic verification toolT YPICAL [21], has been implemented
based on Kobayashi's system [23]. The expressive power of such
type systems is, however, very limited. This shows up clearly, for
instance, in the treatment of recursion. For example, even primi-
tive recursive functions cannot be expressed in Kobayashi's lock-
free type system, since it ignores value-dependent behaviors com-
pletely.

Related to lock-freedom is deadlock-freedom. In a system of
threads, deadlock freedom is the property that the system can re-

sduce further, if at least one thread is not terminated. A more refined

form of deadlock can be given by focusing on certain special ac-
tions (prefixes, in ther-calculus): here deadlock-freedom says that
the system can always reduce further if there is a thread with one
special action ready for execution. The latter form of deadlock has
been extensively studied by Kobayashi (see e.qg., [24]); the resulting
system has been implemented as a paftyo?ICAL. Note that any
process is deadlock-free if it is run with a divergent process. Unlike
lock-freedom, deadlock-freedom is insufficient for applications to
information flow analysis or program slicing.

In this paper, we tackle lock-freedom by pursuing a different
route. We overcome limitations of previous type systems by com-
bining the lock-freedom analysis with two other analydisadlock-
freedomandtermination The result, therefore, is not a “pure” type
system, but one that igarametricin the techniques employed to
ensure deadlock-freedom and termination. Such techniques may
themselves be based on type systems (and indeed in the paper we
indicate such type systems, or develop them when needed), but
could also use other methods (model checking, theorem provers,
etc.). The parameterization allows us to go beyond certain limits of
type systems, by appealing to other methods. For instance, a type
system, as a form of static analysis, may have difficulties in han-
dling value-dependent behaviours (even very simple ones), which
are more easily dealt with by other methods such as model check-

Roughly, we use the deadlock-freedom analysis to ensure that a
system can reduce if some of its expected communications have not
yet occurred. We then apply a termination analysis to discharge the

possibility of divergence and guarantee lock-freedom (i.e., the ex-

pected communication will indeed occur). The reasons for appeal-

ing to deadlock-freedom are that powerful type-based analyzers ex-
ist (notably Kobayashi’'s systems [24]), and that deadlock-freedom
is a safety property, which is easier than liveness to verify in other
verification methods such as model checking.

A major challenge was to be able to apply the deadlock and
termination analysitocally, to subsystems of larger systems. The
local reasoning is particularly important for termination. A result
forcing a global termination analysis would not be very useful in
practice: first, valid concurrent programs may not terminate (e.g.,
operating systems); second, even if a program is terminating, it can
be extremely hard to verify it if the program is large, particularly in



languages for mobile processes such asrtisalculus that subsume  environment will send a message @nThis leads to the following

higher-order formalisms such as thecalculus. hybrid rule:
Very approximately, our hybrid rule for local reasoning looks as
follows: A= P Frter P nocap(A) (LT-HvE)
):DF P ':Ter P (*) A |_LT P

Al P The resulting type system guarantees that any well-typed pro-
where =pr P and =rer P indicate, respectively, thaP is cessP is weakly lock-fregin the sense that if an input/output action
deadlock-free and terminating, aal .+ P is a typing judg- is declared inP as an action that should succeed, and if—* Q,
ment for lock-freedom. The type environmefyt captures condi- then the action has already succeedeB in—* Q or there is a fur-
tions, or “contracts”, on the wag interacts with its environment,  ther reduction sequence fro@ in which the action will succeed.
of the kind “P will eventually send a message afi and “if P This is similar to the way in which success of passing a test is de-

receives a message @ then P is lock-free afterwards”. Such  fined in fair should/must testing [5, 7, 29], (and also in accordance
contracts are necessary for the compositionality of the type sys- with other definitions of similar forms of liveness farcalculus
tem for lock-freedom (i.e., local reasoning on lock-freedom). We such as [37]).

use Kobayashi's lock freedom types [23], which refine those of For example, consider the proce&srver | Client, where:

the simply-typedr-calculus withchannel usagesto express the . def 5 o
contracts. Therefore we add rulg(as an “axiom”, to the rules of Client 7de(fwl) (fact®[3,r1] 71 (z). P1)
Kobayashi's lock freedom type system [23]. Server = (vfact_it) (xfact(n,r). fact_it[n, 1,7]
The contracts i\, however, are completely ignored—and are | fact_it(n,z,r).
not guaranteed—in the premises of rulg. (As a consequence, the if n = 0 then 7[z] else fact_it[n — 1,2 x n,7])

resulting type system is unsound. In other words, knowing fhat ~ The processServer creates an internal communication channel
is deadlock-free and terminating is not sufficient to guarantee com- fact_it (used for computing factorial numbers in a tail-recursive
positionality and local reasoning. As an example of missing infor- manner), and waits ofuct for a reques{n, r] on computing the
mation, P being terminating ensures th&titself has no infinite re- factorial of n. Upon receiving a request, it returns the result on
ductions; but it says nothing on the behaviourdéfter it receives r. The procesLlient creates a fresh channe] for receiving a
a message from other components in the system. (Indeedsjuge ( reply, sends a requeft, r1] and then waits for the result on.
only sound if applied globally, to the whole system.) The client expects that the request will be eventually accepted (i.e.,
The first refinement we make for the soundness of ru)eg the output onfact should eventually succeed), and that the re-
to replace deadlock-freedom and termination with more robust no- sult will be eventually received (i.e., the output fatct and the
tions, which we call, respectivelypbust deadlock-freedom under input atr; should eventually succeed). To indicate these expecta-
A, written A |=pp P, androbust terminationwritten Egrer P. tions, the two actions from the client are marked (symf)oThese
These stronger notions approximately mean that deadlock-free properties cannot be verified by Kobayashi’s type system for lock-
or terminating after any substitutiorl”?(may be open, and there-  freedom [23]. We can derive, howevek, tpr Server for a type
fore contain free variables), and any interaction with its environ- environmentA, which says that, upon receiving a requéttyver
ment; A |=rp P further ensures thaP fulfills certain obligations either eventually sends a result or diverges. We can also verify
in A. The problems of verifying robust deadlock-freedom and ro- that Server is terminating by using existing type systems for ter-
bust termination are more challenging than the ordinary ones, duemination, such as [15]. Thus, by using-HYB above, we infer
to the additional requirements (e.g., quantifications over substitu- A F.r Server. Finally, with the typing rules for lock-freedom, we
tions and transition sequences). Existing type systems for deadlock-derive) -ir (vfact) (Server | Client), which says that the client's
freedom, notably [24], do meet however the extra conditions for request will be eventually accepted and the result will also be even-
robust deadlock-freedom. We also show how to tune type systemstually received. Note that, as termination and deadlock-freedom are
for ordinary termination in a generic manner so to guarantee the applied locally, the above reasoning is valid even if the client is not
stronger property of robust termination. Specifically, we isolate terminating (e.g.P: is divergent).
some conditions on a type system for deadlock-freedom or termi-  We have also considered a stronger form of lock-freedom, guar-
nation that allow us to turn it into one for robust deadlock-freedom anteeing that the marked actions will eventually succeed on the as-
or robust termination. We should stress neverthelessAhat, P sumption that the scheduler is strongly fair (in the sense that if an
and =rre: P are semantic requirements: our type system is para- action is enabled infinitely often, then the action will indeed suc-
metric on the verification methods that guarantee them—one needceed). We show that our type system can be strengthened to guar-
not employ type systems. antee the strong lock-freedom by adding a condition of partial con-
Even with the above refinement of the deadlock-freedom and fluence to ruld. T-HyB above. Again, the partial confluence is only
termination conditions, the hybrid rule)(remains unsound. The  required locally; the whole program need not be confluent.
reason is, roughly, the same as why assume-guarantee reasoning in The verification framework outlined above for lock-freedom
concurrency often fails in the presence of circularity. In fact, the (including an automated robust termination analysis) has been im-
judgmentA Fr P can be considered a kind of assume-guarantee plemented as an extensionDf PICAL program analysis tool (ex-
reasoning, wheré\ expresses both assumptions on the environ- cept the extension to strong lock-freedom; adding this on top of the
ment and guarantees abaBis behavior. To prevent circular rea-  presentimplementation would be tedious but not difficult). We have
soning, we add a conditionocap(A) that intuitively ensures us  succeeded in automatically verifying several non-trivial programs,
that P is independent of its environment, in the sense fhatill such as symbol tables and binary tree search. These examples are
fulfill its obligations (to perform certain input/output actions) with-  non-trivial because lists and trees are implented as networks of pro-
out relying on its environment’s behavior. (For example, suppose cesses connected by channels, and they grow dynamically (both

that there is an obligation to send a message on chanrighe channels and processes are dynamically created and linked). Recur-
processi[1], which sendd ona, is fine, since it fulfills the obliga- sive structures of the kind illustrated in these examples are common
tion with no assumption. On the other hand, the proééss. a[z], in programming languages for mobile processes (the examples in
which waits to receive a value érbefore sending ona, is not al- fact, were taken or inspired from Pict programs).

lowed since it fulfills the obligation onlgn the assumptiothat the The contributions of this paper are summarized as follows.



e The new type system for lock-freedom mentioned above, with The prefix (va) is a binder for linka, and the input prefix

a proof of its soundness. The system is hybrid (combining anal- v*(y). P is a binder for variableg. We write FN (P) for the set
yses for lock-freedom, deadlock-freedom, and termination), of free names (i.e., free links and variables)#n A processP is
parameterized by any robust deadlock-freedom/termination closedif the set of free variables i is empty. We often omit
analyzers, and allows local reasoning about termination and trailing 0, and writew* [@] for 7X[w]. 0. We also writevX. P and
deadlock-freedom. The proof of the soundness of the type vX.P for vX[]. P andvX( ). P respectively. In examples, we use an
system is non-trivial because of the hybrid nature of the type extension of the above language with natural numbers, list, etc. as
system. they are straightforward to accommodate.

A further extension of the type system for strong lock-freedom,
by a combination with a form of confluence analysis. Again,
the type system is parameterized by any analyzer for partial The type systems that we will propose are defined on top of the

2.2 Typing

confluence, and enables local reasoning about confluence. simply-typed-calculus 6T), that we take as the basis for our
e A method for extending type systems for termination to guar- Work. We believe that languages of more advanced type systems
antee robust termination. could be used as basis; we prefers@thecause simple and natural.

An implementation of an automated (weak) lock-freedom ver- The set osimple typess given by:
ifier based on the proposed method. It has been successfully S ::= Bool | f[S1, ..., Sx]

tested on a number of non-trivial examples. #[S1,...,8x] is the type of channels that are used for transmitting
The rest of this paper is structured as follows. Section 2 intro- tUPIes consisting of values of types, ..., S.. A type judgment
duces the target language of our type system, and gives formal defi-iS Of the formI" Fsr P. A type environment” is a mapping from
nitions of deadlock-freedom, lock-freedom, and robust termination. N@mes to simple types, with the constraint thaie andfalse are
Section 3 introduces the new type system, obtained by combining M@pped t@ool, and that the links are mapped to channel types.
Kobayashi's previous type system for lock-freedom with the hybrid I',7:S indicates the type environment obtained by extending
rules mentioned above. Section 4 proves the soundness of the typavith the type assignments: S, with the understanding that for all
system. Section 5 discusses how to extend type systems for termi-v: already defined ifi" it should bel’(vi) = 8:. The typing rules
nation to deal with the robust termination property. Section 6 briefly are given in Figure 1.
reports implementation and experiments. Section 7 discusses ex- . .
tensions of our type system. Section 8 discusses related work and?-3 Operational Semantics

Section 9 concludes. We introduce the standard (early) labeled transition relaflor’
Q for the m-calculus. Herey, called a transition label, is either a
2. Target Language silent actionr, an output actiof¢) a[b], or an input actior [b].

This section introduces the target language of our work: a polyadic

. - DEFINITION 2.2 (transition labels)The set oftransition label
m-calculus [28] with conditionals. ( ) s

ranged over by, is given by:

2.1 Syntax n =7 | (o) alb] | afb]

We write £ for the set ofinks (also callecchannely, and) for the ; o
(disjoint) set ofvariables We use meta-variables, b, c, ... and HerFei\(Iu(?:’)) ;enpdr%s;r}ts)aa(rgo;esflibnlgg ?:Pty) sequepes) - (ven).
z,v, z, . .. for links and variables, respectively. We writé for the n n y:

setL UV U {true, false} of namesg(sometimes callegalues, FN(r) =0 BN(7) =10

wheretrue andfalse are the usual boolean values. We use meta- FN((vd)ab]) = {a,b} \ {¢} BN((vo)a[b]) = {¢}
variablesu, v, w for names. The grammar is the following: FN(a[b]) = {a,b} BN(a[p]) = 0

DEFINITION 2.1 (processes)The set of processes, ranged over by - o
P, is defined by: DEFINITION 2.3. The labeled transition relation— is the least

B e X relation closed under the rules in Figure 2, plus the symmetric of
P ou= |0(‘P”| FQH))]| ]:P‘T(z(jg?)li if v then P else O the two rules for parallel composition.

Here, x is eithero or e, and w abbreviates a possibly empty
sequenceyy, . . ., wny.

A difference from the standard transition semantics is in the
treatment of replication. We distinguish between replicated input
processes and unrestricted replications, and ensure that a replicated
The proces®) does nothing. The process [w]. P sends a tuple  input can be copied only lazily (notice the difference between
consisting of valuesi on v, and then (after the tuple has been TRr-RIN and TR-REP). This distinction is required to make the
received by some process) behaves likeThe process*(y). P robust confluence condition defined in Section 3 not too restrictive.
waits for a tuple of values on, bindsy to them, and then behaves  We write - for the reflexive and transitive closure ef—;
like P. In the prefixes, the annotatignin prefixes, which indicates we write P 7 and P -~ if there isP’ st. P -~ P’ and
whether the action is expected to succeed (symjot not (symbol P =" P!, respectively.

e). (In the type inference of TyPiCal these annotations are actually ~ Wwe extend the above transition relation tdyged transition
inferred, in the sense that if the analysis succeed then a set ofyelation, to show how a type environment evolves when a process
prefixes that vinI eventqal_ly succeec! is .marked, see Secti(_)n 6.) performs a transition. We writg -s; P — I s P’ to indicate

We call a prefixmarkedif its annotation iso. We usu?lly omit how the type environmerit for P evolves under the transitions of
the e annotation, thus for example(z).P> stands fora®(z). P. P. Further, we only consider transitions well-typed unilethis
ProcessP| Q executes” andQ in parallel, and«P behaves like  eans that, in an input, the values suppliedtshould agree with

infinitely many copies ofP running in parallel;(va) P creates : . n v '
a fresh communication channe] and then behaves lik®. The }Pe types declared i Precisely[” Fer 7 — T" F-s1 P* holds

procesdf v then P else Q behaves likeP if v is true andq if
visfalse. 1.7 kg7 P



Pkt P Ther Q [ber P I',a:4[S] Fsr P

ks 0 I'ksr PQ [ sy xP I'Fsr (va) P
ke P T(v) =48] T(@) =S5 TI,7:SkscP  T(v) =4[ ['(v)=Bool ThrgP ThregQ
I bgr X [@]. P I Fgr vX(y). P I' Fgr if v then P else @

Figure 1. Simple Type System

ai , (Roun x@.P " g gp x(@). p M Pl[§— bP
[P p (). P [~ +aX(§). P 2 wax(3). P| [~ 5
(TR-IN) (TR-RIN)
P-Q BN((#HNFNR) =0
if true then P else Q — P if false then P else Q — Q PIELQ|R
(TR-IFT) (TR-IFF) (TR-PARL)
ve)alb alb (VE)E[?)] T
P2 g p o, (G NFN@R) =0 PESTQ  ac{b}\{dd
Py Pa—=(v0) (Q1 Q2) (va) P "2 g
(TR-CowmL) (TR-OPEN)
P Q  a¢FN(nUBN(n) «P|P -1 @Q  Pisnotaninput process
(va) P -5 (va) Q *P -5 Q
(TR-NEW) (TR-REP)
Figure 2. Rules of the operational semantics
i : ve)al [b alb
2.P =P o ~ P0G g, (@ nENR) =0
3. if n = 7 thenT" = I'"; otherwise ify is an output(vc) a[b] or o
an inputa[b] andT’(a) = #[8], thenI" =T',b: S . Py | Pp—(ve) (QID‘Q2)

We call a tagged-transition, writtenP ~— P’, asuccess
Note thatl' Fsr P — I’ Fgr P’ impliesT¥ sy P’. We write
Lo kst Py % -+« % Py to mean thal'o bsr Py, and there are
Ti,..,Tx st foralli < kit holds thatl; Fer P; " Ty ber successfulf whenever? —" @ thenQ —""—. (That is, no
Pii1. matter howP evolves, the success transition can always be taken)

Given an untagged proces) thetagging of Pis the set of tagged

processes obtained froMby replacing the annotation of a marked

DEFINITION 2.5 ((weak) Iock -freedom). A tagged process is

2.4 Deadlock-Freedom and Lock-Freedom prefix at top level withd. We writeTagging(P) for the tagging of
We now define deadlock-freedom, lock-freedom, strong lock- P. Process? is (weakly) lock-freéf wheneverP ——~ @ then all
freedom, and robust termination. A prefixastop levelif it is not processes in the tagging §f are successful.

underneath another input/output prefix or underneath a replication. ] o ) ]
The above notion of lock-freedom is similar to Yoshida’s linear

) . liveness [37]: The property thd eventually answeratz [37] can
DEF'N'T'TO'\i 2.4 (deadlock-freedom)P is deadlock-free‘, when- be expressed as the lock-freedonfofz° (y). In the definitions of
ever? —  Qand( has at least one marked prefix at top level, geadlock and lock freedom above, the tracked prefixes are at top
then@ —. level. The case in which one wants to track also guarded prefixes
(for instance, in lock-freedom, ensuring that any marked prefix that
The above definition of deadlock-freedom is essentially the same iS not underneath a replication will eventually be consumed) can
as the one in [24]. It says that if a marked input/output is at top Pe recovered by marking also the preceding prefixes (those that are

level, the whole process can be reduced further. above). The resulting lock-freedom property roughly corresponds
We define lock-freedom by tagging the prefix, and the tran- 10 Acciai and Boreale’s notion of responsiveness [1].
sitions originating from it. Deadlock-freedom indicates only the A sequence of transitions™ or ~— is full if it is finite and

possibility for the system to evolve further; on the other hand, ends with an irreducible process, or if it is infinite. A sequence of
lock-freedom indicates the eventual success of marked actions attransitions isstrongly fairif, intuitively, any 7-action that is enabled
top-level. In the definition of lock-freedom, we track the success infinitely often will eventually succeed (see [3,22] for a formal
of a specific action (as several marked actions may simultaneouslydefinition of strong fairness in the-calculus). See Appendix A for
appear at top-level) by tagging it. We then demand success for g note on the difference between weak and strong lock-freedom.
all possible taggings. We calhggeda process in which exactly

one unguarded and unreplicated prefix—the prefix that we wish to DEFINITION 2.6 (strong lock-freedom) P is strongly lock-freef
track—has the special annotatién(instead ofo as in the marked wheneverP - Q then every full and strongly fair transition
prefixes). Transitions of tagged processes are defined as for the unsequence of each process in the taggingafontains the success
tagged ones, except that the labels of transitions emanating fromtransnmnﬁ

the tagged prefix are also tagged. For instance, we have:

We give some examples to clarify the difference between
a? (7). P = [y — b|P deadlock-freedom, lock-freedom, and strong lock-freedom.



ExampPLE 2.1. The following process is deadlock-free, but not process behavior by usages, the problem of checking lock-freedom

lock-free. of a process is reduced to that of checking whether the usage of
()| @b | *a(y).aly] each channel is consistent in the sense that, for each capability of
levelt, there is a corresponding obligation of level less than or equal
ExAMPLE 2.2. Consider the following procesB: tot.

To understand how this kind of judgment can be used for com-

b°() |afo] _ _ _ positional reasoning about lock-freedom, consider the (deadlocked)
| *a(y)- (ve) (elyl [ e()- [l [ c(y)-aly]) process:®(z). b[z] | b°(z). a[z]. We have the following judgment
The subprocess on the 2nd line receivem a and either sends a  for subprocesses:
message oh or forwardsb to itself non-deterministically. Sinae a:4,0[Bool],b: 1 [Bool] Frir a®(x). blx]
is freshly created everytintas received fromu, the strong fairness 4 0 e o )
does not guarantee that a message is eventually semt ¢his @:fy [Bool], bty [Bool] Fur b°(2). afe]

thereforenot strongly lock-free. On the other hand, however, after For the entire process, we can simply combine both type environ-
any number of forwardings, there is a chance for a message to be ments by combining usages pointwise:
sent onb; hence, P is weakly lock-free. See Appendix A also for .4, |\ [Bool],b:#,1 |40[Bool] Fir a®(z).blz] | b°(z). @lx]
another example that is weakly lock-free but not strongly lock-free. folts M T
Now, the capability level of the input om (which is0) is smaller
than the obligation level of the corresponding outputaofwhich
3. Type System for Lock-Freedom is 1); this indicates a failure of assume-guarantee reasoning (the
We introduce the type systems for weak/strong lock-freedom. They assumption made by the left subprocess is not met by the guarantee
are obtained by augmenting Kobayashi's type system [23] with hy- by the right subprocess). Thus, we know the process may not be
brid rules appealing to deadlock/termination/confluence analyses.lock-free. On the other hand, if we replace the subprocess in the
We first review Kobayashi’s previous type system for (strong) lock- righthand side withiz[true]. b(x), then we get:
freedom [23] (with some simplification) in Section 3.1. We then de- . . o T °
fine robust deadlock-freedom, robust termination, and robust con- - fog g[Bool], bty o [Bool] Fur a®(2). bla] [aftrue]. b°(x)
fluence, and introduce the hybrid rules for combining deadlock- The capability of each action is matched by the obligation of its
freedom analysis, termination analysis, and confluence analysis toco-action, which implies that the process is lock-free. This is simi-

strengthen the lock-freedom analysis. lar to the standard assume-guarantee reasoning; the employment of
After giving examples in Section 3.4, we prove type soundness such reasoning in the type system (to enable fully automated, com-
in Section 4. positional reasoning), together with the mobility of thecalculus,
however, inevitably make some technical details complex.
3.1 Review of Previous Type System for Lock-Freedom We now give a formal definition of the type systems for

As mentioned in Section 1, to enable local reasoning about lock- deadlock-freedom and lock-freedom.

freedom in terms of deadlock and termination analyses, we needto3 1 1 Usages

express some contracts between a process and its environment. We

reuse the type judgments of Kobayashi’s lock-freedom type sys- DEFINITION 3.1 (usages).The set{ of usagesranged over by/,

tem [23] to express the contracts. A type judgment is of the form 1S given by:

A Fir P, whereA is a type environment, which expresses both U:=0| Oéii-U | (U1 | Us) | *U

requirements on the behavior &, and assumptions on its envi- o =7l

ronment. Ordinary channel types are extended withgeswhich

express how each communication channel is used. For example,

f, ,[Bool] describes a channel that should be first used for receiving

a boolean once, and then for sending a boolean once. A channel ofThe usaged describes channels that cannot be used at all. The

typet, [#, [Bool]] should be first used for receiving a channel once, usage?;!.U describes channels that can be first used for input, and

and then the received channel should be used once for sending ahen used according t&. The usagd/; | U2 describes channels

boolean. (! and ? express an output and an input respectively, andthat can be used according & and Us, possibly in parallel.

“” denotes the sequential composition; the whole syntax of usages The usage«U describes channels that can be used according to

is given later. ) U infinitely often. We omit choice and recursive usages [23, 24] for
In order to express both assumptions on the environment (like, the sake of simplicity.

“a process can eventually receive_ amessage from_ its env?ronment”) The usages form a tiny process calculus, which has only two

and guar:’;’mtees by the process (I|ke, ‘a process will certainly senq 8,ctions? and!. The transition relatiod’ - U is defined below.

message”), each action (! or ?) in a usage is further annotated with )

capability levelsandobligation levelswhich range over the set of ~ DEFINITION 3.2. The transition relationV —~ U’ (wherel,, €

natural numbers extended with. [If a capability level of an action {!,7,7}) is the least relation closed under the following rules:

Here, ¢ ranges ovelNat U {co} (whereNat is the set of natural
numbers).

is finite, then that action is guaranteed to succeed (in other words, «U|U N U’

its co-action will be provided by the environment) if it becomes U LU —
ready for execution (i.e., it is at top-level). If an obligation level of t2’ xU =5 U’

an action is finite, then that action must become ready for execu- U, e e Us 1 U4

tion, only by relying on capabilities of smaller levels. For example, ; .

the type judgment : ;. [Bool],b: 41 [Bool] Fir P means that Ui | Uz = Uy | Uz Uy |Uz = U | Us

P has a capability of leve) to receive a boolean on chanme(but U, - u! Us Uy, U U Us —— U

not an obligation to receive it) , anll has an obligation of level e —
to send a boolean dn (Here, the superscript bbr ? is the obliga- Ur|Uz2 — Up|Us Ur|Us — Up| Uz

tion level, and the subscript is the capability level.) This;an be We need to define some relations/operations on usages. We first de-
b[true] ora(z). b[z], but nota(x). 0. Thanks to the abstraction of  fine the capability/obligation levels of a usage. Intuitivelyp , (U)



describes what capability can be expected from the environment, DEFINITION 3.10. Theobligation levelf typeL, written ob- (L)

andob. (U) describes what obligation must be fulfilled for the en-

and ob (L), are defined byb, (Bool) = oo and oba (i [L]) =

vironment. (Thus, a usage describes both “assume” condition and ob,, (U). We write ob(L) for min(ob-(L), ob(L)).

“guarantee” condition in the assume-guarantee reasoning.) The re-

liability (Definition 3.5) of a usage requires that for each capability,
there is always a corresponding obligation.

DEFINITION 3.3 (capabilities).The input and output capability
levelsof usagel/, written cap, (U) and cap, (U), are defined by:

cap,,(0) = capa(ai‘c’.U) =00 capa(aiz.U) =t
cap,, (xU) = cap, (U)

cap, (U1 | Uz) = min(cap,, (U1), cap, (U2))

DEFINITION 3.4 (obligations).The input and output obligation
levelsof a usagd/, written ob»(U) and ob: (U), are defined by:

0ba(0) = oba(@°.U) = oo oba(aje.U) = to

0bo (xU) = 0bo(U)

Oba(Ul ‘ Uz) = min(oba(Ul), Oba(Uz))
We writeob(U) for min(ob+(U), 0bi(U)).

The predicaterel(U) expresses the consistency of usdge
mentioned above.

DEFINITION 3.5 (reliability). We write con (U) whenobs(U) <
cap,, (U). We write coiU') when both con(U') and con(U) hold.
A usagel is reliable written rel(U), if con(U”) holds for anyU’

such thaty -~ U,

The subusage relatioti; < U- defined below means thak,
expresses more liberal usage of channels thigrso that a channel
of usagel/; may be used as that of usale.

DEFINITION 3.6 (subusage). Theubusage relatior< on closed

usages is the largest binary relation on usages such that the follow-

ing conditions hold whenevér;, < Us.

1. U1 |U < Uz | U for any usagé’.

2. If Uy - U}, then there exist&/] such thaty; — Uj and
Ui < Us.

3. Foreachy € {?,!}, cap,(U1) < cap,(U2) holds.

4. For eachx € {?,!}, if cong(U1), thenobq (U1) > 0ba(Us2).
The following operation*U increases the obligation levels of

U up tot.

DEFINITION 3.7. An operation]*U on usages is defined by:
10 =0 Ttail U= max(t t) 1y
Tt(U1|U2)=TtU1‘TtU2 T (*U)_*T U
3.1.2 Types
DEFINITION 3.8 (usage types). The set nfage typegor simply
types when there is no confusion with simple types) is given by:
L (usage types)y= Bool | f,[L]

TypeBool is the type of booleans. The tymg[ | describes chan-
nels that should be used accordindg tdor transmitting a tuple of
values of types..

DEFINITION 3.11. Unary operations and{? on types is defined
by:

*Bool = |'Bool = Bool, x(fy[L]) = t.y[L], and 1" (£, [L]) =
frev[L],

DEFINITION 3.12. A (partial) binary operation on types is de-
fined by:

Bool | Bool = Bool, and

(80, LD | (B, L)) = 8(v, | vy) [L]- L1 | L2 is undefined if it does not
match any of the above rules.

DEFINITION 3.13. A unary operatiori on types is defined by:
TBool = Bool andT(ﬁU[L]) = ﬁTU[ ], wherelU = Teb@+1gy,

3.1.3 Typing

The operations and relations on types are pointwise extended to
those on type environments.

DEFINITION 3.14. A binary relation < on type environments is
defined by A; < A, if and only if (i) dom (A1) 2 dom(As2), (i)
Aq(v) < Az(v) for eachv € dom(Az), and (i) 0b(A1(v)) =
oo for eachv € dom(A1)\dom(Az).

DEFINITION 3.15. The operations| and x on type environments
are defined by:

A1(v) | Az(v) ifv € dom(Ar) Ndom(Az)
(A1 A2)(v) =< Ai(v) if v € dom(A1)\dom(Az)

Az (v) if v € dom(A2)\dom(Ar)
(xA)(v) = *(A(v))

The typing rules are shown in Figure 3.U-OuT, andLT-IN,
we use the operation: jjaio [L];A on type environments. It repre-

sents the type environment defined by:
dom(A) = {v} Udom(A)
A} = { foro p B 1F Av) =y [L]

1, o [L] if v & dom(A)

= ]te HA( ) for w € dom(A) \ {v}

We explain some key rules below. In the rE-I N, the type en-
vironmentw : ﬁqo[ ]; A captures the condition thatis first used for
input, and ther and other channels are used according\torhe
obligation level of the input action onis 0, since the input is im-
mediately performed, without relying on any capabilities. For ex-
ample, ifa:f, [Bool], b:# [Bool!S, ]z : Bool Fir P, then we can
obtaina : ﬁ?giéc [Booll,b: 4, [Bool!3.]a’(x). P by usingLT-IN.
Note that the obligation level of the output action bias been
raised ta3, sincea®(x). P tries to exercise the capability of level
to receive a value from, before fulfilling the obligation oi.

The ruleLT-OuT for output is similar:v : ﬁ.o[ J;(Ar|@: L)
captures the condition that is first used for output. The part
@ : |L expresses the usagehy the process that receivés The
operationT ensures that the obligation level of actions on channels

Relations and operations on usages are extended to those oﬁ” is decreased by one whemis passed om. For example, let\

types.

DEFINITION 3.9 (subtyping). The subtyping relatiorC is the
least reflexive relation closed under the following rule:

U<vu

_— (SuBT-CHAN)
fu L] < o [L]

a~ﬁ?go [1g° [ﬁ!go[]]vb'ﬁ?gf |1g° [ﬁ!go[”

Then we can deriva it a(x). b[z], but neitheA it a(x). alx)
nor A Fir b(x).a[x]. This condition prevents a process from in-
finitely delegating obligations. While this is sufficient for ensuring
(strong) lock-freedom, it is too restrictive; for example, in a recur-
sive processa(n, z). (---a[n — 1,z] - - - ), the obligation level of



x must beco. Attempts of overcoming this limitation have led us
to the hybrid type system in this paper.

In the rule LT-NEw, the conditionrel(U) checks that each
capability of an action is matched by an obligation of its co-action.

This serves as a 'sanity check’ for assume-guarantee reasoning. For

example, we can derive
b:t |21 [Bool] bir (va) (a (z).b[x] | @[true]. b°(z)),

from

a1 [Bool],b: 1|41 [Bool] bir a®(x). b[z] | a[true]. b°(z),
but we cannot derive

bifin_ |20 [Bool] Fir (va) (a°(z). b[z] | b°(z). a[x])

from

a:flo0 11 [Bool], b:fy 29 [Bool] it a®(z). b[x] | b°(x). @[]
because the input obligation anis not matched by the output
obligation ona.

The ruleT-WEAK allows us to replace a type environmeht

with A’ if A’ represents a more liberal usage of channels. For ex-

ample, froma : §,9_[Bool] Fir P, we can derive : il [Bool] bir
P.

REMARK 3.1. The main omission from the original type system
for lock-freedom [23] is recursion and choice on usages. The omis-
sion of those features are just for the sake of simplicity, and the new

type system is sound in the presence of them. Recursion and choice

on usages are necessary for automatic type inference.

3.2 Robust Deadlock-Freedom/Termination/Confluence

To enable local reasoning in the new type system for lock-freedom
that we will present, we introduce a strengthening of the notions of
deadlock-freedom, termination, and confluence.

3.2.1 Robust Termination

We first define robust termination. For the sake of simplicity, we
define robust termination using simple type environments, rather
than lock-freedom type environments. A substitution= [w/Z]
respectd” = 7:S if o = 50 : S is well-defined. A substitutiosr

is closing forl" if o respect$” andoT" has no variables. A process is
robustly terminating if it cannot diverge, after any sequence of tran-
sition that conforms to the base type systgm The reason why,

in the definition of robust termination, we consider only transitions
that are well-typed under th&T system (as opposed, for instance,
to the arbitrary untyped transitions of the operational semantics of
processes) is the following. We wish to apply the analysis of ro-
bust termination only locally, to subcomponents of larger systems.
These subcomponents are typed with termination types, but they

interact with the rest of the system whose components only respect

the ST types.

DEFINITION 3.16 (robust termination)A processP is terminat-
ing if there is no infinite internal transition sequende ——

P P, I .... Aclosed proces® is robustly terminat-
ing underT" if ' Fsr P and, for any@, k, andn, - - - such
thatT' bsr P 2% ... 25, the derivativeQ is terminat-
ing. An (open) proces® is robustly terminating underr, written

T rrer P, if o P is robustly terminating undesT" for every clos-
ing substitutions for T'.

3.2.2 Robust Deadlock-Freedom
We say thatA is closed ifdom(A) NV = (. We writerel(L) if L

is a channel typ¢,, [L] andrel(U). We write rel(A) if rel(A(v))
for everyv € dom(A).

DEFINITION 3.17 (robust deadlock-freedomY.he relationA =gp
P is the largest relation such thak =g P implies all of the fol-
lowing conditions.

1. If Ais closed and-el(A), then:
e Pis deadlock-free

o If 0bi(A(a)) # oo, then eitherP
o If 0b7(A(a)) # oo, then either? “%or P 7.

2. If [v — a]A is well-defined, thefv — a]A = [v — a]P.

3. If P -5 P’ and, furthermore, when is an input, all names
received are fresh, theh —» A’ and A’ |=p, P’ for some
A

We say thaP is robustly deadlock-freenderA if A |=gp P holds.

2% o p 1,

The relationA - A’ discussed above is defined by:
AT A

g—
A,a:jjU[f} L>A,a:jiU,[’Lv]

ULy

A a: (L) alf] Alb:T,a: 4,0

U-5U ATL.<A|b:L  re(le)
we)ab) .,
AaztylL] =7 A ety L)

3.2.3 Robust Confluence

We introduce the notion gbartial confluencewhich means that
any r-transition commutes with any other transitions. To formally
state the partial confluence, we assume that each prefix is uniquely

labeled as in [3], and extend the transition relatiod#d wheres
is the set of the labels of the prefixes involved in the transition. For
example, the rules for input and communication become:

a¥!(@). PP [P

P’ is arelabeling of?

«a®! (7). P U wox (@) P[5 B P’

a[b],S2 -
P2 — Q2 {C} n FN(PQ) = @
Pyl Py TR (2) (Q1]Q2)

Robust confluence indicates partial confluence after any sequence
of transition that conforms to the base type syssam

DEFINITION 3.18 (robust confluence)A processP is partially
confluent if whenever; % p Sy Ps, eithern = 7AS; = So,
or P, ik B P». (Here,= is the least relation closed under the
commutativity and associativity ¢f) A processP is robustly con-
fluentunderl’, writtenT" =geons P, if I' s P and for any closing
substitutiono that respectd’ and for anyQ, &, andmny, - - - g, such
thatol' Fsr oP -2 ... % (Q, the derivativeQ is partially
confluent.

7,51
oot



AFir P t=oco=>yx=e ALk P t=oco=>y=e

—= ———— (LT-OuT) = LT-IN
v:ﬁ!gfﬂ];(A1|w: 1L) by oX[w]. P v:ﬁf?g[L];A Frr vX(Y). P ( )
A b Py As bir Po A b P A< A A b P
——— (LT-ZERQ LT-PAR = LT-W ——  (LT-REeP
@FLTO( ) Al‘AQ |_LTP1‘P2 ( ) AFLTP ( EAK) *A'_LT * P ( )
Aya: gLl Fir P rel(U) AFur P AbirQ
A Fir (va) P (LT-NEW) R Bool) Fur if v then Polse @ (11D
Figure 3. Typing Rules for Lock-Freedom (without hybrid rules)
3.2.4 \Verification Methods for Robust Deadlock-Freedom types by the following rules.
and Confluence _— _—
. o nocap(Bool) noob(Bool)
While termination, deadlock-freedom, and confluence are fre- nocap(U) noob(U)
quently discu_ssed in the literature, we are not aware of p_rfevio_us mode(U,?) = nocap(f) mode(U, 7) = noob(f)
work that defines the robust counterparts above and verification de(U, 1) = b(L) de(U,1) = @)
methods for them. modett, ) = noo modell,:) = nocap
Robust deadlock-freedom is guaranteed by Kobayashi's type nocap (4, [L]) noob(f; [L])
system for deadlock-freedom [24]: Here, mode(U, o) means thal/ containsa. We writenocap(A)

THEOREM3.1.1f A 4 P in the type system of [24] then whennocap(A(v)) for anyv € dom(4).

A g P. Notice the interplay betweenocap and noob. For example,

The proof is similar to the type soundness proof in [24], hence noob(L) is required fornocap(4,9_[L]), sinceL is the type of a
omitted. (A difference is that [24] prove the soundness based on channel that isexportedto the environment. On the other hand,
the reduction semantics, while we need to prove it based on the nocap(L) is required fornocap(f,q_[L]) sincel is the type of a
labeled transition semantics.) In applications of robust deadlock- channel that ismportedfrom the environment.

freedom, it is often the case that the environménineeded is

of a restricted form, so thah = P then boils down to the ~ EXAMPLE 3.1. nocap(fi-o_ [ [1]) and nocap(fio_[fie[]]) hold.
verification of a few simple behavioral properties for which other nocap(#,0 [#,0 []]) does not hold.

type systems and model checkers can also be used. For example, if =

Alisa:fo [Bool], thenA =gy P only means thaP is deadlock- EXAMPLE 3.2. Ay = a:f0 [tho [1],b: 450 [] satisfiesiocap(A).
free andP will eventually send a boolean anunless it diverges. ~ On the other handAs = a: 51 [fio []],b: fo [] does not satisfy
Robust confluence is guaranteed, for instance, by types systems for, ocap(A,) ©= ’
linear channels [25] and race-freedom [36]; other static analysis

methods such as model checking and abstract interpretation [16] To see why thewocap(A) condition is necessary, consider the
could also be used. Verification of robust termination is discussed processP; | P., where

in Section 5. ot B ot
. . P = xa(z).blz] P = ald] | #b(z). alz].

3.3 Hybrid Typing Rules

We now introduce the new ruléS-HYB (for weak lock-freedom), Let us define; andA. by:

andSLT-HyB (for strong lock-freedom).
def
A = aiﬂ*?go[ﬁ!go[]]vbiﬁ*!go [ (1]

def

A ):RD P ET‘CLS@(A) ':RTer P TLOCGP(A)

Af P (LT-HyB) Ap = aiﬁ*!gom!gc[mbiﬁ*?gc [t (1] et ]
Then, we havé\; |=rp Py andAs =gy P>. Py andP; are robustly
A P Erase(A) f=rrer P terminating, i.e.Erase(A1) FErrer P1 and Erase(Asz) FErrer Po.
Erase(A) FErcont P nocap(A) SLT-H If there were no other conditions, we would obtdin +.r P, and
A bsr P ( -Hve) Ao Fir Ps, from which the following wrong judgment would be
obtained:
Here, Erase(A) is the simple type environment obtained from 0 Fur (ve) (¢° | (va) (vb) (P1| P2)).

A by removing all usage annotations. The conditiestap(A)
holds if, intuitively, A describes a process that fulfills its obliga-
tions without relying on the environment. As mentioned in Sec-
tion 1, this is used to avoid circular, unsound, assume-guarantee
reasoning. is subtle; for nested channel types, the nocap condition
depends on whether a channel is used for input or output. For ex-
ample,nocap(+0_[#ho_[1]) holds butrnocap(f,9_[to_[]]) does not.

The problem with the example is th& and P, assume each
other that the other process will fulfill an obligation to execute the
input ona or b, and to use the received channel for output.

Based on the observation above, we requireibyap (A) that
P must not rely on the environment fulfilling any obligation.

REMARK 3.2. Weakening therocap condition, or finding situa-
tions in which it can be removed, appears delicate. For instance,
the example ofP, and P, above might suggest thatocap is

not needed ifLT-HYB is applied only once in a typing deriva-
tion. That is, howevemninsound Let P be xa(x).b.a[x] and A

LKobayashi's type system [24] uses pairs instead of tuples; so strictly P€0 .20 [],a: 820 1o [f11 [Bool]]. Then we havel Fpr P and
speaking, we need to encode tuples into pairs in the judgrheng P. Erase(A) |=rrer P. Without thenocap condition, we would get

DEFINITION 3.19 (nocap).We write nocap(U) when all the ca-
pability levels inU are oo, and writenoob(U) when all the obli-
gation levels inU are co. The relations are extended to those on




A Fir P, from which we would obtain a wrong conclusion: g sp(z,y,n, s).z(t,r).
= D (Plshla o). if t = s then7[n]|p[z,y,n, s]

0 tir (va,b) (P|=b|alc]|c®) else if y = nil then 7[n + 1]
As this example suggests, if thecap condition is weakened, the |ve(ple,nil,n + 1,t] | D[z, ¢, n, s])
condition of robust termination must be strengthened to recover else y[t,r]. B[z, y,n, 5]
the type soundness. A more interesting weakeningoofip is gy, e = 1.1
mentioned in Section 9. R (vp) (G‘p[a’il 1, s0])

STy STy |#(vr1) (@ [rnd_string(),r1] | 11°(v). 0)

In the rule for strong lock-freedom, the robust confluence en-
sures that once a marked prefix is enabled, it cannot be disabled
by any other transitions. See Example 3.6 in Appendix A for an
non-trivial example, for which the ruleT-HYB fails to guarantee
strong lock-freedom.

We write A Fir P if it is derivable by using the typing rules in
Section 3.1 and.T-HYB, and writeA Fg.r P if it is derivable by
usingSLT-HyB instead ofL T-HYB.

Figure 4. A symbol table

Let A =bcast:f,;0 [fi1_|11_[] List]. Then, we have:

A |=rp BServer Erase(A) |=rrer BServer
Erase(A) FErcont BServer nocap(A)

(Forwarding of a request fromcast to bcastit is necessary to

3.4 Examples get the last condition. Actually, the forwarding can be removed if

ExAMPLE 3.3. Recall the procesServer in Section 1.

Server
(vfact_it)
(xfact (n,r). fact_it[n,1,7]
| xfact_it(n,z,T).
if n = 0 then 7[z] else fact_it[n — 1,z X n,r])

Let us defineClients by:

nocap(A) is extended tanocap, (A) as discussed in Section 4.)
Thus, by usingSLT-HYB, we getA Fs.r BServer. By applying
the rules for theL.T type system to the rest of the process, we get
0 Farr BSystem.

ExampPLE 3.5. This example is from [20]. It is about the imple-
mentation of a symbol table as a chain of cells. In Figur@ &

a generator for cellsSTy is the initial state of the symbol table
with only one cell;ST,, is the system in which the symbol ta-

ble and clients of it, wherend_string() is random generator of
strings, used for a compact representation of a potentially infinite
number of clients. The request and answer actions from the clients
are marked so as to indicate that we expect them to succeed in the
lock-freedom analysis.

Every cell of the chain stores a pdi, s), wheres is a string
andn is a key identifying the position of the cell in the chain. A
cell is equipped with two channels so as to be connected to its
left and right neighbors. The first cell has a public left channel
to communicate with the environment and the last cell has a right
channelhil to mark the end of the chain. Once received a query
for string ¢, the table lets the request ripple down the chain until

This means that all the clients can eventually receive replies. Note €ithert is found in a cell, or the end of the chain is reached, which
that the whole process diverges (since there are infinitely many Means thatis a new string and thus a new cell is created to store

clients), but we can derive strong lock-freedom by local reasoning N Poth cases, the key associated ireturned as aresult. There is
based orSLT-HYE. parallelism in the system: many requests can be rippling down the

chain at the same time.
LetAbeia:§,,1 [String, 2 [Nat]]. Then, we have:

A ':RD STo ET(ISC(A) ':RTer STo
Erase(A) Freont STo nocap(A)

By usingSLT-HYB, we getA g1 STo. By using rules foLLT type
system, we obtaifl Fspr ST, .

Clients < (vr1) (fact [rnd(), 1] | 71°(z). 0)
Here,rnd() is a primitive for generating random natural numbers.
Let A befact: 4,40 [Nat,f,,_ [Nat]]. Then, we have:

A rp Server  Erase(A) Errer Server
Erase(A) |Freont Server  nocap(A)

Thus, by usingSLT-HYB, we obtainA kg1 Server. From this
judgment andfact : §, [Nat, 1 [Nat]] Fsir Clients, we obtain:

0 Fsir (vfact) (Server | Clients).

ExaMPLE 3.4. Consider the following proce®System.

BServer (vbcastit) (xbcast(z).bcastit|z]
| ¥bcastit(z). if null(z) then 0
elselet z = hd(z) in (T |Z |bcastit[tl(z)]))
BSystem Lof (vbcast, rec) (BServer
| xrec(z).if null(z) then 0
else let z = hd(z) in (z° |Tec[tl(2)]))
| (ver, ez, c3) (T8 [er; c2; c3] | beast [e1; co; cal | €1° | e2° | €3°)

ExamMPLE 3.6. This example shows a binary tree data structure,
offering services for inserting and searching natural numbers. Each
node of the tree is implemented as a process that has: a state, given
This example uses lists as first-order values, with the usual oper- by the integer stored in the node and pointers to the left and right
ations for them. The system has two servers: the sérest(z), subtree and that contain, respectively, smaller and greater integers;
which broadcast a message twice to each channel in the;list channels for the insert and search operations. In Figuré 5, a
the serverrec(z), which listens on all the channels in the list generator of new nodes, which can then grow and originate a tree,
The two services are invoked with a list made of three channels and wherez ands will be the insertion and search channelsate
c1, ¢2, c3, on which the clients also receive. All receive messages, stores the state of the node. Initially the node is a [@agéeInit
in the serverrec and in the clients, are expected to succeed. The is the initial tree, with an empty state and public chanfelsert
success of the receive operation relies on the correct inspection ofandsearch to communicate with the environment. Once received
the lists by the two recursive servers, including the correct use of a query for an integen, the tree lets the request ripple down the
each channel in the lists (for instance, lock-freedom would fail if nodes, following the order on the integers to find the right path,
bcast did not use, or used only once, some of the channels in its until either¢ is found in a node, or the end of the tree is reached,
list). which, in the case of an insert, means thas a new integer and




the node a leaf, and thus the leaf becomes a node that st@med

THEOREM4.2 (strong lock-freedom)lif ) Fgr P, then P is

two new leaves are created. As in the symbol table example, manystrongly lock-free.
requests can be rippling down the tree at the same time; moreover,

requests can even overtake each other.

As to lock-freedom, the example is interesting for at least two
reasons. (1) The tree exhibits a syntactically challenging form. The
processG has a sophisticated structure of intertwined recursive
inputs: the replicated input atewtree has outputs ahewtree
itself in its body; similarly, the replicated inputs@&nds have, in

The rest of this paper is devoted to the proofs of Theorems 4.1
and 4.2. Readers who are not interested in the proof may safely skip
the rest of this section.

Basically, as in the previous type system [23], Theorem 4.1 fol-
lows fromtype preservationwhich means that typing is preserved
by any transition, angrogress which means that if a tagged pro-

the body, outputs at sibling channels (the names for interrogations .qssp is well-typed, thenP ;)*i). The existence of the hy-

of the two following subtrees); further, also the imperative channel
state takes place in the recursionsiatnds. (2) Semantically, the

brid rule LT-HyB, however, poses significant challenges in the
proof. First, while it was enough to show type preservationrby

tree is a dynamic structure, which can grow to finite but unbounded 5 nsitions in the previous type systems, becauseTeH YB, we
length, depending on the number of requests it serves. Moreover,jave to show that typing is preserved agy transitions (includ-

the tree has a high parallelism involving independent threads of

ing output/input transitions). Second, in the type system discussed

activities and where: the paths followed the threads on the tree areq 14, typing is actuallyot preserved by transitions, so that we

partially overlapping; threads can proceed at different speeds (i.e.

'have to extend the type system in a non-trivial way. To see why,

requests can overtake each other). The number of steps that the treguppose that a judgment - P is derived by usind.T-HYB.
takes to serve a request from a client depends on the height of the, order for the judgment derived HyT-HYE to be preserved by

tree, on the number of internal threads in the tree, and on the value

of the request.
LetAbeinsert:§, [Nat, iy []], search:f,, [Nat,f;: [Bool]].
Then, we have:

A [Epp TreeInit  FErase(A) f=rrer TreeInit nocap(A)

Thus, by usind T-HYB, we obtainA F.r TreeInit. By applying
rules forLT to the rest of the system, we gtt 1 System.

Note thatSLT-HYB is not applicable sinc&reeInit is not
robustly confluent (because, when multiple requests arrive simul-
taneously, there can be a race on the chasnete). Indeed, the
example is NOT strongly lock-free! A search request may never be

replied if the request is overtaken by insertion requests so often that

transitions, we need to require thAt =y P andnocap(A)
P L Qimply A’ =gy Q andnocap(A’) for someA’. The latter
conditionnocap(A’), however, does not hold in general. For exam-
ple, letP = (vc) (@lc] | #c()[c°[]) andA = a:fly_ [ﬁlgo[]], with

n = (ve)alc] and@ = 0]x*c()|c°[]. Then,Q is typed under

A = a:folthee (1], ¢ 8aro_jiee (], bu nocap(A') does not hold
because’s usage containk°.

To overcome the problem above, we first extend the type system
in Section 4.1. We then prowgpe preservatioandprogressor the
extended type system in Sections 4.2 and 4.3. Theorem 4.1 then
follows as a corollary of the two properties.

the tree grows faster than the search request goes down the tree. Séi.1 Extended Typing
a stronger scheduling assumption is necessary for this implementa-p key observation to solve the above problem is that although

tion to work properly.

In all the examples, robust termination is guaranteed by the type
system described in Section 5.

EXAMPLE 3.7. Figure 6 shows a strongly lock-free implementa-
tion of binary search trees. The serv@reeInit’ receives re-
quests along channel one by one. A request is either of the
form insert(n,r) or searchn,r). Unlike the system in Exam-
ple 3.6, requests cannot be overtaken, although there is still par-
allelism (multiple requests can go down the tree simultaneously).
TreeInit’ is robustly confluent; note that the ontytransitions
insideTreeInit’ are on channelSeaf, node, left, and right,

and that the first two of them are replicated input channels, and the
others are linearized channels. Thus, we can derive

a: ﬁ*?l [L] Fsir TreeInit’
where

L < (insert: [Nat, £, []], search: [Nat, £, [Nat]]).

Here,L is a variant type describing requests of the fansert(n, r)
or search(n, r). By using the typing rules f&LT, we can derive:

0 Fsr System’.
Thus, we can verify thatystem’ is strongly lock-free.

4. Type Soundness

We show the soundness of the type system in this section.
The following theorems are the main results of this paper.

THEOREM4.1 ((weak) lock-freedom)If (¢ i P, then P is
(weakly) lock-free.

the type environmenf\’ of () contains a capability, that capa-
bility is matched byQ’s own obligation?%,, andQ does not ex-
pect any obligatory behavior from the environment; the transition

p ok Q has exported only a capability (to uséor output) to
the environment.

Based on the observation above, we extend the type judgment
with an additional parametek, which expresses an assumption
about what capabilities/obligations the environment holds. The re-
sulting type judgment form ig\ +} P, whereJ ranges over
{DT, LT} as before. The conditionocap(A) in T-TER s replaced
by nocap, (A).

A is a mapping from the set” of names to the set ahodes
defined by:

m (modes) :=0 |7, |!a 74
az=¢€|o

Intuitively, A expresses how (for input or output) each channel may
be used by the environment &f, andA %} P means that is
well-typed under that assumption. We write: m1, ..., an : my

for the mappingA such thatA(a;) = m; and A(b) =!7, for

b ¢ {a1,...,an}. We write L for the mappingA such that
A(a) =17, for anya € L. For the sake of simplicity, we assume
that variables are always mapped1e.

A modem can be considered an abstract of usages (which are
again abstractions of communication behaviors on each channel).
Intuitively, a : 7, means that the environment may perform an input
on a. The attributea expresses whether the process relies on the
environment performing the input.: 7. means that the process
definitely does not rely on the environment performing the input,
while a : 7, means that the process may rely on the environment.
We often omite and just write?, !, !? for 7, I, 7.



¢ ¥ snewtree(i, s).(vstate) (state[leaf]

| *i(n,r).state(z).  /#** insertion xxx/
match z with
leaf — /*x* if t is a leaf, turns it into a node having two new leaves ***/
(vleft_i,left_s,right_i,right_s)
(M[left,i,left,s} |newtree[right_i,right_s|]  /#** create two leaves ¥**/
| state[node(n,left i, left_s,right_i,right_s)]  /*** change to an internal node *¥*/
|?[]) /*** notify the completion of insertion ***/
||node(ni, i, si,ir, Sr) — /***x if t is a node **x/
if n =n, then 7[| /**x if n is in the node, then stop, to avoid duplicates **x/
else if n < n; then i;[n, ] /*xx if n < t; then insert n into the left subtree **x/
else i, [n, 7] /*** otherwise, insert n into the right subtree *¥x*/
|sEatele)
| xs(n,r).state(z).(state[z]  /*** search **x*/

| match « with leaf — 7[true]

|| node(na,i,si,ir, sr) — if n1 = n then F[false] else if n < ny then 5/[n,r] else E[n,r}))

g
&

Treelnit (vnewtree) (G | newtree[insert, search)])

System =  (vinsert,search) (TreeInit |*(vr1) (insert’ [rnd(),r1]|r1°)|*(vr2) (search’[rnd(),r2] | r2°(z)))

Figure 5. A binary tree

¢ xleaf (x).x(req).
(match req with
insert(n,r) — (vleft,right) (7 |node’[n,x,left, right]|leaf [left]|leaf [right])
|| search(n,r) — 7T[false||leaf [z])
| ¥node (n1, z, 1, ).z (req).
(match req with
insert(n,r) —
if n = n1 then 7 |node’[n1, r, 1, 7]
else if n < n; then 7;°[insert(n, r)]. node’ [n1, =, x1, T,
else Z;°insert(n, )]. node” [n1, x, 1, T,
|| search(n,r) —
if n = n1 then 7[true] |node’ [n1, z, 21, T,]
else if n < n; then 7;°[search(n, r)]. node’ [n1, =, T1, T,
else 7;°[search(n, 7)]. node’ [n1, z, 21, 2,])

TreeInit’ < (vleaf,node)(G'|Teaf’[a])

System’ (va) (TreeInit’|x(vry) (@°[insert(rnd(),m1)] | r1°) | *(vr2) (a°[search(xnd(), r2)] | m2°(x)))

Figure 6. A strongly lock-free implementation of binary trees

We define thesubmodeelationm; < mgy as shown below (An We extend the submode relation to that on mode environments by:
upper mode is greater than a lower mode): A< A Va € £.A () < As(a)
1S N2 <— -4 >~ 412

We replace the conditionocap (A) with the conditiomocap, (A)
defined below.

0
/ \ DEFINITION 4.1. nocap,, (L) is defined by:
! ? e
c e nocap,, (Bool)
//( \ 17¢ <m V nocap(U) (mode(U,?) Am < o) = nocap(L)

17 lo % (mode(U,!) Am <?.) = noob(L)

\ / nocap, (¢, £)

17, We write nocag (A) if nocap, () (A(a)) foreacha € dom(A).




AEw P Al P nocap (A) AN P A<A  AN<A
Rer —__ (ELT-HyB) LT = = (ELT-WEAK)
N Abir (P) AFy P
Ay Fiz P le=0c0o=x=e ALL p
T (ELT-OuT) - (ELT-REP)
v ﬁ!gc [L]; (A1 |w : L) Fip 9% [w]. P *A b P
A,v:Ligg P e = =
N (ELT-ZERO) wibFa P te=c0Zx=e (ELT-IN)
0+ir 0 v ﬁ70 [LL;A iz v¥(y). P
Aa:tyL]HY P 1% L
4 ﬂU[A{]a:,E y reltt) (ELT-NEW) AFEP  AHEQ (ELT-1F)
Ab™ e (va) P A (v:Bool) H if v then P else Q
AFRE P AR P
A2 < ModegA A; < ModegA
2= 1 I)A — 22 (ELT-PaR)
AI‘AQFLTl 2P1‘P2

Figure 7. Extended Typing Rules for Lock-Freedom

For the example given in the beginning of this subsect@n,  relationA —~ A’ defined below. We writd A, A) — (A’, A')
is typed asA’ Fy; Q whereA’ = a:?.,c:!.. By the definition for A - A’ andA - AL
abovenocap,, (A’) holds.

We also extend the syntax of processes in order to make appli- AT A
cations ofLT-HyB explicit.
Pu=... | (P)T o
(P A

The typing rules for the extended judgments are given in Fig-
ure 7. A key change from the type system in Section 3 is that the

conditionnocap(A) in T-TER has been replaced by a weaker con- A el A{Z+— 0} N Modegb: L)

dition nocap, (A). Note also that rul&ELT-PAR requires (by the

conditionsA» < ModegA;) andA; < ModegA:)) that P con- Here, A1 M A. is the greatest lower bound df; and A (with
forms to the assumptio, on the behavior of%’s environment, respect to the submode relation).

and vice versa. Her&lodegA), defined below, maps the type en- The predicateenabledA, A, n) defined below means that the
vironment to the corresponding mode environment. transitionn is enabled under the type environmefit and the

DEFINITION 4.2. ModegU) is defined by: mode environmend. Note that, for example, the actiatib] is not
possible ifA(a) = 0, because the environment cannot perform an
Modeg0) = 0 input action om. That is expressed by the conditidrfa) <?. in
t | a,MModegU) ift; # oo the third rule below.
Modesa;,-U) =4 1 ModesU) i 1 =
ModegU, | U2) = ModegU,) M ModegU-)
Modeg+U) = ModegU)

DEFINITION 4.3. The predicate enabléd, A, n) is defined by:

Here,m M ms is the greatest lower bound of; andm.. enabledA, A, 7)
ModegL) is defined by:
ModegBool) = 0 Aa) =4y[L]  A|b:Lwell-defined A < Modega:#, [L],b:L)
Modes#,, [L]) = ModegU) enabledA, A, a[b])
ModegA) is defined by:
Modeg A if d A Ala) <7 ks m
ModegA)(a) = odegA(a)) if a € dom(A) =
0 otherwise enabledA, A, ( A) [6])
4.2 Type Preservation Now we state the main lemma.
We now show that the extended typing relation is preserved by | emma 4 3 (type preservation)lf A % P, enabledA, A, n),
reduction. andP - Q, then there existd’ and A’ such thatA’ 3 Q and

A type environment and a mode environment may be changed n
by theyteansition. For example, for the example givenyat the begin- (A, A) = (A A%,
ning of the previous subsectio®’s type environment and mode  Proof See Appendix BO
environment arel = a: f,o_ [ﬁ,go []] andA = a: ?., while those of
P areA = a- ﬁo[ﬁzgo (1], €8m0 - [] andA’ = ¢: .. Similarly, 4.3 Progress and Lock-Freedom
We write rel(A) if dom(A) C L and, for everya € dom(A),
if A(a) is f;[L] thenrel(U). The progress property is stated as
follows.

suppose that : ;e [t []] H PandP ot Q. SinceP imports
the capability and obligation oh by consuming the input capa-
bility on P, the type environment of) is a:fig[f,1 []],0: 8 [].
Such changes of type envwonments and mode environments are-EMMA 4. 4 (progress)Let P> be a tagged process. ff Hy P,

captured by the relation —~ A’ defined in Section 3.2 and the  thenP I



Proof See Appendix @I the ordered multiset given the levels of all occurrences of outputs
We can now prove the lock-freedom theorem (Theorem 4.1).  that are not underneath a replication. For instance, a typing of the
o processP in (1) would assigm a level that is the same as thatof
Proof of Theorem 4.1 Suppose thét -ir P andP — Q. We but smaller than that of; the level ofc could be anything, as the

need to show that any procegsin the tagging ofQ is successful.  input at this channel is not replicated (there could also be several

By Lemma 4.3, we havé Fi; Q'. (Note that replacement of outputs at- underneath the replication afif there were an output

with O does not affect the typability.) Suppo§¢ — R. Then, at ¢, however, then the level efshould be smaller than that of.

by using Lemma 4.3 again, we dget;; R. SinceR must be tagged The grammar of the types agv is:

(note that only—— cannot discharg&), by using Lemma 4.4, we V &= Bool | $°[V] € Nat

getR Lfi_ Thus,Q’ is successfull A judgment inLev takes the formo ., P. The typing rules
See Appendix D for the proof of Theorem 4.2. ensure that in every outpat[w] in P that is not underneath a

replication, the level ob is smaller tham. We write©® +.., P
; ; if © ., P holds for some levak. The typing rules are similar to
5. Types for robust termination those of the simply-typed-calculus, except for the following rules
In this section, we discuss type systems for guaranteeing robustfor output, input, and replicated input.
termination.Terminationof a term means that all its reduction se-
guences are of finite lengtiiRobust terminatiorguarantees that O(p) = o2 [‘7] OLT:V OFrY p s < o
termination is maintained when the process interacts with its en- Lev

vironment. Termination is strictly weaker than robust termination. O e PIO).P LEV-OUT
Consider for instance the term (LEV-OuT)

P E ] | e(x).(z | xa.T) @ o) =t=V] 0.z VHy P (LEV-IN)
The processP has one reduction only, and therefore it is termi- O Fig, p(%).P
nating. It is indeed typable in the simplest of the type systems in B B
[15]. However, P is not robustly terminating. It can interact with O(p) = §*2[V] 0,7: V2 P
other processes via the inputeaand, in doing so, it may receive O wp(3).P (LEV-RIN)
resulting in the non-terminating derivative Lev '

chb|a|*a.a Note the difference betwedrev-IN andLEV-RIN; the levela; of

the judgment does not changeliv-IN, while in LEV-RIN, the

' level of the judgment changes from to aw.

The main limitation ofLev is that, in certain cases, an input
(Z). P cannot have outputs at or at names with the same type
asp, inthe bodyP. The other type systems of [15] allow more free-
dom by using more sophisticated types and weight measure, and
exploiting techniques from term-rewriting based on lexicographi-
cal and multiset ordering.

It is precisely because of input prefixes, as shown in this example
that processes typable in [15] may not be robustly terminating.
The objective here is to guarantee robust termination by re-using *p
existing type systems for termination.
Precisely, we wish to add some extra conditions to the type
systems for termination capable of ensuring the stronger property
of robust termination. For the sake of simplicity, we impose a

restriction that replication can be applied only to input prefixes (so In particular, the fourth type systerRp, introduces a notion

that a process Iike_a is forbidden). . . of partial order on channels. Roughly, the partial order makes it
We explain the idea of the extra condition on a very simple type .

o : . possible to type patterns; (y).(-- - p[?] - - - ), where the output at
system for termination, namely the first of the type systems in [15], ,,is not under inner replications, in which the levelois equal to
which we recall (and revise) in the next subsection.

that ofq (hence the pattern is not typable, for instance, in the system

Lev), but p is smaller thang in the partial ordef. This pattern

appears in Example 3.6 of the symbol tatday( precisely wheje

We recall the type systems in [15], as we appeal to them for and Example 3.6 of the binary tree (in the insert, the replicated

the termination analysis of most of the examples in this paper. input at: followed by the outputs at andi,. towards the children

In [15] these type systems are expresgdd Church—each name  nodes; and similarly in the search). Thes,judgments are of the

is assigned a type a priori—and exploit this in making use of some form ©: R +g, P wherea is a level information ancR a partial

special functions that scan the whole syntax of a process looking order on the names i®. The type of a channel may be decorated

for certain typed patterns of occurrences of names. We revise thewiith a partial order, which expresses partial order requirements on

systems, using an approaeite Curry and avoiding these complex  the tuples of values exchanged along that channel; for instance the

functions. requirement that the second component should always be smaller
There are four type systems in [15], plus combinations of some than the third, or smaller than a certain chariel.

of them. We discuss the first system, which is the simplest, and

the fourth, as it does not fit the condition for robust termination in 5.2 Conditions for robust termination

Lemma 5.2; we only hint at the others. _ o As an example, we first illustrate the conditions for robust termina-
The first systent.ev, is obtained by making a mild modification i1 on the systerbev of the previous section.

to the types and typing rules of the simply typedalculus: devel Given a type environmer®, we writeCTypes(©) for the set of

information, which is a natural nlumber, is added to each channel channel types used i@. That is, for each channel type assignment
type. The levels are used to define a weight for each process; the

type system guarantees that the weight strictly decreases undeeye are simplifying the explanation; for instance, the inpug afeed not
reduction. The main constraint imposed by the type system is pe the first input of the replication.

roughly that, in a replicated input, the level of the input name stne |atter possibility, reminiscent of dependent types, was not actually
should be strictly greater than that of any name that is used in output present in [15], but represents a straightforward extension, at least if names
in the body of the replication (and that is not under some inner with dependent types cannot be communicated; this possibility is needed in
replications). The weight of a process is the vector representing the typing of binary tree example.

5.1 The type systems in [15], revisited




v: T in © we placeT’ and all channel type subcomponents/oin
CTypes(©). For instance, ifl" is ! [{*? [Bool], Bool] thenT and
#*2[Bool] should be irCTypes(O).

Let Erase be the function that strips off the level information
from theLev types and returns simple types. The condition that we
add for the robust termination of a procéBaunderI” (whereT is
ansT type environment) is the following: there®s.t.© ey P,
Erase(®) = T, and Erase is injective on all types used i®
(that is,CTypes(©)). Injectivity is maintained under th& {typed)
transitions ofP because:

¢ Lev has the subject reduction property, thereforeagerivative
of P remains typed ir®;

e an input or output derivative aP is typed under a type envi-
ronment that extend? with types that already appear@(for
instance, in case of the input of a fresh name, dhe type for
the fresh name is extracted from the type-@f ©).

The robust termination foP underI” immediately follows from
the termination properties afev and the above invariance under
transitions, which guarantees typabilityliev after any sequence
of ST-typed transitions.

In the process” of (1), which is not robustly terminating, the
above conditions fail because angv typing for P must have
assignments: : £7[4°[]],a : [] for levels a, 3, andy with
a > (; Erase is not injective onCTypes(®©), for it returns the
same simple types ot [] and*[].

Generalizing the above reasoning, We define some abstract con-

ditions with which a type system for termination also guarantees ro-

bust termination; (Lemma 5.2); we then discuss refinements of thether a value that is defined ifi

conditions. (Section 5.3). We denote byr a generic type system
for termination, and witt® Fr., P a judgment inTer. ignoring
possible additional information in the judgment (such as the levels
of Lev), for this information is not relevant in the results below.
We recall thatST indicates the types and the type systems of the
simply-typedr-calculus (Section 2). We assume that the judgment
is closed under renaming, i.®, p: T Fr1er P andq is fresh (i.e.,

it does not appear i® or P), then®, ¢: T Frer [p — ¢|P.

DEFINITION 5.1. Let f be a function from the types Dér to those
of ST. We say tha® +r., P is f-admissibleif both © tr., P
and f(©) Fsr P hold and, for all closingf(©)-substitutions
o, whenevelr f(©) Fgr oP - ... 5 P’ there is©’ sit.
O’ Frer P'. (Wheref(©) is the ST type environment obtained by
replacing each type assignment 7' in © withv : f(T).)

f-admissibility ensures us that can be used to turn a typing
O e P into a validST typing and, furthermore, typing ifler
is preserved undest-typed) transitions, hence we have:

THEOREMb5.1. Suppos@&er is a type system that guarantee termi-
nation (i.e., wheneved .. Q, for A closed, ther) terminates),
and f a function from the types afr to those ofST. If © ey P

is f-admissible therP is robustly terminating undef(O).

Proof Straightforwardd

If © Frer P andf(©) Fsr P, and provided that the definition
of f is compositional, therf-admissibility normally follows from
a Subject-Reduction theorem fosr and injectivity of f on the set
of channel types used i®, that we indicate asTypes(0) (that

2. whenever® Fr, P, with © closed, andP —— P’ and,
furthermore, whem is an input, all names received are fresh
(i.e., these names do not appear@), then there i99’ closed
s.t. O Frer P’ with CTypes(©’) C CTypes(©). Moreover,
in the case of input with fresh names, say= «[?], it should
be f(©)(a) = §[f(©")(¥)] andO(p) = ©’(p) for all names
p ¢ {a,v}.

3. wheneve® tr.. P and©(p) = O(q) alsoO trer [q — p|P;

Then for any® and P, if f is injective onCTypes(©) then® Frer
P is f-admissible.

In the lemma, the first condition ensures us tliatonverts a
valid judgment irTer into one valid inST. The second condition is
a Subject-Reduction property fBer on transitions; the remaining
requirements, such &Types(©’) C CTypes(O), essentially en-
sure that the types of fresh names received in an input or emitted in
an output along a channelcan be deduced from the typeafThe
third condition says tharer maintains typability under substitu-
tion of names with names of the same type. In the conclusions, the
injectivity condition onf is only on the initial type environment for
P. It does not affect other environments that appear in the deriva-
tion of © 1 P; therefore the types of the restricted namegof
need not be subject to the condition.

Proof We prove tha® tr., P is f-admissible. First, by condi-
tion (1) of the lemma, bot® 1., P andf(O) sr P hold.
Consider now a closing(©)-substitutions. We haver f (©) Fsr

o P. The substitutiorr replaces each variablein f(©) with ei-
(©) with the same type as, or
with a fresh name. Sincg is injective, the same property holds if
o is applied to®, therefore using also condition (3) of the lemma,
we also haver© .. o P. (Note that ifo replacese with a fresh
name thenf(0)(z) is a channel type and therefore alR¢x) is a
channel type, by the definition gfand its injectivity.)

We now show that whenevé ., P, with © closed andf
injective onCTypes(©), andf(©) kst P - P’, then there is
©’ closed with®’ ., P’ and f injective onCTypes(©’). This
would ensure us the remaining condition foadmissibility (on the
typability of all typed derivatives of a closed process).

If  is not an input, then this follows by condition (2) of the
lemma. Suppose now is an input, saya[v] and v is a name
(the case of monadic input is simpler to explain, the general case
of polyadic input is however similar). 1§ is fresh then asser-
tion follows from condition (2) of the lemma as before. Suppose
now v appears in©, and letw be a fresh name. We also have

f(©) Fsr P alw] P, for someP” with P! = [v— w]P".
Again by condition (2) of the lemma we deduce that there is
©’ s.t. O Frer P with CTypes(©’) C CTypes(©). Now, if

f(©)(a) (T, thenT must also be the type aof in f(©)

(because we havg(©) ks P ate] P’) and, since it must be
F(©)(a) = t[f(©")(w)], typeT is also the type ofv in f(O").
Further, since» does not appear in the names of the inpjat], the
type ofv is alsoT in £(©’). By the injectivity of f, we deduce that
the types ofv andw are the same i®’. We can therefore apply
condition (3) of the lemma and inf@’ e, [v — w]P’ = P/.O
Lemma 5.2 is applicable to the system for termination in [34],
This system useST types together with some syntactic conditions

is, we placel” each type that can be assigned to a channel and thaton processes; it is straightforward to put these syntactic conditions

appears ir®).

LEMMA 5.2. Given a type systemer, and a functionf from the
types ofTer to those 05T (and mapping@ool ontoBool), suppose
f andTer satisfy the following conditions:

1. wheneve® tr; P also f(©) Fsr P;

into the type system, obtaining a refinementsaf that satisfies
the hypothesis of the lemma. Lemma 5.2 is also applicable and
to all but one of the four type systems in [15] (the functifn

of Lemma 5.2 can be taken to be tfi#ase function mentioned
earlier in the section that strips off levels and other termination
information). An exception is the systepn, with partial orders.



We discuss refinements of the lemma that can hap@lbnd the (for instance, in the previous examplesat.b | @, we could take as
system of [38] in the next section. a name along whicpairs of unit values are exchanged). However,
when the robust termination analysis is applied to a subcomponent
P of a larger system, a type distinction on two nameandb that
Injectivity in Lemma 5.2 The main constraint in Lemma 5.2 is  is needed for the robust termination Bf might be forbidden by
the injectivity of f. This says that the channel types that appear in usages of the names in other processes (for instance, both names
O (that is, the types of the free namesfand, recursively, of the  could appear in outputs along the same channel, in which case,
names that can be communicated along them) should be the sameinless the type of this channel is polymorphicandb must have
whenever the corresponding simple types are the same. the same type). For these situations, we discuss in Appendix E a

This requirement may be demanding when the processes havemodification of the type systems in [15], where levels are replaced
many free names with the same simple type, as the termination by intervals

analysis may need to distinguish some of them. For instance, in a . . .
CCS-like process, where all names have the same type, the injec__lntervals We outline an extension of the type systems in [15] that

tivity condition on f would amount to requiring that all free names Improves th_elr EXpressiveness, both fo_r the termination and for the
should have the same termination type (whereas restricted namedCPuSt-termination analysis. \We explain it on the system of pure
can have arbitrary type). Thus we would be unable to distinguish evelsLev. We repla(_:e levels witintervals An interval, \_ertten
the processa.b | @, which is robustly terminating, from the pro- "> forn < m, indicates a non[-nem]pty set of consecutive natural
cess«a.@ | @, which is non-terminating, as the namendb have numbers. A type assignment: £*""[V] intuitively means that
the same simple type. (The type system with letels, mentioned x can be |n_stant|ated Wlth' any c_hannel whose level is between
above, recognizesa.b | a as terminating, by assigning to name ~ andm. Typing rules remain similar. Intervals, however, allow us
a level greater than that of and in doing s it indeed violates the ~ [© have a form o{nsrlrJL]btypmg, given by interval containment. For
injectivity condition.) instance© F p : g™ [V] holds if the interval assigned join ©
However, as shown by the example in (1), what makes robust iS contained in the intervah, m]. Any process typable in [15] is
termination harder than termination is channel aliasing on inputs, tYPable in our type system, by replacing each levelith interval
occurring when a process receives channels that it already pos-»7]- We can however type terms such as
sessed. We can thus improve Lemma 5.2 by requiring a milder form a(z).0|alb] |ald] | «b.c
of injectivity for f. Let OT (O Fre. P) be the set of the channel o ) ] o
types which are assigned to the variable#adh a typing derivation ~ Which is not typable in [15] (for typing the replicatioh,should
of © Fr.: P (assuming that such derivation is unique). We replace have a level higher than which is impossible as both can instanti-
the injectivity condition of Lemma 5.2 with the following: atex; Vk\]/ith infteéva|5dit)sul\fﬂfices_t0 requirel that the inteLvaI fg)con-
tains those fob andc). More importantly, we can take advantage
forall 7€ OT(O t-re: P) N CTypes(©) andS € CTypes(O), of intervals in the conditions for robust termination. For instance,
if f(T) = f(S) thenS = T. in (2) the type equalityd = T can be replaced by the subtyp-
ing requirementS < T'. Other similar weakenings are possible in
Lemma 5.2. We omit the details for lack of space.

5.3 Discussions and refinements

(2)

This is weaker because usually7 (© Fr.. P) will be signifi-
cantly smaller thartTypes(©). For instance, ifP is a CCS-like
process, thet©O7 (© .. P) is always empty, for any. Fur- Substitutions in Lemma 5.2 Another possible source of failure in
ther, a variable need not be taken into account when computing Lemma 5.2 is the substitution condition (3). This fails on the sys-
OT(© trer P) if no aliasing on that variable is possible (that tempg of [15], with the partial orders, because legal substitutions in
is, after instantiation, the variable cannot become equal to anotherpp must respect, besides types, also the partial order. Condition (3)
name in the process). In dialect of thecalculus such asl [32], also fails in Yoshida, Berger, and Honda’s type system for termina-
aliasing is forbidden altogether since only fresh names can be trans-tion [38], as it makes use of graph types with linearity information,
mitted, henceOT (O .. P) is always empty. In general, any  and on linear types only a limited form of substitution holds. For
technique for computing the aliasing set of a variable (the set of this problem, the condition on aliasing mentioned earlier can again
names with which the variable could be instantiated), such as con-be useful. For instance, in languages without aliasing suckl as
trol flow analysis and abstract interpretation [4, 16], can be helpful condition (3) can be dropped, together with the requirements in the
to further improve (2). final sentence of condition (2) (“Moreover, in the case ..."). Thus

Another way of weakening the injectivity condition Oiypes(©)  Lemma 5.2 is applicable to the system in [38], which is formalized
of Lemma 5.2 is to impose a distinction on the types of free names on a variant ofrl. Besides via the control of aliasing, another way
of a process that “accidentally” have the same simple types. This of applying Lemma 5.2 to the systeP0 is to require, in condition
could be achieved in various ways. An example is to adopt named (3) of the lemma and in its conclusion, that the environnris
forms of types, as for instance in Milnersorting systeni28], undecorated. Here, if a typE does not contain partial order re-
where types have a name and type equality is given by name equal-quirements, theff’ is undecoratedSimilarly, an environmen® is
ity. Milner's sorting systems is indeed the “by-name” equivalent of undecorated if all its types (i.€Types(©)) are undecorated. This
the “structural”sT system. Using a sorting, names with the same maintains the typability of Example 3.6. (Indeed, the names with a
simple type can be distinguished by giving different names to their decorated type are often just a few and restricted, hence they do not

types. There is in fact anost precise sortindor any process; appear in the initial type environment.)
that is, a sorting environment in which two names have the type

only if this is necessaryor the typing of the process (therefore the .

twoynames must haveythe san)1/2 tygpe in anF;/ sorting( environment in6' Implementation

which P is typable). Computing the most precise sorting can be We have implemented the new weak lock-freedom analysis as a

done in polynomial time, using a variant of the algorithm for type feature ofTYPICAL Version 1.6.0 [21]TYPICAL takes as an input

inference irsT. All results and examples shown in this paper using a program written in ther-calculus (extended with data structures

ST as a base typing can be transplanted to the sorting system. such as pairs and lists), and marks all input/output prefixes that are
Another possibility, equivalent to adopting a sorting, is to add guaranteed to succeed. The strong lock-freedom analysis has not

dummy components to the values exchanged on certain channeldeen implemented yet.



(new fact_it in
*fact?x.(let n=fst(x) in let reply=snd(x) in
fact_it!(n, (1, reply)))
| *fact_it?x.(let n=fst(x) in
let acc = fst(snd(x)) in let reply=snd(snd(x)) in
if n=0 then reply'acc
else fact_it!(n - 1,(acc * n,reply))))
| *(new r in fact!(n, r) | r?result.print!result)

Figure 8. A sample input forTy PICAL

(new fact_it in
*fact?x.(let n=fst(x) in let reply=snd(x) in
fact_it!(n, (1, reply)))
| *fact_it?x.(let n=fst(x) in
let acc = fst(snd(x)) in let reply=snd(snd(x)) in
if n=0 then reply'acc

else fact_it!(n - 1,(acc * n,reply))))
| *(new r in fact!!(n, r) | r??result.print!result)

Figure 9. The output produced by PICAL

Figure 8 shows a sample input program TorPICAL. An out-
put procesi[v] is written asalv, and an input process(z). P is
written asa?z.P. and Figure 9 is the output produced by the pro-

e The fourth type system of [15] allows a process of the form
xc(y). (- -p[v] - - -) either ifc has a greater level thanor if ¢
andp have the same level, ands greater thap with respect
to a certain partial order on channels. We have implemented a
separate analysis to infer the channel creation order, and use it
as the partial order.

We have carried out preliminary experiments to test the feasi-
bility of our lock-freedom analysis. Table 1 summarizes the result.
“factorial,” “broadcast,” and “btree” are the examples discussed
in Section 3.4. “stable” is a variation of the symbol table exam-
ple taken from [15]. “eventchan” is an implementation of event
channels, which was originally a sample program of Pict [30], and
rewritten forTYPICAL. Those programs are available in the distri-
bution of TYPICAL [21].

All the programs have been verified successfully. The second
column shows running times for robust termination analysis only.
The third column shows those for the whole (weak) lock-freedom
analysis of programs having annotations on where the bybrid rule
should be applied (i.e., the result of runnifigy PICAL with “-
wl” option). The rightmost column shows running times for lock-
freedom analysis of programs without the annotations (i.e., the
result of runningTyPICAL with “-wlauto” option). Given non-
annotated programs[yPICAL with “-wlauto” option first per-
forms deadlock-freedom analysis and lock-freedom analysis (with-
out using the hybrid rule). By comparing the resulty;PICAL
heurstically inserts annotations on where the hybrid rule should be
applied. It then re-run lockfreedom analysis for the annotated pro-
grams. Thus, the current “-wlauto” mode is 2—3 times slower than

gram. Input and output operations that are guaranteed to succeedhe “-wl” mode. As can be seen in the table, the new components

are marked by? and! ! respectively. (dealing with termination) run fast; most of the analysis time is
The original type system for lock-freedom (reviewed in Sec- spent by the other components (dealing with deadlock- and lock-

tion 3.1) had been implemented already [23,24]. A major chal- freedom). We have also tested robust termination analysis for all

lenge in the implementation of the new system was to automate the examples given in [15], and confirmed that they were verified

verification of the robust termination property. We have modified successfully.

the type systems of Deng and Sangiorgi [15], so that the resulting

systems can guarantee robust termination, and also so to make then7, Discussions

more suited for automatic verification (e.g., using heuristic and in- This section informally discusses further extensions of our tvbe
complete algorithms when the original ones were NP-complete). Y X . yp
system. We also describe some idea for using model checkers to

We also integrated them with a termination analysis based on size->7>.

change graphs [2]. See the extended version for details. For robustvenfy robust deadlock-freedom.
termination, we added an extra requirement for the injectivity of 7 1 Relaxing Robust Termination/Confluence
(recall Theorem 5.1 and Lemma 5.2). The implementation of ro-
bust termination analysis iy PICAL and its difference from [15]
are summarized as follows.

One of the main advantages of our hybrid rules is that deadlock-
freedom, termination, and confluence are required only locally, for
the processes on which the hybrid rules are applied. The require-
* As summarized in Section 5.1, in all the four type systems of ment may be, however, still too demanding. For example, consider
Deng and Sangiorgi [15], level information assigned to each a process:

channel type plays a central role in guaranteeing termination. _ . _ _

In the TYPICAL implementation, a level variable is attached (vf) (fla][«f(n,r). (if n = 0 thenT else f[n — 1,7]| P)).

to each channel type, and constraints on the level variables areSyppose thaP does not read fronf. The process will eventually
generated and solved. send a message @n no matter whetheP diverges. Our hybrid
The second type system of [15] allows a process of the form rules are, however, applicable only whBns also terminating (and
xc(z). (---plv]---) either if ¢ has a greater level thgm or partially confluent, in the case &LT-HyB).

if ¢ andp have the same level andis always smaller tham To overcome the limitation above, we can replace robust
with respect to the order on natural numbers. This feature can bedeadlock-freedom/termination/confluence with the following ro-
used for typing primitive recursion. In tier PICAL implemen- bust o-deadlock-freedom/termination/confluence, which are only

tation, the size change relation between arguments of channels.gncerned with marked actions. We wrifes for the r-transition
(e.g.,> andv above) is generated, and then the consistency of 5, 3 marked prefix or an if-expression.

the size change relation is checked using a size change termi-
nation library [2]. Thanks to this extension, the resulting type DEFINITION 7.1 (robusto-deadlock-freedom)The relationA |=roo
system is more expressive than the original type system [15]; P is the largest relation such thak =ro. P implies all of the fol-

For example, we can handle non-primitive recursion such as an lowing conditions.

Ackermann function server. 1. If A is closed andrel(A), then:
The third type system of [15] is NP-complete [14]. Thus, we
use a heuristic, incomplete algorithm to handle it.

¢ If P has a marked prefix at top level, théh—.



termination analysig lock-freedom analysis lock-freedom analysis (auto)
factorial 0.01 sec 0.02 sec 0.02 sec
broadcast| 0.01 sec 0.05 sec 0.13 sec
btree 0.02 sec 5.47 sec 10.62 sec
stable 0.01sec 0.11 sec 0.22 sec
eventchan| 0.03 sec 0.20 sec 0.62 sec

Table 1. Analysis time (measured on a machine with Intel Pentium 1.2GHz and 500MB memory)

o If hasobi(A(a)), then eitherP 2% Uorp 2

o If hasobs(A(a)), then either? “%L or p 72

2. If [v — a]A is well-defined, thefy — a]A =0 [v — a] P.

3. If P -5 P’ and, furthermore, when is an input, all names
received are fresh, theh —» A’ and A’ =g, P’ for some
A,

We say thatP is robustly o-deadlock-freaunder A if A |=ppo P

holds.

DEFINITION 7.2 (robusto-termination).A processP is o-terminating
if there is no infinite transition sequence of the fofm— P; —

P, — ---. An (open) proces® is robustly o-terminating un-
derT', written T’ |=grero P, if I' Fsr P, and for every closing
substitutiono for I and for any@, k, and 71, - --n such that

ol bsroP % .. &, the derivativeR is o-terminating.

DEFINITION 7.3 (robusto- confluence)A processP is partlally
o-confluent if wheneverP, <— P - P, either n -
AP, = Py, or P, =" P,. A processP is robustly o-
confluentunder I, written T |=peons P, If I' Fsr P and for
any closing substitutioa that respectd” and for any@, &, and

n,- - such thatoT Fsr o P 2 ... 25, the derivativeQ
is partially o-confluent.

The extended hybrid rules are

A Erpo P Erase(A) Ertero P

At P

nocap(A)

(LT-HYBE)

A |=mpo P Erase(A) Frrero P
Erase(A) FEreonto P nocap(A)

(SLT-HYBE)

Itis not difficult to adopt verification methods of robust deadlock-

freedom/termination/confluence to the corresponding robash-
ditions. For robust-deadlock-freedom, we can modify Kobayashi’s

type system for deadlock-freedom [24], so that a prefix is marked if

and only if its capability level is finite. For robusttermination, we

can first perform program slicing to eliminate communications that

since Servery’s type environment would contain a capability to
consultServers.

One approach to relaxing (or eliminating, actually) theap
condition is to impose a stronger requirement on robust deadlock-

freedom. We modify the definition ok % %A’ as follows.

AL < A|b: 1L

a:fy ff}

U—Uu'
Aastp 0“2

rel(L.)

_ Theonly change is in the second premise, wheieapplied to
L. This ensures that the level of an obligation is decreased by one
whenever it is passed through channels. For example,

@t [t [BooL]], btz [Bool] O a: [ty [Bool]
hold, but
0+ b [#1_[Bool]], b: 1 [Bool] “ a: o[t [Bool]

does not.
We strengthen robust deadlock-freedom and robust termination
as follows.

DEFINITION 7.4 (robust strong-deadlock-freedom)The rela-
tion A |[=swo P is the largest relation such thah |=sppo P
implies all of the following conditions.

1. If Ais closed andP has a marked prefix at top-level, then one
of the following conditions holds:

o P 7——O>
e cap,(A(a)) < obi(A(a)) and P gLl
e cap,(A(a)) < ob?(A(a)) and P (o allt

2. If A'is closed anthbi(A(a)) # oo, then one of the following
conditions holds:

o P 7——O>
P (VE)_EJ?J]

e cap,(A(d)) < obi(A(a)) and P — d°[b]
o cap,(A(d)) < obi(A(a)) and P V2L

are not affect marked actions, and then apply robust termination 3. If A is closed anthb+(A(a)) # oo, then one of the following

analysis. For robust-confluence, we can still use type systems for
linear channels [25] and race-freedom [36].

7.2 Relaxing thenocap condition

The present side conditionocap(A) for LT-HYB is sometimes
too restrictive for local reasoning. For example, consider

Client | Server: | Servera, whereClient sends arequest 8ervery,
which consultsServers to answer the request. Then, we have to
apply LT-HYB to Servery | Servers rather thanServer, alone,

conditions holds:

o

P
o P M
® cap,(A(d)) < ob2(A(a)) and P gl

o cap,(A(d)) < obs(A(a)) and P V2L

4.1f [v — a]A is well-defined, thefv — a]A [=smo [v — a P.



5. If P -5 P’ and, furthermore, when is an input, all names As for model checking tools, there are some for mobile process
received are fresh, theh — A’ and A’ =smo P’ for some calculi [19]. For some restricted case, we may also be able to use
A other model checking tools such as SPIN [31].

We say thafP is robustly and strongly-deadlock-freaunder A if
A [Esmo P holds. 8. Related Work

DEFINITION 7.5 (robust strong-termination).A transition ismarked Several type systems for lock-freedom (sometimes referred to by
if it is an input, output, orr-transition on a marked prefix or if different names) have been already proposed [1, 22, 23, 33, 37, 38].

it is a reduction on an if-expression. A proceBsis strongly o- Our type system substantially improves the expressiveness of pre-
terminatingif there is no infinite internal sequence of marked (in- vious type systems; for instance, it can handle non-trivial recur-
put, output, orr) transitions. An (open) proceds is robustly and sive structures (e.g., the binary trees as in Example 3.6), and value-
strongly o-terminating undef’, writtenI" |=gsrero P, if I' Fsr P, dependent behaviors. This is possible through a parameterization
and for every closing substitution for " and for any@, &, and that appeals to other analyzers, in particular those for deadlock free-
m,---m such thatel Fgr o P -5 ... 2%, Q, the derivativeQ dom (so that more powerful analyzers make the lock-freedom type
is stronglyo-terminating. system more powerful too). Most of the previous type systems [22,
23, 33, 37, 38] do not handle recursion (such as those given in Sec-
We conjecture that the following hybrid rules are sound. tion 3.4) well: if a channel is passed as an argument of a recursive
call, lock-freedom on that channel is not guaranteed. Acciai and
A Esro P Erase(A) FEgstero P Boreale [1] recently proposed a type system that can handle a lim-
Ara P (LT-HYBE2) ited form of recursion, but does not seem to work for non-trivial

recursive structures like the binary tree Example 3.6, and imper-
ative structures such as locks and reference cells. In Acciai and

A Eswo P Erase(A) Fastero P Erase(A) Frcons P Boreale’s type system, reasoning about terminatiohaisiwired
A Fsir P into the type system for lock-freedom. In contrast, our type system
(SLT-HYBEZ2) is parameterized by termination analysis, so that we can incorpo-
rate any other techniques for proving termination (in fact, in the
7.3 Using Model Checkers for Robust Deadlock-Freedom implementation, we have already incorporated the technique based

. . .on size change graphs [2]). Yoshida, Berger, and Honda’s type sys-
In Section 3.2, we mentioned that types systems, notably Kobayashigg i, (3g] can guarantee termination and a form of lock-freedom for

one [24] can be used for verification of robust deadlock-freedom. encodings of simply-typea-terms. Our type system can also guar-
In certain special cases, however, we can appeal to model checkers '

S b ] antee lock-freedom of those processes, using [34] or [38] for the
This is an important advantage since type systems for deadlock-\qp, st termination analysis (and the extension offthéype sys-
freedom usually ignore value-dependent behaviors. For example

> . 'tem in [24]). As already mentioned, the system [38] cannot handle
Egggg?nsg'f.s type system [24] cannot verify the robust deadlock- o rsion well. Another important point is that none of the previous

type systems for lock-freedom, except Kobayashi’'s one [23], has
(if z > 0 then @° else 0) | (if z > 0 then a° else 0) been implemented. In fact, most of the type systems classify chan-
nels into a few usage patterns, and prepare separate typing rules for
. X , each of the usage patterns. Thus, verification based on those type
We consider heré\ is of the forma:fi, [] whereU is of the systems would not be possible without heavy program annotations.
following restricted form. Type systems for deadlock-freedom have been studied ex-
Usz=0|1L.U|?7..U tensively [6, 24, 35]. As already mentioned, deadlock-freedom is
) o weaker than lock-freedom, so that those type systems alone cannot
In this case, the verification problem of =y, P can be reduced e ysed for lock-freedom analysis. For example, the divergent pro-
to the ordinary model checking problef = u2l(a, U) A OnlyA cess obtained by replacitfgci_it[n — 1,z x n, ] in Example 3.3
in modaly-calculus, where:2(a, U) is given by: with fact_it [n, z x n,r] is deadlock-free.

On the other hand, model checkers can verify it instantly.

u2l(a,0) = vX.(—(a) A ~(a) A [T]X) The idea of reducing verification of lock-freedom to verifica-
ul(a,%.U) = tion of robust termination is a reminiscence of Cook et al.'s work
vX.(={a) A ([@]ull(a,U)) A [T]X) on reducing verification of liveness properties to that of fair termi-
(if t = o) nation [11]. The target language of their work is a sequential, im-
vX.(={a) A ([@]ull(a,U)) A [T]X A ({@) V(1)) perative language and is quite different from our language, which
(if t # o) is concurrent and allows dynamic creation of communication chan-
u2l(a,?L,.U) = nels and threads. The used techniques are also quite different; they
vX.(=(@) A ([a]u2l(a,U)) A [1]X) use model checking while we use types. It is not clear whether their
(if t = c0) technique can be effectively used for verification of lock-freedom
vX.(=(@) A ([a]ull(a,U)) A [T]X A ({a) V {T))) in our language.
(if t # o) In general, model checking can be used for verification of lock-

. . freedom. The current model checking technology does not seem,
OnlyA, which means that the process never performs an input or poeyver, mature enough for automatic verification of liveness prop-
an output on names other thanis erties of concurrent programs that have infinite states and create
- _ threads and channels dynamically.
v X (Averriar (2(0) A (b)) Afal X A [a]X A [r]X). There are a numbe); of metk)llods for proving termination of
It is not difficult to extend the above translation for a type envi- programs, and they have been extensively studied in the context
ronment with multiple namest: : ;. [1,. .., an 4y, []. To deal of term rewriting systems and sequential programs. The point of
with a more general case, we need to use logics for mobile pro- parameterizing our type system for lock-freedom by the robust
cesses [9, 13]. termination property was to reuse those techniques for termination



verification, instead of developing a sophisticated type system that  Future work also includes an application of the new lock-
can reason about both termination and deadlock within the single freedom analysis to dependency analyses, such as information flow
type system. analysis and program slicing [17, 18, 23]. To see why lock-freedom
Demangeon et al. [14] discuss the complexity of type inference analysis is related to information flow analysis, consider an in-
problems for variants of Deng and Sangiorgi’s type systems [15]. put process:(z). public[’Succeeded!”]. Note that it leaks infor-
In particular, they show that the third and fourth type systems of mation about whether or not the communication oisucceeds
[15] are NP-complete and propose variants of them that admit through channebublic. So, if it is unknown whether a communi-
polynomial-time type inference algorithms, at the price of reducing cation on a high security channesucceeds, only communications
the expressiveness in certain cases (e.g., the binary tree examplen high security channels are allowed after that communication,
cannot be handled). Our current termination analysis algorithm in which are too restrictive. (In a sequential language, it corresponds
TYPICAL makes use of heuristic, incomplete algorithms, based on to the restriction that once a high-security variable is accessed,
the original ones in [15] and which further integrate [15] with the only high-security computation is allowed afterwards). Thus, the
size-change termination analysis [2]. previous type systems for information flow analysis of concurrent
Parameterized, or hybrid, type systems of this kind presented in programs [17, 23] have been built on top of some form of type
this paper are fairly rare in the literature, mainly due to the diffi- systems for (weak) lock-freedom. Information flow analysis can
culties in combining the analyses. For instance, in Leroy’s modular be made more accurate by replacing the underlying type systems
module system [27] a type system for module is presented that is for lock-freedom with ours. Resource usage analysis [26] is also
parametric on the type system used for the core language. This isbuilt on top of lock-freedom analysis; hence it can benefit from the
quite different from ours, as the judgments of the two type sys- lock-freedom analysis in this paper.
tems are similar and, most important, the world on which the two
type systems operate—modules and core languages—are stratifiedAcknowledgment
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Appendix

A. On the Difference between Weak and Strong
Lock-Freedom

Experts in concurrency will easily recognize the difference between
weak lock-freedom and strong lock-freedom: Weak lock-freedom
combines safety and liveness guarantees, by requiring that a system
never reaches a state where a marked action is at top-level, but
there is no sequence efactions in which the marked action is
consumed. On other hand, strong lock-freedom is a purely liveness
property that says that if a marked action is at top-level, the action
will eventually be consumed.

The example below (inspired by [12]) shows the difference
between weak lock-freedom and strong lock-freedom. Consider
the following process:

5[10]

| #f(x).s(z). (if x = 0 then 7 |3[0] else 5[z — 1]| f[r])

| xg.s(x).s[10]

| #(va) (la] |a°)

g
There are two servers, which are listening foandg respectively.

The server orf makes recursive calls while decrementing the value
of s, until the value ofs reached). When the value reachéks it
sends a reply on. On the other hand, the server gsimply resets
the value ofs to 10. The proces§a) (f[a] | a®) is a client for the
server.

The process isveaklylock-free, since after any number of
transitions, the server gfican return a message arif it is solely
scheduled. The process is, however,statnglylock-free, because
if requests ory andg are processed in an interleaving manner (note
that it is a strongly fair scheduling), then the valuesahay never
reache9).

Another example of the difference between weak and strong
lock-freedom is the process in Example 3.6. In fact, using our type
systems, we can prove weak lock-freedom of the process, but not
its strong lock-freedom.

B. Proof of Type Preservation (Lemma 4.3)

LEmMMA B.1. 1. nocag (L) holds for anyL.
2. Suppose; | L, is well-defined. If nocap(L;) and nocap, (L2),
then nocap), (L1 | L2).
3. If nocap, (L) andL < L; | Ly, then nocap, (L1).
4. hSulzposel | Lz is well-defined. If.00b (L1 ), then nocapgeqy , ) (L2)
olds.

5. If nocap,, (L) and nocap,, (L), then nocap, ,,,, (L)

Proof Since the other properties follow immediately from the
definition, we show only the 4th property. The case whare=

Bool is trivial. Supposé. = f;, [L]. In this casel = f,, [L]. Let
m = ModegL;). Sincenoob(L1), we have:

7 <m m <!'= nocap(L) m <7 = noob(L)
So, we obtaimocap,, (L2) as requiredd

LEMMA B.2. Suppose nocagA) holds. If(A, A) — (A/, A')
and enable¢A, A, 1), then nocag, (A’) holds.

Proof The proof proceeds by case analysid.on

e Case = T:
In this case, we have eithéd’, A") = (A, A), or:
A=A N U-->U B
A=Ay ayL] A=A a L)



The former case is trivial. In the latter case, by the last con-
dition, (i) nocap(U) implies nocap(U") and (i) mode(U’, o)
impliesmode(U, o). Thus,nocap, (4, [L]) impliesnocap,, (# [L])-
By the definition ofnocap, (A), nocap, (A’) follows immedi-

ately fromnocap, (A).
Casel = a[b]: In this case, we have:

U v

A=A
L] A =Ai|b:La: L]

A=A a:fy[L]
By the conditionnocap, (A) andU . U’, we have

nocap, (A1, a: i/ [L]).
Moreover, since(a) <!, we also haverocap (L), which im-

plies nocag\(ng). Therefore, by using Lemma B.1, we get
nocap, (A’) as required.

Casel = (v¢)a[b]: In this case, we have:

U-u
A = ﬁ,a:ﬁU,[f} N
A’ = A{¢+— 0} N Modesb: L)

Aa) <7

A= Al,a:ﬁU[f]

Ay, L. <AL (b:T)
From A(a) <?. andnocap, (A(a)), we getnoob(L). By the
conditionl/ —— U’ andnocap, (A), we havenocap, (a : f;/[L]).
Sincea ¢ b (note that we do not have recursive types),
Modegb:L)(z) = 0. Therefore, we have\(a) = A'(a),
which impliesnocap,, (a: i,/ [L]). Thus, it remains to show
nocap,, (A'). By Lemma B.1(5), it suffices to show:

nocap, (z .oy (AY) NOCaR ogegs : T) (A).
By using Lemma B.1(1), we gebcap, (;, .4, (¢: Lc). Combin-
ing itwith the factnocap, (A1), we obtaimocap, (5, (A1, ¢: L.).
Thus, by using Lemma B.1(3), we obtaincap\{EHa} (AY).
It remains only to ShowoCaR,,geg; . 1) (A1) Ford ¢ {b}, we

haveModesb : L) (d) = 0, so that
NOCARYogeqs : 1) (a) (A1(d)) follows from Lemma B.1(1). Fob;,

NOCaRyogeqr,;) (A1(b:)) follows from noob(L) and Lemma B.1(4).

]

DEFINITION B.1. We write(A, A) < (A’, A") whenA’ < A and
A<A

LEMMA B.3. If (A1, A1) < (A}, A}) = (A, Ab) and
enabledA1, Aq,1), then there exish, and A, such that
(A1, A1) = (A2, Az) < (Ah, Ap).

Proof We first note that/; < U] — UJ} implies that there

existsU» such that/, —— Us, < Uj. Therefore, the case for= 7
follows immediately.

e Casel = a[b]: In this case, we have:
A/lelllva:ﬁU{[m Ay = /11|giiva:ﬁUém

U, LU =Y
By the conditionA; < Af, we also have:
L] A <AL

A1:A11,aZﬁU1[L} U1 SU{

By the conditionl/; < Uj ., U}, there existd/, such that
Uy > Uz < Uj. The required result holds foto = A; and
Az = An1 |b:L,a:fy, [L]. Note thatAr | b: Lis well-defined
by the assumptioenabledA:, A1, 1).

e Casel = (v¢)a[b]: In this case, we have:
Af = Ay, ac iy [L] Ay = Aby,a: ity [L]
A/H,E:fc~§ Aél\ng~ N U; —'>U§
Ay = Aj{c+— 0} M Modegb:L)
By the conditionA; < A, we also have:
A <Ay

A1:A11,aZﬁU1[L} U1§U{

By the conditionU; < Uj LN U}, there existsU> such
that U7, — U < Uj. Let Ay = Aby,a:ty,[L] and
Ay = A{€ — 0} + Modegb: L). Then, by using the fact
A11,8:L. < Ay, 2:L. < Aby | b:L, we get:

(A1, A1) = (A2, As).
We also have\;, < As andA»x < A as required.
O

LEMMA B.4 (substitution lemma)Suppose that\ | a: L is well-
defined. fA, z: L F; P, thenA |a:L i [z — a] P.

Proof Induction on derivation o\, a:L +; P. O

LEMMA B.5. If (A, (A, d: i, [0])) —— (A, A’)andd € FN(1)\
SN(I), then there existd” such that(A, A) ) (A", A") and
A <A

Proof By the definition of the transition relation for type environ-
ments, we have:

I=(o)al]
A = Aha:ﬁUl[L}
A’ = A{¢— 0} 1 Modegb: L)

Uy — U}
Av,d:fylo],@: Lo < A'|b:T

Let A” = A{d — 0,¢ — 0} + Modegb:L). Then, we have
(A, A) Y (A7 A"y andA’ < A as requiredD

—

Lemma B.6. If (A, A) Y22 (A7 A%} then there exists\”
such that Modeg®\) < ModegA’ \ {¢}) and A” < A’ with

(A, 8) “2ET A7),

Proof ModegA)(v) < ModegA’) fails only if ModegA)(v) =
a. andModegA’)(v) = a,. Let A” (v) be the type obtained from
A'(v) by replacing all finite obligation levels witho for suchv,
and A" (v) = A’(v) for otherv. Then,A” satisfies the required
conditions.O

Proof of Lemma 4.3 Double induction on the derivation of transi-
tionP Q and the derivation oh\ 5 P. (In other words, well-

founded induction on the pair of the derivation trees For-— Q
andA HY P.)
Case analysis on the last rule used for deriving? P.

e CaseELT-HYB: By the typing rule, we have:
A ’:RD P E’/’G;SC‘(A) ':RTer P

By the definition of=r, andenabledA, A, 7)), there exist\’
such thatA —— A’ and A’ o Q. Moreover, there exists
A’ such that{A, A) — (A’, A'). By the definition of=gres
andP -5 Q, we haveErase(A’) Eprer Q. By Lemma B.2,

we also havenocap,, (A’). Thus, we getA’ Y Q by using
ELT-HyYB.

nocap, (A)



CaseELT-WEAK: By the typing rule, we have:

AL FNE P (A A) < (A, A
The assumptioenabledA, A, 1) and the above conditions im-
ply enabledA1, A4, 1). By the induction hypothesis, there must
existA] andA] suchthatA;, A Ay andAf 2
Q. By Lemma B.3, there exist’ andA’ such that A, A) —
(N, A"y < (A4, A). Thus, by usingr-WEAK, we getA’

1) =5 (A

Qand(A, A) -5 (A, A’ as required.
CaseELT-OuT: In this case, we have:
P=a¥[b.Q I = a'[b]
A= aiﬂ!g L (AL [b:1L) Arkir Q
A=1

LetA’ = Ay |a:f#y[L] andA’ = A +Modegb: L) = L. Then,
we have(A, A) 25 a (N, A"y andA' H Q as required.
CaseELT-IN: In this case, we have:
P=aX(y ) P l= [b}
Q=[F—0bP A=1
A=a:f LI;A1 AL 7Ly Py

By Lemma B.4, we haveA; |(b:T) Fi; Q. (Note that
Ay | (b:T) is well-defined sinceenabledA, A ;1) holds.) Let
A’ be Ay |b:L if a € dom(A1) and A |b: Lia:fo[L]
otherwise. LetA’ be L. Then, we haveA’ Y @ and

(A, A) 5 (N, A') as required.
CaseELT-PAR: We have:
P:P1|P2 A:AI‘AQ
A HAL Py Ay Hi2 Py
Az < ModegA;) A; < ModegAs)
A=A UAs

We perform case analysis on the rule used for deriving—

Q.

= CaseTR-PARL: In this case, we have:

Q=P|P. PP
By the induction hypothesis, we have

LA ALY

for some A} and Af. Let Aj be Ao{G — 17,} if | =

(vé)alb] and Ay be A, otherwise. Ifl = (v¢)al[b], then

without loss of generality, we can assume thatoes not

appear inP,, so thatA, % P, holds. LetA’ Al A,

andA’ = A} U A5 We need to showA’ F& PJ | P> and

(A, A) — (A, A).

A’ + P]| P, follows if we showA; < ModegAs)
andAj < ModegA?).

— A} < ModegA;) follows immediately ifl = 7 or
I = alb]. If I = (&)a[b), thenAi(d) < Ai(d) <
ModegAz(d)) for d € dom(A}) \ {¢}. Forc;, we can
assume without loss of generality thatZ dom(As),

which impliesModegA2)(c;) = 0. Therefore A} <
ModegA-) holds.

— A5 = A2 < ModegA;) = ModegA1) holds ifl = 7.
If | = (v¢) a[b], by Lemma B.6, we can also assume that
ModegA) < ModegA1\{¢}). So,A5 < ModegA})

(A1, Ar) -5

follows from
A2{Z:17,} < ModegA1){Z:17,} < ModegA)).

If I = a[b], then we havéModeg A, ) 1 Modegb: L) <
ModegA’). By the assumptiorenabledA, A, 1), we
haveA, < A < Modegb:L). From this andA, <
Modeg A, ), we getA, < ModegA,)rModegh: L) <
ModegAl).

It remains to show(A, A) — (A’, A"). The case where
I = 7orl = a[b] is trivial. Supposé = (v¢)a[b]. By the
condition(A1, A1) SN (A1, Al), we have:

Uy —Uf
A} :A/uﬂ:ﬁui[l-]

A} = A1{¢+— 0} 1 Modesb: L)
Al = A11,CLZﬁU1 [L}
A1, Lo < Al [b:L

We can assume without loss of generality that dom(A2)
anda € dom(A») (otherwise adda: f,[L] to A»). So,
Ay = Aoy, a:fy,[L] for someAs and Us. Then, we
have A1y | Aoy, @:L. < (Al |Ag)|b:L. SinceAy <
Modegb: L), we also have:

AN o= AJUA
= (A{¢— 0} T Modegb: L))
= (A1{C}—>O}|_|A2{Cl—>'? })
M(Modegb: L) Ll Ax{c — 17,})
= (A1 UA2){E+— 0} Modesb: L)
= A{¢+~ 0} N Modegh:L).

(A2{C+— 6;})

Hence, we havéA, A) —— (A’, A') as required.
CaseTR-PARR: Similar to the case fof R-PARL.
CaseTrR-CoML: In this case, we have:

P_PI‘PQ Q:(VE)A(P“P@
P, (uc)a P1 P M P2,

By the induction hypothesis, we have:

(A, Ay YA ALY ALY P

(Ao, A2) “ (Ao, A5) ALY P
From the above conditions, we also obtain:
Ay :Au,azﬁUlm A} :A’u,a:ﬁU{ ]
A} = A1 {€+— 0} N Modegb: L) A11,5Q<A BT
AQ :Azl,aZﬁU2[L} AQ A21 ‘b L a: ﬁU/ [L]
U,y ; U{ Us —» U2
Let A5 = A {c— 17, o} Then we can assume thadlo not

appear inP;, so tha'rA2 I— P, andAj - P2 hold. Let
A" = Al | Ao |b:Ta: nU“Ué[N] andA” = A} UAS.
We first showA” ' P| | P3, which will follow if we
showA] < ModegAj5) andA; < ModegA!). Without
loss of generality, we can assu@g dom(As). Therefore,
by the conditions\] = A,{¢ — 0} 1 Modegb:L) and
Ay < ModegA,), we have

A} < ModegA;) 4+ Modegh: T) < ModegAb).



By Lemma B.6, we can also assuiedegA;) < ModegA’\
{¢}, so that we have:

Ay, < ModegA,){Z— 17,}
< ModegA).

So, by usingELT-PAR, we obtainA” ' P} | Ps. By ap-
plying ELT-WEAK, we obtainA i1 | A1, a: fyyy | oy [L],@: Le Hx
Pll ‘ PQ/ Let A/ Au |A21,CLZﬁU{ | U, [f] and A/ = B
A"{Z+— 17,}. Then, by usingELT-NEw, we getA’ 5, (57"}
P{| P,. We getA’ H P]| P} by usingELT-WEAK, be-
cause ford ¢ {¢}, we have:

A(d) (AT UAS)(d)
((A1{¢— 0} MModegb: L)) LI A2)(d)
(A1 LI A2)(d)
A(d).
It remains to checkA,A) — (A, A’), which follows
immediately fromU; | Uz —— Uy | Us.

e CaseELT-NEw: We have:
P = (va) P, A,a:ﬁU[f] Fﬁ\.} Py
rel(U) A{a =17} =A
We perform case analysis on the rule used for deriving
r-5Q.

INININ A

= CaseTR-OPEN: In this casel = (va)l’ and Py v, Q. By
the induction hypothesis, we have

A")

=~ 1

(A1, (Asa: gy L)) —(
By Lemma B.5, there existd’ such that(A, A)
(A',A’)y andA} < A’. By using ELT-WEAK, we obtain
A’ H Q as required.
= CaseTR-NEW: In this case, we hav® = (va)@: and
P, -5 Qi with @ ¢ FN(I) U BN(l). By the induction
hypothesis, we have:
(A, (A @ity [E) — (A1 (A, a4 [E])
AN A Rt
By the conditiona ¢ FN(I) U BN(I), we have:

/
1

AHY Q

(va)l/
—_

(Mfa =17}, A) =5 (M{a—12,1,A))  U<U
From the last condition andel(U), we obtainrel(U").

So, by usingELT-NEw, we get:A’ l—lel{”Hw"} Q. The
required result holds fak” = A} {a —!7,}.

e CaseELT-REP: In this caseP SN (@ must have been derived
by using TR-REP or TR-RIN. We show only the former case;
the latter case is similar. We have:

P=xP, P |P—5Q
A Fi Py A = %A A=1

By using ELT-REP and ELT-PAR, we obtainxA; |A; Fi
«P1 | Py. SinceA = xA; < *A;|A; holds, we getA
x Py | P1. By the induction hypothesis, there exiat and A’
such that\’ A Q@ and(A, A) - (A, A).

e Case<£LT-IF: Similar to the case fOELT-REP.

O
We introduce a relatior< on processes belows is the least
reflexive and transitive relation closed under the Hi[éva) P] <

(va) E[P]. Here, E ranges over the set avaluation contexis
defined by:

Eu=(]|(E|P)| (P|E)| (va) B

(Note thatE does not contairi[])”; so we disallow((va) P)”
(va) (P)")
Typing is also preserved by.

LEMMA B.7. If A4 PandP < P’, thenA H P'.

=

Proof This follows by straightforward induction on the derivation
of P<Q.O

C. Proof of Progress (Lemma 4.4)
We write rel(A) if dom(A) C £ and for eacha € L\

{true, false}, A(a) is of the formg, [L] andrel (U).
We extend the syntax of processes by adding explicitly typed

processe$P)a a:
P
The typing rule for{(P) a4 is:

[ {(P)aa

AL P

e (T-TPrROC)
A Y (Pyaa

LEMMA C.1.If nocap, (A), rel(A), and A’ 2" E[(P)a al,
thenrel(A).

Proof We first note that ifA’ +2' E[(P)a.a] then,A(a) <
A (a) for anya € dom(A) N dom(A’). To show the lemma, it
suffices to show the following, stronger property.

If (i) nocap, (A), (i) rel(A’(a)) for everya € {a €
dom(A) N dom(A') | =nocap(A(a))}, and (iii) A’ HY
E[(P)a,a], thenrel(A).

We show it by induction on derivation oA’ E[(P)a,a],

with case analysis on the last rule used. Since the other cases are
trivial, we show only the case where the last ruleTis’AR and

E = E1 | Q. In this case, we have:

Ay Q
A5 < ModegA?)

Al Er[(P)aa]
A} < ModegAsj)
AN = AN UAS

By the induction hypothesis, it suffices to show that(A’ (a))
holds for everys € {a € dom(A)Ndom(A}) | =nocap(A(a))}
Supposer € {a € dom(A) N dom(A]) | —nocap(A(a))}
Then, by the assumptionocap, (A), it must be the case that
17. < A(a) < Afj(a). By the conditionA] < ModegAj),
it must be the case thatoob(A%(a)). Thus,rel(A%(a)) follows
from the conditionrel(A’(a)). (Here, we have used the fact that if
rel(Uy | Uz) andnoob(Us), thenrel(Uy).) O

We write #(P) for the size of proces® (i.e., the number of
process constructors iR). The progress property (Lemma 4.4)
follows as a corollary of the following lemma.

a))y,
a

LEMMA C.2. Suppose:

1. A" HY E[(P)anl,
2. rel(A’), and
3. a ¢ BN(E[P]).

r *(ve)alb

Then,obi(A(a)) = n(# o) impliesE[P] — = —  for some
Zandb, andob: (A(a)) = n impliesE[P] ——" L for someb.



Proof The proof proceeds by well-founded induction(@n #(P)), By the typing rules, it must be the case thaip,(U) # oc.
wherethewell-founded orderis definedy m) < (n',m’) < By rel(U), we getobi(U) # oo. By Lemma C.2, we have
(n <n)V(n=n Am < m'). We perform case analysis on Ei[E:2[d® (3). Q'] = *alv]
the structure of?. We show only the case farb(A(a)) = n; the 1 Lo
other case is similar. Without loss of generality, we can assume that £1 [E2[a” (7). Q']] = —>- which impliesP — —. O
the last rule used for deriving H P is notT-WEAK, since |f the

. Thus, we have

last rule isT-WEAK, we can f|ndA1 andA” such thatA; H P, D. Proof of Theorem 4.2
A" Hy E[(P)a,.av], andobi(A(a)) < n holds. (Hence, more  Theorem 4.2 follows as a corollary of the following lemma, which
formally, the whole proof is by induction ofn, #(P), m), where is similar to Lemma C.2.

m is the number of the last applications B'WEAK for denvmg
A H P.) Note that the proof below is a little informal (e.g.,
the treatment of contexts) and sketchy; Except for the case where 1A Fn E[{P)a,n],
P = (P)7, the proof is almost the same as the corresponding 2. rel(A"), and

LEMMA D.1. Suppose:

theorem for the previous type system [23]. 3. a ¢ BN(E[P]).

e CaseP = (P1)": In this case A | Pi, A Fwrer Py, If 0bi(A(a)) = t # oo, then in any full, strongly fair reduction
andnocap, (A). By Lemma C.1, we haveel(A). Hence, from . o ve) a[b
Lemma 4.3 withA ':RD Py and the conditions\ f=pre P, We sequence of/[P], there is a procesg) that satisfiex) for

7 wd)a 7 e somec andb. Similarly, if ob7(A(a)) = t # oo, then in any full,
?‘:’éﬁ'l?ez ' Thus, we havez[P] =22 as strongly fair reduction sequence &f P], there is a proces§) that

- a[b] ~
e CaseP = 0: This case cannot happen. satisfies) — for someb.

CaseP = aiX[d]. Pi: If a1 = a, then the result follows Proof The proof proceeds in the same manner as that of Lemma C.2,

immediately. Suppose; # a. By the typing rules, we have: by WeI_I-foun_ded induction ort, #(P)), where the well-founded
B . order is defined byn,m) < (n’,m’) < (n < ')V (n =
A =ar:fo[L];(Ar|d: L) Ay Fi P t<n n’ Am < m’). Since the other cases are similar to the proof
of Lemma C.2, we show only the case f&@ = (Pp)”. In

By the induction hypothesis (note that we can assume without
loss of generality that; is not bound inE'[P] since otherwise i i .5
we can move the bindéwa; ) to the outermost place by using ~ £rase(A) |=wrer P, there exists a reduction sequentg —

T T

@ (ve)alb] . .
Lemma B.7 and remove it), we hat&P] -~ &, [P] Py — - — P, ~—". Consider any full, strongly fair
whereP is not involved in the transitiondz: [P] must be of the reduction sequence from[(P,)7], and let P, S o) n2,%
form Ex[P,a1(y). Q1]. Let Q = Es[Py, [y — b]Q1]. (Here, . .
we have extended evaluation contexts to those with multiple 2 - be the corresponding, local transition squence of
holes.) By Lemma 4.3 and the typing rules, we have: P,. We shall show that there exista such that@Q,, 22",

1 = by induction onn. The case wheres = 0 is trivial. Su ose
S A Byl(Poyay i (7 B@1) a0 / >

n > 0. Since Py is robustly confluent, the transitioR> is con-

this case, by Lemmas 4.3 with the conditiods = P and

13,55
273 ..

= (AL A) — (A", A7), tinuously enabled until it occurs. Therefore, there must exist
Moreover,obi(A1(a)) < n of obi(Az(a)) < n—1holds.In  suchthaf”™%"="% Moreover, there exists a transition sequence
both cases, the result follows immediately from the induction n1,8) 72,55 Mm—1,Shm_1 )
hypothesis (note thak(P1) < #(P) in the former case). P — Ry — .- — Rm1 = Qnm.Thus, thereisa

full, strongly fair reduction sequence

CaseP = a1X(y). P1: Similar to the above case.
CaseP = *P;: By the conditionA 4} P, there must exist ~ E[Pi] — Ei[Ri] — -+ — Em_1[Rm—1] — Em[Rm] — -+,
Aq such thatA, Fr Py andA/ SA,*Al- The latter condition  \whereR,,, & = Quirsr for Ic > 0 By the induction hypothesis,
implies ob.(A1(a)) < n. By AF7 E[P| <P1>A1 +]and the there existg such thatR; (Vc) If] > m, thenQ;1+1 (”EI)—EJZ/]

(ve)afb] . L
2 The required as required. Iff <m andR cannot make an output transition on
a, then there must exist§j < ¢ < m) such thatS; contains the

induction hypothesis, we gdt[P | Pi]
resultE[P] 9% is obtained by using R-REP.

e CaseP is Py | P2, (vc) Py, orif a then Py else P,: Trivial label of an output prefix on. Thus,Q; 1 %" as requiredc
by the induction hypothesis. Proof of Theorem 4.2 Suppose thaff g.r P and P = Q.
O It suffices to show (i) ifQ = Ei[(va)Ez2[a’(Z).@Q1]], then
Er[E2[a®(Z). Q1]] is reduced to a process of the fotfifa [v]. Q2]
Proof of Lemma 4.4 Suppose thaf) is tagged and -3 Q. If in any full, strongly fair reduction sequence, and (ii)@f =
the tagged process is insi¢e”, i.e., if Q is of the formE[(Q")7], Er[(va) Ex[a°[v]. Q1]], then E1[E2[a°[0]. @Q1]] is reduced to a

where ) is tagged, themA Epp @', EraseA |[arer @, and process of the forn¥[a (7). Q2] in any full, strongly fair reduction
nocap, A for someA and A. The latter condition implies that  sequence. (Note that if the above conditions hold, any marked ac-
rel(A). Thus,Q’ ;}*i tion“vvi.ll be e.nabled infinitely often.) We show OIl|y (i); the proof

If the tagged process is not inside”, then Q must be of of (ii) is similar. SupposeQL: En[(va) Ez[a” (7). Qu]]. Then
the form E1 [(va) Ex2[a” (). Q'] or Ex[(va) Ez[a[7]. Q']]. We by Lemma 4.3, we hav@ "Asu Q. By tr01e~typ|ng rules, it must
show only the former case below, as the latter case is similar. By Pe the case that: 1, [L] Fsir Ei[E:[a®(Z). Q1]] and rel(U),

Lemma B.7 and the typing rules, we have: which also impliesob(U) # oo. Thus, by using Lemma D.1,
’ E1[E2[a®(Z). Q1]] must be reduced to a process of the form

a: [T Hy Ei[B2[a”(3).Q')]  rel(U) E[a[?]. Q2] in any full, strongly fair reduction sequende.



E. Intervals

We sketch here an extension of the type systems in [15] that im-
proves the expressiveness of their termination analysis (and henc

also of the robust-termination analysis). We mainly explain the ex-

Proof Induction on derivation 00, v: V' -5, P.O

With the use of the lemma above, the proof of termination for

éhe well-typed closed processes of the new system can be given

along the lines of the corresponding theorem in sy<tem

tension on the first of the type systems in [15], namely the system The second type SystemThe systenmLev allows nesting of in-

of pure leveld.ev; we are very brief on the others, as the modifica-
tions needed are similar.

The extension is obtained by replacing the levels of [15] with
intervals An interval is written[n, m], for n < m, and indicates a

puts but forbids all forms of recursive inputs, that is, replications
xa(x).P with the body P having active outputs at. The other
type systems of [15] allow us to relax this restriction. In the second
type system, for instance, the bo#fycan have active outputgv],

non-empty set of consecutive natural numbers. A type aSSignmentbut v must be provab|y smaller than with respect to some pre-

« : ™ [V] intuitively means that: can be instantiated with any
channel whose level is betweerandm. Although in practice we
may gain precision by maintaining levels for the types of the chan-

defined well founded ordering on values; thus the value received
at the replicated input.(z) is greater than the value emitted in
any active output at that is underneath the replication. For in-

nels, for convenience of presentation we treat levels themselves asstance, if the communicated values are integers, then this holds for

intervals; thus leveh corresponds to the intervat, n].

xa(x).alz — 1]. A mechanism is assumed for evaluating (possibly

We recall that the channel types are types that can be assigned twpen) natural number expressions, which allows us to derive asser-
the channels, and the values types are the types that can be assignaibns such agz — 1 < z, orz — 29 + 4 x 7 < z. This evaluation
to the values communicated along the channels. In this section, wemechanism is an orthogonal issue, independent from the type sys-

call activean output that is not underneath a replication. In an input
v () or an outpu [w] we callv thesubjectof the prefix.

Notations We usey to range over intervals. For intervgls =
[n,m] andus = [r, s] we write i1 C po if r <nandm < s; and
p1 < po if m < 7. If O(p) = #*[V] then we callu theinterval of
pin © (or simply theinterval ofp , if © is clear from the context).

The first type system In theLev type system each channel type is

tem.

In the corresponding type system with intervals, judgments are
of the form® ¥ P Itis intended that® ¥ P should
imply that for an active output[w] in P, either (a) the interval of
is smaller thanu, or (b) the interval ob in ©, sayJ, is consecutive
to u (thatis, if A = [n,m] andu = [r, s] thenm = r), but each
componentw; of the tuple carried by is provably smaller than the
corresponding component of Z. With this in mind, the rules are

assigned a level. We replace the levels with the intervals. Thus the similar to those for the first type system previously discussed.

grammar of the types, called tirgerval typesis:

\%

wherey is an interval. Judgments are of the fon-* P. ltis
intended tha® F* P should imply that for every active output
v[w] in P, the interval ofv must be smaller thap.

We writeV, < Vaif Vi = V, orV = g1 W] andV =
g2 W] with gy C po. We write® F v : V if O(v) < V.
With these notations for the intervals and for the subtyping on the
intervals, the rules can remain, notationally, the same ds:in
(of course, with intervals in place of levels). We report below the
interesting rules, namely those for output, input, and replicated
input:

Bool ’ #4[V] types

Op) =t"2[V] OF+T:V  OFL P  pu<m
O e, P[V].P
(IT-Our)
O(p) =t*2[V] ©,Z:VHa p
@ '_'é‘lelr p(i)P (lT-I N)
O(p) =¢2[V] ©,7:VH2P
6 ik (@) (TRIN)

The resulting type system is strictly more expressive than the

level systenLev. Any process typable ibev is typable in our type
system, by replacing each lewelwith interval [n, n]. On the other

The third type system The third type system of [15] exploits
some of the structure of the processes. Precisely, it takes into
account sequences of inputs underneath a replication. In this way,
intuitively, one can consider theumof the levels of such inputs
(rather than the level of a single input as in previous type systems),
and then compare this against the active outputs in the body of the
sequence. Call such a sequence of inputs, aRdhe body (i.e., the
process underneatt). We have to compare the weightafwritten
wt(k), against the weight P, writtenwt(P). In [15], where types
have just levelswt(P) is the vector(nk, nk_1,--- ,n1), where
eachn, represents the number of occurrences of outputs that are
not underneath a replication and whose subject is a name of level
h; thenk is the highest level on which the process has non-zero
output occurrencésThis definition of weight is extended to input
patterns by taking into account the levels of all input subjects; i.e.,
if Kisp1(Z1). - .pn(Tn), thenwt(k) is the vectorial sum of all
levels of the namegy,.

In our case, since we have intervals in place of pure levels, we
have to be conservative. Thust(x) is the lowest possible sum
given by the intervals (that is, we use the same vectorial sum as
before but each intervéh, m] of an input subject ok contributes
its infimum n), whereaswt(P) is the highest possible sum given
by the intervals (that is, each intervial, m] of the subject of an
active output inP contributes its supremum). Usingw to range
over vectors, judgments are of the fo#n-“ P; itis intended that
© +“ P holds ifwt(P) is not greater thaw.

The fourth type system The fourth type system of [15] is the

hand, the use of intervals in place of levels allows us to have some systempo discussed in Section 5. The use of partial orders on

(limited) form of polymorphism with respect to the levels, so that a
term such as
a(z).0|alb] |alc] | xb.c
is typable in our type system but not in [15].
The following lemma is important. It shows that we can safely

names is an orthogonal issue with respect to the choice of having
type systems based on levels or on intervals, therefore we do not
discuss it any further here.

replace a variable with a channel whose interval is contained in that # This definition makes sense in in [15] where the type systems are formu-

of the variable.
LEMMA E.1.1f©,v: V' F* PandV < V', then®,v:V * P.

lateda la Church—each name is assigned a type a priori; in a formulation
a la Curry the definition should be given with respect to a given typing
derivation forP.



