
An Implementation of Transparent Migration on Standard Scheme

Eijiro Sumii∗

sumii@saul.cis.upenn.edu
University of Tokyo

Abstract

I present a handy (though somewhat restrictive) way to im-
plement mobile computation à la Telescript on top of stan-
dard Scheme.

Background. Mobile computation is an efficient and effec-
tive approach to distributed programming where a program
works by migrating from one host to another. The migration
is called transparent if the execution state of the program is
preserved before and after the migration. Transparent mi-
gration is preferable to non-transparent, because it is easier
to use for application programmers. At the same time, how-
ever, it is harder to implement for language developers: all
existing implementations (to my knowledge) of transparent
migration need either a custom runtime system (e.g. [13]) or
global source code transformation (e.g. [12]).

Our Method. In this presentation, I describe a library to
enable transparent migration in standard Scheme. Unlike
existing implementations, it requires neither modification of
the runtime system nor transformation of the source code.
It works by (i) extracting a delimited continuation [5, 6] with
control operators (shift and reset), (ii) reifying the de-
limited continuation—i.e., reconstructing its source code—
with type-directed partial evaluation (TDPE) [2, 4], and (iii)
evaluating the source code at the remote host (e.g. by in-
voking ssh). Assuming the function shift for delimited-
continuation extraction and the operator ↓ for TDPE, the
main part of the library looks like:

(define (go rhost)
(shift (lambda (k) ; extract the delimited continuation

(let ([e (↓()→() k)]) ; reconstruct its source code

(reval e rhost))))) ; remotely evaluate the source code

Note that the delimited continuation k has the type () →
(), because the transparent migration operator go works
as a side effect. Since TDPE itself uses control operators,
the library actually uses layered control operators [8]. For
details of (layered) delimited continuations and TDPE, see
Appendix A and B, respectively.

Example 1. Consider the following program. (In the ex-
amples, we use the non-standard procedure system for the
sake of convenience.)

(define (hellos)
∗Visiting scholar at the University of Pennsylvania. Research fel-

low of the Japan Society for the Promotion of Science.

(begin (reset ; delimits the continuation
(display "hello from ")
(system "hostname")
(go "remotehost") ; migrates to remotehost
(display "another hello from ")
(system "hostname"))

(display "yet another hello from ")
(system "hostname")))

It (i) executes the first display and system at the local host,
(ii) extracts, reifies, and remotely evaluates the delimited
continuation λ . (display("another hello from "); system
("hostname")), and (iii) performs the third display and sys-
tem at the local host. As a result, the program works as
follows.

> (load "go.scm") ; load the library
> (hellos)
hello from localhost
another hello from remotehost
yet another hello from localhost

Example 2. In the following program,

(reset (for-each (lambda (host) (go host)
(display "hello from ")
(system "hostname"))

’("host1" "host2")))

the delimited continuation of the first migration (to host1)
is

λ . (display("hello from "); system("hostname");
go("host2");
display("hello from "); system("hostname"))

while that of the second migration (to host2) is λ . (display
("hello from"); system("hostname")). It therefore yields
the following output.

hello from host1
hello from host2

Our method thus unfolds all static recursions, as TDPE
does. (In general, this may lead to code duplication or non-
termination. See the limitations below for details.)

Example 3. In the program below, the delimited continua-
tions of the first and second migrations are λ . (go("host2");
display(3 + 4)) and λ .display(3 + 4), respectively, so the
output is 7.



(reset
(let ([add (lambda (x ) (lambda (y) (+ x y)))])

(go "host1")
(let ([add-three (add 3)])

(go "host2")
(display (add-three 4)))))

As this example suggests, our method inlines all static func-
tions as TDPE does. (This may also lead to code duplica-
tion.)

Limitations. Because of the limitations of TDPE, our meth-
od also has many limitations. To name some,

• The reification may not terminate if the delimited con-
tinuation contains a dynamic recursion, because TDPE
does not terminate if the value has no normal form. Fur-
thermore, the source code of the delimited continuation
may become large, because TDPE unfolds all static re-
cursions and inlines all static functions. We can mitigate
these problems, however, by letting programmers use a
special fixed-point operator that does not recurse during
reification.

• Operators that involve pointers (such as set!, set-car!,
and eq?) may not work after migration, because pointers
have no textual representation and cannot be reified.

• Higher-order operands of primitive operators (such as
apply and call/cc) must have ML-like types, so that
the operands can be reified by TDPE. Moreover, in my
current implementation, the types need to be given by
the programmer.

• Programmers must not take the value of a primitive op-
erator itself (like (define add +)), because it must be
substituted by set! in TDPE.

In general, it does not work when TDPE does not.

Conclusion. Despite the limitations above, I believe that
our method may be useful for some applications because
of its simplicity. In fact, it is so simple that my current
prototype1 is only a few hundred lines long, including (a
variant of) Filinski’s implementation of layered control oper-
ators [8], (a variant of) Danvy’s implementation of TDPE [4],
comments, blank lines, and debugging code. This can be
regarded as an achievement of Scheme’s features such as
dynamic typing, set!, and call/cc, which are sometimes
blamed as a source of its inefficiency.

Acknowledgements

I thank Olivier Danvy, Tatsurou Sekiguchi, and the anony-
mous reviewer for giving me valuable comments and Ben-
jamin Pierce for proofreading my poor English.

Appendix A: Delimited Continuations

As an ordinary continuation stands for “the rest of the com-
putation,” a delimited continuation (a.k.a. partial continu-
ation) [5, 6] represents “the rest of the computation up to
somewhere.” It is typically manipulated by the operators
shift and reset: reset delimits a continuation, and shift
extracts the continuation delimited by the “last” reset (in

1available at http://www.yl.is.s.u-tokyo.ac.jp/~sumii/pub/

the sense of dynamic scope). For example, consider the fol-
lowing program.

> (+ 1 (reset (∗ 2
(shift (lambda (k) (− (k 3) (k 4))))
5)))

−9

The variable k is bound to the delimited continuation λx.
2×x×5, so the whole program is evaluated to 1+(k 3−k 4) =
1+(30−40) = −9. It is known that shift and reset can be
implemented by means of call/cc and a mutable reference
cell [7].

Layered continuations [8] are delimited continuations where
one set of continuations is implemented on top of another.
They can be used for “multiple level” control, e.g. as follows.

> (cons 1 (reset1 (cons 2 (reset0 (cons 3
(shift0 (lambda (k0 ) (k0 (k0 4)))))))))

(1 2 3 3 . 4)
> (cons 1 (reset1 (cons 2 (reset0 (cons 3

(shift1 (lambda (k1 ) (k1 (k1 4)))))))))
(1 2 3 2 3 . 4)

In this program, k0 is bound to the continuation λy. (3, y)
delimited by reset0, while k1 is bound to the continuation
λz. (2, (3, z)) delimited by reset1. It is known that such
layered continuation operators can also be implemented by
means of call/cc and mutable reference cells [8].

Appendix B: Type-Directed Partial Evaluation

Basics. Type-directed partial evaluation (TDPE) [2, 4] is a
way to reify (i.e., unevaluate) a value to its source code (in
a certain kind of normal form) by using its (ML-like) type.
Consider, for example, a function f = λx. (λy. y) x of type
α → α.

> (define f (lambda (x ) ((lambda (y) y) x )))
> f
#〈procedure〉
Since this value has the function type α → α, we can apply
it, say, to a fresh symbol z. Here, the underline denotes
dynamic (i.e., quoted) expressions [10].

> (f ’z)
z

Given the fresh symbol z, the function returns the same
symbol z. Thus, we find it (extensionally) equivalent to the
identity function λz. z.

When the results of the function to be reified have a
compound type (such as a function type or a pair type),
the reification is repeated according to that compound type
until the function is fully applied. On the other hand, if the
arguments of the function to be reified have a compound
type, the fresh symbol (to which the function is applied) is
η-expanded according to that compound type [2] so that no
type error will be caused. For example, consider a function
g = λh. h (1 + 2) of type (int → β) → β.

> (define g (lambda (h) (h (+ 1 2))))
> g
#〈procedure〉
We apply it to the function λw. v @w, rather than the fresh
symbol v, as follows. (The operator @ denotes dynamic
function application.)

> (g (lambda (w) ‘(v ,w)))
(v 3)



Given the fresh symbol v η-expanded according to the type
int → β, the function g returned the dynamic expression
v @ 3. Therefore, it is equivalent to the function λv. v 3.

Note that TDPE uses only the extension (semantics and
type) of a program, so the intension of the program does
not matter. For instance, it is straightforward to reify the
“impure” function (lambda (x ) (set! x 123) x ) of type α →
int to the pure function λx. 123, because they have the same
semantics.

Disjoint Sums. The first challenge in TDPE is disjoint
sums (such as booleans) as function arguments. For exam-
ple, consider a function f = λx. 1 + (if x then 2 else 3) of
type bool → int.

> (define f (lambda (x ) (+ 1 (if x 2 3))))

We can reify this function by applying it to both true and
false.

> (f #t)
3
> (f #f)
4

Since the function returned 3 and 4 for true and false,
respectively, it is equivalent to λx. if x then 3 else 4. In
general, a function whose arguments have a disjoint sum
type can be reified by applying it to both “left” and “right”
values of that disjoint sum type; this can be implemented
by means of delimited continuations [2].

Side Effects. The second issue is side effects such as I/O.
By default, TDPE treats all side effects as “static” (rather
than dynamic). For example, consider a function λ .display
(1 + 2) of type () → (). Applying the function to a fresh
symbol causes the output to be performed.

> (define f (lambda (display (+ 1 2))))
> (f ’z)
3

If we want to defer the side effects (as we actually do in the
case of mobile computation, since we want to migrate them
to the remote host rather than executing them in the local
host), we need to substitute the “effectful” operators with
their dynamic counterparts, e.g. as follows.

> (define static-display display)
> (define dynamic-display (lambda arg ‘(display ,@arg)))
> (set! display dynamic-display)
> (f ’z)
(display 3)

Furthermore, in order to avoid eliminating, duplicating, or
reordering side effects, we actually have to sequentialize all
dynamic function applications by binding them to variables
by let-insertion [1]. The resulting (type-directed) partial
evaluator is sound with respect to any monadic, dynamic
effects [9, 11].

Primitives. The next problem is primitives (such as in-
tegers) as function arguments. Consider, for example, a
function f = λx. (1 + 2) + x of type int → int.

> (define f (lambda (x ) (+ (+ 1 2) x )))

Since there exists no value of type int that represents all
integers, we cannot “η-expand” a fresh symbol to an integer
as we did for functions and pairs. Instead, we extend the

operator + (in general, every operator on integers) so that
it can deal with symbols in addition to numbers [3].

> (define old-+ +)
> (define (new-+ x y)

(if (and (number? x ) (number? y))
(old-+ x y)
‘(+ ,x ,y)))

> (set! + new-+)

Then, it is safe to apply the function to a fresh symbol in-
stead of an integer.

> (f ’z)
(+ 3 z )

Thus, the function is found to be equivalent to λz. 3 + z.
Alternatively, we can residualize (rather than reduce) the
addition 1 + 2, if we want, as follows.

> (define (alt-+ x y) ‘(+ ,x ,y))
> (set! + alt-+)
> (f ’z)
(+ (+ 1 2) z )

Here, the function is reified to λz. (1 + 2) + z instead of λz.
3 + z.

Recursion. The last (but not least) difficulty that we con-
sider here is recursion, which can lead to non-termination
of TDPE. For example, the reification of the power func-
tion fix(λp. λn. if n = 0 then 1 else 2× p(n− 1)) does not
terminate, because its “normal form” λn. if n = 0 then 1
else (if n − 1 = 0 then 2 else (if n − 2 = 0 then 4 else
. . .)) is infinite. A workaround for this problem is to use a
special fixed-point operator which does not recurse during
reification [3], though this spoils a merit of TDPE—that it
does not need the source code of the program.

References

[1] Olivier Danvy. Pragmatic aspects of type-directed partial
evaluation. PE ’96, LNCS 1110.

[2] Olivier Danvy. Type-directed partial evaluation. POPL ’96.

[3] Olivier Danvy. Online type-directed partial evaluation.
FLOPS ’98.

[4] Olivier Danvy. Type-directed partial evaluation. PE ’98,
LNCS 1706.

[5] Olivier Danvy and Andrzej Filinski. A functional abstraction
of typed contexts. Technical Report 89/12, DIKU.

[6] Olivier Danvy and Andrzej Filinski. Abstracting control.
LFP ’90.

[7] Andrzej Filinski. Representing monads. POPL ’94.

[8] Andrzej Filinski. Representing layered monads. POPL ’99.

[9] John Hatcliff and Olivier Danvy. A computational formal-
ization for partial evaluation. MSCS 7(5), 1997.

[10] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Par-
tial Evaluation and Automatic Program Generation. Pren-
tice Hall, 1993.

[11] Julia Lawall and Peter Thiemann. Sound specialization in
the presence of computational effects. TACS ’97, LNCS
1281.

[12] Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori
Yonezawa. A simple extension of Java language for con-
trollable transparent migration and its portable implemen-
tation. COORDINATION ’99, LNCS 1594.

[13] James E. White. Telescript technology: An introduction to
the language. White Paper, General Magic, 1995.


