
Ordered Types for Stream Processing
of Tree-Structured Data∗

Ryosuke Sato† Kohei Suenaga† Naoki Kobayashi†

ABSTRACT
Suenaga et al. have developed a type-based framework for
automatically translating tree-processing programs into stream-
processing ones. The key ingredient of the framework was
the use of ordered linear types to guarantee that a tree-
processing program traverses an input tree just once in the
depth-first, left-to-right order (so that the input tree can be
read from a stream). Their translation, however, sometimes
introduces redundant buffering of input data. This paper
extends their framework by introducing ordered, non-linear
types in addition to ordered linear types. The resulting
transformation framework reduces the redundant buffering,
generating more efficient stream-processing programs.

1. INTRODUCTION
Suenaga et al. [3, 11] have proposed a framework for auto-
matically translating tree-processing programs into stream-
processing ones. By using the framework, a user can write
a tree-manipulating program in an ordinary functional lan-
guage, and then the program is translated into a stream-
processing program and executed. The framework allows ef-
ficient processing of tree-structured data (as they are usually
stored in a text or stream format), while keeping the read-
ability and maintainability of functional programs. Based
on the framework, they have implemented an XML stream-
processing program generator X-P [12].

The key ingredient of their framework was an ordered linear
type system. The type system classifies tree data into those
of ordered linear types (which model trees stored in streams)
and those of non-linear types called buffered trees (which
model trees stored in memory), and ensures that trees of or-
dered linear types are accessed only once, in the left-to-right,
depth-first preorder, so that they can be read from a stream.
By performing a kind of type inference [11], one can auto-
matically transform an ordinary functional, tree-processing
program into another tree-processing program that is well-
typed in the ordered linear type system. The latter program
can then be further transformed into a stream processing
program in a straightforward manner.

Figure 1 shows an example of the two-step transformations.
The source program deals with binary trees which stores an
integer value at each leaf. The program takes a binary tree t

∗This paper is a revised version of the paper pre-
sented in Seventh Workshop on Programming Language
Technologies for XML (PLAN-X 2009). Note for the
editor and referees: PLAN-X is a workshop without
formal proceedings. Informal proceedings is available
on the web (http://db.ucsd.edu/planx2009/program.html),
but the copyright is retained by the authors. The present
submission is almost the same as the paper presented at
PLAN-X, except addition of an experiment and minor ad-
justment. If this is a problem, please let us know.
†Tohoku University

Source program:
let rec f t = case t of

leaf n ⇒ leaf n
| node(t1, t2) ⇒ node(t2, f t1)

Intermediate program:
let rec f t = case t of

leaf n ⇒ leaf n
| node(t1, t2) ⇒ let t1 = s2m(t1) in node(t2, f t1)

Target program:
let rec f () = case read() of

leaf ⇒ write leaf ; write (read())
| node ⇒ let t1 = s2m() in

write node; copy (); copymem (f t1)

Figure 1: Suenaga et al.’s translation framework.

as input, conducts pattern matching to the tree and returns
node(t2, f t1) if the tree is a branch. The program accesses
t2 before t1, so that the access order restriction mentioned
above is violated. (We assume the call-by-value, left-to-right
evaluation order.) Suenaga et al.’s framework automatically
finds the violation and inserts buffering primitives to the
program. In this case, t1 is converted to a buffered tree
by the buffering primitive s2m. Buffered trees can be freely
accessed, so that the translated program conforms to the ac-
cess order restriction. Then, the program is translated into
the stream-processing program by replacing tree operations
with stream operations.

A shortcoming of the framework of Suenaga et al. [3] was
that too many buffering commands were sometimes inserted
in the first step of the transformation, resulting in less effi-
cient stream-processing programs than hand-optimized code.
That is mainly due to the severe restriction on the access
order imposed by the ordered linear type system. For ex-
ample, consider the following function, which takes an XML
tree data representing a record of a person as an input, and
returns the first and last names.

fun name(t) = (get_firstname(t), get_lastname(t))

Since the function name accesses t twice, a buffering com-
mand is inserted in the first step of the transformation, as
follows.

fun name(t) =

let t’ = s2m(t) in

(get_firstname(t’), get_lastname(t’))

The stream processing program generated from the inter-
mediate program is not so efficient as it could be, because

<p>

<f>

Ryosuke

<l>

Sato

get_firstname(t’)

get_lastname(t’)

<f> Ryosuke </f> <l>

<l> Sato </l> <s>

<s> male </s> </p>

<p>

<f>

Ryosuke

<p>

Figure 2: Hybrid tree during execution

(i) the whole tree t is copied to memory, despite that the
only used data are the first and last names in t, and (ii)
the memory space for t′ can be reclaimed only by garbage
collection.

We overcome the shortcoming mentioned above, by extend-
ing the ordered linear type system with ordered, non-linear
types (which will be just called ordered types below). Trees
of ordered types can be accessed more than once, but have
to conform to a certain restriction on the access order. We
use ordered types for describing hybrid trees, trees that are
currently being read from a stream. A program stores a part
of a hybrid tree on memory and the rest in a stream. By
using ordered types and hybrid trees, s2m in the program
above is repalced by s2h:

fun name(t) = let t’ = s2h(t) in ...

The tree t’ is now a hybrid one. Figure 2 illustrates how
the state of t’ changes. In that figure, <f> and <l> stand
for <firstname> and <lastname>. The tree t is copied to
memory only lazily, when needed by get_firstname and
get_lastname. The hybrid tree t’ is automatically deallo-
cated after the execution of get_lastname(t). Thus, unlike
in the previous framework, the part s shown in Figure 2 is
never copied to memory, and the memory space for the hy-
brid tree t’ can be immediately reclaimed after being used.

In the rest of this paper, we first formalize the intermedi-
ate language and the new ordered linear type system (which
has unlimited types, ordered types, and ordered linear types
as mentioned above) and discuss its soundness in Section 2.
Once the intermediate language and its type system are de-
fined, then the translations into/from this language can be
formalized by extending the authors’ previous work [3, 11]

d(modes) ::= 1 |] | ω | +
M (terms) ::= n | x | fix(f, x, M) | M1 M2

| M1 + M2 | m2s(x)
| let x = s2m(y) in M
| let x = s2h(y) in M
| leafd M | noded(M1, M2)
| cased x of leaf y ⇒ M1

| node(x1, x2) ⇒ M2

V (trees) ::= leafd n | noded(V, V)
v (values) ::= n | fix(f, x, M) | V
E (eval. ctx.) ::= [] | E M | v E | E + M

| v + E | m2s(E) | leaf+ E
| node+(E, M) | node+(v, E)

τ (types) ::= int | τ1 → τ2 | treed

Figure 3: The syntax of LI and types

with ordered types. We briefly sketch those translations in
Section 3. Section 4 reports preliminary experiments. Sec-
tion 5 discusses related work and Section 6 concludes.

2. INTERMEDIATE LANGUAGE LI AND
TYPE SYSTEM

This section introduces a functional tree-processing language
LI , equipped with an ordered type system. The language
makes distinction among four kinds of trees: (i) ordered lin-
ear trees, which can be accessed only once in the depth-first
preorder, (ii) hybrid trees, which can be accessed more than
once, but only until an ordered linear tree is accessed, (iii)
buffered trees, which can be accessed without any order or
linearity restrictions, and (iv) output trees, which are the re-
sult of a program and can never be read. The ordered linear
type system guarantees that well-typed programs conform
to such access restrictions on trees.

The language LI serves as the intermediate language of the
transformation framework sketched in Section 1. As dis-
cussed in Section 3, once the ordered type system for this
language has been set up, the first step of the transforma-
tion can be achieved through a kind of type inference for the
ordered type system, and the second step can be achieved by
replacing (functional) tree operations with the correspond-
ing stream operations in a rather straightforward manner.

2.1 Language
Figure 3 shows the syntax of our language. The language is a
functional programming language extended with primitives
for binary trees. The meta-variables n and x range over the
sets of integers and variables, respectively. fix(f, x, M) is a
recursive function that takes an argument x. f is bound to
the function itself inside M .

leafd and noded are constructors for binary trees. Here, d,
called a mode, is either 1,], ω or +, which describes ordered-
linear, hybrid, buffered or output trees respectively. Each tree
has the different restrictions on access order as mentioned
before.

The term let x = s2m(y) in M copies the ordered lin-
ear tree y into a buffered one, binds x to it and evaluates
M . m2s(M) converts a buffered tree into an output tree.
let x = s2h(y) in M converts an ordered linear tree y into
a hybrid tree, binds x to it and evaluates M . The cased

expression performs case analysis for each kind of trees.

(fix(f, x, M) v, B, H, S) −→ ([f 7→ fix(f, x, M), x 7→ v]M, B, H, S) (E-App)

(n1 + n2, B, H, S) −→ (plus(n1, n2), B, H, S) (E-Plus)

(let x = s2m(y) in M, B, H, (y 7→ V ; S)) −→ ([x 7→ z]M, B[z 7→ V ω], ∅, S) (z is fresh) (E-StoM)

(let x = s2h(y) in M, B, H, (y 7→ V ; S)) −→ ([x 7→ x′]M, B, {x′ 7→ V]}, S) (x′ is fresh) (E-StoH)

(m2s(x), B[x 7→ V], H, S) −→ (V +, B[x 7→ V], H, S) (E-MtoS)

(case1 x of leaf x1 ⇒ M1 | node(x1, x2) ⇒ M2, B, H, (x 7→ leaf1 n; S)) −→ ([x1 7→ n]M1, B, ∅, S) (E-Case1)

(case1 x of leaf x1 ⇒ M1 | nodex1(x2,⇒)M2, B, H, (x 7→ node1(V1, V2); S)) −→ (M2, B, ∅, (x1 7→ V1; x2 7→ V2; S))
(E-Case2)

(caseω y of leaf x ⇒ M | node(x1, x2) ⇒ M ′, B[y 7→ leafω n], H, S) −→ ([x 7→ n]M, B, H, S) (E-MCase1)

(caseω y of leaf x ⇒ M | node(x1, x2) ⇒ M ′, B[y 7→ nodeω(V1, V2), H, S) −→
([x1 7→ x′

1, x2 7→ x′
2]M

′, B[y 7→ nodeω(V1, V2), x
′
1 7→ V1, x

′
2 7→ V2], H, S)) (x′

1 and x′
2 are fresh)

(E-MCase2)

(case] y of leaf x ⇒ M | node(x1, x2) ⇒ M ′, B, H[y 7→ leaf] n], S) −→ ([x1 7→ n]M, B, H, S) (E-HCase1)

(case] y of leaf x ⇒ M | node(x1, x2) ⇒ M ′, B, H[y 7→ node](V1 7→ V2,]), S) −→
([x1 7→ x′

1, x2 7→ x′
2]M

′, B, H ∪ {x′
1 7→ V1, x

′
2 7→ V2}, S)(x′

1 and x′
2 are fresh)

(E-HCase2)

(M, B, H, S) −→ (M ′, B′, H ′, S′)

(E[M], B, H, S) −→ (E[M ′], B′, H ′, S′)
(E-Context)

Figure 4: Operational semantics of LI

Example 1. The following program takes a tree as an in-
put, and returns a list of integers obtained by replacing each
tree with the sum of its leftmost and second leftmost ele-
ments. Here, leftmost and leftmostsecond are functions
which take a hybrid tree and return its leftmost and second
leftmost elements.

fix(f, t,

case t of

leaf n -> leaf 0

| node(t1,t2) ->

let t1’ = s2h(t1) in

let n = leftmost t1’ +

leftmostsecond t1’

in

node(leaf n, f t2)

Figure 4 shows the operational semantics of the language.
The semantics is expressed as a rewriting relation of config-
urations of the form (M, B, H, S). Here, B is a map from
variables to buffered trees. H is a map from variables to hy-
brid trees. S is a sequence of bindings from variables to or-
dered linear trees (therefore the order of bindings matters).
In Figure 4, V d represents the tree obtained by replacing ev-
ery mode annotation in V with d. For example, (leaf1 1)ω

represents the tree leafω 1.

Note that we use the three tree environments in order to
express the difference on access restrictions among the dif-
ferent kinds of trees. In the rules E-StoM and E-Case1,
hybrid trees in H are discarded because a variable in S is
accessed. In the rules E-StoH, E-StoM and E-Case1, in
which a variable in S is accessed, the variable has to be at
the head of S. Those restrictions reflect the intuition of the
intermediate language explained in Section 1.

2.2 Ordered type system

We next introduce an ordered type system for the language
introduced in the previous section. The type system guaran-
tees that well-typed programs access trees in a valid order.

Figure 3 gives the syntax of types. The type int describes
integers and τ1 → τ2 describes functions from τ1 to τ2. We
have four kinds of tree types. treeω is the type of buffered
trees. tree] is the type of hybrid trees. tree1 and tree+

are the types of input trees and output trees respectively.

Notice the constraints imposed on trees of each type. Trees
of type tree1 must be accessed in the left-to-right, depth-
first manner by traversing each node exactly once. Trees of
type treeω can be accessed in arbitrary manner. Though
trees of type tree] can be accessed any number of times,
they cannot be accessed after another tree of type tree1 is
accessed.

A type judgment is of the form Γ | Ψ | ∆ ` M :τ . Here, Γ is a
non-ordered type environment, Ψ is an ordered type environ-
ment and ∆ is an ordered linear type environment. A non-
ordered type environment is a set of the form {x1 : τ1, . . . , xn : τn},
where x1, . . . , xn are different from each other and treed ∈
{τ1, . . . , τn} implies d = ω. An ordered type environment is
a set of the form {x1 : tree], . . . , xn : tree]}, where x1, . . . , xn

are different from each other. An ordered linear type envi-
ronment is a sequence of the form x1 : tree1, . . . , xn : tree1,
where x1, . . . , xn are different from each other. We assume
that Γ,Ψ, and ∆ do not share identical variables.

In that judgment, the type environments express how trees
are accessed during the evaluation of M . The ordered lin-
ear type environment x1 : tree1, . . . , xn : tree1 specifies not
only x1, . . . , xn are bound to trees, but also that each of
x1, . . . , xn must be accessed exactly once in this order and
that each of the trees bound to x1, . . . , xn must be accessed
in the left-to-right, depth-first preorder. The ordered type
environment x1 :tree], . . . , xn :tree] specifies that x1, . . . , xn

can be accessed several times and there is no restriction on

access order among x1, . . . , xn. However, if a variable in ∆
is accessed, none of x1, . . . , xn can be accessed anymore. For
example, if Ψ = x1 : tree], x2 : tree] and ∆ = y : tree1, then
both accessing x1, x1 and y and accessing x2, x2, x1 and y in
these orders are legitimate, while x1, y and x2 is illegal.

Definition 1 (Concatenation). An operation (Ψ1 |
∆1); (Ψ2 | ∆2) is defined as follows.

(Ψ1 | ∆1); (Ψ2 | ∆2) =

(Ψ1 ∪ Ψ2 | ∆2) (if ∆1 = ∅)
(Ψ1 | (∆1, ∆2)) (if Ψ2 = ∅)

Intuitively, (Ψ | ∆) = (Ψ1 | ∆1); (Ψ2 | ∆2) are environments
that allow trees to be accessed according to Ψ1 | ∆1 and then
to Ψ2 | ∆2 sequentially. (Ψ1 | ∆1); (Ψ2 | ∆2) is defined only
when ∆1 = ∅ or Ψ2 = ∅ because variables in Ψ2 cannot be
accessed after an ordered linear tree is accessed.

Figure 5 shows the typing rules. We explain important rules
below.

• In the rules T-StoM,T-StoH and T-Case, the or-
dered type environment in the conclusion has to be
empty because an ordered linear tree is being accessed,
so that a program is not allowed to access hybrid trees.
Note also that the ordered linear tree variable that is
being used has to be at the head of the ordered linear
type environment to ensure the order condition.

• In the rule T-StoH for let x = s2h(y) in M , x is in
the ordered type environment in the premise because
y is converted to a hybrid tree, named x and used in
M .

• T-HCase is for case] expressions. Because a hybrid
tree can be freely accessed until another variable in
the ordered linear type environment is accessed, the
variable x in the ordered type environment in the con-
clusion part also can be used as a hybrid tree in M1

and M2. In M2, the children of x (x2 and x3) can also
be used as hybrid trees.

• In the rules T-Fix1 and T-Fix2, both the ordered type
environment and the ordered type environment have to
be empty to avoid hybrid trees and ordered linear trees
being captured in the closure.

• In the rules T-App, T-Plus, T-Node, and T-MNode,
the ordered linear and the ordered type environments
of M1 and M2 are concatenated in this order in the
conclusion. On the other hand, M1 and M2 share the
same non-ordered type environment since there is no
restriction on usage of the variables in a non-ordered
type environment.

• T-Case is the rule for destructors for ordered linear
trees. If x matches node1(x2, x3), subtrees x2 and x3

have to be accessed in this order to enforce the left-
to-right depth-first order restriction. This is expressed
by x1 : tree1, x2 : tree1, ∆, the ordered linear type en-
vironment of M2.

Figure 6 shows a part of a typing example of the program
presented in Section 2. Thanks to the primitive s2h, tree on
stream t1 is shared in leftmost t′1 and leftmostsecond t′1
as hybrid tree t′.

M (terms) ::= n | x | fix(f, x, M) | M1 M2

| M1 + M2 | leaf M | node(M1, M2)
| case x of leaf x1 ⇒ M1

| node(x2, x3) ⇒ M2

τ (types) ::= int | τ1 → τ2 | tree

Figure 7: The syntax of LS and types

2.3 Type soundness
We state soundness of the type system in this section. The
soundness theorem guarantees that, well-typed programs ac-
cess trees in a valid order. As an illegal access order leads
to a stuck state in our operational semantics, it is sufficient
to state that well-typed programs never get stuck.

Theorem 1 (Type soundness). If ∅ | ∅ | x : tree1 `
M : tree+ and (M, ∅, ∅, x 7→ V) −→∗ (M ′, B′, H ′, S′) then
M ′ is a tree value and S′ = ∅, or there exist M ′′, B′′, H ′′

and S′′ such that (M ′, B′, H ′, S′) −→ (M ′′, B′′, H ′′, S′′).

3. TRANSLATION
This section introduces the source language LS and the tar-
get language LT , and describes how a source program is
translated into a well-typed intermediate program, and then
translated into a target program. Because a source program
given to the translation algorithm may not respect the order
restriction on an input tree, the algorithm first inserts buffer-
ing primitives s2m, s2h and m2s and make the program a
well-typed intermediate program. This step is conducted
by performing a kind of type inference for the type sys-
tem introduced in Section 2. Then, the algorithm replaces
each tree-manipulating primitives with stream-manipulating
primitives.

3.1 Translation from LS to LI .
Figure 7 gives the syntax of the source language LS . The
language differs from LI in Section 2 in that LS has neither
buffering primitives nor the distinction among leaf1/node1,
leafω/nodeω, leaf]/node] and leaf+/node+. A user can
write a source program without considering the order and
linearity restrictions. Such a source program is translated
into a well-typed intermediate program by inserting buffer-
ing and hybridization primitives.

We describe an algorithm for translating a source program
into a well-typed intermediate program by inserting buffer-
ing primitives to the program. Following Suenaga et al. [11],
we introduce a type-based, non-deterministic translation rules.
Then the translation algorithm is obtained as a kind of type
inference algorithm in a manner similar to [11].

The non-deterministic translation is given by a judgment
Γ | Ψ | ∆ ` M Ã M ′ : τ . The judgment means:

1. M and M ′ are equivalent except for the representation
of trees, and

2. Γ | Ψ | ∆ ` M ′ : τ holds.

Figure 9 shows a part of rules for the judgment Γ | Ψ | ∆ `
M ′ : τ . The rules are non-deterministic in the sense that
there may be more than one valid transformations for each
source program M . For example, there are three rules for the

Γ | Ψ | ∅ ` n : int (T-Int) Γ | Ψ | x : tree1 ` x : tree1 (T-Var1)

Γ | x : tree], Ψ | ∅ ` x : tree] (T-Var2) Γ, x : τ | Ψ | ∅ ` x : τ (T-Var3)

Γ, f : τ1 → τ2, x : τ1 | ∅ | ∅ ` M : τ2

Γ | ∅ | ∅ ` fix(f, x, M) : τ1 → τ2
(T-Fix1)

Γ, f : tree] → τ2 | x : tree] | ∅ ` M : τ2

Γ | ∅ | ∅ ` fix(f, x, M) : tree] → τ2

(T-Fix2)

Γ, f : tree1 → τ2 | ∅ | x : tree1 ` M : τ2

Γ | ∅ | ∅ ` fix(f, x, M) : tree1 → τ2

(T-Fix3)

Γ | Ψ1 | ∆1 ` M1 : τ1 → τ2 Γ | Ψ2 | ∆2 ` M2 : τ1

Γ | (Ψ1 | ∆1); (Ψ2 | ∆2) ` M1M2 : τ2

(T-App)

Γ | Ψ1 | ∆1 ` M1 : int Γ | Ψ2 | ∆2 ` M2 : int

Γ | (Ψ1 | ∆1); (Ψ2 | ∆2) ` M1 + M2 : int
(T-Plus)

Γ, x : treeω | ∅ | ∆ ` M : τ

Γ | ∅ | y : tree1, ∆ ` let x = s2m(y) in M : τ
(T-StoM)

Γ | x : tree] | ∆ ` M : τ

Γ | ∅ | y : tree1, ∆ ` let x = s2h(y) in M : τ
(T-StoH)

Γ | Ψ | ∆ ` M : treeω

Γ | Ψ | ∆ ` m2s(M) : tree+ (T-MtoS)

Γ | Ψ | ∆ ` M : int d ∈ {ω, +}
Γ | Ψ | ∆ ` leafd M : treed

(T-Leaf)

Γ | Ψ1 | ∆1 ` M1 : treed Γ | Ψ2 | ∆2 ` M2 : treed d ∈ {ω, +}
Γ | (Ψ1 | ∆1); (Ψ2 | ∆2) ` noded(M1, M2) : treed

(T-Node)

Γ, x1 : int | ∅ | ∆ ` M1 : τ Γ | ∅ | x2 : tree1, x3 : tree1, ∆ ` M2 : τ

Γ | ∅ | x : tree1, ∆ ` case1 x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 : τ
(T-Case)

Γ, x : treeω, x1 : int | Ψ | ∆ ` M1 : τ Γ, x : treeω, x2 : treeω, x3 : treeω | Ψ | ∆ ` M2 : τ

Γ, x : treeω | Ψ | ∆ ` caseω x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 : τ
(T-MCase)

Γ, x1 : int | x : tree], Ψ | ∆ ` M1 : τ Γ | x : tree], x2 : tree], x3 : tree], Ψ | ∆ ` M2 : τ

Γ | x : tree], Ψ | ∆ ` case] x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2 : τ
(T-HCase)

Figure 5: The typing rules

.

.

.

Γ′, n : int | ∅ | ∅ ` leaf n : tree+

.

.

.

Γ′ | t′1 : tree] | ∅ ` leftmost t′1 : int

.

.

.

Γ′ | t′1 : tree] | ∅ ` leftmostsecond t′1 : int

Γ′ | t′1 : tree] | ∅ ` leftmost t′1 + leftmostsecond t′1 : int

.

.

.
.
.
.

Γ′ | t1 : tree] | t2 : tree1 ` M : tree+

Γ′ | ∅ | t1 : tree1, t2 : tree1 ` let t′1 = s2h(t1) in M : tree+

Γ
′ | ∅ | t : tree

1 | case t of leaf n ⇒ leaf n | node(t1, t2) ⇒ let t
′
1 = s2h(t1) in M : tree

+

Γ | ∅ | ∅ ` fix(f, t, case t of leaf n ⇒ leaf n | node(t1, t2) ⇒ let t′1 = s2h(t1) in M) : tree1 → tree+

Figure 6: A part of a typing example. Γ = {leftmost : tree] → int, leftmostsecond : tree] → int}, Γ′ = Γ, f :tree1→
tree+.

term case x of . . . depending on whether the matched tree
is translated into an ordered linear, a hybrid or a buffered
one. The highlight of the rules is Tr-StoM and Tr-StoH
which insert s2m and s2h to source programs. For example,
the rule Tr-StoH says that, if a variable x is bound to an
ordered linear tree before the evaluation of M , and if x can
be used as a hybrid tree in M ′, the result of translation of
M , then one can convert x to a hybrid tree here by the s2h
primitive. The rule Tr-StoM is similar.

The transformation rules presented above are non-deterministic
in the sense that there may be more than one possible M ′

and τ that satisfy Γ | Ψ | ∆ ` M Ã M ′ : τ . A deter-
ministic algorithm is obtained as a kind of type inference

algorithm as in Suenaga et al.’s work [11]. By merging three
(unordered, ordered, and ordered linear) type environments
into one, we can construct syntax-directed program trans-
formation rules. The transformation algorithm is then ob-
tained as a constraint-based algorithm, which first extracts
constraints on modes based on the transformation rules and
solves them. We omit a detailed description of the algorithm
in this paper.

3.2 Translation from LI to LT

Figures 8 shows the syntax of the target language LT , which
is a stream-processing impure functional language. read is
a primitive for reading a token (leaf , node, or an integer)
from the input stream. write is a primitive for writing a

Γ | Ψ1 | ∆1 ` M1 Ã M ′
1 : tree+ Γ | Ψ2 | ∆2 ` M2 Ã M ′

2 : tree+

Γ | (Ψ1 | ∆1); (Ψ2 | ∆2) ` node(M1, M2) Ã node+(M ′
1, M

′
2) : tree+ (Tr-Node1)

Γ | Ψ1 | ∆2 ` M1 Ã M ′
1 : treeω Γ | Ψ2 | ∆2 ` M2 Ã M ′

2 : treeω

Γ | (Ψ1 | ∆1); (Ψ2 | ∆2) ` node(M1, M2) Ã nodeω(M ′
1, M

′
2) : treeω (Tr-Node2)

Γ, x1 : int | ∅ | ∆ ` M1 Ã M ′
1 : τ Γ | ∅ | x2 : tree1, x3 : tree1, ∆ ` M2 Ã M ′

2 : τ

Γ | Ψ | x : tree1, ∆ ` case x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2

Ã case1 x of leaf x1 ⇒ M ′
1 | node(x2, x3) ⇒ M ′

2 : τ

(Tr-Case1)

Γ, x : treeω, x1 : int | Ψ | ∆ ` M1 Ã M ′
1 : τ Γ, x : treeω, x2 : treeω, x3 : treeω | Ψ | ∆ ` M2 Ã M ′

2 : τ

Γ, x : treeω | Ψ | ∆ ` case x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2

Ã caseω x of leaf x1 ⇒ M ′
1 | node(x2, x3) ⇒ M ′

2 : τ

(Tr-Case2)

Γ, x1 : int | x : tree], Ψ | ∆ ` M1 Ã M ′
1 : τ Γ, | x : tree], x2 : tree], x3 : tree], Ψ | ∆ ` M2 Ã M ′′

2 : τ

Γ | x : tree], Ψ | ∆ ` case x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2

Ã case] x of leaf x1 ⇒ M ′
1 | node(x2, x3) : τ

(Tr-Case3)

Γ, x : treeω | ∅ | ∆ ` M Ã M ′ : τ

Γ | Ψ | x : tree1, ∆ ` M Ã let x = s2m(x) in M ′ : τ
(Tr-StoM)

Γ | x : tree] | ∆ ` M Ã M ′ : τ

Γ | Ψ | x : tree1, ∆ ` M Ã let x = s2h(x) in M ′ : τ
(Tr-StoH)

Figure 9: A part of the rules for the judgment Γ | Ψ | ∆ ` M Ã M ′ : τ

e (terms) ::= n | x | l | leaf | node
| () | fix(f, x, e) | e1 e2

| e1 + e2 | read () | write e
| leafω e | nodeω(e1, e2)
| let x = s2m() in M
| let x = s2h() in M
| flush()
| case e of leaf ⇒ e1

| node ⇒ e2

| caseω e of leaf x1 ⇒ e1

| node(x2, x3) ⇒ e2

| case] e of leaf x1 ⇒ e1

| node(x2, x3) ⇒ e2

V ω (trees on mem.) ::= leafω n | nodeω(V ω
1 , V ω

2)

V] (hybrid trees) ::= l | leafω n | nodeω(V]
1 , V]

2)
v (values) ::= n | fix(f, x, e) | V ω | V]

E (eval. ctx.) ::= [] | E M | fix(f, x, e) E
| E + e | n + E | read E
| write E | leafω E
| nodeω(E, e) | nodeω(V ω, E)
| h2m(E)
| case E of leaf ⇒ e1

| node ⇒ e2

| caseω E of leaf x1 ⇒ e1

| node(x2, x3) ⇒ e2

| case] E of leaf x1 ⇒ e1

| node(x2, x3) ⇒ e2

Figure 8: The syntax of LT

token to the output stream. leafω e and nodeω(e1, e2) are
trees constructed on memory. The term case e of leaf ⇒
e1 | node ⇒ e2 performs a case analysis on the value of e.
To express lazily read hybrid trees, we use locations which
are ranged over by a meta variable l. A location is a dummy
pointer for a tree that has not been accessed and thus has
not been constructed yet. Such a tree is constructed when

the location is accessed. A hybrid tree is expressed as a
location, a leaf on memory or a branch whose children are
hybrid trees. flush is a primitive for discarding hybrid trees
that is currently kept. caseω e of . . . and case] e of . . .
are pattern matching for buffered and hybrid trees.

A well-typed LI program can be translated into an equiv-
alent stream-processing program using the algorithm A de-
fined in Figure 10. The algorithm A converts output tree
constructions into stream output operations and case anal-
ysis for ordered linear trees into stream input operations.
Note that an instruction flush is inserted before s2m, s2h
and case1 x of . This instruction ensures that hybrid trees
are actually discarded before another ordered linear tree is
accessed.

4. PRELIMINARY EXPERIMENTS
To evaluate the effectiveness of the new transformation frame-
work, we have implemented a prototype translator from the
intermediate language LI to the stream-processing language
LT . The current translator supports only binary trees hav-
ing integers or strings as leaves. An extension for dealing
with XML documents, as well as implementation of a trans-
lator from the source to the intermediate language are cur-
rently under development.

As a benchmark program for preliminary experiments, we
used the following programs:

• (ex leftmost) a program in Example 1, which takes a
list of binary trees and returns a list of integers ob-
tained by replacing each tree with thesum of its left-
most and second leftmost elements, and

• (ex bib) a program which takes a bibliography database
and returns a list of title and authors where the title
contains a specific word.

A(n) = n
A(x) = x
A(fix(f, x, M)) = fix(f, x,A(M))
A(M1 M2) = A(M1) A(M2)
A(M1 + M2) = A(M1) + A(M2)
A(let x = s2m(y) in M) = flush(); let x = s2m() in A(M)
A(let x = s2h(y) in M) = flush(); let x = s2h() in A(M)
A

`

leaf+ M
´

= write leaf ;write A(M)
A

`

node+(M1, M2)
´

= write node;A(M1) ;A(M2)
A(leafω M) = leafω A(M)
A(nodeω(M1, M2)) = nodeω(A(M1),A(M2))
A

`

case1 x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2

´

=
case flush(); read() of leaf ⇒ let x1 = read() in A(M1) | node ⇒ [()/x2, ()/x3]A(M2)

A(caseω x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2) = caseω x of leaf x1 ⇒ A(M1) | node(x2, x3) ⇒ A(M2)
A

`

case] x of leaf x1 ⇒ M1 | node(x2, x3) ⇒ M2

´

= case] x of leaf x1 ⇒ A(M1) | node(x2, x3) ⇒ A(M2)

Figure 10: Translation algorithm

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

50 100 200 500 1000

M
ax

im
um

 h
ea

p
si

ze
 [M

by
te

s]

Input size [Mbytes]

Stream (our)
Stream (Suenaga et al. [13])

Tree

Figure 11: Memory consumption (ex leftmost)

 1

 10

 100

50 100 200 500 1000

E
xe

cu
tio

n
tim

e
[s

ec
]

Input size [Mbytes]

Stream (our)
Stream (Suenaga et al. [13])

Tree

Figure 12: Memory consumption (ex bib)

Figures 11–14 show the result of the experiment. Figure 11
and 12 compare the maximum memory consumption of the
stream-processing programs generated by our new translator
with those of a naive tree-processing programs (which copy
the whole input tree to memory) and the stream-processing
programs generated by the previous framework [12]. Fig-
ure 13 and 14 show the running times for the same programs.
The experiment is conducted on Intel Xeon 5150 CPU with
4 MB cache and 8 GB memory.

 1

 10

 100

50 100 200 500 1000

E
xe

cu
tio

n
tim

e
[s

ec
]

Input size [Mbytes]

Stream (our)
Stream (Suenaga et al. [13])

Tree

Figure 13: Execution time (ex leftmost)

 1

 10

 100

50 100 200 500 1000

E
xe

cu
tio

n
tim

e
[s

ec
]

Input size [Mbytes]

Stream (our)
Stream (Suenaga et al. [13])

Tree

Figure 14: Execution time (ex bib)

As shown in the figures, the stream-processing program gen-
erated by the new translator is more efficient than the one
generated by X-P. The improvement was mainly gained by
the lazy construction of hybrid trees, which avoids copying
the unnecessary part of the input to memory.

As mentioned in Section 1, our transformation framework
has another advantage that the memory space for a hybrid
tree can be immediately deallocated when the next tree is

read from the stream. That advantage is, however, not ex-
ploited in the current implementation; since the target lan-
guage of our current translator is Objective Caml, we cannot
control memory deallocation. It is left for future work to re-
place the target language with a lower-level language (so
that hybrid trees can be explicitly deallocated) and conduct
more experiments to evaluate the advantage of deallocating
hybrid trees.

5. RELATED WORK
Besides Suenaga et al.’s framework [3, 11], there are other
approaches to automatic transformation of tree-processing
programs into stream-processing programs [1, 2, 6, 5, 7,
8]. In those approaches, the source languages for describ-
ing tree-processing programs are more restricted than or-
dinary programming languages (term rewriting [1], query
language [2], and attribute grammars [6, 5, 7, 8]). On the
other hand, the source language in our framework is an or-
dinary functional programming language. There are also
differences in how and when trees are buffered in memory
between our framework and other frameworks. A detailed
comparison on this point is left for future work.

Ordered linear type systems have been first studied by Po-
lakow [10], and later by Petersen et al [9] and ourselves [3,
11]. To the authors’ knowledge, this is the first applica-
tion of ordered but non-linear types in the context of pro-
gram transformation. In a different area, non-commutative
logic has been studied by Lambek and applied to computa-
tional linguistic [4]. It is not clear whether our type system
has some connection (in the spirit of Curry-Howard isomor-
phism) to a non-commutative logic.

6. CONCLUSION
We have introduced an ordered type system to extend Sue-
naga et al.’s type-based framework [3, 11] for transforming
tree-processing programs into stream-processing ones. The
use of ordered but non-linear types enabled a more flexi-
ble buffering (and hence more efficient stream-processing) of
tree-structured data than the previous framework. We have
carried out very preliminary experiments and confirmed the
effectiveness of the new transformation framework. It is left
for future work to fully implement the proposed framework
(as a new version of X-P) and to carry out more serious ex-
periments.

7. REFERENCES
[1] A. Frisch and K. Nakano. Streaming XML

transformation using term rewriting. In ACM
SIGPLAN Workshop on Programming Language
Technologies for XML (PLAN-X 2007), pages 2–13,
2007.

[2] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. Schema-based scheduling of event
processors and buffer minimization for queries on
structured data streams. In Proceedings of the
Thirtieth international conference on Very large data
bases (VLDB 2004), pages 228–239. VLDB
Endowment, 2004.

[3] K. Kodama, K. Suenaga, and N. Kobayashi.
Translation of tree-processing programs into
stream-processing programs based on ordered linear
type. Journal of Functional Programming,
18(3):333–371, 2008.

[4] J. Lambek. The mathematics of sentence structure.
The American Mathematical Monthly, 65(3):154–170,

1958.

[5] K. Nakano. An implementation scheme for XML
transformation languages through derivation of stream
processors. In the Second Asian Symposium on
Programming Languages and Systems (APLAS 2004),
volume 3302 of Lecture Notes in Computer Science,
pages 74–90. Springer-Verlag, 2004.

[6] K. Nakano. Composing stack-attributed tree
transducers. Theory of Computing Systems,
44(1):1–38, 2009.

[7] K. Nakano and S. Nishimura. Deriving event-based
document transformers from tree-based specifications.
Electronic Notes in Theoretical Computer Science,
44(2):181–205, 2001.

[8] S. Nishimura and K. Nakano. XML stream
transformer generation through program composition
and dependency analysis. Science of Computer
Programming, 54(2-3):257–290, 2005.

[9] L. Petersen, R. Harper, K. Crary, and F. Pfenning. A
type theory for memory allocation and data layout. In
Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL 2003), pages 172–184, New York, NY, USA,
2003. ACM.

[10] J. Polakow. Ordered Linear Logic and Applications.
PhD thesis, Carnegie Mellon University, June 2001.
Available as Technical Report CMU-CS-01-152.

[11] K. Suenaga, N. Kobayashi, and A. Yonezawa.
Extension of type-based approach to generation of
stream-processing programs by automatic insertion of
buffering primitives. In International Symposium on
Logic-based Program Synthesis and Translformation
(LOPSTR 2005), volume 3901 of Lecture Notes in
Computer Science, pages 98–114. Springer-Verlag,
2005.

[12] K. Suenaga, S. Sato, R. Sato, and N. Kobayashi. X-P:
XML stream processing program generator.
http://www.kb.ecei.tohoku.ac.jp/~suenaga/x-p/.

