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Abstract
We propose a new verification method for temporal properties of
higher-order functional programs, which takes advantage of Ong’s
recent result on the decidability of the model-checking problem
for higher-order recursion schemes (HORS’s). A program is trans-
formed to an HORS that generates a tree representing all the possi-
ble event sequences of the program, and then the HORS is model-
checked. Unlike most of the previous methods for verification of
higher-order programs, our verification method is sound and com-
plete. Moreover, this new verification framework allows a smooth
integration of abstract model checking techniques into verification
of higher-order programs. We also present a type-based verification
algorithm for HORS’s. The algorithm can deal with only a frag-
ment of the properties expressed by modal μ-calculus, but the al-
gorithm and its correctness proof are (arguably) much simpler than
those of Ong’s game-semantics-based algorithm. Moreover, while
the HORS model checking problem is n-EXPTIME in general, our
algorithm is linear in the size of HORS, under the assumption that
the sizes of types and specifications are bounded by a constant.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
With the increasing importance of software reliability, program ver-
ification techniques have been studied extensively. There are still
limitations in the current verification technology, however. Soft-
ware model checking [3–5] has been mainly applied to impera-
tive programming languages, and applications to programming lan-
guages with more dynamic control, such as higher-order languages
with dynamic allocation of resources (such as heap memory), have
been limited. For higher-order programs, type systems have been
recognized as effective techniques for program verification. How-
ever, they either require explicit type annotations (as in dependent
type systems), or suffer from many false alarms.

In this paper, we propose a novel verification technique for tem-
poral properties of higher-order programs. We consider the prob-
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lem of resource usage verification [19] for higher-order functional
languages with dynamic resource creation and access primitives.
The goal of the verification is to check that each dynamically cre-
ated resource is accessed in a proper manner (like “an opened file is
eventually closed, and it is not read or written after being closed”).
Assertion-based model-checking problems (like “X > 0 holds at
program point p”) can also be recasted as the resource verification
problem, by regarding an assertion failure as an access to a global
resource. (For example, “assert(b)” can be transformed into “if
b then skip else fail,” where fail is an action to the global
resource. Then the problem of checking lack of assertion failures
is reduced to the resource usage verification problem of checking
whether the fail action occurs.)

Our verification technique is built on the recent result on
model checking of higher-order recursion schemes (HORS’s, for
short) [29]. A higher-oder recursion scheme is a grammar for de-
scribing an infinite tree. HORS is a generalization of regular tree
grammars; they are described by HORS’s of order 0. Ong [29]
has recently shown the decidability of the problem of checking
whether the infinite tree generated by G satisfies ψ, given a modal
μ-calculus formula ψ and an HORS G.

The first main idea of this paper is to transform a higher-order
functional program into an HORS that produces an infinite tree,
each of whose path (from the root) corresponds to a possible ac-
cess sequence to each resource. By the transformation, the problem
of checking a regular property of resource-wise access behaviors
of a functional program is reduced to that of checking the cor-
responding regular property of the infinite tree generated by the
HORS. The latter can be solved by Ong’s model checking algo-
rithm for HORS [29]. For programs having only resources and
functions as values, the transformation into HORS is achieved by
CPS conversion and λ-lifting, along with an additional trick to ex-
tract “resource-wise” access behavior. For programs with ordinary
values (such as integers), we can apply the technique of predicate
abstractions and counter-example-guided abstraction refinement.
The resulting verification framework is sketched in Figure 1. Given
a source program, we first apply CPS conversion and λ-lifting to get
a system of top-level function definitions (Step 1). We then apply
predicate abstractions to get a higher-order boolean program (Step
2). It is then converted to HORS (Steps 3 and 4), and the HORS is
model-checked (Step 5). If the model checking fails, a counterex-
ample is investigated, and the abstraction is refined (Steps 6 and
7).

The second main idea of this paper is to use types for model-
checking HORS, instead of Ong’s algorithm based on game se-
mantics. For a fragment of modal μ-calculus (for describing safety
properties, which are sufficient for the purpose of resource usage
verification), we develop an intersection type system that is sound
and complete, in the sense that an HORS is well-typed if and only if
the HORS satisfies the given property. Thus, a type inference algo-



rithm for that type system serves as an alternative model checking
algorithm for HORS. The resulting verification algorithm is (ar-
guably) simpler and easier to understand than Ong’s algorithm [29].
Moreover, although the resulting algorithm suffers from the same
worst-case time complexity (i.e., n-EXPTIME for order-n HORS)
as Ong’s algorithm, our algorithm runs in time linear in the size
of the rules of HORS, under the assumption that the size of types
and specifications are bound by a constant. An additional advantage
of the type-based verification of HORS is that it makes easier to
compare the new resource usage verification method with previous
type-based methods for resource usage verification (or, typestate
checking) [12, 19, 32], and combine them together. In fact, previ-
ous type systems for resource usage verification may be viewed as
a restriction of our intersection type system, with a limited form
of intersection types. Thus, we can first apply previous type sys-
tems to verification of HORS, and then gradually refine types (by
allowing more flexible intersection types). Since the full intersec-
tion type system is complete, the refinement process will eventually
terminate and produce a yes/no answer.

The whole verification framework thus obtained is an integra-
tion of model checking and type-based verification techniques.
We use model-checking techniques (predicate abstraction with
counter-example-guided abstraction refinement) to abstract infor-
mation about data (or base values), and type-based techniques to
abstract information about control (or functions).

The rest of this paper is structured as follows. Section 2 reviews
the definitions and the decidability result on higher-order recursion
schemes. Section 3 defines the resource usage verification problem
for a language having only resources and functions as values, and
shows the reduction of the resource usage verification to the model-
checking problem of HORS. Section 4 discusses how to extend the
verification method to deal with source programs (having ordinary
data such as integers), by using techniques of abstract model check-
ing. Section 5 presents an intersection type system that is sound and
complete for (safety properties of) HORS, and discusses its type in-
ference algorithm. Section 6 (informally) compares the intersection
type system with existing type systems for resource usage verifica-
tion. Section 7 discusses related work, and Section 8 concludes.

Omitted proofs and more examples are found in the extended
version of this paper [25].

2. Preliminaries
2.1 Higher-Order Recursion Schemes

This subsection reviews the definition of higher-order recursion
schemes and decidability results [29].

A higher-order recursion scheme (HORS, for short) is a gram-
mar for describing an infinite tree. The set of types is defined by:

κ ::= o | κ1 → κ2

Intuitively, o describes trees, while κ1 → κ2 describes a function
that takes an entity of type κ1 and returns an entity of type κ2. The
order and arity of κ, written order(κ) and arity(κ) respectively,
are defined by:

order (o) = 0
order (κ1 → κ2) = max(order (κ1) + 1, order(κ2))
arity(o) = 0
arity(κ1 → κ2) = arity(κ2) + 1

A (deterministic) HORS G is a 4-tuple (Σ,N ,R, S), where

• Σ is a mapping from a finite set of symbols called terminals to
types of order 0 or 1.

• N is a mapping from a finite set of symbols called non-
terminals to types.
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Figure 1. Verification Framework

• R is a set of rewriting rules of the form:

{F1 ex1 → t1, . . . , Fn exn → tn}

Here, ex abbreviates a sequence of variables, and t is a term
constructed from non-terminals, terminals, and variables (see
below). There must be exactly one rule of the form F ex → t
for each non-terminal F ∈ N .1

• S is a special non-terminal called the start symbol.

We require that N (S) = o. The set of (typed) terms is defined in
the standard manner: A symbol (i.e., a terminal, non-terminal, or
variable) of type κ is a term of type κ. If terms t1 and t2 have types
κ1 → κ2 and κ1 respectively, then t1 t2 is a term of type κ2. For
each rewriting rule F ex → t, F ex and t must be terms of type o.
The order of an HORS is the highest order of its non-terminals.

By abuse of notation, we often write a ∈ Σ and F ∈ N for
a ∈ dom(Σ) and F ∈ dom(N ).

The rewriting relation −→G is defined inductively by:

• F es −→G [es/ex]t if F ex → t is a rule of G.

• If t −→G t′, then ts −→G t′s and st −→G st′.

We omit the subscript G if it is clear from the context.
We need auxiliary definitions to define the (possibly infinite)

tree generated by G. Let n be the maximum arity of symbols in
Σ. A (possibly infinite) tree over Σ is a partial function t from
{0, . . . , n − 1}∗ to dom(Σ), such that: (1) ε ∈ dom(t); (2) the
domain of t is closed under prefix operations; and (3) if t(w) = a
and arity(Σ(a)) = m, then {j | w j ∈ dom(t)} = {0, . . . , m −
1}. A (possibly infinite) sequence π over {0, . . . , n − 1} is a path
of t if every finite prefix of π is in dom(t).

We often use the usual term representation for trees. For exam-
ple, we write br a b for the tree:

{ε �→ br, 0 �→ a, 1 �→ b}.

1 This restriction is not present for non-deterministic HORS. We consider
only deterministic HORS’s in this paper.
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Figure 2. The value tree [[G0]]

Given a term t, we define a (finite) tree t⊥ by:

t⊥ =

8<
:

f if t is a terminal f
t1

⊥t2
⊥ if t is of the form t1t2 and t1

⊥ �= ⊥
⊥ otherwise

For example, (f (F a) b)⊥ = f ⊥ b. Let � be the partial order on
dom(Σ) ∪ {⊥} defined by ∀a ∈ dom(Σ).⊥ � a. It is extended
to the partial order on trees by: t � s iff ∀w ∈ dom(t).(w ∈
dom(s) ∧ t(w) � s(w)). For example, ⊥ � f ⊥ ⊥ � f ⊥ b �
f a b. For a set T of trees, we write

F
T for the least upper bound

of elements of T with respect to �.
The value tree of G, written [[G]], is defined by:

[[G]] =
G

{t⊥ | S −→∗
G t}.

EXAMPLE 2.1. Consider the recursion scheme
G0 = (Σ,N ,R, S), where:

Σ = {br : o → o → o, a, b : o → o, c : o}
N = {S : o, F : o → o}
R = {S → F c, F x → br x (a(F (b(x))))}

S can be reduced as follows.

S −→ F c
−→ br c (a(F (b(c))))
−→ br c (a(br (b(c)) (a(F (b(b(c)))))))
−→ · · ·

The value tree [[G0]] is shown in Figure 2. �

In general, the value tree of HORS may have a non-regular
structure. For example, in the example above, the set of paths from
the root of the value tree is {br(a br)nbnc | n ≥ 0}. According
to the recent result [29], however, given an HORS G and a regular
property ψ, it is decidable whether the value tree of G satisfies ψ.

THEOREM 2.1 (Ong [29]). Let G be an HORS of order n, and ψ
be a formula of modal μ-calculus. The problem of checking whether
[[G]] satisfies ψ is n-EXPTIME-complete.

REMARK 2.1. In this paper, we only consider HORS’s whose
value trees do not contain ⊥. That condition is indeed satisfied by
the higher-order recursion schemes generated by our verification
method discussed in Section 3.

2.2 Tree Automata for Infinite Trees

We use tree automata for describing properties of (the value tree
of) HORS, instead of modal μ-calculus formulas. We recall below
some basic definitions of (top-down) tree automata for infinite
trees. See [33] for a good survey of logics and automata for infinite
trees.

A Büchi automaton is a 5-tuple M = (Q,Σ, qS , Δ, QF )
where:

• Q is a finite set of states.

• Σ is a mapping from a finite set of input symbols to types of
order 1.2

• qS(∈ Q) is a state called an initial state.

• Δ ⊆
S

k(Q×dom(Σ)×Qk), such that if (q, a, q1, . . . , qk) ∈
Δ, then arity(Σ(a)) = k (that is, the arity of a is respected).

• QF (⊆ Q) is a set of states, called accepting states.

A run of M on the tree t over Σ is a tree ρ over Q, such that
ρ(ε) = qS and (ρ(w), t(w), ρ(w0), . . . , ρ(w(k − 1))) ∈ Δ for
any w ∈ dom(t) and k = Σ(t(w)). The run ρ is successful if for
each infinite path π, there are infinitely many prefixes w0, w1, . . .
of π such that ρ(wi) ∈ QF . (In other words, a run is successful if
every infinite path of the run visits accepting states infinitely often.)
The automaton M accepts t if there is a successful run of M on t.

Actually, in this paper, we will consider only the case where
QF = Q, so that M accepts t if there is a run of M on t. This
is called a trivial automaton in [1]. Such automata can be used to
express safety properties, meaning that a bad thing never happens
(when a tree is traversed from the root).

3. Resource Usage Verification Based on
Higher-Order Recursion Scheme

In this section, we define the problem of resource usage verification
and show how to reduce it to the model-checking problem for an
HORS. The target language for resource usage verification in this
section is a simply-typed functional language with resources and
non-deterministic branches. Extensions of the language with values
(such as booleans and integers) and conditional branches will be
discussed in Section 4.

3.1 Overview

The idea of reducing a resource usage verification problem to an
HORS model-checking problem is to transform a program into
an HORS that generates a tree denoting all the possible resource
access sequences. For example, consider the following program
(written in OCaml-like language):

let rec g x = if b then close(x)
else read(x); g(x) in

let r = open_in "foo" in g(r)

It opens a read-only file “foo,” reads it several times, and then closes
it. We shall transform the above program to a recursion scheme that
generates a tree like the one in Figure 3. In the figure, the terminals
r and c stand for read and close operations, and the terminal νr

∗c

stands for creation of a read-only file (descriptor). br and 	 denote
a non-deterministic branch and a program termination respectively.
The tree can be generated by the following higher-order recursion
scheme:

G x k → br (c(k)) (r(G x k))

S → νr∗c(G d 	)

Note that this is essentially a CPS-transformation! G has an addi-
tional parameter k for expressing the rest of the computation, and
close(x) has been replaced by c, followed by k. Unlike in the
usual CPS program, however, resource access primitives read and
close have been replaced by the terminals (or, tree constructors) r

2 Σ may also be regarded as a mapping from input symbols to non-zero
arities. We require that the arity is non-zero, so that every branch of a tree
has an infinite path.
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Figure 3. A tree that represents possible resource access sequences

and c. The conditional branch in g has been replaced by the termi-
nal br, which expresses a non-deterministic branch. In the recur-
sion scheme above, d is a dummy symbol; the first argument of G
above is in fact unnecessary.

As the example above shows, for a program that accesses a
single resource, an HORS generating the resource access tree is
obtained by CPS transformation followed by λ-lifting (that moves
local function definitions up to top-level; this is necessary since
higher-order recursion schemes do not have local rewriting rules).

An additional trick is required, however, for a program that
creates and accesses more than one (possibly an infinite number
of) resources. For example, consider the following program:

let rec f x y = if b then close(x);close(y)
else read(x);write(y);f x y in

let r1 = open_in "foo" in
let r2 = open_out "bar" in f r1 r2

Since we need to verify that each of r1 and r2 will be accessed
in a valid manner, we transform the program into an HORS that
generates a tree that represents resource-wise access sequences.
The required HORS is:

F x y k → br (x c (y c k)) (x r (y w (F x y k)))

S → br (C1 K) (νr∗c(C1 I))

C1 x → br (F x K 	) (νw∗c(F x I 	))
I x k → x k

K x k → k

Here, upon a resource creation, the resource is non-deterministically
instantiated to I or K, of type (o → o) → o → o (see the rules for
S and C1). When the resource is instantiated to I , it is recorded that
a resource has been created, by ν . I and K take a resource access
operation x as an argument; I attaches x to the access tree, while
K just ignores x. Intuitively, I is a resource for which we should
keep track of access sequences, while K is a resource for which we
should ignore access sequences. An access to a resource x (which
is bound to either I or K) is now transformed into x a k, where a
is the name of the access primitive, and k is the tree representing
the rest of the computation. If x is I , then it is evaluated to a(k);
otherwise (if x is K), it is evaluated to k, with a being ignored.

The tree generated by the above recursion scheme is shown
in Figure 4. The four sub-trees marked by dashed boxes express
possible access sequences obtained by keeping track of different
resources. In t1, both the resources are ignored. In t2, the write-
only file is focused on, while in t3, the read-only file is focused on.
Both files are focused on in t4. For the purpose of resource usage
verification, we need to check only t2 and t3; we can blindly accept
the subtrees t1 and t4, which either contain no ν, or more than one
ν.
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Figure 4. A tree that represents access sequences for two resources

In the rest of this section, we first introduce a functional lan-
guage and formally define the resource usage verification problem
in Section 3.2. We then define the transformation from programs
into HORS’s, and prove the correctness in Section 3.3.

3.2 Resource Usage Verification

We introduce a functional language and the resource usage verifi-
cation problem for it. Since the CPS transformation and λ-lifting
have been well studied, we consider programs that are already in
the continuation-passing style, having only top-level function def-
initions.3 The language we consider here has essentially the same
expressive power as Igarashi and Kobayashi’s λ-calculus with re-
sources [19]. (Their calculus does have booleans, but their type-
based analysis does not distinguish between true and false, treating
a conditional as a non-deterministic choice.)

A program D is a set of function definitions {F1 ex1 =
e1, . . . , Fn exn = en}, where Fi denotes a defined function sym-
bol, and e ranges over the set of expressions, defined by:

e ::= 	 | x | F | e1e2 | if∗ e1 e2 | newL e | acca x e

We assume that F1, . . . , Fn are different from each other, and that
any program D contains exactly one definition for S (which is the
“main” function), of the form S = e.

The expression 	 is the unit-value. The expression e1e2 applies
the function e1 to e2, and if∗ e1 e2 non-deterministically executes
e1 or e2. The expression newL e creates a resource that should be
used according to the specification L, and passes it to e (which is a
function that takes a resource as an argument). Here, L is the set of
access sequences that may occur until the program terminates. For
example, the specification for read-only files is {c, r c, r r c, . . .}.
Note that the set does not contain the sequence r, since files must
be closed before the program termination. In this paper, we assume
that L is a regular language.4 acca x e applies an operation of name
a to the resource x, and then evaluates e. a ranges over a finite set
of the names of resource access primitives (like r, w, and c).

We write [e1/x]e2 for the expression obtained by replacing all
the occurrences of x in e2 with e1. A sequence of expressions
e1, . . . , en is often abbreviated to ee.

3 Note that the CPS transformation and λ-lifting do not change the resource
access sequences that we are interested in.
4 Most of the previous methods for resource usage or typestate verifica-
tion [12, 32] impose essentially the same restriction. Replacing the class
of regular languages with that of context-free languages make the problem
undecidable.



We consider only “well-typed” programs below. The set of
types is given by:

τ (types) ::= R | unit | τ1 → τ2

Here, R is the type of resources and unit is the type of the unit
value.

A type environment, denoted by Γ, is a mapping from variables
(including function names F1, . . . , Fn) to types. The type judg-
ment relation Γ � e : τ for expressions is the least relation closed
under the following rules:

Γ � 	 : unit Γ, x : τ � x : τ Γ, F : τ � F : τ

Γ � e1 : τ1 → τ2

Γ � e2 : τ1

Γ � e1e2 : τ2

Γ � e1 : unit
Γ � e2 : unit

Γ � if∗ e1 e2 : unit

Γ � e : R → unit

Γ � newL e : unit

Γ � e1 : R Γ � e2 : unit

Γ � acca e1 e2 : unit

A program D = {F1 ex = e1, . . . , Fn ex = en} is well-typed, if
there exists a type environment Γ = F1 :eτ1 → unit, . . . , Fn:eτn →
unit such that Γ, ex : eτi � ei : unit holds for each i; Here,eτ → unit and ex : eτ are abbreviations of τ1 → · · · → τn → unit
and x1 : τ1, . . . , xn : τn respectively.

Note that all the defined function symbols have types of the formeτ → unit. That condition is met by programs in CPS form.

REMARK 3.1. The above language contains programs that are not
images of CPS transformation. The transformation in the rest of
this section applies not only to images of CPS transformation but
to the whole language.

We now define an operational semantics by using the relation
(H,e) −→D (H ′, e′) on run-time states. A run-time state is
expressed by a pair (H,e), where e is the current expression, and H
maps each resource to a pair (w, L), where L is the specification of
the resource, and w is the sequence of accesses that have occurred
so far.

The relation (H,e) −→D (H ′, e′) is the least relation closed
under the following rules.

(H,F ee′) −→D∪{F ex=e} (H, [ee′/ex]e)

(H, if∗ e1 e2) −→D (H,e1)

(H, if∗ e1 e2) −→D (H,e2)

(H,newL e) −→D (H ∪ {x �→ (ε, L)}, e x) (x �∈ dom(H))

(H � {x �→ (w, L)}, acca x e) −→D (H ∪ {x �→ (w a, L)}, e)

Here, H � {x �→ (w, L)} is defined to be H ∪ {x �→ (w, L)}
only if x �∈ dom(H). w a is the concatenation of the two strings w
and a.

REMARK 3.2. Note that the reduction is allowed only at the top-
level; For example, (H,F (if∗ e1 e2)) −→D (H,F e1) is not al-
lowed. This is not a limitation, since we are dealing with programs
in CPS form.

The following is the standard type soundness property.

LEMMA 3.1. Suppose D is well-typed. If (∅, S) −→∗
D (H,e),

then either e is 	 or (H, e) −→D (H ′, e′) for some (H ′, e′).

We now define the problem of resource usage verification. The
first condition says that no invalid resource access occurs, and
the second condition says that all the required accesses must have
occurred when the program terminates.

DEFINITION 3.1 (resource safety, resource usage verification). A
(well-typed) program D is resource-safe if the following conditions
are satisfied.

1. If (∅, S) −→∗
D (H,e) and H(x) = (w, L), then ww′ ∈ L for

some w′.
2. If (∅, S) −→∗

D (H, 	) and H(x) = (w, L), then w ∈ L.

Resource usage verification is the problem of checking whether a
given (well-typed) program is resource-safe or not.

3.3 Transformation into HORS

We now give a transformation of a program D into a pair consisting
of an HORS H(D) and a tree automaton M(D) (for infinite trees),
such that D is resource-safe if and only if [[H(D)]] is accepted by
M(D).

Let Fnames(D), Anames(D), and Specs(D) be the sets of
defined function symbols, access primitive names (such as r, w),
specifications (L that appears in the form newL) respectively. The
transformation H from programs to HORS’s is defined by:

H(D) = (Σ,N ,R, S)
where:
Σ = Anames(D) ∪ {νL | L ∈ Specs(D)} ∪ {call, t, br}
N = Fnames(D) ∪ {newL | L ∈ Specs(D)}

∪{acca | a ∈ Anames(D)} ∪ {if∗, I, K, 	}
R = {F ex → call(e) | F ex = e ∈ D}

∪{acca x y → x a y, | a ∈ Anames(D)}
∪{newL x → br (x K) (νL(x I)) | L ∈ Specs(D)}
∪{if∗ x y → br x y,

I x y → x(y),
K x y → y,
	 → t(	)}

Here, the types of terminals and non-terminals are given by:

	 : o a,t, call, νL : o → o
I, K : (o → o) → o → o if∗, br : o → o → o

newL : (((o → o) → o → o) → o) → o
acca : ((o → o) → (o → o)) → o → o

The transformation above follows the ideas sketched in Sec-
tion 3.1, except the following points. For each function definition,
an extra node call is inserted, to ensure that the value tree of H(D)
does not contain ⊥ (recall Remark 2.1). Unlike in Figures 3 and 4,
the symbol 	 (which expresses a termination) is a non-terminal,
and reduced to the infinite tree t(t(t(· · · ))). This is for ensuring
that all the branches of the value tree of H(D) are infinite.

The following lemma guarantees that H(D) is certainly a
higher-order recursion scheme.

LEMMA 3.2. If D is well typed, then H(D) is a higher-order
recursion scheme.

Proof It suffices to show that the generated rewriting rules are
well-typed. We define H(τ ), the translation of types into tree types,
by: H(unit) = o, H(R) = (o → o) → o → o, and H(τ1 →
τ2) = H(τ1) → H(τ2). Then, it is easy to see that Γ � e : τ
implies e is a term of type H(τ ) under the typing context H(Γ),
and that all the rewriting rules (in the definition of R above) are
well-typed. �

The tree automaton M(D) is constructed as follows. Let
Specs(D) = {L1, . . . , Ln}. Let M1 = (Q1, Σ1, δ1, qS,1, QF,1),
. . ., Mn = (Qn, Σn, δn, qS,n, QF,n) be deterministic finite state
automata (for strings) that accept L1, . . . , Ln respectively. Here,
Σ1 ∪ · · · ∪ Σn ⊆ Anames(D). We assume that the sets of states
Q1, . . . , Qn are disjoint from each other. Then, M(D) is a Büchi



tree automaton (Q,Σ, qS , Δ, QF ) where:

Q = QF = {qS , qt} ∪ Q1 ∪ · · · ∪ Qn

Δ = {(qi, a, qj) | δk(qi, a) = qj for some k}
∪{(qS , νLi , qS,i) | i ∈ {1, . . . , n}}
∪{(q, t, qt) | q ∈ QF,1 ∪ · · · ∪ QF,n ∪ {qt, qS}}
∪{(q, νLi , qt) | q ∈ Q \ {qS}, i ∈ {1, . . . , n}}
∪{(q, br, q, q) | q ∈ Q}
∪{(q, call, q) | q ∈ Q}
∪{(qt, a, qt) | a ∈ Anames(D)}

The 3rd set of Δ describes transitions for the program termi-
nation. The transitions are defined if the focused resource (i.e., the
resource that has been instantiated to I) has been used up (i.e. if
q ∈ QF,1 ∪ · · · ∪ QF,n), if no resource has been instantiated to
I (i.e., if q = qS), or if the automaton is already in the final state
qt. The 4th set of Δ describes transitions for the case where more
than one resources have been instantiated to I (as in the subtree t4
in Figure 4); in that case, the automaton goes to the final state qt,
so that all the remaining subtrees are ignored (by the last set of Δ).
The 6th set of Δ says that call is just skipped (recall Remark 2.1).

EXAMPLE 3.1. Recall the second program in Section 3.1:

let rec f x y = if b then close(x);close(y)
else read(x);write(y);f x y

in ...

It is expressed as the following program D:

S = newr∗c C1

C1 x = neww∗c (C2 x)
C2 x y = F x y 	

F x y k = if∗ (accc x (accc y k))
(accr x (accw y (F x y k)))

The recursion scheme H(D) is (Σ,N ,R, S) where:

dom(Σ) = {r, w, c, νr∗c, νw∗c, call, t, br}
dom(N ) = {S, C1, C2, F,newr∗c,neww∗c,accr,accw,accc,

if∗, I, K, 	}
R = {S → call(newr∗c C1),

C1 x → call(neww∗c (C2 x)),
C2 x y → call(F x y 	),
F x y k → call(if∗ (accc x (accc y k))

(accr x (accw y (F x y k)))),
accr x y → x r y,accw x y → x w y,
accc x y → x c y,

newr∗c x → br (x K) (νr∗c(x I)),

neww∗c x → br (x K) (νw∗c(x I)), · · · }
The tree automaton M(D) is shown in Figure 5. All the states are
accepting states, so that a tree is rejected only if there is no run
for the tree. For example, a tree of the form νw∗c(r(· · · )) will be
rejected. �

The correctness of the transformation is stated as follows.

THEOREM 3.3. Let D be a (well-typed) program. Then, D is
resource-safe if and only if [[H(D)]] is accepted by M(D).

To prove the theorem above, it suffices to establish a correspon-
dence between the execution of D and the reduction of H(D).
More specifically, (I) if (∅, S) −→∗

D (H,e) and H(xi) =
(wi, Li) for some x1, . . . , xk ∈ dom(H), then there exists t
such that S −→∗

H(D) t and t⊥ has a path that matches a shuf-
fle of νL1w1, . . . , ν

Lkwk (with br and call being ignored);
and (II) if S −→∗

H(D) t, then for every path π of t⊥ that does
not contain t, there exists H , e, and x1, . . . , xk ∈ dom(H)

qt

r, w, t, νr∗c, νw∗c

q1,2
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Figure 5. The transition diagram for the automaton M(D) in
Example 3.1 (transitions for br and call are omitted)

such that (i) (∅, S) −→∗
D (H, e), (ii) π matches a shuffle of

νL1w1, . . . , ν
Lkwk, and (iii) H(xi) = (wi, Li) for each i ∈

{1, . . . , k}. See the extended version [25] for the proof.
The following corollary follows immediately from Theorems 2.1

and 3.3.

COROLLARY 3.4. The resource usage verification problem is de-
cidable.

REMARK 3.3. Instead of generating a single HORS and a tree
automaton from a program, we can also generate a pair of an
HORS and a tree automaton for each occurrence of newL. Then,
the resource usage verification problem is reduced to a set of
model-checking problems for HORS. For instance, the program in
Example 3.1 can be transformed into the following two HORS’s.

R1 = {S → call(newr∗c C1),
C1 x → call(C2 x K)
C2 x y → call(F x y k),
F x y k → call(if∗ (accc x (accc y k))

(accr x (accw y (F x y k)))), . . .}

R2 = {S → call(C1 K)

C1 x → call(neww∗c (C2 x)),
C2 x y → call(F x y k),
F x y k → call(if∗ (accc x (accc y k))

(accr x (accw y (F x y k)))), . . .}
This alternative approach may be preferable in practice, as the size
of each tree automaton is kept small.

4. Abstract Model Checking for Higher-Order
Programs

We have so far considered the language having only resources
and functions. This section informally discusses how to extend the
verification method to deal with ordinary values (such as booleans
and integers), by using the existing techniques for abstract model
checking.

A naive approach would be to throw away all the values except
resources and functions. That, however, leads to many false alarms.
For example, consider the following program:

let f b x = (if b then lock(x) else ());
(if b then unlock(x) else ())

in f true (newlock())

If b is true, then f b x locks and unlocks x; otherwise it does
nothing on x. Therefore, it safely uses the lock x. If we ignore the
parameter b, however, we get the following abstract program (in



CPS):
F k x = if∗ (acclck x (C x k)) (C x k)
C x k = if∗ (acculck x k) k

S = new(lck ulck)∗ (F 	)

Here, lck and ulck stand for lock and unlock operations respec-
tively. The abstract program is not resource-safe, since it may un-
lock x without having locked x.

We can use techniques for abstract model checking to deal
with the above problem. First, let us consider boolean higher-order
programs, where we have only booleans, resources, and functions
as values. The program given above is in fact a boolean program. It
can be expressed in CPS as follows.

F b k x = if b (acclck x (C b x k)) (C b x k)
C b x k = if b (acculck x k) k

S = new(lck ulck)∗ (F 1 	)

Here, we express true and false by 1 and 0 respectively. We can
easily eliminate the boolean parameters, and obtain:5

F0 k x = C0 x k F1 k x = acclck x (C1 x k)
C0 x k = k C1 x k = acculck x k

S = new(lck ulck)∗ (F1 	)

The resulting program can be verified by using the method in the
previous section. Thus, the resource-safety verification problem re-
mains decidable (Corollary 3.4) for the extension of the language in
the previous section with booleans and conditionals. As the boolean
elimination may cause the size of the program to blow up, it might
be better to extend an HORS model checking algorithm (Ong’s al-
gorithm or the type-based algorithm discussed in Section 5) to deal
with booleans directly.

If the language is extended with infinite value domains (such
as integers and recursive data structures), then the resource usage
verification problem becomes undecidable. For such an extension,
we can use predicate abstractions together with counter-example-
guided abstraction refinement [3]. An important point is that if an
HORS fails to satisfy a property, a counter-example can be con-
structed by our model-checking algorithm for HORS’s discussed
in Section 5, as in the ordinary model checking for finite state sys-
tems. Therefore, the abstraction-refinement cycle can be organized
in a standard manner.

The entire framework of verification is illustrated in Figure 1.
A source program is first transformed into a system of top-level
function definitions in CPS (Step 1 in Figure 1). Predicate abstrac-
tion is then applied to obtain a (non-deterministic) higher-order
boolean program (Step 2). As in the standard abstract model check-
ing with counter-example-guided abstraction refinement [3], we
can start with the simplest abstraction (which ignores values com-
pletely), and then gradually refine abstractions. As explained above,
boolean values are then eliminated and an abstract program of the
language in Section 3.2 is obtained (Step 3). Then, the program is
converted to a higher-order recursion scheme, as discussed in Sec-
tion 3.3 (Step 4). The higher-order recursion scheme is then veri-
fied by using the type-based method described in Section 5 (Step
5). If the verification succeeds, we can conclude that the source pro-
gram is resource-safe. Otherwise, we can construct a counterexam-
ple (which is a straight-line program without function calls) based
on the verification algorithm for HORS described in Section 5. By
investigating the corresponding execution sequence of the original
program, we can check whether the counterexample is a real one
(Step 6). For this purpose, the standard weakest precondition com-
putation would suffice. If it is a real counterexample, then we can

5 In general, we can express a function F of type bool → · · · → bool →
τ (where τ is not of the form bool → τ′) by a (finite) set of functions
Fb1···bn , where Fb1···bn behaves like F (b1, . . . , bn).

conclude that the program is unsafe. Otherwise, infer new predi-
cates (by heuristics), and re-do predicate abstraction (Step 7). Re-
peat this cycle (which may not terminate) until the program is found
to be safe or unsafe.

In the extended version of this paper [25], we demonstrate how
the whole verification framework works by using an example.

5. Intersection Types for Higher-Order
Recursion Schemes

This section discusses a verification method for higher-order recur-
sion schemes (Step 5 in Figure 1). We restrict our attention to safety
properties (the properties expressed by “trivial automata” [1]: recall
Section 2.2). Note that the transformation described in Section 3
generates only safety properties.

One approach to verification of HORS would be to use Ong’s
algorithm based on game semantics [29]. In this section, however,
we present an alternative, type-based method for verification of
HORS. Advantages of our type-based method are as follows.

• Our type-based algorithm seems (arguably) much simpler than
Ong’s algorithm.

• The verification problem of HORS of order n is n-EXPTIME-
complete [29], so that both our algorithm and Ong’s algorithm
suffer from the n-EXPTIME worst-case bottleneck.6 Under the
assumption that both the maximum size of the type of each non-
terminal and that of the specification are bound by constants,
however, the running time of the algorithm is linear in the size
of the recursion scheme. On the other hand, it is not clear how
to optimize Ong’s algorithm so that it runs in linear time under
the same assumption.

• By restricting the underlying type system, we can obtain a va-
riety of approximate (i.e., incomplete) but more efficient ver-
ification algorithms for HORS. In fact, as discussed in Sec-
tion 6, previous type-based methods for resource usage veri-
fication can be regarded as restrictions of the type system given
in this section.

• HORS is “simply-typed”; however, our type-based verification
method may be used for extensions of HORS with a limited
form of polymorphic types.

Aehlig [1] has also proposed a model-checking algorithm for the
same class of properties for HORS. His algorithm is closely related
to ours, but less efficient than our algorithm (see Section 7).

5.1 Type System for HORS

Let M = (QM , ΣM , qM,S, ΔM , QM,F ) be a Büchi tree automa-
ton such that QM = QM,F . (Note that the Büchi tree automaton
M(D) in Section 3 satisfies the condition QM = QM,F .) We omit
the subscript M when it is clear from the context. We shall con-
struct a type system for higher-order recursion schemes, such that
an HORS G has type qM,S if and only if [[G]] is accepted by M .

The idea is to refine the tree type o to an intersection type of the
form q1 ∧ · · · ∧ qk. Intuitively, qi describes trees that are accepted
by M from state qi (i.e., accepted by (QM , ΣM , qi, ΔM , QM,F )).
q1 ∧ · · · ∧ qk denotes the intersection of the sets of trees accepted
from the initial states q1, . . . , qk . The types of function terms are
also refined accordingly. The type q1 → q0 describes functions
that take a tree accepted from state q1, and return a tree accepted
from state q0. For example, in Example 3.1, c has type (q1,2 →
q1,1) ∧ (q2,2 → q2,1). The terminal br has type

V
{q → q → q |

6 Actually, our algorithm deals with only safety properties. We are currently
investigating whether the worst-case complexity remains the same for the
safety properties.



q ∈ QM}. To avoid the confusion between types denoted by κ and
intersection types, we shall call the types denoted by κ kinds below.

The set of “well-formed” intersection types is defined by the
relations σ ::κ and θ ::a κ, which should be read “σ is a type of kind
κ,” and “θ is an atomic type of kind κ,” respectively. We exclude
out ill-formed types like q1 ∧ (q2 → q3).

DEFINITION 5.1 (intersection types). The relations σ :: κ and
θ ::a κ are the least relations closed under the following rules:

qi ::a o
σ :: κ1 θ ::a κ2

σ → θ ::a κ1 → κ2

θi ::a κ for each i ∈ {1, . . . , n}V
{θ1, . . . , θn} :: κ

Note that we exclude out types like q1 → (q2 ∧ q3). That is for
a technical convenience in discussing a type inference algorithm
later. Note that q1 → (q2 ∧ q3) can be replaced by (q1 →
q2) ∧ (q1 → q3) (according to the intuitions explained above).
We often write θ1 ∧ · · · ∧ θn for

V
{θ1, . . . , θn}. We write � forV

{ }. We identify q with
V
{q}.

A type judgment for terms of HORS is of the form Θ �M t : σ,
where Θ, called a type environment, is a mapping from variables
and defined function symbols to types. Θ �M t : σ is the least
relation closed under the following rules.

Θ �M t : θi (for each i ∈ {1, . . . , n})

Θ �M t :
V
{θ1, . . . , θn}

Θ, x : θ1 ∧ · · · ∧ θn �M x : θj (j ∈ {1, . . . , n})

Θ, F : θ1 ∧ · · · ∧ θn �M F : θj (j ∈ {1, . . . , n})

(q, a, q1, . . . , qn) ∈ ΔM

Θ �M a : q1 → · · · → qn → q

Θ �M t1 : σ → θ Θ �M t2 : σ

Θ �M t1t2 : θ

Let G = (Σ,N ,R, S) be a higher-order recursion scheme
where Σ = ΣM . (G, t) is defined to have type σ, written �M

(G, t) : σ, if there exists Θ such that:

1. dom(Θ) = dom(N );

2. Θ(F ) :: N (F ) for each F ∈ dom(Θ);

3. If F ex → e ∈ R and Θ �M F : eσ → q,
then Θ, ex : eσ �M e : q holds; and

4. Θ �M t : σ.

EXAMPLE 5.1. Recall the HORS in Example 3.1 (and its specifi-
cation automaton in Figure 5). S has type qS under the following
assignment of types to C1, C2, and F .

C1 : (σK → qS) ∧ (σI → q1,1)
C2 : (σK → σK → qS) ∧ (σI → σK → q1,1)

∧(σK → σI → q2,1) ∧ (σI → σI → qt)
F : (σK → σK → qS → qS) ∧ (σI → σK → q1,2 → q1,1)

∧(σK → σI → q2,2 → q2,1) ∧ (σI → σI → qt → qt)
where
σI =

V
{(qi → qj) → qi → qj | qi, qj ∈ Q}

σK =
V
{(qi → qj) → qk → qk | qi, qj , qk ∈ Q}

5.2 Soundness and Completeness

We first prove the soundness of the type system.

THEOREM 5.1 (soundness). Let G be an HORS and
M = (QM , ΣM , qM,S , ΔM , QM ) be a Büchi tree automaton. If
�M (G, S) : qM,S , then [[G]] is accepted by M .

The proof of the theorem above is similar to standard type
soundness proofs. We first prove that typing is preserved by re-
ductions.

LEMMA 5.2 (type preservation). If �M (G, t) : σ and t −→G t′,
then �M (G, t′) : σ.

Proof Straightforward case analysis on the rule used for deriving
t −→G t′. �

Next, we show that if (G, t) is well-typed, then the “con-
cretized” part of t, i.e., the part of t that has been already evaluated
to tree nodes, is accepted by the automaton. The “concretized” part
of t is expressed by t⊥ defined in Section 2. Here, we regard ⊥
as the infinite tree ⊥(⊥(· · · )). For example, r(c(Ft))⊥ is the in-
finite tree r(c(⊥(⊥(· · · )))))⊥. We write M⊥ for the following
automaton, obtained from M by adding a dummy transition for ⊥:

(QM , ΣM ∪ {⊥}, qM,S, Δ ∪ {(q,⊥, q) | q ∈ QM}, QM ).

LEMMA 5.3. If �M (G, t) : q, then t⊥ is accepted by M⊥ from
state q.

Proof The proof proceeds by induction on the structure of t⊥.
If t⊥ = ⊥, the result follows immediately. Otherwise, t⊥ is of
the form a t′1 · · · t′n. In this case, t is of the form a t1 · · · tn

with ti
⊥ = t′i for i = 1, . . . , n. By �M (G, t) : qS , we have

�M a : q1 → · · · → qn → q and �M (G, ti) : qi (i = 1, . . . , n).
By the induction hypothesis, ti

⊥ is accepted by M from state qi.
�M a : q1 → · · · qn → q implies also that M has the transition
(q, a, q1, . . . , qn). Therefore, t⊥ must be accepted by M from state
q. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1 The proof proceeds by contradiction. Sup-
pose that �M (G, t) : qS holds, but [[G]] is not accepted, i.e., the
run of M over [[G]] gets stuck. Then, there must exist t such that
S −→∗

G t and the run of M⊥ for t⊥ gets stuck. By Lemma 5.2,
�M (G, t) : qS . Thus, by Lemma 5.3, t⊥ must be accepted by
M⊥; hence a contradiction. �

Next, we prove the completeness of the type system.

THEOREM 5.4 (completeness). Let G be an HORS and M =
(QM , ΣM , qM,S, ΔM , QM ) be a Büchi tree automaton. If [[G]] is
accepted by M , then �M (G, S) : qM,S .

We prepare a few definitions and lemmas before proving the
theorem. We write [[(G, t)]] for the infinite term generated from t by
the rewriting rules of G. (In other words, for G = (Σ,N ,R, S),
[[(G, t)]] is [[G′]] where G′ = (Σ,N � {S′},R � {S′ → t}, S′).)

We add the axiom Θ �M ⊥ : q (for any q ∈ Q) to the type
system. We identify the infinite tree ⊥(⊥(· · · )) with the term ⊥
below: When we are talking about typing, ⊥ is interpreted as the
term ⊥, while when ⊥ is an input to an automaton, it is interpreted
as the infinite tree.

LEMMA 5.5. If t⊥ is accepted by M⊥ from state q, then ∅ �M

t⊥ : q.

Proof The proof proceeds by induction on the structure of t⊥.
If t⊥ = ⊥, the result follows immediately. Otherwise, t⊥ is of
the form a t′1 · · · t′n. In this case, t is of the form a t1 · · · tn

with ti
⊥ = t′i for i = 1, . . . , n. By the assumption that t⊥ is

accepted by M⊥ from state q, there must be states q1, . . . , qn such



that (i) M has the transition (q, a, q1, . . . , qn), and (ii) t′1, . . . , t
′
n

are accepted by M⊥ from states q1, . . . , qn respectively. By the
induction hypothesis and the condition (ii), we have ∅ �M t′i : qi

for each i. The condition (i) implies that ∅ �M a : q1 → · · · →
qn → q. Thus, we have ∅ �M t⊥ : q as required. �

The following lemma says that typing is preserved by the in-
verse of the reduction relation (c.f. Lemma 5.2).

LEMMA 5.6. If �M (G, t′) : σ and t −→G t′, then �M (G, t) : σ.

Proof This follows by induction on the derivation of t −→G t′.
Since the induction step is trivial, we show only the base case,
where t = F es and t′ = [es/ex]t0. Here, F ex → t0 is a rewrit-
ing rule of G. We can assume without loss of generality that σ
is a type of the form q. Let Θ be the type environment witness-
ing �M (G, t′) : σ. Note that we have Θ �M t′ : q. Let
{θi1, . . . , θiki} be the set of atomic types assigned to si in the
type derivation for Θ �M t′ : q. Then, we can construct a deriva-
tion for Θ, x1 :

V
{θ11, . . . , θ1k1}, . . . , xn :

V
{θn1, . . . , θnkn} �M

t0 : q. Let Θ′ be the type environment obtained from Θ by re-
placing the type of F with Θ(F ) ∧ (

V
{θ11, . . . , θ1k1} → · · · →V

{θn1, . . . , θnkn} → q). Then, we have Θ′ �M t : q, which
implies �M (G, t) : q. �

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4 Let G = (Σ,N ,R, S) where R =
{F1 ex1 → t1, . . . , Fn exn → tn}. Let T E be the set of type
environments:

{Θ | dom(Θ) = {F1, . . . , Fn}, Θ(Fi) :: N (Fi) for each i}.
We define a mapping F from T E to T E by:

F(Θ)(Fi) =
^

{eσ → q | Θ, exi : eσ �M ti : q}

We write Θ1 � Θ2 if Θ1(Fi) =
V
{θ1, . . . , θm} and Θ2(Fi) =V

{θ1, . . . , θn} holds for each Fi with {θ1, . . . , θm} ⊆ {θ1, . . . , θn}.
Note that F is monotonic with respect to �.

Let Θgfp be the greatest post-fixed point of F , i.e., the greatest
type environment such that Θ � F(Θ). Since T E is a finite
set, ϕgfp = Fm(Θ0) for some m, where Θ0(Fi) =

V
{θ |

θ ::a N (Fi)}.
Then, �M (G, S) : qS if and only if Θgfp �M S : qS .

(Note that the third condition in the definition of �M (G, t) : σ
is equivalent to Θ � F(Θ). )

Now, suppose that [[G]] is accepted by M .
From G, we construct a recursion-free HORS G(m) as follows.

For each defined function symbol Fi, prepare new defined function
symbols Fi,0, . . . , Fi,m (where S = Sm). Then replace each
rewriting rule Fi ex → ti with the following rewriting rules:

Fi,k ex → [F1,k−1/F1, . . . , Fn,k−1/Fn]ti for k ∈ {1, . . . , m}
Fi,0 ex → ⊥

By the definition, [[G(m)]] is an approximation of [[G]], i.e., [[G(m)]]
is obtained by replacing some subtrees of [[G]] with ⊥. So, [[G(m)]] is
accepted by M⊥. Thus, by Lemma 5.5, we have �M (G(m), [[G(m)]]) :
qS . Because G(m) is recursion-free, S −→∗

G(m) [[G(m)]]. Thus, By

Lemma 5.6, �M (G(m), S) : qS . By the construction of G(m),
Θgfp �M S : qS (recall that Θgfp = Fm(Θ0)), which implies
�M (G, S) : qS . �

5.3 Type Checking Algorithm

We discuss a type checking algorithm and its time complexity in
this subsection.

The proof of Theorem 5.4 gives the following type checking
algorithm:

1. Let Θ0 be F1:
V
{θ | θ::aN (F1)}, . . . , Fn:

V
{θ | θ::aN (Fn)}.

2. Compute F1(Θ0),F2(Θ0), . . ., and find m such that either
Fm(Θ0) = Fm+1(Θ0) or Fm(Θ0) ��M S : qS .

3. Answer whether Fm(Θ0) �M S : qS holds.

Note that the second step must terminate, as Fi(Θ0) ranges over
a finite set, and decreases monotonically. m is bound by the max-
imum length of a decreasing sequence, which is |N (F1)| + · · · +
|N (Fn)|.

When the type checking fails, a type error slice [13] of G(m)

serves as a counter-example, which will be given as an input for
Step 6 in Figure 1.

We now discuss the time complexity of the above algorithm. Let
G be a higher-order recursion scheme of order N(≥ 1), and M be
a Büchi tree automaton M = (Q,Σ, qS , Δ, Q). Let |G| and |Q| be
the size of (the rules of) G and that of Q respectively. The number
of atomic types of kind o is |Q|, and the number of atomic types of
kind o → · · · → o → o is 2|Q| × · · · × 2|Q| × (|Q|). In general,
if κ has order N and arity k, the number of atomic types of kind κ
is bound by expN (O(k|Q|))), where expN (x) is defined by:

exp0(x) = x expi+1(x) = 2expi(x)

Thus, m is bound by (expN (O(K|Q|))) × n, where K is the
maximum arity of F1, . . . , Fn. The cost for computing F(Θ) is
also bound by expN(O(K|Q|)) × |G|, so that the running time of
the algorithm is bound by expN (O(|Q||G|)). (Note that K and n
are bound by |G|.) This time complexity is analogous to that of
Ong’s algorithm using game semantics [29].7 Note, however, that
our algorithm can deal with only safety properties, while Ong’s
algorithm can deal with arbitrary properties expressed by modal
μ-calculus.

The extremely high time complexity above may be disappoint-
ing. Note, however, that the high time complexity is attributed to
the explosion of the size of the set of intersection types. Let us as-
sume that the size of the kind of each defined function symbol is
bound by a constant (hence so are K and N above). Here, the size
of κ is defined by |o| = 0 and |κ1 → κ2| = |κ1| + |κ2| + 1. Let
us also assume that |Q| is also bound by a constant. Then, for a
given κ, the size of the set of intersection types of kind κ is bound
by a constant. Therefore, in the above algorithm, both the number
of iterations m and the cost for each iteration is O(|G|), so that the
algorithm runs in time O(|G|2). By using Rehof and Mogensen’s
method [30] for solving constraints in finite semi-lattices, we can
further optimize it to obtain a linear time algorithm.

For the purpose of resource usage verification, the above as-
sumption about the size of kinds seems to be reasonable. Note that
the kinds of defined function symbols correspond to the simple
types of function variables of source programs. In realistic pro-
grams, the type size does not necessarily increase with the increase
of the program size. In fact, the boundedness of type size is often
assumed in the context of type-based program analysis [15, 21].
The assumption on the number of states of M also seems reason-
able, because the automaton M is determined solely by the kinds
of resources used in the program.

5.4 Type Refinement – Towards Efficient Type-Based Model
Checking of HORS

The most significant bottleneck of the verification framework in
Figure 1 is probably the phase for model-checking HORS (Step

7 Actually, Ong’s time complexity result is with respect to the size of a
modal μ-calculus formula. Since the size of the equivalent tree automaton
can be exponential in the size of the formula, we should modify the above
type system and type checking algorithm to deal with alternating tree
automata [9]. That modification is easy: just change the types of terminal
symbols. Thus, the above time complexity result should hold even when a
property is given by a modal μ-calculus formula.
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Figure 6. Type-Based Verification of HORS with Type Refine-
ment. The dotted box corresponds to Step 5 in Figure 1

5). As discussed above, the complexity of the algorithm for order-
n HORS is in general n-EXPTIME. Although the algorithm runs
in time linear in the program size with the assumption on the
boundedness of the type and specification sizes, the constant factor
would be extremely large.

A possible solution to this problem would be to use an incom-
plete but efficient type system first, and then gradually refine the
type system, as illustrated in Figure 6. Given an HORS G and an
automaton M , use a simple type system first to check whether G
has type qS . If the type-checking succeeds, then the program is
resource-safe. Otherwise, compute a type error slice [13]. Analyze
the type error slice and check whether there is a real reduction se-
quence of G that violates the property. If so, output it as a possible
counterexample for the original program (which is passed to Step
6 in Figure 1). Otherwise, refine the type system, and continue the
cycle. Thus, we have now two refinement cycles in the verifica-
tion framework in Figure 1; a cycle for predicate refinement, and
another cycle for type refinement.

We have not yet studied exactly how types should be refined
in the framework sketched above, but the intersection type system
seems convenient for the type refinement framework above. By re-
stricting the form of intersection types, we can obtain type systems
of varying efficiency and expressive power. In fact, as we discuss
in the next section, previous type systems for resource usage verifi-
cation may be considered restricted forms of our intersection type
system.

6. Comparison with Previous Type Systems for
Resource Usage Verification

In this section, we discuss relationships between our intersection
type system for HORS and three previous type systems for re-
source usage verification (or typestate): typestates [32], Igarashi
and Kobayashi’s type system [19], and flow-sensitive type quali-
fiers [12]. The discussion would provide a hint for designing the
type refinement framework sketched in Section 5.4.

First, a straightforward consequence of Theorems 5.1 and 5.4 is
that, for the language of Section 3, our method (the combination of
the transformation in Section 3 and the type system in Section 5) is
always at least as accurate as any method (including type systems,
flow analysis, or whatever) for resource usage verification. That is
also the case for languages with ordinary values (such as booleans
and integers) for the three type systems [12, 19, 32], as they do not
capture value-dependent information.

qS

t t

νL

qt

q0

p

g

p

g
q1 q2

Figure 7. The specification automaton for 2-place buffer (unim-
portant transitions are omitted).

We use the program in Example 3.1 and the example below to
compare our intersection type system and the three type systems in
more detail.

EXAMPLE 6.1. Consider the following program that accesses 2-
place buffers.

fun f x y = g x y; h x y;
fun g x y = put(x); put(y);
fun h x y = get(x); get(y);
if * then f (newbuf()) (newbuf())
else let x=newbuf() in f x x

Here, newbuf() creates a new 2-place buffer, on which the opera-
tion put can be performed twice before get is performed.

The program can be transformed into the following program D
in our language.

S = if∗ (newL C1) (newL C2)
C1 x = newL (C3 x)
C2 x = F x x 	

C3 x y = F x y 	
F x y k = G x y (H x y k)
G x y k = accp x (accp y k)
H x y k = accg x (accg y k)

Here, L is the set of sequences s ∈ {p, g} such that (i) #g(s) =
#p(s), and (ii) for any prefix s′ of s, #g(s

′) ≤ #p(s
′) ≤ #g(s

′)+
2, where #a(s) is the number of occurrences of a in s.

The specification automaton M(D) is shown in Figure 7.
The HORS H(D) has type qS under the following assignment

of types.

F : σ ∧ (σI → σI → q0 → q0) ∧ (σI → σK → q0 → q0)
∧(σK → σI → q0 → q0) ∧ (σK → σK → qS → qS)

G : σ ∧ (σI → σI → q2 → q0) ∧ (σI → σK → q1 → q0)
∧(σK → σI → q1 → q0) ∧ (σK → σK → qS → qS)

H : σ ∧ (σI → σI → q0 → q2) ∧ (σI → σK → q0 → q1)
∧(σK → σI → q0 → q1) ∧ (σK → σK → qS → qS)

Here, σI and σK are the same as those in Example 5.1, and σ is
σI → σI → qt → qt. �

6.1 Typestate

Typestates [32] have been proposed as an extension of types with
states, which determine what operations can be performed at each
program point.8 The states roughly correspond to the automaton
states in this paper. Each program point is associated with a map-
ping from variables to typestates. A function’s type is expressed
as a pair of the type environments at the entry point and the exit
point. For example, the function f in Example 3.1 is given type
x:R(q1,1), y:R(q2,1) at the entry point, and x:R(q1,2), y:R(q2,2)

8 Actually, the original algorithm for checking typestates [32] is presented
as a flow analysis. The following discussion is based on our interpretation
of the original work from the viewpoint of type systems.



at the exit point. Here, R(q) is the type of a resource in state q. (We
use states of the automaton in Figure 5.) Notice that this contains
the same information as the following type of F given in Exam-
ple 5.1:

F : · · ·∧(σI → σK → q1,2 → q1,1)∧(σK → σI → q2,2 → q2,1)

The part σI → σK → q1,2 → q1,1 expresses the change of
the state of the first resource, while σK → σI → q2,2 →
q2,1 expresses the change of the state of the second resource.
(Notice that since F is in the continuation-passing style, the types
q1,2 and q2,2 of continuations describe the states at the exit point
of f .) In general, a function that has typestates x1 : R(q1), x2 :
R(q2), . . . , xn : R(qn) at the entry point and x1 : R(q′1), x2 :
R(q′2), . . . , xn :R(q′n) at the exit point will be given the following
type in our type system:

(σI → σK → · · · → σK → q′1 → q1)
∧(σK → σI → · · · → σK → q′2 → q2)
∧ · · · ∧ (σK → · · · → σK → σI → q′n → qn) ∧ · · ·

A difference arises for the program in Example 6.1. f , g and h
will be given the following typestates:

entry point exit point
f x : R(q0), y : R(q0) x : R(q0), y : R(q0)
g x : R(q0), y : R(q0) x : R(q1), y : R(q1)
h x : R(q1), y : R(q1) x : R(q0), y : R(q0)

In the typestates of [32], aliases are not allowed, so that x and y
are assumed to be different resources. Therefore, the function call
f x x is not typable.

On the other hand, the HORS generated from the program is
typable in our type system. The difference lies in the following
parts of the types of F , G and H :

F : (σI → σI → q0 → q0) ∧ · · ·
G : (σI → σI → q2 → q0) ∧ · · ·
H : (σI → σI → q0 → q2) ∧ · · ·

Those parts take care of the case where the two arguments are the
same resource.

Another difference is polymorphism. In our type system, the
term accp y in the definition of G is given the following polymor-
phic type when y has type σI :

(q1 → q0) ∧ (q2 → q1)

On the other hand, in typestates, a unique type is assigned to each
program point.

To summarize, the main differences between our type system
and typestates are in the treatment of aliasing and polymorphism.

6.2 Igarashi and Kobayashi’s type system

In Igarashi and Kobayashi’s type system [19] (IK type system,
for short), resource types are extended with a set of valid access
sequences. For example, the function f in Example 3.1 is given the
following type:

File(r∗c) → File(w∗c) → unit

Here, the part File(r∗c) means that the first argument will be read
and then closed by the function. The set of access sequences r∗c
corresponds to the transition from q1,1 to q1,2 in the automaton.
Thus, it expresses the same information as the part σI → σK →
q1,2 → q1,1 of F ’s type in the intersection type system.

IK type system can deal with polymorphism and aliasing in
a restricted manner. The function g in Example 6.1 is given the
following type:

R(p) → R(p) → unit.

Since the action p corresponds to the transition from q1 to q2 and
also the one from q2 to q3, the first occurrence of R(p) subsumes
the information expressed by:

(σI → σK → q2 → q1) ∧ (σI → σK → q3 → q2).

Moreover, IK type system does not require that the first and second
arguments are different resources. Given the call f x x, IK type
system assigns to x the type R(p ⊗ p). Here, L1 ⊗ L2 represents
the shuffle of the languages L1 and L2; In this case, p⊗ p denotes
the singleton set {pp}. Thus, the above type expresses the same
information as:

G : (σI → σI → q3 → q1) ∧ (σK → σK → q1 → q1)∧
(σI → σK → q2 → q1) ∧ (σK → σI → q2 → q1)∧
(σI → σK → q3 → q2) ∧ (σK → σI → q3 → q2)

Handling of aliasing and polymorphism in IK type system is,
however, limited. For example, consider the following function:

F x y c = accr x (accc y c)

The intersection type system can assign to F the following type:

· · · ∧ (σI → σI → q2 → q1) ∧ · · · ,

which expresses the information that if x and y are the same
resource, then the resource state will change from q1 to q2. On the
other hand, IK type system assigns to (the direct-style counterpart
of) F the following type:

File(r) → File(c) → unit

Given the call F x x, x is given the type File(r ⊗ c). The type
means that x will be either read and then closed, or closed and then
read. Thus, F x x will be rejected. IK type system also suffers from
lack of enough polymorphism: If F1 and F2 are passed to the same
function G (as in G(F1) and G(F2)), the same type is assigned to
F1 and F2.

6.3 Flow-Sensitive Type Qualifiers

Foster et al. [12] proposed a type-based analysis for checking
typestates (or flow-sensitive type qualifiers in their terminology).
A resource type is annotated with a region, like File(ρ). A region
is an abstract set of concrete resources (or locations). The type
system then keeps track of the state of each region. For example,
the function f in Example 3.1 is given the following type:

({ρ1 �→ q1,1, ρ2 �→ q2,1},File(ρ1) ×File(ρ2))
→ ({ρ1 �→ q1,2, ρ2 �→ q2,2}, unit)

Here, the type means that the function takes a pair of resources
in regions ρ1 and ρ2, and that the states of regions ρ1 and ρ2

are q1,1 and q2,1 before the function call and q1,2 and q2,2 after
the call. Thus, region names serve as the same role as variables
in typestates [32], for keeping track of resource states, and the
relationship between our intersection type system and the type
qualifiers is similar to that between ours and typestates, except the
treatment of aliases through the special construct restrict.

As in typestates, the type qualifiers also suffer from the problem
of aliases: Suppose that files x and y have different resources of the
same type File(ρ), and that the state of ρ is q1,1. Then, close(x)
cannot change the state of ρ to q1,2, because x is closed, but y is
still opened.

To deal with the alias problem, Foster et al. [12] introduces a
special construct called restrict. For example, consider the follow-
ing program fragment:

let x=hd(l) in lock(x); unlock(x)

Here, l is a list of locks. Since all the elements of l are abstracted
to the same region (say, ρ), the above program cannot be typed. It



can, however, be rewritten to:

let x=hd(l) in restrict
ρ′
z=x in lock(z); unlock(z)

Here, the region for x is locally renamed to ρ′ and the state of ρ′

can be changed inside the body of restrict, as long as (i) the state
of ρ′ is changed back to the original state at the end of the body and
(ii) the region ρ is not accessed in the body. A similar mechanism
is also employed in the type system of Vault [8].

When a region ρ expresses more than one resources, the re-
source type R(ρ) corresponds to the union type σI ∨ σK in our
type system. Given a resource of type σI ∨ σK , we do not know
whether we should keep track of the resource state. Thus, the rea-
soning for restrict above seems to be related to the following
rule for union types:

Θ, x : σI , k : qi � t : qj Θ, x : σK , k : qi � t : qj

Θ, x : σI ∨ σK , k : qi � t : qj

Here, k denotes the continuation. The reasoning for restrict
seems to be a special case of the above rule, where qi = qj and
t does not access resources in the same region as x. In that case,
the assumption Θ, x : σK , k : qi � t : qi follows immediately, so
that it suffices to check Θ, x : σI , k : qi � t : qi.

7. Related Work
HORS model checking The present work owes much to the the-
oretical studies of the model-checking problem for higher-order re-
cursion schemes [2, 14, 22–24, 29]. The modal μ-calculus model-
checking problem for HORS has been extensively studied recently.
Knapik [22] showed that the problem is decidable for order-2 safe
higher-order recursion schemes (where “safety” is a certain syntac-
tic condition), and later extended the result to safe HORS of any or-
der [23]. Knapik et al. [24] and Aehlig et al. [2] then independently
showed that the model checking problem is decidable for order-2
HORS, without the safety assumption. Finally, Ong [29] has shown
that the problem is decidable for HORS of arbitrary order. Their al-
gorithms are based on automata and game theories and are rather
involved. It would be interesting that, for the restricted fragment of
modal μ-calculus, the same problem can be solved in a rather sim-
ple manner by using types. Aehlig [1] has also proposed a model-
checking algorithm of HORS for the same class of safety proper-
ties as ours. His algorithm is much closer to our algorithm than
Ong’s algorithm, although Aehlig assigns set-theoretic functions to
terms instead of our intersection types. His algorithm guesses an
assignment of set-theoretic functions to terms, and then checks the
correctness of the guess. Thus, his algorithm is less efficient than
our algorithm; for example, for order-1 recursion scheme, their al-
gorithm is double exponential in the number of states, while our
algorithm is exponential.

As far as the author knows, applications of these decidability
results to program verification have been limited so far, except
some work on verification of higher-order pushdown systems [14].

Software model checking Thanks to the advance of abstract
model-checking techniques (such as counter-example-guided ab-
straction refinement and lazy abstractions), model checking has
become a popular technique for software verification [3–5, 16].
The existing model checkers are mainly targeted for imperative lan-
guages with first-order procedures. The treatment of higher-order
functions is limited; for example, in SLAM [3], a call to function
pointer in a C program is replaced by a non-deterministic choice
of all the functions that it may point to. Thus, information is lost in
this pre-processing phase for software model checking.

A trick similar to the one used in Section 3 (of instantiating
a new resource to I or K non-deterministically) is used also in
software model checking [7].

Resource usage verification A number of type-based or flow-
based techniques for verification of temporal properties have been
proposed, under various names (resource usage verification, types-
tate checking, etc.) [10–12, 19, 20, 26, 32]. Unlike our intersection
type system, they are incomplete for higher-order programs. Since
our intersection type system is complete (for value-free programs),
it may be used as a good device for comparing different techniques;
three of them have been already discussed in Section 6.

Some of the verification techniques [10, 11, 26] can analyze
value-dependent information. In our verification framework (Fig-
ure 1), the value-dependent information is handled in Step 2, a sep-
arate phase from HORS model checking.

Model checking vs type systems Naik and Palsberg [27, 28] stud-
ied type systems equivalent to model checkers for an imperative
language and an interrupt calculus. Their type systems and ours
have some similarity: a state or a value is represented by an atomic
type, and the effect of a statement is expressed by an intersection of
function types (each of which represents a state transition). A ma-
jor difference is that they consider only types of order 1, while we
consider types of higher-orders to deal with higher-order functions.
Naik and Palsberg [27, 28] uses union types also, while we do not
use them. That is because we consider only deterministic higher-
order recursion schemes. Union types may be useful for verification
of a non-deterministic HORS (which generate a set of trees).

In the context of the π-calculus, there is an approach to com-
bining types and model checking [6, 18]. In that approach, a type-
based analysis is used to extract abstract programs, and then the ex-
tracted programs are model-checked. Information is lost in the type
inference phase, which causes false alarms. On the other hand, our
intersection type system is complete; Information is lost only in the
phase for predicate abstractions (Step 2 in Figure 1).

Dependent types Dependent types have been a popular method
for semi-automatic verification of higher-order programs. Heuristic
techniques for automated inference of dependent types have been
studied recently [31, 34], but their applicability seems to be still
limited. Our verification framework in Figure 1 provides an alter-
native approach to inference of dependent types. A higher-order
program with assertions can be expressed in our language, by us-
ing a single global resource and a single action fail to express an
assertion violation. Using the framework in Figure 1, we can start
with simple types, and then gradually refine dependent types until
the whole program is type-checked.

Tree types Connections between types and tree automata have
been studied in the context of languages for XML processing [17].
They deal with finite trees, while our type system deals with infinite
trees.

8. Conclusion
We have proposed a novel framework for verification of temporal
properties of higher-order programs, based on the recent result on
the decidability of HORS model checking. There are two main con-
tributions in this work. The first one is the reduction of the resource
usage verification problem to the HORS model checking problem.
As far as the author knows, this is the first practical application
of the decidability of HORS model checking to program verifica-
tion. The reduction enables a smooth integration of the techniques
for abstract model checking (in particular, counter-example-guided
abstraction refinement) into verification of higher-order programs.

The second contribution is a type-based algorithm for HORS
model checking. Although only a fragment of the modal μ-calculus



is handled, our algorithm and its correctness proof seem to be
significantly simpler than the previous algorithm [29] (for the full
modal μ-calculus). The new type system also serves as a good
device for comparing previous type systems for verification of
temporal properties.

A lot of work is left for future work. On the practical side, the
two refinement cycles in Figures 1 and 6 should be substantiated.
A verification tool should be implemented to test the feasibility
of the verification method. Extending the method to deal with
recursive data structures and pointers would also be important. On
the theoretical side, it would be interesting to find a type system for
the full modal μ-calculus model checking of HORS.
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