Resource Usage Analysis for
a Functional Language with Exceptions

Futoshi lwama

Tohoku University
iwama@kb.ecei.tohoku.ac.jp

Abstract
Igarashi and Kobayashi have proposed a general type system fo

checking whether resources such as files and memory are accessed. " X . >
with information about in which order resources are accessed. For

in a valid manner. Their type system is, however, for call-by-
value \-calculus with resource primitives, and does not deal with
non-functional primitives such as exceptions and pointers. We ex-
tend their type system to deal with exception primitives and prove
soundness of the type system. Dealing with exception primitives is

especially important in practice, since many resource access prim-

itives may raise exceptions. The extension is non-trivial: While

Igarashi and Kobayashi’s type system is based on linear types, our

new type system is a combination of linear types and effect sys-
tems. We also report on a prototype analyzer based on the new typ
system.

Categories and Subject DescriptorsdD.3.1 [Programming Lan-
guage§ Formal Definitions and Theory; D.3.2Pfogramming
Languagef Language Classifications—Applicative (functional)
languages; F.3.1pgics and Meanings of Prografn$Specifying

and Verifying and Reasoning about Programs—Specification tech-
niques; F.3.21[ogics and Meanings of PrografnsSemantics of
Programming Languages—Program Analysis; F.B@&gjcs and
Meanings of Progranis Studies of Program Constructs—Type
structure

General Terms Languages, Verification.
Keywords Effect System, Exception, Resource Usage Analysis,
Type Inference, Type System.

1. Introduction

Background There has recently been growing interest in methods
for verifying that resources (such as files, memories or network

channels) used in a program are accessed in a valid manner [1, 3, 8

10, 22, 24]. For example, Tofte et al.’s type system [22] can ensure
that certain memories are not accessed after their deallocation an
Freund and Mitchell's type system [8] can ensure that objects
are used only after their initialization is finished. lgarashi and
Kobayashi [10] have coined the term “resource usage analysis”

Atsushi lgarashi

Kyoto University
igarashi@kuis.kyoto-u.ac.jp

Naoki Kobayashi

Tohoku University
koba@ecei.tohoku.ac.jp

method for resource usage analysis for call-by-valdealculus

IWith resource primitives.

The idea of their type system is to augment types of resources

example, the type of read-only files is given kFile, R*; C)
and the type of read-write files is given b¥ile, (R + W)*; C),

where the order of operations on files is represented by regular

expressions (the concatenation is given Pywith R, W andC
as labels for read, write and close operations, respectively (in their
type system, actually, a more expressive language cailtede
expressionss used to represent the access order).

Typing rules are designed by taking the evaluation order into

gaceount. For example, the usual typing ruleltirexpressions:

I'M: o I'zx:01FN:og
I'tletz=Min N : o2

is replaced by:

I'-M: o, Ayx:01FN:o9
IAbFletx =Min N : o2

Here,T'; A denotes the type environment obtained by composing
the usage expression &f and A by *;’. For example, if[" =

z : (File, R*), which intuitively means the resource is read
several times during the evaluation/df, and ifA = z: (File, C),
which meanse is closed (once) during the evaluation &f, then
;A = z: (File, R*; C), which meansr is read several times
and thenclosed. The new typing rule reflects the fact thdtis
evaluated first and theN isinlet z = M in N.

In this way, Igarashi and Kobayashi's type system can keep
track of the order of accesses to resources. However, the target lan-
guage is pure call-by-valug-calculus only with resource primi-
tives. So, it is not clear that the method can be extended to practi-

al programming languages, which are usually equipped with non-
unctional primitives such as exceptions and references.

Our Contributions In this paper, we extend Igarashi and Kobayashi’s
type system to deal with exception primitives. This extension is

for such general verification problems and proposed a type-basedvery important in practice because access primitives in practical

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM '06 January 9-10, Charleston, South Carolina, USA.

Copyright© 2006 ACM 1-59593-196-1/06/0001. . . $5.00.

programming languages may raise exceptions suéndof_File.
Our technical contributions are summarized as follows:

¢ Design and formalization of a type system for resource usage
analysis for a functional language with an exception handling
mechanism;

¢ Proof of soundness of the type system;
e Development of a type reconstruction algorithm; and
¢ Implementation of a prototype resource usage analyzer.

Although the exception mechanism here is much simpler than that2, Target Language)\R

of ML or Java (there is only one exception constructor, which does _ o £ .

not carry values), the extension is already non-trivial. While the This section introduces the target languageof our analysisA 7

type system of Igarashi and Kobayashi [10] is based on linear types,iS & call-by-value-calculus extended with resources and excep-
our new type system is based on a combination of linear type and tions. o

effect systems [21]. In fact, even for the problem of just checking ~ We assume a finite sed of access-labelsranged over by..

that certain values are used only once (which can be considered arf\n access label denotes the kind of access to a resource; We shall
instance of the resource usage analysis problem), previous linearuse access labels R, W andC for initialization, read, write, and
type systems [10, 13, 16, 23] are insufficient; For example, they Close operations respectively.)
cannot judge that is used once in the following program (suppose A traceis a sequence consisting of access labels and the special

thatuse is a function that uses its argument just once): label |. Formally, the sefd*! of traces is defined by:
s, * *
let f () = use x AT =AU s L]se AT}
in try (if b then f() else raise E) Here, A" is the set of finite sequences of elementsiofThe addi-
with E -> use x tional symbol| expresses that the evaluation terminates normally
or abruptly with an exception.
Key Ideas in the Type SystemFirst, we keep track of information A trace expresses how a resource has been accessed at a cer-

on exceptions, as well as that on access sequences, by usage expresin point of the execution of a program. A traegas...ay
sions. For this purpose, we extend usage expressions by introducingneans that the resource is accessed by each operationthe

the special labeF and the constructgr;. £ means that aresource orderai,as,...,ax. A traceaias...ar | means that the eval-
is not accessed any more because an exception is raised; for exuation has terminated after the resource is accessed in the order
ample, the usag®; £ means a resource is first read and then an a1, a2, ...,a,. For example, a tracé&k RC' | means that the re-
exception is raised. The usaf@e;r U=, which corresponds to ex- source has been read twice, closed, and then the evaluation has
ception handling, means that a resource is used accordirigaad terminated.
if an exception is raised, then it is used according/to Thus, for A trace setis a set of traces that is closed under the prefix
example, the usageR?; £); C is equivalent taR; C'. Now, for ex- operation. We writeS* for the set of prefixes of elements 6t
ample,try (read(x);raise) with E -> close(x) is typed A set S of traces is called @race setif S#* = S. We use the
as follows: metavariableb for a trace set.

try read(x);raise Consider a regular expressiqiRW |), then (RW |)# =

z : (File, (R, E);r C) F : bool. {e, R, RW,RW |} is a trace set. We can consider a trace®et
as a specification of each resource, which requires the resource is
Notice that;z corresponds to the use ety. The type judgment accessed only according to a trace in thedset
above tells us that, during the evaluatiom\df the filex is first read)
and then closed. (Here, we assume access primitives themselves d&xample 2.1. Let us consider the trace sét= (/R*C |)* and
not raise exceptions; we can model access primitives that may raisePfogram init(z); read(z); close(x). The program initializes,
exceptions by combining them with conditional expressions.) reads and closes the resourceThis program satisfies the spec-
Unfortunately, adding the above usage constructors is not suffi- ification ®. On the other hand, neithafead(z); close(z) nor
cient to obtain the accuracy required for practical programs using init(z); read(z) satisfiesp, since the resource can be accessed

with E -> close(x)

exceptions. For example, consider the following prograim according toRC' | or IR | but neither trace is contained d The
meaning of| is a little tricky; Let us consider the program:
let f = Az.raise I in try read(z); f() with £ — close(z) init(xz); read(x); loop_infinitely. It initializes and reads the re-

sourcez, and then goes into an infinite loop. This progrdes
satisfy the specificatiof®. Actually, the resource is accessed ac-
cording to a trace in the s¢f R} # € @. O

If we naively extend Igarashi and Kobayashi's type system with
the new usage constructors above, we would obtain the following
judgment:

2 : (File, OF; (R;z C)) F M : bool DEFINITION 2.1 (Terms, Values).

. . . M (terms) == v | M1 Mz |let x = M; in M,
Here, O E means that an exception may be raised onemptime; | if M; then M, else Ms
so the judgment does not tell us that an exception is raised inside | new?() | acc®(M) | Vi3
the body of the try-expression. To solve this problem, we exploit . .
he id t off 21 K K of | try M; with M | raise
the idea of effect systems [21] to keep track of more accurate v(values) := true|false |z | fun(f,z, M)
information onwhen exceptions are raised. As a result, a type
judgment becomes of the form: The first two lines show standard constructs for thealculus.
) fun(f,z, M) is a recursive function (which is often defined by
Lk M:o, f(x) = M). We write \x. M when f is not free inM. The primi-

which means that, during the evaluation of tekfy each resource tives for resources are the same as thos€’of10]. new® () is the

is accessed according to (usageslinind exceptions are raised ~ Primitive for creating a resource. The trace $especifies how the
according to effect. resource should be accessed afterwards. In this paper, we often use

a regular expression to specify a trace seic® (M) is the prim-
Rest of This Paper In Section 2, we introduce our target language itive for accessing the resourdé with an operation specified by
formally. In Section 3, we present our type system for resource us- a. We often writeinit(M), read(M), write(M) andclose (M)
age analysis. Section 4 shows the correctness of the type systemfor acc? (M), acc®(M), acc"” (M) andacc® (M), respectively.
Section 5 describes a type inference algorithm. Section 6 reports onFor the sake of simplicity, we assume that the resource access prim-
implementation and experiments. We discuss other possible meth-itive returns a boolean in a non-deterministic manner.
ods for dealing with the exception mechanism in Section 7. After M1} is the same ad/, except that the evaluation gets stuck if
discussing related work in Section 8, we conclude in Section 9. the resource bound to escapes frond/. The escape information

is used to refine the accuracy of the analysis. A separate escapeDEFINITION 2.3 (Evaluation Contexts). Evaluation contextsnged

analysis is assumed, which checks thatoes not escape frof/

in M{*}. The termtry M; with M, first evaluatesi;. If an
exception is raised, thei/; is evaluated; Otherwise, the value of
M; is returned. The termaise raises an exception. For the sake of
simplicity, we consider a single kind of exception, stise takes
no argument. We writd/; ; M for let x = M, in M, if variable

x is not free inM».

Example 2.2. Consider the following terms:

My

if init(z){®} then (write(z)*}; close(z){*})
else raise

M, 2 try M, with close(x){z}

M =letz = new(I(W>*CU#() in M

M, firstinitializesz. If the initialization returngrue, then it writes
and closeg; otherwise an exception is raised. The telfp closes

x when an exception is raised by;. Therefore, the resource

is closed no matter whethénit(z) returnstrue or false. The
term M creates a resource and evaluates\/,. The trace set
(I(W)*C |)* specifies that: should be first initialized, that it
can be written an arbitrary number of times after that, and that it
must be closed once before the program terminates. TheX&rm
obeys that specification, so thaf should be accepted as a good
program.cd

Example 2.3.The following is a fragment of a typical OCaml
program accessing files.

while (true)
do write_char(y,read_char(x)) done
with End of File -> close(x);close(y)

try

It copies a character from to y until the end-of-file exception
is raised, when the exception handler is executedaaaddy are
closed.

The above program can be modeled in our language as the

following term M.

M = try fun(f, z, M;)true with (close(z); close(y))
M, =

Note that the library function catead_char(x), which may raise

an exception, has been modeledbyead (z) then true else raise.
The value returned by the functiaread_char is ignored in the
translation, since we are only concerned with the order of resource
accesses]

(if read(z) then true else raise); write(y); f true

2.1 Operational semantics of %

An operational semantics Qf? is given by reduction of pairs of a
term and aheap used to record the states of resources. The state
of a resource only captures what access sequence is allowed for th
resource; Resource-specific values such as the contents of a file ai
not modeled.

DEFINITION 2.2 (Heap).A heapH is a finite mapping from vari-
ables to trace sets.

We write {z1 — ®1,...,2, — ®,} (n > 0) for the heap
H such thatdom(H) = {z1,...,xn} and H(z;) = &;. It
expresses that each variable refers to a resource that should
be used according to one of the tracestef Whendom (H) N
dom(Hz) = 0, we write H; & H, for the heapH such that
dom(H) dom(H1) U dom(Hz) and H(z) H;(z) for x
in dom(H;).

over by &, and evaluation contexts withouty, ranged over by
£, are defined by the following syntax:

£ == |[]|if Ethen M; else Ma | EM |v €
| letz=Ein M| W |acc?(€) | try € with M
EMY = []|if E"Y then M, else My | £ M | v E7Y

| letz=&"Yin M | SW{I} | acct(£7Y)

£ is an ordinary call-by-value evaluation conte&t7¥ is one
without exception handlers and used to identify an innermost ex-
ception handler. We writ€[M] and £'"Y[M] for the expressions
obtained by replacing] in £ and£'"¥ respectively with)M .

We write[M, /x4, . .., M, /xy] for the capture-avoiding simul-
taneous substitution af/; for x; and®~¢ for {s | as € ®}.
FV (M) denotes the set of free variableslih.

DEFINITION 2.4 (Reduction Relation)The relation (H, M) ~»
P, whereP is either a pair(H’, M) or Error , is the least relation
closed under the rules in Figure 1. We write* for the reflexive
and transitive closure of-.

The rule R-NEw is for fresh resource allocation. The rules
R-Acc andR-AcCERR express an access to a resource. The rule
R-Acc is for successful resource access: the tracebsét after
the access is obtained by removing the labelt the head of a
trace (if the trace begins with; the traces not beginning witi
are discarded). If no trace begins with(i.e., =% = 0), then
the resource access results inEmor . We do not care about the
result of resource access here, it is left unspecified which boolean
values are returned iR-Acc, so reduction— is nondeterministic.

The ruleR-TRYRAI is for exception handling. A term of the form
try £V[raise] with M represents the execution state in which
an exception is being raised and the innermost handlgf i&nd
so reduces ta/1.

Note that by representing the resource states using a heap, we
can correctly model the case where resources are aliased (i.e., the
case where the same resource is referred to by multiple variables
and functions). For example, the tethi (where® = (R*C 1)”):

let 2 = new”() in let y = z in read(y); close(z)

is reduced as follows.
(0, M)

~ ({z — ®},let x = z in let y = z in read(y); close(z))
{z — ®},let y = z in read(y); close(z))

{z — @}, read(z); close(z))

{z — @}, close(z))

{z — {e,|}}, true)

~ (
~ (
~ (
~ (

r‘Z’,. Type System

In this section, we present a type system to guarantee that all
accesses to resources in a well-typed term obey the specifica-
tion (given by the trace seb attached to each resource creation
new?()).

3.1 Usages

Usage expressions (in short, usages) describe in which order and
by which operations a resource can be accessed. As mentioned
above, we express information about exceptions also with usages.
We therefore add new constructdtsand U ;5 U. to the usages
given in [10].

z fresh
(H,Emew®()]) ~ (H W {z — @}, &[2])

(R-NEW)

b = true or false O£
(H¥{z — @}, flacc®(x)]) ~ (H W{x — &7}, £]b])
(R-Aco)
¢ =0 (R-ACCERR)

(H4Y{z — @}, S[a;c“(x)]) ~> Error

(H, E[fun(f, z, M) v]) ~ (H,E[[fun(f, z, M)/ f,v/z]M])

(R-APP)

(H,E[let & = v in M]) ~ (H,E[[v/x]M]) (R-LET)
(H, £[if true then M, else Ms)) ~ (H,E[My]) (R-IFT)
(H, £[if false then M, else Ms]) ~ (H,E[Ms]) (R-IFF)
o)~ WD (RoEarEe
(H,E[try v with M]) ~ (H, E[v]) (R-TRY)
(H,E[try £7Y[raise] with M]) ~ (H,£[M]) (R-TRYRAI)

Figure 1. Operational semantics Qf’;

Syntax of Usages.

Let the set’ of labels ranged over by, be A U {1,r, E}. The
label 1 is a special label used to count the number of function
applications; the labels denotes exception handling (which is
an unobservable, internal action, hengeand E denotes a raised
exception respectively.

DEFINITION 3.1 (Usages).The setl/ of usagesranged over by
U, is defined by:

U = 0|l|a\U1;UQ\U1®U2|U1&U2|<>U|0U
| /LOAUlUl;EUQ

We assume that the unary usage constructoend ¢ bind tighter
than the binary constructorg{; ;, ® and;g).

We briefly explain informal meaning of usage constructors;
see also Igarashi and Kobayashi [10]. The usagaeans that a
resource cannot be accessed at all. The usagel means that
a resource is accessed by an access primitive labelediwith
I € A), or that an event corresponding tooccurs: especially,

E € £ means that a resource is not accessed later due to a raise of

an exceptiona is the usage variable, bound in the formaf.U,
which denotes a recursive usage that satisfiesU. U1 ; U means
that a resource is first accessed accordingtand then according

S0=0 40=0
oxU=U o;U=U U;0=U O0;gU=0
Ub@Uz=UU1 U1&Us = Us&U,

OUL @ OUs = O(Uy @ Uz) Uiz Uz < O(Ur;e Us)
QU Uz = QUL @ Us
U1&U2 j U1 /,LOAU = [Ma.U/a}U

Figure 2. Structural pre-congruence on usages

l

! U-—Uu UL
[—0 ; :
QU — QU U — U’
Ul_l’U{ U1—I>U{
U1®U24Z’U{®U2 Ul;UQ*l)U{;UQ
U, -SU, 1#£E U, 2o
U1§EU2L>U1’;EU2 U1§EU2L>U2

Ui =U; Ul -5 U Uy <Us
U1*I>U2

Figure 3. Usage transition rules

delayed. For examplély); 2 expresses access order eithels
orlz; 1. 4U, which cancels>, means that the access represented
by U must occunow. So, (U,); Us is equivalent td/q; Us.

Example 3.1.The accesses te in M, of Example 2.2 is ex-
pressed by the usagg ((W;C)&E);g C. Similarly, the ac-
cesses tar in M of Example 2.3 is expressed by the usage
po.(R; (0&E); a);p C. O

In what follows, we writeU\ E for U;g 0, which cancels ex-

ceptions inU. For example,((I1;l2) ® E)\ E is equivalent to
0&[1&(11;12).

Semantics of Usages and Subusage Relation.

We give the formal semantics of usages via a labeled transition
system. Then, we define the subusage relatipn< Us, which
means that the access ordéris more general thalls.

We define the transition relation of the forth — U’, which
means that a resource of usdgiean be first accessed bgnd then
accessed according 6.

DEFINITION 3.2. The binary relationU < U’ on usages are the
least pre-congruence that satisfies the rules in Figure 2, where
U=U meand/ < U’ andU’ < U.

For example(OU1&U»); Us < OUy ® Us holds.
Now, we give the transition rules on usages.

DEFINITION 3.3 (Transition Relation on UsagesJhe transition
relation U —— U’ on usages is the least relation closed under

. t
to U>. U1 ® U, means that a resource is accessed according to athe rules in Figure 3. The multi-step transition relatioh— U’,

sequence obtained by interleavitig andU.. U, &U> means that a
resource is accessed according to eiflieor Us. Uy ;5 U2 means
aresource is accessed accordin§i@and, if an exception is raised
during the execution, then the resource is accessed accordihg to
For example((R&E); W);g C is equivalent tq R; W)&C'. OU
means that some of the resource access expressétrogy be

wheret € (AU {1,7})", is defined inductively as follows.
t def { = ift=c¢
_— = l t/
—_—

if t = 1t'

Example 3.2.UsageR; (C&E);r C has the following transition
sequences:
(R; (C&E)):gC -5 (C&E)sC - 0
(R;(C&E));eC & (C&E)zC = -5 o0
O

By using the labeled transition system, we define the trace set

expressed by a usage.
DEFINITION 3.4. Let U be a usage. The trace sf] is defined
by
[U] = {i{|3U'.(U -5 U')}
u{t | |U -Soyuft] |30 S o

Here,i € A* is the label sequence obtained by removing all the

occurrences of fromt.

Example 3.3.[uc.a] = {e}, [0] = {e, |},

[Oli;1o] = {lal2 |, 12Dy |}, [#O11;12] = {l1l2 | }#, [(R&E); C] =

{RC |}* and[((R&E); C);p C] = {RC |, C |}*. 0

We writeU; = U, whenU; —5 U, (wherer---7is a
possibly empty sequence of. We also write=5s for = —s—.

The subusage relatidiiy < U- is defined as a weak simulation

relation closed under usage contextaigage contextwrittenc, is

denotational semantics, where non-termination denotes the least
element. Viewing effects as the settefmination capabilitieghat
a program can exercise, we define the order so that lower elements
have more capabilities, similarly to the subusage relation.

Effects can be considered usages that do not include access
labels. We write(¢)“*¢ for the usage corresponding ¢g defined

by:
(B =0&E (0)"*=0 (B)"*=E (T)"=paa.

We define some operations on effects, which correspond to
usage constructors of the same symbols.

DEFINITION 3.7 (Operations on effects)lhe operations on ef-
fectspiopyp2 are definedwhereop is either;, &,® or ;) by the
following tables(the leftmost columns correspond ¢q and the
topmost rowsp,) :

i |ET 0 E T & [EY 0o E T
ET | ET E° E E ET| ET ET E° E°
o|E o E T o|E” o E' o
E E E E E E | E' E' FE E
T T T T T T | E7 0 E T
® |ET 0 E T e | ET 0 E T
ET| ET ET E E ET|ET 0 E” 0
o|E” O E T 0 O 0O o0 o
E| E E E E E|E" o E T
T|E T E T T| T T T T

an expression obtained from a usage by replacing one occurrence
of a free usage variable witl}. Suppose that the set of free usage
variables inU are disjoint from the set of bound usage variables in

Example 3.5.E;0 = E andE&0 = E* andE’;5 0 = 0. O

C. We write C[U] for the usage obtained by replacihpwith U.
For example, i€ = pa.([]; @), thenC[U] = pa.(U ; a).

DEFINITION 3.5 (Subusage relation).U; < U, is the largest
relation that satisfies the following conditions:
(1) C[U1] < C[U:] for any usage context,

() U, -5 Uj andl € AU {1}, thenl; == U] andU} < U}
for someU7,

() If U — U3, thenUy, = U; andU; < U}
for someU7,

@) If U; == 0, thenU; = 0;

(5) If Uy = U3, thenU; == U for somel].
We writeUy =2 Us if Uy < Uz andUs < Us.
Example 3.4.E;g C = C and(C&E)\ E = C&0 hold.O

Note that, ifU; < Us, then[C[U1]] 2 [C[U2]] for anyC—in
particular,[U1] 2 [Uz]. Moreover,U < pa.candOU < U hold
for any usagd/. Uy < Us impliesU; < Uz andU; = U implies
U, =2 Us.

3.2 Effects and Types
We proceed to the definitions of effects and types.

An effectexpresses the termination behavior of an evaluation.
Intuitively, the effectd0 means that evaluation can terminate nor-

mally; E that evaluation can abort with an exceptid, that eval-
uation can terminate normally or abort; and, finallythat evalua-
tion cannot terminate.

DEFINITION 3.6 (Effects and Subeffect RelationJhe set ofef-
fects ranged over byp, is {E7,,07 E,T}. The subeffect relation
C is the partial order givenbye” TOC TandE'C EC T.

Note that non-termination is denoted By which is the greatest

element of the ordeEZ, as opposed to the common practice in

DEFINITION 3.8 (Types).The set otypes ranged over by, is
given by the following syntax:

o == bool| (6 % 6,U) | (R,U)
) bool | (61 % 82, Up) | (R, Up)

Here,U, ranges over the set of usages that satlsfy= Uy \ E.

bool is the type of boolean valuegl; < 8, U) is the type of
functions that take a value of ty@e as an argument and return a
value of typed, and that, during the execution of the body, may
raise an exception according t@ U describes how a function
is accessed (i.e., called)R, U) is the type of resources that are
accessed according {o.

For example, a function of the tygéR,, (R&0); C’)E—> bool,
1;1) takes a resource as an argument, closes the resource after a
possible read, and may raise an exception during the function call.
Moreover, the usagg; 1 states that the function is called twice.

We write the (outermost) usage @funder effecty by:

Use,(bool) = (¢)**¢, Use,((01 2= 02,U)) = U and
Use, (R, U)) =U.

The subusage relation defined in Section 3.1 is extended to the
subtype relatiorr; < o2 below. It means that a value of type
may be used as a value of type.

DEFINITION 3.9 (Subtype relation)o; < o2 is the least relation

closed under the following rules:
U<U’ U<UuU’

R, U) < (R,U")

o Co

bool < bool -
(01 5 02,U) < (01 2= 02,U")

3.3 Type Judgment

A type judgment is of the fornt" | ¢ - M : §, read “termM

is given typed under type environmerit and effecty” whereT is

a finite mapping from variables to types. The intended meaning
of ' || ¢ W M : ¢ is that (1) the term)M is evaluated to a

value of typed, if the evaluation terminates, and (2) during the
evaluation, each free variablein M are used according to type
I'(z) and an exception may be raised according to effecthe
meaning of the judgment is tricky whe® appears il [10]: If

a usage inl'(z) is guarded by®, the access represented by the
usage may be postponed until the valuelMdfis used; otherwise
the access cannot be postponed. For example(R, R; C) ||

0 F read(x);close(z) : bool andzx : (R,R;<C) || 0
read(z);z : (R, C) are valid judgments, while : (R, R; C) ||

0 F read(z);z : (R,C) is invalid. (Precisely speakingead(z)
andclose(x) must be annotated with®} in our type system.)

We write () for the empty type environment, and when ¢
dom(T"), we writeT', z : o for the type environmenf such that
dom(A) = dom(T") U {z}, A(z) = o andA(y) = I'(y) for
y € dom(T).

The type judgment relation will be defined by using typing
rules. We first give a few auxiliary definitions used in the typing
rules.

DEFINITION 3.10. Let C be a usage context. Suppose the set of
free usage variables i or T is disjoint from the set of bound
usage variables i€. We defin€[o] andC[I'] by:
C[bool] = bool C[(R,U)] = (R,C[U])
Cl(o1 % 02,U)] = (01 = 02,C[U])

dom(C[I']) = dom(T") C[I'(z) = C[I'(x)]

DEFINITION 3.11. Letop be a binary usage constructoy , ‘ &’
or‘;g’. o1opos is defined as follows:

bool op bool = bool
(0'1 i>0’2,U1) op (0’1 i’O'Q,UQ) = (0'1 &Ug,UlopUz)
(R> Ul) op (R7 U2) = (R7 U1opU2)

Let I'; and T'; be type environments with the same domain
(dom(T'1) = dom(I'2)). ThenI'iopl'2 is defined as follows:

dom(I'10pI'2) = dom(T'1)(= dom(I'2))
(Thopl'z)(z) = T (z)opl2(z)
For example, the type environmeht;I'» states that the value

stored in each variable € dom(T'1)(= dom(I'2)) should be
first used according td'; (x) and then should be used according

to Fz(m).
We also define the type environmetT" as follows:
0.0 = r if & dom(T")
=T TMaz:(R,eU) T =T"z:(R,0).

Note that, ifl’(z) = bool or I'(z)
not defined.

(01 2 02,U), thend,I'is

DEFINITION 3.12 (Type Judgment)The type judgment relation
|| ¢ F M : §is the least relation closed under the rules in
Figure 4.

Note that whenl'y; T2 or I'y;5 'y appears in the conclusion
of a rule, the rule can be applied only when the operation is
well-defined; In particular, it must be the case than(I'y) =
dom(T2).

Now we explain the key typing rules of-RAISE, T-TRY,
T-FuN, T-App, and T-WEAK below. The others are essentially

the same as those in the original type system [10] (except for the

effect part in type judgments).
Rule T-RAISE is the easiest: Since the terraise immediately

exception is raised. So, the total usage oy M7 with M, is
expressed b¥'y ;£ I's, obtained by applyingz to usages in those
type environments.

Rule T-FuN is defined according to the following intuitions.
First, the premise say£ach timethe functionfun(f, z, M) is
called, its bodyM causes effecp, accessing the function’s free
variables according t@'. In addition, M recursively callsf ac-
cording to usagé@/;. M also uses the argumentaccording to type
o1 and yields a value of typ&.. Therefore, the function is given a
type(6; 2 82, U), whered; < o1\ E. Here,E is removed by, E
from o1 since any possible exception that may be raisetfirs al-
ready considered in the latent effeet The type environment for
the function is obtained bsnultiplying &(T'\ E) (which expresses
how the function’s free variables are accessadh timethe func-
tion is called) according t& (which expresses how often the func-
tion is called from the outside) arldi \ E (which expresses how
often the function is called recursively). We safely approximate
this multiplication by considering only the following three simple
cases: the function is never called, it is called exactly once, or it is
called an arbitrary number of times. In the first case, the free vari-
ables are never accessed. In the second case, the free variables are
accessed exactly accordingddI'\ E). In the last casep(T'\ E)
is arbitrarily replicated by ! where !U is defined hy.0& (U ® «)
and!T" is its pointwise extension. Thus, the approximated multipli-
cationAf‘,}f‘Ul,m is defined as follows:

{ 0 if1¢[U]
I if(1eU]C{e1,11})A(1¢&I[UL])
I" otherwise

fun
Ao, r) =

Rule T-Appis explained as follows. When the terid; M- is
evaluated, the term/; is first evaluated to a function ands is
then evaluated and finally the function is called. The type environ-
mentI'y; T'z; (¢3)“*° reflects this order, whergs comes from the
latent effect of the type of the function.

RuleT-WEAK deals with weakening and subsumption (on types
and effects). Herd! <, I" is defined by

r<,r
-
dom(T) D dom(T")
I'(z) <T'(x) for eachz € dom(I")
Use (I (2)) < (p)**¢ foreachr € dom(T') \ dom(I"")

It means that if we add : o to the domain of’, & must respect
the effecty of the term. For example, from’ || E + M : §, we
can derivel”,z : (R,E) || E+ M : § (wherez ¢ dom(T"))
but notl”,z : (R,0) || E + M : 4. In the latter, the usage of
contradicts with the effeck.

Example 3.6. The following type judgments can be derived for the
termsM:, M> and M of Example 2.2:

z: (R, I; (W;C)&E)) || E* = M : bool
z: (R, I;(W;C)&E));eC || 0F M : bool
0| 0F M :bool.

O

4. Type Soundness

Our type system is sound in the sense that if a closed well-typed
term of typer where Use(r) = 0 is evaluated, any resource is

raises an exception without accessing any resources, it is typedaccessed according to the specification (declared by the resource

under the empty type environment with efféct
RuleT-TRy is explained as follows. Usageslin andI"; record

creation primitivenew® ().
We say that\/ is well-annotatedf all the annotations on escape

how each resource is accessed before and after, respectively, ainformation-{*} are sound, i.e., if{}, M) is never reduced to a

¢ = true or false

0|0+ c:bool (T-Consm

z:00|0OFz: 4 (T-VAR)
[U]C o _

0]/ 0F new®(): (R,U) (T-NEw)

Lk M:(R,a) (T-AcQ)

T ¢ Facc*(M) : bool

F1||g01|_M1:b001 FQHQOQ}_MQZ(S FQ”QOQ"MgZ(S
Fl;rz || ©1; P2 Fif M1 then Mg else M3 : 5

(T-1F)

Ii||leiEMi:oil\E Ta,xz:o1 | w2t My:do
F1;F2 H gOl;LpQFIGt‘IZ:Ml inMQ:(SQ

(T-LET)

F1 H(,01FM12(51 62,) Fz H(,DQFMQZ(Sl
15 25 (03)"% || w15 92; 03 F MiMs : 62

(T-APP)

Df:(01 5 6,U),z:01|| - M:62 6 <oi\E
A{BI,IUI\E,Q(F\ E)) | 0+ fun(f,=, M) : (01 5 32,U)

(T-Fun)
r EM:§S
e . (T-Now)
0| o-Mis
0| Et+ raise : § (T-RAISE)
I FM,:6 T FMs:6
1 H Y1 1 2 H 2] 2 (T-TRY)

Ti;802 || @158 @2 b try My with Mo @ §

Lo T< I IV FM:§ §<6
Tl oFM:5

(T-WEAK)

Figure 4. Typing Rules

configuration(H, £[v{*}]) such that: € FV(v). The soundness

of our type system is stated formally as follows:

THEOREM4.1 (Type SoundnessBupposeV/ is well-annotated.
6 and Useo(d) < 0, then all the following

f0 | ¢ F M:
properties hold:

(1) ({3, M) " Error .
2) If ({}, M) ~* (H,M') +, thenVz € dom(H). | € H(z).

The condition Useo(7) < 0 states that even if the terd/ is

We give an outline of the proof of Theorem 4.1 below. The full
proof is available in the full version [11].

We first define a type judgment relatign- (H, M) : §, which
means that the staté?, M) is well-typed under the effec.

DEFINITION 4.1.
z1: (R, UL),...,zn: R Un) || FM:6
dom(H) = {z1,...,zn}
[U2] € H(z), .., [Ua] € H(za)
ok (H,M):6

The first premise means thdt/ uses the resources, ..., z,
according td/y, . .., U,. The other premises mean that the current
heap indeed allows such resource usage.

We list main lemmas below. Lemma 4.1 states that typing is pre-
served by reductions. Lemma 4.2 states that an invalid resource ac-
cess cannot happen immediately in a well-typed state. Lemma 4.3
states that evaluation may terminate only when the expression be-
comes a value or raises an uncaught exception. Lemma 4.4 states
that every heap element containm a well-typed, final state. (See
[11] for proofs.)

LEmMMA 4.1 (Type Preservation)f ¢ - (H, M) : cand(H, M) ~
(H',M'), thenp + (H',M') : 0.

LEMMA 4.2 (Safety I).If o = (H, M) : ¢,
then(H, M) + Error .

LEMMA 4.3 (Progress)SupposeM is well-annotated. Ify +
(H,M) : 6, then either(H, M) ~» (H',M') for someH’ and
M’ or M is either a valuev, or of the form&*"[raise].

LEMMA 4.4 (Safety I1).(1) If o = (H,v) : 6 and Useo(d) < 0,
thenVz € dom(H). | € H(z).

() f o + (H,E"Y[raise]) : 6, thenVz € dom(H). | € H(x).

Theorem 4.1 is an immediate corollary of the above lemmas:
Property (1) follows from Lemmas 4.1 and 4.2; Property (2) fol-
lows from Lemmas 4.3 and 4.4.

5. Type Inference

By the soundness of the type system, a sufficient condition for a
closed termM to access resources in a valid manner is that there
exists an effecp andd such tha®) || ¢ - M : § and Useo(d) < 0.
(Actually, it is sufficient to give an algorithm to check whether
0] ¢ = M : bool, since if M does not have typbool, we

can check the terr\z.true) M instead.) We sketch an algorithm
for checking the sufficient condition in this section.

The overall structure of the algorithm is the same as the
constraint-based type inference algorithm for Igarashi and Kobayashi’s
type system [10]. Based on the typing rules, we can construct an
algorithm which, given a closed ter, generates constraints on
variables expressing unknown usages, effects, and types as a suf-
ficient and necessary condition fdr|| ¢ = M : 6. By reducing
the constraints on type variables (using the standard unification
algorithm), we can obtain constraints of the following form:

{ £1 §@17“'7£m§@7n7
alSUla-HyanSU’nm [[U{]]g@hu

At this point, Uy, . .

(Uil c®n }

, U, may contain effect variables (in the form

evaluated to a resource, the resource may not be accessed after tHff (§)**) and expressmns of the form\(i" 1, 1) (which is

evaluation. Property (1) means thiaf never performs an illegal

defined in the same way asf (U U,), WhereUy andUz are the

resource access. Property (2) means that all the resources are usagsages of functions. To remove them, we first solve constraints on
up when the evaluation terminates (normally or abruptly). Note that effects and function usages by using a standard method for solving

property (1) holds even iU/seq(d) £ O.

constraints over a finite lattice [18].

Then, the greatest solution for a subusage constraint of the formin the previous section. In the final phase, constraints of the form

a < U (whereU no longer contains an effect zkf‘,}‘;U%Us)) can [U] € @ are checked. Currently, the analyzer accepts only the
be represented hya.U. Thus, the above constraints can be further specificationd = (R*C |)#, and uses a sound but incomplete al-
reduced to constraints of the forfff Uy’ C ®1,...,[U{] C gorithm for checkingU] C ®. The algorithm works as sketched
Dy} in Section 6.6 of our previous paper [10]. The basic observation
Like in our previous type system [10], the relatipty]| C @ is behind the algorithm is as follows. Although the language of us-

generally undecidable (think of the case whérés a context-free age expressions is very expressive (for example, it can express
language). We, however, think that for a certain class of languagesany context-free languages as well as some context-sensitive lan-
for describing®, we can develop an algorithm (which may be guages), we can approximate usages by using a finite sgb-of

incomplete but sound at least) to verify the conditjaii]| C ®. stract usagess long as the specificatidnis regular; For example,
In fact, we have already implemented such an algorithm for the we need not distinguish between usadges” and R; R; C when
case wheré = (R*C |)#: see Section 6. the specification i$R* C' |)#. We have designed an abstract usage
) domain that is sufficient for checking the inclusion with respect to
Example 5.1. Consider the term the specificationb = (R*C |)#, so that the constraift/] C @

_ (R*C)# 1y - _ (W*C)# \ » a can be replaced by a decidable, sufficient condifie(U)] C ®
let z = new () in let y = new () in M (whereq is the abstraction function). The formalization of an al-
Here, M* is a term obtained by annotating every access to a re- gorithm that can deal with arbitrary regular languadess left for
sourcer by (-){*} —for exampleclose(x) becomeglose(z){}— future work.
in the termM of Example 2.3. Then, we finally gain the following) .)
constraints after extracting and solving subusage and subeffect conEXperiments We have tested several programs including the ex-
strains: amples given in this paper (wheieit(x) is replaced byead(x)
] i . . since the current system can handle only the specificafisic’ |)#).
[((O((R; (0&E); B)\ B)); E);e C] € (R ?U## We confirmed that the analyzer gives correct answers. The tested
(W3 (0&E); E)\ E)); E);p C] S (W*C 1) programs include the following tricky one.

Since these constraints are satisfied, we can conclude that the above ¢t create =

term is well-typed fun(f,x,let y=new[read*;close]l() in y) in
Example 5.2. Consider the term let repeat = .
fun(g,x, let z = create x in
M 2 let z = new™ Y7 () in Ms, try
R if accl[read] (z) then raise
whereM, = try (read(z){*}; raise) with close(z). The fol- else (g x; acclclose](z))
lowing constraints are extracted. with acc[close]l(z)) in
repeat true;;
Fread@) =T: (R7 al) Fread(z){w};raise =: (R7 a5) P
Iraise = 2 : (R, a2) I'nv, =2 (R, as) The above program repeatedly creates a new resource and closes it.
Celose(z) = = & (R, a3) L w(reC D#EG = 0 Note that arbitrarily many resources may be created, and also that
read(z)(=t =2 (Ryou) T, =9 arbitrarily many exception handlers can be nested.
We have also inspected source programs of O’Caml compiler
Pread(x) = &1 Praise = &2 Pelose(z) = €3 (3.08.4), manually translated some fragments of the programs ac-

cessing input files, and run our analyzer. Of 46 fragments of the
code we have inspected, 40 of them can be categorized into the
access patterns (expressed in our target language) summarized in

Pread(z){r} = &4 Pread(z){#};raise — &s
©mMy = &6 Prew(R*C DF () = & om = Es

Oread(z) = DOOL braise = boOl d¢lose(z) = boOI Figure 5. We have confirmed that all of the four patterns can be an-
Oread(z)(rt = POOL 0, 0q (1 (2} ;raise = POOL alyzed by our prototype system. For example, the following is an
S, = bool 5new(R*c D# G = (R,a7) &y = bool example of the 4th pattern:

let exclude filename =
let ic = open_in filename in

[a7] C (R*C[)# aa < 4 G EO0 &L&E

a1 <OR oas Cagsae LLECE &G L&eé try

az E <E>C ao E o3l A gd %2 ? %g 3 while true do

as > Q7 = Qs) 1=53 _8 =87 56 let s = input_line ic in
Here,I'n, £n, anddy are respectively the type environment, effect, primitives := StringSet.remove s !primitives
and type of a subternV. By solving the constraints on effects and done
usages, we obtain; = (#OR; E);r OC andyps = 0. Since with End_of_file -> close_in ic
[az] C (R*C |)* holds, we can conclude that is well-typed. | x => close_in ic; raise x
O

The body of the above function is expressed in our language:

6. Experiments let input_line = lambda x.

Based on our type system, we have implemented a prototype re- if acclread] (x) then true else raise in
Ype Sy ’ P P yp let ic = newl[read*;close] ()

source usage analyzer. The implementation is made available atin try fun(e.x, input line icig %) true
http://www.kb.ecei.tohoku.ac.jp/ iwama/rue/. The ana- -y g%, ITput- 8

.) Rl . o} with accl[close] (ic);;
lyzer inputs a program written in,>, without annotations-{*})
on escape information. The analyzer first performs the standard Our prototype analyzer accepts the above program, while it rejects
type inference and annotate terms of non-function types with es- the slightly modified program obtained by replacing: [close] (ic)
cape information. It then performs the usage analysis as describedwith false.

resource belonging to the regipris written and closed, and then an

Norm?i::t;e;n.nl‘if(lzgecs;# () in (read(2); ..; close(2))) exception is raised. As discussed elsewhere [10, 14], however, this
T AVItR Datter 18 Bi R approach does not work well when different resources are aliased
yWithpattern: 18 places .
ey to the same region.
let z = new(EO)
in try read(z); ..;close(z) with close(z) Extensions for multiple exceptions and exception arguments
TryClosepattern: 3 places Unlike the simple language studied in this paper, real languages
let z = new(R O () like ML allow multiple exceptions and exception arguments. We
in (try read(z); .. with ..); close(z) can extend our type system to deal with multiple exceptions, by
WhileTruepattern: 5 places introducing distinct usage constructdrs and; g, for each kind of
let f = Az.(.; read(z);..) in exception. As for exception arguments, there are two main issues:
let 2 = new(R 0% 0 (1) how to deal with an exception having a resource as an argument
in try while(true){.; (f 2); .. } with close(z) (for example, consider the case where an exception carries a file
that must be closed), and (2) how to deal with pattern matching
Figure 5. Typical file access patterns in O’Caml program on arguments, liketry ... with E 1 -> ...". We can deal

with both issues by combining our type system with analyses of
uncaught exceptions [17, 27]. For the first issue, we can impose a
Of the remaining 6 fragments (that do not fit any of the restriction that the usagé of a resource passed as an argument
four patterns), two of them seem to forget to close a file (in of an uncaught exception must be a subusage &or the second
asmcomp/asmlink.ml anddebugger/source.ml). Our analyzer issue, we can extend usage construciéraind;z, by annotating
rejects them as ill-typed. them with information (like “rows” [17]) about exception argu-
The other 4 fragments seem to use files correctly, but they are ments.
rejected or cannot be handled by our analyzer. They use pointers
(reference cells) or records to store file pointers. The followingis 8 Related Work

the most interesting one: .
A number of type systems have been proposed for statically check-

let ic = open_in_bin Sys.executable name in ing whether a certain kind of resource is accessed in a valid man-

Bytesections.read_toc ic; ner [1, 3, 8, 10, 22, 24]. Only a few of them, however, deal with

{ read_string = Bytesections.read_section_string ic; exception primitives. Type systems for JVM lock primitives [3, 12]
read_struct = Bytesections.read_section_struct ic; support exceptions. In those type systems, the handler for each ex-
close_reader = fun () -> close_in ic } ception is statically known, so that exceptions can be treated in the

It opens a file, and then creates a record consisting of closures forS@me manner ab-statements.
reading and closing files. To properly handle this, we need to refine |t seems easier to extend effect-based type systems [4, 7, 19] for

the type system to control the order between the uses of recorddealing with exceptions than to extend Igarashi and Kobayashi's
elements. type system. The effect-based approach, however, suffers from the

problem mentioned in Section 7.
7. Discussion Another approach to the analysis of resource usage in the pres-

ence of exceptions would be to extend work on typestates [20, 25,
Alternative approach to dealing with exceptionsAn alterna- 26, 6, 5]. Indeed, the original work on typestates [20] does deal with
tive, more straightforward approach to dealing with exceptions exceptions. However, unlike ours, their method requires explicit an-
would be to encode exception primitives ini® (e.g., by using notations on procedures, and cannot deal with aliasing and higher-
the continuation-passing style) [10] or the extensionrafalculus order functions. The succeeding work on typestates [25, 26, 6, 5]
with resources [15], and then apply previous type systems [10, 15]. extends the original work to lift the restriction on aliasing and deal
The resulting analysis is not, however, accurate enough to deal withwith data structures (or objects) and pointers (although exceptions
the examples given in this paper. For example, let us consider theare no longer explicitly discussed). Those methods seem to either

following program: require complex annotations for higher-order functions or suffer
f h | he effect- h di i
M2 et f = Ay.raise in (bry f() with write(z)); close(z) Srce)rgli(tmeYSame problem as the effect-based approach discussed in

It can be encoded into following™ term: Kobayashi [14] has proposed another combination of linear
_ . types and effect systems. His type system is, however, so compli-
let f =)\y.)\h.)\c.h(). n cated that no reasonable type inference algorithm has been devel-
let ¢ = Az.close(z) in

_ . . . oped.
let h = Az.(write(z); c()) in f()(h)(c) In parallel to the present work, we have recently studied type-
Here the functionf takes two continuationg and c as extra based resource usage analysis for concurrent programs [15]. It

argumentst is to be called when an exception is raised, whkile ~ would be interesting future work to integrate the type system in
is to be called when the evaluation terminates normally. Igarashi this paper with that type system.

and Kobayashi's type system would infer that the usage of Model checking technologies [2, 9] have recently been applied
&C; OW, which does not tell us which dfv or C' is performed to verification of temporal properties of programs. Advantages
first. of our type-based approach are that our analysis is modular, and

Another approach would be to put information about both re- that our analysis can deal with programs creating infinitely many
source usage and exceptions into effects to make the type systenresources (recall the tricky example shown in Section 6).
simpler. For example, a function
9. Conclusion
oW pC. We have extended Igarashi and Kobayashi's type-based resource

can be given atypéR, p) ——— bool, wherep is an abstract usage analysis to deal with exceptions, proved the soundness of the
resource (called a region). The effeet’; p°; E means that a extended analysis, and implemented a prototype analyzer.

Az.(write(z); close(z); raise)

Future work includes an extension of the type system to deal
with a larger set of language constructs (e.g., multiple exceptions,
pointers, concurrency primitives) and development of an algorithm
for checking[U] C @ for a certain class of languagés

Acknowledgments

We would like to thank Eijiro Sumii, Manueldhndrich and anony-
mous referees for useful comments.

References

[1] A. Aiken, M. Fahndrich, and R. Levien. Improving region-based
analysis of higher-order languages FAroceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation
pages 174-185, 1995.

T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. Rroceedings of ACM
SIGPLAN/SIGACT Symposium on Principles of Programming
Languagespages 1-3, 2002.

G. Bigliardi and C. Laneve. A type system for JVM threads.
In Proceedings of 3rd ACM SIGPLAN Workshop on Types in
Compilation (TIC200Q0)Montreal, Canada, 2000.

R. DeLine and M. Rhndrich. Adoption and focus: Practical linear
types for imperative programming. Rroceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation
2002.

R. DeLine and M. Bhndrich. Typestates for objects. In M. Odersky,
editor, ECOOR volume 3086 of_ecture Notes in Computer Science
pages 465-490. Springer, 2004.

J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate
verification: Abstraction techniques and complexity results. In
R. Cousot, editorSAS volume 2694 ol_ecture Notes in Computer
Sciencepages 439-462. Springer, 2003.

(2]

3

—_

[4

o

[5

—

(6]

[7] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementatj@®902.

S. N. Freund and J. C. Mitchell. The type system for object
initialization in the Java bytecode languagACM Transactions
on Programming Languages and Syste#16):1196-1250, 1999.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. IrProceedings of ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languagesages 58—70, 2002.

[10] A. lgarashi and N. Kobayashi. Resource usage analy8iGM
Transactions on Programming Languages and Syst@m®):264—
313, Mar. 2005.

[11] F. lwama, A. Igarashi, and N. Kobayashi. Resource usage analysis
for a functional language with exceptions, 2005. Full version.
Available fromhttp://www.kb.ecei.tohoku.ac.jp/ iwama/
rue/res-use-exce-full.pdf.

8

—_

[12] F. Iwama and N. Kobayashi. A new type system for JVM lock
primitives. InProceedings of ASIA-PEPM’'Qpages 156-168. ACM
Press, 2002.

[13] N. Kobayashi. Quasi-linear types. Iroceedings of ACM
SIGPLAN/SIGACT Symposium on Principles of Programming
Languagespages 29—42, 1999.

[14] N. Kobayashi. Time regions and effects for resource usage analysis.
In Proceedings of ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation (TLDI'O@ages 5061,
2003.

[15] N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis
for w-calculus. InProceedings of VMCAI'062006.

[16] I. Mackie. Lilac : A functional programming language based on linear
logic. Journal of Functional Programming}(4):1-39, October 1994.

[17] F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions.
In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles
of Programming Languagepages 276-290, 1999.

[18] J. Rehof and T. Mogensen. Tractable constraints in finite semilattices.
Science of Computer Programmirgp(2):191-221, 1999.

[19] C. Skalka and S. Smith. History effects and verification.
Proceedings of APLAS 200#4olume 3302 ofLecture Notes in
Computer Scienggages 107-128. Springer-Verlag, 2004.

In

[20] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliabilityEEE, Transactions on
Software Engineeringl2(1):157-171, Jan. 1986.

[21] J.-P. Talpin and P. Jouvelot. The type and effect discipline. In
Proceedings of IEEE Symposium on Logic in Computer Science
pages 162-173, 1992.

[22] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computatiqri32(2):109-176, 1997.

[23] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In
Proceedings of Functional Programming Languages and Computer
Architecture pages 1-11, 1995.

[24] D. Walker, K. Crary, and J. G. Morrisett. Typed memory management
via static capabilitiesACM Transactions on Programming Languages
and System£2(4):701-771, 2000.

Z. Xu, B. P. Miller, and T. Reps. Safety checking of machine code.
In PLDI '00: Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementatgages 70-82,
New York, NY, USA, 2000. ACM Press.

Z. Xu, T. W. Reps, and B. P. Miller. Typestate checking of machine
code. INESOP ’'01: Proceedings of the 10th European Symposium on
Programming Languages and Systepeges 335-351, London, UK,
2001. Springer-Verlag.

(25]

(26]

[27] K. Yi. Compile-time detection of uncaught exceptions in Standard
ML programs. InProceedings of SAS'940lume 864 oflecture

Notes in Computer Sciengeages 238-254, 1994.

