
Region-Based Memory Management
for a Dynamically-Typed Language

Akihito Nagata1, Naoki Kobayashi 2, and Akinori Yonezawa1

1Dept. of Computer Science, University of Tokyo��

{ganat,yonezawa}@yl.is.s.u-tokyo.ac.jp
2Dept. of Computer Science, Tokyo Institute of Technology

kobayasi@cs.titech.ac.jp

Abstract. Region-based memory management scheme has been pro-
posed for the programming language ML. In this scheme, a compiler
statically estimates the lifetime of each object by performing an ex-
tension of type inference (called region inference) and inserts code for
memory allocation and deallocation. Advantages of this scheme are that
memory objects can be deallocated safely (unlike with manual mem-
ory management using malloc/free) and often earlier than with run-time
garbage collection. Since the region inference is an extension of the ML
type inference, however, it was not clear whether the region-based mem-
ory management was applicable to dynamically-typed programming lan-
guages like Scheme. In this paper, we show that the region-based memory
management can be applied to dynamically-typed languages by combin-
ing region inference and Cartwright et al.’s soft type system.

1 Introduction

Tofte et al. [23] proposed a static memory management scheme called region in-
ference. In this scheme, heap space is divided into abstract memory spaces called
regions. Memory is allocated and deallocated region-wise and every object gen-
erated at run-time is placed in one of the regions. A compiler statically estimates
the lifetime of each region, and statically inserts code for allocating/deallocating
regions.

For example, a source program:

let x = (1, 2) in λy. #1 x end

is translated into

letregion ρ2 in

let x = (1 at ρ1, 2 at ρ2) at ρ3

in λy. #1 x at ρ4 end

end

�� Nagata’s current affiliation: OS Development Dept. R&D Div. Sony Computer En-
tertainment Inc.

W.-N. Chin (Ed.): APLAS 2004, LNCS 3302, pp. 229–245, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

230 A. Nagata, N. Kobayashi, and A. Yonezawa

Here, #1 is the primitive for extracting the first element from a pair, and
ρi stands for a region. letregion ρ in e end is a construct for allocating and
deallocating a region. It first creates a new region ρ, and evaluates e. After
evaluating e, it deallocates ρ and returns the evaluation result. v at ρ specifies
that the value v should be stored in the region ρ. Given the source program
above, a compiler can infer that the integer 2 is used only in that expression,
so that it inserts letregion ρ2 in · · · end. This transformation (which inserts
letregion ρ · · · and at ρ) is called region inference [23].

Region-based memory management has several advantages over conventional
memory management schemes. First, it is safe, compared with manual memory
management using free/malloc in C. Second, it can often deallocate memory cells
earlier than conventional, pointer-tracing garbage collection (in the sense that
memory cells are deallocated at the end of the letregion construct, while garbage
collection is invoked only periodically). Since the original region inference is an
extension of the ML type inference, however, it was not clear how to apply the
region-based memory management to programming languages other than ML,
especially dynamically-typed programming languages such as Scheme [14]. In
this paper, we show that the region-based memory management can be applied to
dynamically-typed languages by combining region inference and soft typing [5].

We explain the main idea below. First, we review ideas of the original region
inference. Under region inference, ordinary types are annotated with region in-
formation. For example, the type int of integers is replaced by (int, ρ), which
describes integers stored in region ρ. Similarly, the function type int → int is ex-
tended to ((int, ρ1)

ϕ−→ (int, ρ2), ρ3), which describes a function stored in region
ρ3 that takes an integer stored in ρ1 as an argument, accesses regions in ϕ when
it is called, and returns an integer stored in ρ2. By performing type inference
for those extended types, a compiler can statically infer in which region each
value is stored and which region is accessed when each expression is evaluated.
Using that information, a compiler statically inserts the letregion construct.

For example, the expression above is given a type (α
{ρ3}−→ (int, ρ1), ρ4), where α

is an arbitrary type. Using this type, a compiler infers that when the function
is applied at execution time, only the region ρ3 may be accessed and an integer
stored in region ρ1 is returned. Therefore, the compiler can determine that the
region ρ2 is used only in this expression, and insert letregion ρ2 in · · ·.

As described above, region inference is an extension of ML type inference, so
that it cannot be immediately applied to dynamically-typed language. We solve
this problem by using the idea of soft typing [5].1 We construct a new region-
1 An alternative way would be to translate scheme programs into ML by preparing

the following datatype:

datatype scm val = Int of int | Pair of scm val * scm val
| Fun of scm val → scm val | ...

It does not work well, since too many values are put into the same region. For
example, consider (if a then λx.x + 1 else 2). Then, argument and return values of
λx.x + 1 would be put into the same region as that of 2.

Region-Based Memory Management for a Dynamically-Typed Language 231

annotated type system which includes union types and recursive types. Using
union and recursive types, for example, an expression (if a then λx.x else 1),
which may return either a function or an integer, can be given a region-annotated
type (int, ρ1) ∨ (τ1

ϕ−→ τ2, ρ3), which means that the expression returns either
an integer stored in ρ1 or a function stored in ρ3. Using this kind of type, a
compiler can translate (if a then λx.x else 1)2 into:

letregion ρ1, ρ3 in

(if a then (λx.x at ρ3) else 1 at ρ1)(2 at ρ2)

We have constructed the region-type system hinted above for a core language
of Scheme, and proved its soundness. We have also implemented a prototype
region inference system for Scheme. In a more general perspective, one of the
main contributions of this work is to show that type-based analyses (which have
originally been developed for statically-typed languages) can be applied also to
dynamically-typed languages by using the idea of soft typing.

The rest of this paper is organized as follows. In Section 2, we introduce a
target language of our region inference and define its operational semantics. In
Sections 3 and 4, we introduce a region-type system for the target language,
and prove its soundness. In Section 5, we sketch a region inference algorithm. In
Section 6, we discuss extensions of our target language to deal with full Scheme.
In Section 7, we report the result of preliminary experiments on our region
inference system. Section 8 discusses related work. Section 9 concludes.

2 Target Language

In this section, we define the syntax and the semantics of the target language of
our region inference. It is a λ-calculus extended with constructs for manipulating
regions (letregion ρ in · · ·, at ρ, etc.). Note that programmers need only to
write ordinary functional programs: the constructs for regions are automatically
inserted by our region inference described in later sections.

2.1 Syntax

Definition 2.1 [Expressions]: The set of expressions, ranged over by e, is
given by:

e (expressions) ::= x | n at ρ | λx.e at ρ | e1e2

| let f = fix(f, Λ�.(λx.e1 at ρ)) at ρ′ in e2

| f [ρ] | if0 e1 then e2 else e3

| letregion � in e
| v | v[ρ]

v (run-time values) ::= 〈n〉ρ | 〈λx.e〉ρ | 〈fix(f, Λ�.(λx.e at ρ))〉ρ′

ρ (regions) ::= � | •
Here, x ranges over a countably infinite set of variables, and n ranges over

the set of integers. � ranges over a countably infinite set of region variables. ρ
represents a sequence ρ1, . . . , ρn.

232 A. Nagata, N. Kobayashi, and A. Yonezawa

The expressions given above includes those for representing run-time values
(ranged over by v): they have been borrowed from the formalization of Calcagno
et al. [4]. An expression n at ρ stores an integer n in region ρ and returns (a
pointer to) the integer. A region ρ is either a live region (denoted by �) or a dead
region • (that has been already deallocated). Our type system presented in the
next section guarantees that n at • is never executed. λx.e at ρ stores a closure
λx.e in region ρ and returns a pointer to it. An expression e1e2 applies e1 to e2.
An expression let f = fix(f, Λ�.(λx.e1 at ρ)) at ρ′ in e2 stores in region ρ′ a
recursive, region-polymorphic [23] function f that takes regions and a value as an
argument, binds them to � and x, and evaluates e1; it then binds f to the function
and evaluates e2. An expression f [ρ] applies the region-polymorphic function f
to ρ. if0 e1 then e2 else e3 evaluates e2 if the value of e1 is 0, and evaluates
e3 otherwise. letregion ρ in e creates a new region and binds ρ to the new
region; it then evaluates e, deallocates the region ρ, and evaluates to the value of
e. Run-time values 〈n〉ρ, 〈λx.e〉ρ and 〈fix(f, Λ�.(λx.e at ρ))〉ρ′ denote pointers
to an integer, a closure, and a region-polymorphic function respectively. The
difference between 〈n〉ρ and n at ρ is that the former has already been allocated,
so that evaluating it does not cause any memory access, while evaluation of the
latter causes an access to the region ρ.

The bound and free variables of e are defined in a customary manner: x is
bound in λx.e, f,�, and x are bound in fix(f, Λ�.(λx.e1 at ρ)), and � is bound
in letregion � in e. We assume that α-conversion is implicitly performed as
necessary, so that all the bound variables are different from each other and from
free variables.

2.2 Operational Semantics

We define the operational semantics of our target language, following the for-
malization of Calcagno et al. [4].

Definition 2.2 [Evaluation Contexts]: The set of evaluation contexts,
ranged over by E, is given by:

E ::= [] | Ee | vE | if0 E then e1 else e2

| letregion � in E

We write E[e] for the term obtained by replacing [] in E with e.

Definition 2.3 [Reduction]: The reduction relation e −→ e′ is the least rela-
tion that satisfies the rules in Figure 1.

The relation e −→ e′ means that e is reduced to e′ on one step. As in
[4], function applications are carried out by using substitutions, so that the
identity of each pointer is lost. For example, we cannot tell whether or not two
occurrences of 〈1〉ρ point to the same location. This does not cause a problem
in our target language, since there is no primitive for comparing or updating
pointers. In the rule R-Reg, region deallocation is modeled by replacement of

Region-Based Memory Management for a Dynamically-Typed Language 233

E[n at �] −→ E[〈n〉�] (R-Int)
E[λx.e at �] −→ E[〈λx.e〉�] (R-Abs)
E[〈λx.e〉�v] −→ E[[v/x]e] (R-App)

E[〈fix(f, Λ�.(λx.e at ρ))〉�′ [ρ]]
−→ E[〈λx.[〈fix(f, Λ�.(λx.e at ρ))〉�′/f][ρ/�]e〉[ρ/�]ρ]

(R-RApp)

E[let f = fix(f, Λ�.(λx.e1 at ρ)) at ρ′ in e2]
−→ E[[〈fix(f, Λ�.(λx.e1 at ρ))〉ρ′/f]e2]

(R-Fix)

E[if0 〈0〉� then e1 else e2] −→ E[e1] (R-IfT)
E[if0 〈n〉� then e1 else e2] −→ E[e2] (if n �= 0) (R-IfF)

E[letregion � in v] −→ E[[•/�]v] (R-Reg)

Fig. 1. Reduction rules

a region variable with the dead region •. Notice that in each rule, the region
accessed in the reduction is denoted by the meta-variable � for live regions,
rather than ρ: evaluation gets stuck when the dead region • is accessed.

Example 2.4: Let us consider:

letregion �1, �5 in (λx.(λy.(letregion �3 in e x) at �2)) at �1)(1 at �5)

where e = (λz.(2 at �4) at �3). This is the program obtained by applying region
inference to the source program (λx.(λy.(λz.2) x))1.

The above program is reduced as follows.

letregion �1, �5 in (λx.(λy.(letregion �3 in e x) at �2)) at �1)(1 at �5)
−→ letregion �1, �5 in 〈λx.(λy.(letregion �3 in e x) at �2))〉�1(1 at �5)
−→ letregion �1, �5 in 〈λx.(λy.(letregion �3 in e x) at �2))〉�1〈1〉�5

−→ letregion �1, �5 in λy.(letregion �3 in e 〈1〉�5) at �2)
−→ λy.(letregion �3 in e 〈1〉•) at �2)

The result contains a value 〈1〉• stored in the dead region •, but it does not
cause a problem since e does not access the value.

3 Type System

In this section, we present a type system for the target language introduced
in the previous section. The type system guarantees that every well-typed pro-
gram never accesses dead regions. So, the problem of region inference is reduced
to that of inserting “letregion ρ in · · ·” and “ at ρ” so that the resulting
program is well-typed in the type system (which can be done through type in-
ference).

234 A. Nagata, N. Kobayashi, and A. Yonezawa

3.1 Syntax of Types

Definition 3.1 [Types]: The set of types, ranged over by τ , is given by:

µ (atomic types) ::= (num, ρ) | (τ1
ϕ−→ τ2, ρ)

ϕ (effects) ::= ξ | {ρ1, . . . , ρn} | ϕ1 ∪ ϕ2

τ (types) ::= r | rec r.µ1 ∨ · · · ∨ µn

| rec r.µ1 ∨ · · · ∨ µn ∨ α
π (type schemes) ::= ∀�ϕ.∀α.∀ξ.τ

Here, we assume that there are two sets of type variables. One, which is
ranged over by α, is the set of type variables bound by universal quantifiers, and
the other, which is ranged over by r, is the set of type variables for expressing
recursive types.2 The meta-variable ξ denotes an effect variable.

An atomic type (num, ρ) describes an integer stored in region ρ. An atomic
type (τ1

ϕ−→ τ2, ρ) describes a function that is stored in ρ and that takes a
value of type τ1 as an argument, accesses regions in ϕ, and returns a value of
type τ2.

A type rec r.µ1 ∨ · · · ∨µn describes a value whose type is one of [(rec r.µ1 ∨
· · · ∨ µn)/r]µ1, . . . , [(rec r.µ1 ∨ · · · ∨ µn)/r]µn. For example, a value of type
rec r.(num, ρ) ∨ (r

ϕ−→ r) is either an integer or a function that takes a
value of type rec r.(num, ρ) ∨ (r

ϕ−→ r) and returns a value of the same type.
Here, as in the ordinary soft type system [5], we require that the outermost
type constructors of µ1, . . . , µn are different from each other.3 For example,
rec r.(num, ρ) ∨ (num, ρ′) is invalid. (The restriction must be respected by
substitutions; for example, we disallow the substitution [(num, ρ)/α] to be ap-
plied to rec r.((num, ρ′)∨ α).) When r does not appear in µ1, . . . , µn, we write
µ1 ∨ · · · ∨ µn for rec r.µ1 ∨ · · · ∨ µn. In rec r.µ1 ∨ · · · ∨ µn ∨ α, n can be 0, so
that rec r.α (which is abbreviated to α) is also a valid type.

Note that union types µ1 ∨ · · · ∨ µn are not annotated with regions. This is
because we use a tag-on-pointer representation of data at run-time, where tags
to indicate the shape of each data are embedded in pointers. If a tag is stored
in the memory cell instead, the union type should be annotated with a region
to express where the tag is stored.

A type scheme ∀�ϕ∀α∀ξ.τ describes a region-polymorphic function. The ef-
fect ϕ is the set of regions that may be accessed when regions are passed to
the region-polymorphic function.4 For example, fix(f, Λρ1ρ2.(λx.x at ρ2)) has a

type scheme (∀ρ1ρ2
{ρ2}.((num, ρ1)

∅−→ (num, ρ1), ρ2) (assuming that variable
x has an integer type).

2 This distinction between two kinds of variables is necessary to rule out a type ex-
pression like rec r.((num, ρ) ∨ r).

3 Otherwise, type inference would suffer from explosion of case analyses.
4 Actually, ϕ is always a singleton set {ρ}, so that it is possible to make the effect

implicit, as in the original region and effect system [23].

Region-Based Memory Management for a Dynamically-Typed Language 235

3.2 Typing Rules

A type judgment relation is of the form Γ � e : τ & ϕ. Intuitively, it means
that if e is evaluated under an environment that respects the type environment
Γ , the evaluation result has type τ and regions in ϕ may be accessed during
the evaluation. Here, a type environment Γ is a mapping from a finite set of
variables to the union of the set of types and the set of pairs of the form (π, ρ)
(where π is a type scheme and ρ is a region).

Typing rules are given in Figures 2 and 3. Here, the relation τ ′ ≺ ∀α∀ξ.τ
used in T-RApp and T-VRApp means that there exist τ ′′ and ϕ such that
τ ′ = [τ ′′/α][ϕ/ξ]τ . The relation µ ⊆ τ means that τ = rec r. · · · ∨ µ′ ∨ · · · and
µ = [τ/r]µ′ hold for some r and µ′. fv(Γ) and fv(τ) denote the sets of free
region, type, and effect variables (i.e., those not bound by rec r. or ∀�ϕ.∀α.∀ξ.)
appearing in Γ and τ respectively.

Note that in the rule T-App, e1 need not be a function, since τ1 may be
(num, ρ′) ∨ (τ2

ϕ0−→ τ3, ρ). When e1e2 is evaluated, e1 and e2 are first evaluated
and the regions in ϕ1 ∪ ϕ2 may be accessed. After that, if the value of e1 is a
function, then the function is called and the regions in ϕ0∪{ρ} may be accessed.
Otherwise, the evaluation gets stuck, so that no more region is accessed. So, the
effect ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ρ} soundly estimates the set of regions that are accessed
when e1e2 is evaluated, irrespectively of whether the value of e1 is a function or
not. Recall that we use a tag-on-pointer representation of data at run-time, so,
no region is accessed when it is checked whether the value of e1 is a function or
not.

Example 3.2: The type judgment:

∅ � letregion ρ0, ρ1, ρ3 in

(if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1)(2 at ρ2) : (num, ρ2) & {ρ2}
is derived as follows (here, n is some integer).

First, we can obtain ∅ � n at ρ0 : (num, ρ0)&{ρ0} and x : (num, ρ2) � x :
(num, ρ2) & ∅ by using the rule T-Int and T-Var. By applying rule T-Abs to
the latter, we obtain

∅ � λx.x at ρ3 : ((num, ρ2)
∅−→ (num, ρ2), ρ3) ∨ (num, ρ1)&{ρ3}.

We can also obtain

∅ � 1 at ρ1 : ((num, ρ2)
∅−→ (num, ρ2), ρ3) ∨ (num, ρ1)&{ρ1}

by using T-Int. By applying T-If and T-App, we obtain

∅ � (if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1)(2 at ρ2)
: (num, ρ2)&{ρ0, ρ1, ρ2, ρ3}

Finally, by using T-Reg, we obtain:

∅ � letregion ρ0, ρ1, ρ3 in
(if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1)(2 at ρ2) : (num, ρ2) & {ρ2}.

236 A. Nagata, N. Kobayashi, and A. Yonezawa

Γ (x) = τ

Γ � x : τ & ∅ (T-Var)

Γ + {x �→ τ1} � e : τ2 & ϕ′ ϕ′ ⊆ ϕ

(τ1
ϕ−→ τ2, ρ) ⊆ τ3

Γ � λx.e at ρ : τ3 & {ρ}
(T-Abs)

Γ (f) = (π, ρf) π = ∀�ϕ∀α∀ξ.τ
τ ′ ≺ ∀α∀ξ.[ρ′/�]τ

Γ � f [ρ′] : τ ′ & {ρf} ∪ [ρ′/�]ϕ
(T-RApp)

Γ � e : τ & ϕ � �∈ fv(Γ) ∪ fv(τ)

Γ � letregion � in e : τ & ϕ \ {�}
(T-Reg)

(num, ρ) ⊆ τ

Γ � n at ρ : τ & {ρ}
(T-Int)

Γ � e1 : τ1 & ϕ1 (τ2
ϕ0−→ τ3, ρ) ⊆ τ1

Γ � e2 : τ2 & ϕ2

Γ � e1e2 : τ3 & ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ρ}
(T-App)

Γ � e1 : τ1 & ϕ1 (num, ρ) ⊆ τ1

Γ � e2 : τ2 & ϕ2 Γ � e3 : τ2 & ϕ3

Γ � if0 e1 then e2 else e3

: τ2 & ϕ1 ∪ ϕ2 ∪ ϕ3 ∪ {ρ}
(T-If)

π = ∀�ϕ1∀ξ.τ1 {�, ξ, α} ∩ (fv(Γ) ∪ {ρf}) = ∅
Γ + {f �→ (π, ρf)} � λx.e1 at ρt : τ1 & ϕ1

π′ = ∀�ϕ1∀α∀ξ.τ1 Γ + {f �→ (π′, ρf)} � e2 : τ2 & ϕ2

Γ � let f = fix(f, Λ�.(λx.e1 at ρt)) at ρf in e2 : τ2 & {ρf} ∪ ϕ2

(T-Fix)

Fig. 2. Typing rules for static expressions

Γ � v : (∀�ϕ∀α∀ξ.τ, ρf)
τ ′ ≺ ∀α∀ξ.[ρ′/�]τ

Γ � v[ρ′] : τ ′ & {ρf} ∪ [ρ′/�]ϕ
(T-VRapp)

Γ + {x �→ τ1} � e : τ2 & ϕ′

ϕ′ ⊆ ϕ

(τ1
ϕ−→ τ2, ρ) ⊆ τ

Γ � 〈λx.e〉ρ : τ & ∅
(T-VAbs)

(num, ρ) ⊆ τ

Γ � 〈n〉ρ : τ & ∅
(T-VInt)

π = ∀�ϕ∀ξ.τ
{�, ξ, α} ∩ (fv(Γ) ∪ {ρf}) = ∅

Γ + {f �→ (π, ρf)} � λx.e at ρt : τ & ϕ
π′ = ∀�∀ϕα∀ξ.τ

Γ � 〈fix(f, Λ�.(λx.e at ρt))〉ρf : (π′, ρf) & ∅
(T-VFix)

Fig. 3. Typing rules for dynamic expressions

Example 3.3: An expression corresponding to a source program
if0 1 then λx.x else λx.2 is typed as follows.

∅ � letregion ρ0 in
if0 1 at ρ0 then λx.x at ρ1 else λx.(2 at ρ2) at ρ1 :

(((num, ρ2) ∨ α)
{ρ1,ρ2}−→ ((num, ρ2) ∨ α), ρ1) & {ρ1}

Region-Based Memory Management for a Dynamically-Typed Language 237

The then-part must have a type of the form (α
ϕ1−→ α, ρ1) where {ρ1} ⊆ ϕ1

and the else-part must have a type of the form (β
ϕ2−→ (num, ρ2), ρ1) where

{ρ1, ρ2} ⊆ ϕ2. The type of the whole if-expression above can be obtained by
unifying those types.

4 Properties of the Type System

The soundness of the type system is guaranteed by Theorems 4.1 and 4.2 given
below. Theorem 4.1 implies that a well-typed, closed (i.e., not containing free
variables) expression does not access a deallocated region immediately. Theo-
rem 4.2 implies that the well-typedness of an expression is preserved by reduc-
tion. These theorems together imply that a well-typed, closed expression never
accesses a deallocated region. Our proof is based on the syntactic type soundness
proof of Calcagno et al. [4], and extends it to handle union/recursive types and
polymorphism.

Theorem 4.1: Suppose ∅ � e : τ & ϕ, and e is one of the following forms:

– E[n at ρ]
– E[λx.e at ρ]
– E[〈λx.e〉ρv]
– E[〈fix(f, Λ�.(λx.e at ρ′))〉ρ[ρ′′]]
– E[let f = fix(f, Λ�.(λx.e1 at ρ′)) at ρ in e2]
– E[if0 〈n〉ρ then e1 else e2]

If • �∈ ϕ, then ρ �= •. In the fourth case, [ρ′′/�]ρ′ �= • also holds.

Theorem 4.2 [Subject Reduction]: If Γ � e : τ & ϕ and e −→ e′, then
Γ � e′ : τ & ϕ′ for some ϕ′ such that ϕ′ ⊆ ϕ.

Proofs of the theorems above are found in the full version of this paper [19].
Note that the type system does not guarantee that evaluation of a well-

typed program never gets stuck: since the target of our study is a dynamically-
typed language like Scheme, our type system does allow an expression like
if0 〈λx.e〉ρ then e1 else e2. In fact, our type system can type any source pro-
gram, as stated in Theorem 4.5 below.

Definition 4.3 [Source Programs]: The set of source programs, ranged over
by M , is given by:

M ::= x | f | n | λx.M | M1M2

| let f = fix(f, λx.M1) in M2 | if0 M1 then M2 else M3

Definition 4.4 [Region Erasure]: The region erasure function (·)� is a partial
mapping from the set of expressions to the set of source programs, defined by:

238 A. Nagata, N. Kobayashi, and A. Yonezawa

x� = x
(n at ρ)� = n
(λx.e at ρ)� = λx.e�

(let f = fix(f, Λ�.(λx.e1 at ρ)) at ρ′ in e2)� = let f = fix(f, λx.e�
1) in e�

2

(f [ρ])� = f

(if0 e1 then e2 else e3)� = if0 e�
1 then e�

2 else e�
3

(letregion � in e)� = e�

Theorem 4.5: For any closed source program M , there exist e, τ and ϕ such
that ∅ � e : τ & ϕ and e� = M .

Proof. Let τ be rec r.((num, ρG) ∨ (r
{ρG}−→ r, ρG)). Let us define a function (·)�

from the set of source programs to expressions by:

x� = x
f � = f [ε]
n� = n at ρG

(λx.M)� = λx.e� at ρG

(let f = fix(f, λx.M1) in M2)� =
let f = fix(f, Λε.(λx.M �

1 at ρG)) at ρG in M �
2

(if0 M1 then M2 else M3)� = if0 M �
1 then M �

2 else M �
3

Here, ε denotes the empty sequence of regions. The idea of the above transla-
tion is to use ρG as a special region that is never deallocated and where all values
are stored. It is easy to check that ∅ � M � : τ & ϕ holds for either ϕ = {ρG}
or ϕ = ∅. (In the derivation, assign the type τ to every variable ranged over by
x, and assign the polymorphic type (∀ε{ρG}.τ, ρG) to every variable ranged over
by f .)

The above theorem guarantees that for any source program, there is at least
one valid (i.e., well-typed) region-annotated expression. Of course, the expression
constructed in the proof above is not a good annotation, since no region is
deallocated. How to find a good annotation is discussed in the next section.

5 Region Inference

In this section, we show how to perform region inference, i.e., transform a source
program (without constructs for regions) into a program of the target language
defined in section 2. The region inference is carried out in the following steps.

1. Based on the typing rules defined in Section 3, a standard type (types with-
out regions and effects) is inferred for each expression. This can be carried
out by using the soft type inference algorithm [5].

2. Fresh region variables and effect variables are added to the types inferred
above.

Region-Based Memory Management for a Dynamically-Typed Language 239

3. Based on the typing rules in Section 3, the actual values of region variables
and effect variables are computed. During this, some region and effect vari-
ables introduced in the previous step are unified. This can be carried out
in a way similar to the ordinary region inference [22]. Finally, letregion is
inserted in the place where the side condition of T-Reg is met. (Actually,
inference of regions and effects and insertion of letregion have to be carried
out in an interleaving manner to handle region polymorphism [22].)

Note that the third step is almost the same as the original region inference
algorithm. Although our typing rules are a little more complex because of union
types and recursive types, that difference is absorbed in the first step, where
the shape of union types and recursive types are determined. For example, after
the first phase, the type τ3 in the rule T-Abs is instantiated to a type of the

form rec r.((τ ′
1

ϕ′
−→ τ ′

2, ρ
′) ∨ · · ·), so that it is sufficient to solve the unification

constraint (τ1
ϕ−→ τ2, ρ) = (τ ′

1
ϕ′
−→ τ ′

2, ρ
′) in the third step, as in the original

region inference algorithm.
Since the actual algorithm (especially, the third step: see [22]) is rather com-

plex, we sketch it here only through examples. Please consult the full version for
more details [19].

Example 5.1: Consider the expression:

(if0 n then (λx.x) else 1)2.

Here, n is an integer. Region inference for this expression is performed as
follows.

First, the standard type (without regions) of the expression is inferred as
num ∨ (num −→ num). Then, region and effect variables are inserted, as

(num, ρ1) ∨ ((num, ρ2)
∅−→ (num, ρ2), ρ3). Using this type, the effect of the

whole expression is inferred as {ρ0, ρ1, ρ2, ρ3}. The regions ρ0, ρ1 and ρ3 do not
appear in the type environment (which is empty) and the type of the returned
value (num, ρ2), so that letregion can be inserted as follows.

letregion ρ0, ρ1, ρ3 in

(if0 n at ρ0 then (λx.x at ρ3) else 1 at ρ1)(2 at ρ2)

Example 5.2: Let us consider a recursive function:

fix(f, λx.if0 x then x else f(x − 1) − 1).

(Here, we have extended the language with the operation ‘−.’) In the first
phase, the type num → num is inferred. In the second phase the function is
tentatively given a type5

5 As in [22], we do not consider quantifications over secondary region and effect vari-
ables to ensure termination of the algorithm.

240 A. Nagata, N. Kobayashi, and A. Yonezawa

∀ρ1, ρ2, ρ
{ρ3}
3 .∀ξ.((num, ρ1)

ξ−→ (num, ρ2), ρ3)

and the program is annotated as follows.

fix(f, Λρ1, ρ2, ρ3.(λx.if0 x then x
else (f [ρ4, ρ5, ρ6](x − (1 at ρ7) at ρ8) − (1 at ρ9)) at ρ10) at ρ3)

In the third phase, assuming the tentative type above for f , we perform
region inference for the function body, unify some region variables and insert
letregion. For example, from the type of the then-part and the else-part, it
must be the case that ρ1 = ρ2 = ρ10. From the call of f , we also have ρ4 = ρ8.
From this, we obtain the following refined expression:

fix(f, Λρ1, ρ3.(λx.(if0 x then x else letregion ρ4, ρ6, ρ9 in
(f [ρ4, ρ6](letregion ρ7 in (x − (1 at ρ7)) at ρ4) − (1 at ρ9)) at ρ1) at ρ3))

and its type: ∀ρ1, ρ
{ρ3}
3 .∀ξ.((num, ρ1)

ξ∪{ρ1,ρ3}−→ (num, ρ1), ρ3). We repeat this
refinement step until the result converges. In the case above, the above program
is a final one.

6 Language Extensions

In this section, we show how to extend the target language defined in Section 2
to support full Scheme.

Cons Cells. We introduce cons cells by adding a new atomic type (τ1 × τ2, ρ),
which describes a cons cell that is stored in ρ and consists of a car-element of
type τ1 and a cdr-element of type τ2. We can deal with set-car! and set-cdr!
by assigning the following types to them:

set-car! : ∀ρ1ρ2ρ
{ρ3}
3 .∀α1α2α3.∀ξ1ξ2.

((α1 × α2, ρ1)
{ρ2}∪ξ1−→ (α1

{ρ1}∪ξ2−→ α3, ρ2), ρ3)
set-cdr! : ∀ρ1ρ2ρ

{ρ3}
3 .∀α1α2α3.∀ξ1ξ2.

((α1 × α2, ρ1)
{ρ2}∪ξ1−→ (α2

{ρ1}∪ξ2−→ α3, ρ2), ρ3)

To ensure the type soundness, polymorphic types are not assigned to cons
cells. For example, ∀α.((num, ρ)× (α

ϕ−→ α, ρ′), ρ′′) is not allowed. Vector types
and other complex data types can be introduced in the same way.

set! We translate set! into ML-like operations on reference cells and then
perform region inference in the same way as that for ML [23]. To perform
the translation, we first perform a program analysis to find all the variables
whose values might be updated by set!, and then replace all the accesses
to those variables with ML-like operations on reference cells. For example,
(let ((x (+ a 1))) . . . (set! x 2)) is translated to (let ((x (ref (+ a 1)))) . . . (:=
x 2)). Here, ref v is a primitive for creating a reference cell storing v and returns
the pointer to it, and v1 := v2 is a primitive that stores v2 in the reference cell v1.

Region-Based Memory Management for a Dynamically-Typed Language 241

call/cc It seems difficult to deal with call-with-current-continuation (call/cc)
in a completely static manner. (In fact, the region inference system for ML does
not handle call/cc, either.) One (naive) way to deal with call/cc might be,
when call/cc is invoked at run-time, to move the contents of the stack and
the heap space reachable from the stack to a global region, so that they can
be only collected by standard garbage collection, not by region-based memory
management. An alternative way would be to first perform CPS-transformation,
and then perform the region inference.

7 Implementation

Based on the type system introduced in Section 3, we have implemented a re-
gion inference system for Scheme. Cons cells and set! discussed in Section 6
have been already supported, but call-with-current-continuation has not been
supported yet. The system transforms a source program written in Scheme into
a region-annotated program, whose core syntax has been given in Section 2,
and then translates it into C language. For the experiments reported below, we
have inserted instructions for monitoring memory usage in the region operation
library. Our implementation is available at

http://www.yl.is.s.u-tokyo.ac.jp/~ganat/research/region/
We have tested our region inference system for several programs, and con-

firmed that the translated programs run correctly. For example, the following
program (which computes the number of leaves of a binary tree):

(define (leafcount t)
(if (pair? t) (+ (leafcount (car t)) (leafcount (cdr t))) 1))

has been automatically translated by our system into

(define leafcount
(reglambda (r60 r57 r59 r58)

(lambda (v2)
(if (letregion (r62) (pair?[r57 r62] v2))

(letregion (r67 r69 r88)
(+[r88 r67 r59 r69]

(letregion (r73)
(leafcount[r73 r57 r88 r76]
(letregion (r82) (car[r57 r82] v2))))

(letregion (r86)
(leafcount[r86 r57 r88 r89]
(letregion (r95) (cdr[r57 r95] v2))))))

1 at r59))
at r60)

at r52)

Here, reglambda creates a region-polymorphic function. The instruction
leafcount[r73 r57 r88 r76] applies the region-polymorphic function

242 A. Nagata, N. Kobayashi, and A. Yonezawa

leafcount to region parameters r73, r57, r88, and r76. The instruction
1 at r1 puts the number 1 into region r1. Note that during the translation,
the tree argument t above is given a type of the form rec r.(r× r, ρ1)∨α, which
contains recursive and union types, so that it cannot be handled by the original
region inference [23] for ML unless a programmer defines a tree type using a
datatype declaration.

The result of experiments is summarized in Table 1. The table shows execu-
tion time, the maximum heap size, and the total size of allocated memory cells.
To evaluate the effectiveness of the region-based memory management, we have
also measured the execution time and the heap size of a system with garbage
collection, by turning off the region inference phase of our complier and running
the compiled code with Boehm GC library 6.2. The executioin time and the heap
size of our region-based system are listed in the rows marked “Region,” while
those of GC are listed in the rows “GC.”

Table 1. Results of the Experiments

Program Size Time (msec.) Heap Size (KBytes) Total Memory
program (Lines) Region GC Region GC Allocation (KBytes)

Fib 9 51.6 27.0 4.5 49.2 323.1
Ackermann 7 59.9 32.4 18.0 89.1 399.7

Tree 16 22.2 13.6 6.2 66.6 177.6
Array 16 347.8 196.9 280.8 287.7 2342.4

QuickSort 100 793.5 526.4 695.5 693.2 5272.1
Tak 23 428.0 255.2 465.1 66.6 3733.8
Div 54 579.3 399.6 32.2 1219.6 4085.4
Deriv 65 1018.1 680.2 3327.5 5146.6 7245.4

Destruct 72 7967.9 4432.0 10960.9 1219,6 59259.5
RayTracing 1627 2371.5 1522.8 157.8 287.7 14155.7

Programs Array, Tak, Div, Deriv, Destruct have been taken from Gabriel
Scheme benchmarks [8]. Tree is the program given above to count leafs, with
a tree of size 18 given as an input. RayTracing is a program for ray tracing.
QuickSort is a program for quick sort. Fib and Ackermann calculate Fibonacci
and Ackermann number, respectively. The difference between the maximum heap
size and the total size of allocated memory shows the effectiveness of our region
inference. For example, for RayTracing, the total size of allocated memory was
14.2 MBytes, but the required heap space was 2.4 MBytes.

As for the comparison with the GC library, for some programs, the space
efficiency of our region-based memory management is significantly better than
that of the GC library. For the program Tak, however, garbage collection works
better. These results suggest that combination of the two memory management
schemes may be attractive [12]. As for the time efficiency, our current region-
based memory management cannot compete with the GC library. Optimizations

Region-Based Memory Management for a Dynamically-Typed Language 243

for the region-based memory management such as storage mode analysis [1, 2]
would be necessary to make the region-based memory management competitive
with garbage collection.

8 Related Work

Region-based memory management has been applied to programming languages
other than ML [3, 6, 7, 9–11, 17, 18] but most of them rely on programmers’ an-
notations on region instructions (such as “letregion” and “at ρ”). Only a few of
them, which are discussed below, support region inference (i.e., automatic inser-
tion of region instructions). Makholm [17, 18] studied region inference for Prolog.
As in our work, his region inference algorithm is based on soft typing, but tech-
nical details seem to be quite different since Prolog does not have higher-order
functions (hence no need for effects) and instead has logical variables. Deters and
Cytron [7] have proposed an algorithm to insert memory allocation/deallocation
instructions (similar to region instructions) for Real-Time Java. Their method
is based on run-time profiling, so that there seems to be no guarantee that the
instructions are inserted correctly. Grossman et al. [11] has proposed a type
system for region-based memory management for Cyclone (a type-safe dialect
of C). In Cyclone, programmers have to explicitly insert code for manipulating
regions, but some of the region annotations are inferred using some heuristics.

The idea of applying type-based program analyses to dynamically-typed pro-
gramming languages by using soft typing might be a kind of folklore. In fact,
Rehof has hinted on that in 1995 [21]. To the authors’ knowledge, however, our
work is the first to give a concrete formalization of a type-based program analysis
for dynamically-typed functional languages and prove the soundness.

9 Conclusion

We have proposed a new region-type system for a dynamically-typed language,
and proved its correctness. Based on the type system, we have also implemented
a prototype region inference system for Scheme and tested it for several Scheme
programs.

Support for call-with-current-continuation is left for future work. To make the
region-based memory management more effective, we also need to incorporate
several analyses such as region size inference [2]. Combination with other type-
based methods for memory management [16] would also be interesting.

The general approach of this work – using soft types to apply a type-based
analysis that has been originally developed for statically-typed languages to
dynamically-typed languages – seems to be applicable to other type-based anal-
yses such as linear type systems [15, 24], exception analysis [20], and resource
usage analysis [13].

244 A. Nagata, N. Kobayashi, and A. Yonezawa

References

1. A. Aiken, M. Fahndrich, and R. Levien. Better static memory management: Im-
proving region-based analysis of higher-order languages. In Proc. of PLDI, pages
174–185, 1995.

2. L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann
machines via region representation inference. In Proc. of POPL, pages 171–183.
ACM Press, January 1996.

3. C. Boyapati, A. Salcianu, W. Beebee, and J. Rinard. Ownership types for safe
region-based memory management in Real-Time Java, 2003.

4. C. Calcagno, S. Helsen, and P. Thiemann. Syntactic type soundness results for the
region calculus. Info. Comput., 173(2):199–221, 2002.

5. R. Cartwright and M. Fagan. Soft typing. In Proc. of PLDI, pages 278–292, 1991.
6. K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus

of capabilities. In Proc. of POPL, pages 262–275, New York, NY, 1999.
7. M. Deters and R. K. Cytron. Automated discovery of scoped memory regions for

real-time java. In Proceedings of ISMM’02, pages 25–35. ACM Press, 2002.
8. R. Gabriel. Scheme version of the gabriel lisp benchmarks, 1988.
9. D. Gay and A. Aiken. Memory management with explicit regions. In Proc. of

PLDI, pages 313–323, 1998.
10. D. Gay and A. Aiken. Language support for regions. In Proc. of PLDI, pages

70–80, 2001.
11. D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-

based memory management in Cyclone. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 282–293, 2002.

12. N. Hallenberg, M. Elsman, and M. Tofte. Combining region inference and garbage
collection. In Proc. of PLDI, pages 141–152. ACM Press, 2002.

13. A. Igarashi and N. Kobayashi. Resource usage analysis. To appear in ACM Trans.
Prog. Lang. Syst. A summary appeared in Proc. of POPL, pages 331–342, 2002.

14. R. Kelsey, W. Clinger, and J. R. (Editors). Revised5 report on the algorithmic
language Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

15. N. Kobayashi. Quasi-linear types. In Proc. of POPL, pages 29–42, 1999.
16. O. Lee, H. Yang, and K. Yi. Inserting safe memory reuse commands into ml-like

programs. In Proceedings of SAS 2003, volume 2694 of LNCS, pages 171–188, 2003.
17. H. Makholm. Region-based memory management in Prolog. Master’s thesis, DIKU,

University of Copenhagen, 2000.
18. H. Makholm. A region-based memory manager for Prolog. In B. Demoen, editor,

First Workshop on Memory Management in Logic Programming Implementations,
volume CW 294, pages 28–40, CL2000, London, England, 24 2000. Katholieke
Universiteit Leuven.

19. A. Nagata, N. Kobayashi, and A. Yonezawa. Region-based memory manage-
ment for a dynamically-typed language, 2004. Full version, available from
http://www.yl.is.s.u-tokyo.ac.jp/~{}ganat/research/region/.

20. F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions. In Proc. of
POPL, pages 276–290, 1999.

21. J. Rehof. Polymorphic dynamic typing. aspects of proof theory and inferencej.
Master’s thesis, DIKU, University of Copenhagen, August 1995.

22. M. Tofte and L. Birkedal. A region inference algorithm. ACM Trans. Prog. Lang.
Syst., 20(4):724–767, July 1998.

http://www.yl.is.s.u-tokyo.ac.jp/~{ }ganat/research/region/

Region-Based Memory Management for a Dynamically-Typed Language 245

23. M. Tofte and J.-P. Talpin. Implementing the call-by-value lambda-calculus using
a stack of regions. In Proc. of POPL, pages 188–201. ACM Press, January 1994.

24. D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc. of Func-
tional Programming Languages and Computer Architecture, pages 1–11, San Diego,
California, 1995.

	Introduction
	Target Language
	Syntax
	Operational Semantics

	Type System
	Syntax of Types
	Typing Rules

	Properties of the Type System
	Region Inference
	Language Extensions
	Implementation
	Related Work
	Conclusion

