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Abstract. We give the first sound and complete proof method for ob-
servational equivalence in full polymorphic λ-calculus with existential
types and first-class, higher-order references. Our method is syntactic
and elementary in the sense that it only employs simple structures such
as relations on terms. It is nevertheless powerful enough to prove many
interesting equivalences that can and cannot be proved by previous ap-
proaches, including the latest work by Ahmed, Dreyer and Rossberg
(POPL 2009).

1 Introduction

Data abstraction and local state are both known to introduce interesting
properties—in particular, observational equivalences—into computer programs.
Methodology for reasoning about such properties has been a major challenge in
the fundamental research on programming languages (e.g., [14, 20]).

Recently, Ahmed, Dreyer and Rossberg [3] developed a technique, based on
step-indexed Kripke-style logical relations, for proving observational equivalence
in polymorphic λ-calculus with both abstract types and references. While their
technique is (to our knowledge) the first “direct”—i.e., without encoding into
other languages such as polymorphic π-calculus [18] or continuation passing
style [13]—proof method for observational equivalence in this language, it is in-
complete and specialized for particular cases (generative abstract data types).
Indeed, some interesting equivalences cannot be proved by their method [3,
Section 5.7 and 5.8]. Independently, Birkedal, Støvring and Thamsborg [6, 7]
have also developed logical relations in a language with polymorphic (and recur-
sive) types and references. However, they are also incomplete and not yet useful
enough for reasoning about observational equivalence involving local state in
general [7, Section 1 and 6][6, Section 1].

In this paper, we take a different approach, based on Sumii et al.’s environ-
mental bisimulation [11, 21, 25, 26], and give the first sound and complete proof
method for observational equivalence in call-by-value λ-calculus with impredica-
tive universal and existential types, as well as “full” references (i.e., references
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are first-class values and all values can be referred to, including functions and
references themselves). Our development is not only complete, but also arguably
simpler than other theories in that it only requires elementary notions such as
terms, values, relations and sets without explicit need for metric spaces or step
indices. Although observational equivalence is clearly undecidable in any Turing-
complete language (in our case, general recursion can be encoded via higher-order
references [17, Exercise 13.5.8]), we believe that our approach is useful for un-
derstanding and reasoning about information hiding in a wide range of settings
including ours.

The rest of this paper is structured as follows. Section 2 discusses related
work and our contributions with respect to it. Section 3 describes our language.
Section 4 defines environmental bisimulation for this language and Section 5
develops up-to techniques. Section 6 proves the characterization theorem by
using the up-to techniques. Section 7 proves examples of equivalences from [3]
and Section 8 concludes with more comments.

2 Related work

The classic references on observational equivalences introduced by polymorphic
types are Reynolds’ relational parametricity [20] and Mitchell’s representation
independence [15]. Establishing a similar theory for local state has turned out
to be highly challenging. The classic reference here is Meyer and Sieber [14].
Pitts and Stark [19] developed syntactic logical relations (i.e., logical relations
over the term model) for λ-calculus with ML-like references. Their references
are limited to the first order in the sense that only integers—not functions, nor
references themselves—can be referred to. This is due to a difficulty involved
in the circularity of “references to (functions containing) references.” Ahmed,
Appel and Virga [2] used step indices [4] to break this circularity, though they
worked on a unary (rather than binary) model and type safety (rather than
observational equivalence). A recent paper by Ahmed, Dreyer and Rossberg [3]—
discussed in Section 1, 7 and 8—follows this line of work. Another line of work
has been carried out by Birkedal et al. [6–8]. To the best of our knowledge, our
method can prove strictly more examples of equivalences than all of the above
approaches (though this is hard to prove generally, because completeness by itself
does not always mean an automatic proof; recall that observational equivalence
is undecidable in our language).

Abramsky, Honda and McCusker [1] (as well as Laird [12] and
Tzevelekos [27]) developed a fully abstract game (or trace) semantics for sim-
ply typed λ-calculus with general references. They did not treat polymorphism,
however. Our theory is more elementary in the sense that it requires very little
machinery other than the syntax and operational semantics of the language it-
self, enabling the simple treatment of complex combinations like polymorphism
and state. (Of course, this does not devalue game semantics at all: their whole
point is syntax-freedom, while ours is the complete opposite, i.e., “semantics-
freedom.”)



Environmental bisimulation was first devised for untyped λ-calculus with
encryption [25]. Since then, it has been applied to various languages, including
polymorphic λ-calculus with existential types [26] and untyped λ-calculus with
general references [11][21, Section 4]. The technical contributions of the present
paper with respect to these are: (1) the combination of polymorphic types and
references, which required careful handling of store typing (e.g., Definition 3
and 4), (2) the combination of small-step semantics and existential types, re-
quiring a subtle adjustment to the context closure operation (Definition 9) and
therefore to the up-to context technique (Definition 10), (3) a more powerful
up-to reduction technique (Definition 7 and 8) that allows renaming of fresh
locations, and (4) bisimulation proofs for non-trivial examples of observational
equivalence in the present language, many of which have been considered hard
traditionally (see, e.g., [3, 14, 19]).

Gordon [10] (as well as a number of papers that followed) considered bisim-
ulations for functional languages with input and output effects (and for object
calculi). To our knowledge, none of them treated references. Lassen et al. [13, 23]
developed normal form bisimulations for polymorphic λ-calculus with control
operators (and references) or in continuation passing style. Normal form bisim-
ulations are generally incomplete with respect to contextual equivalence in lan-
guages without control operators (or in direct style) [23, Section 1][13, Sec-
tion 1.1].

To summarize, the main thrust of our work is to give actual evidence that en-
vironmental bisimulations scale easily to various languages, including the present
one with both polymorphism and state, which has been considered difficult in
the long history of research in this area (again see [3, 14, 19] for instance).

3 The language

The syntax of our language is given in Figure 1. It is a standard polymorphic
λ-calculus with existential types and references. We assume an infinite set of
locations Loc and write loc(M) for the set of locations that appear in term M .
We use meta-variables C,D, . . . for location-free (and possibly open) terms. We
often omit type annotations when they are unimportant. We adopt the standard
notion of bound variables and α-equivalence, and write FV (M) and FTV (τ)
for free variables and free type variables of M and τ , respectively. We use the
nullary tuple 〈〉 and the nullary product type 1 as the unit value and the unit
type.

The typing rules and the left-to-right, call-by-value reduction relation are
given by judgments of the forms S, Γ, Σ ` M : τ and s . M → t . N , where S
is a set of type variables, Γ is a type environment (a partial map from variables
to types), Σ is a store typing (a partial map from locations to closed types),
and s and t are stores (a partial map from locations to values). Their definitions
are standard [17]. Key rules involving polymorphism and state are shown in
Figure 2 in the appendices. As usual, S, Γ , and Σ are omitted when they are
empty. We write ³ for the reflexive and transitive closure of →. In examples,



ρ, σ, τ ::= type
α type variable
τ → σ function type
∀α. τ universal type
∃α. τ existential type
τ1 × · · · × τn product type
τ ref reference type

L, M, N, C, D ::= term
x variable
λx : τ. M abstraction
MN application
Λα. M type abstraction
M [τ ] type application
pack (τ, M) as ∃α. σ packing
open M as (α, x) in N opening
〈M1, . . . , Mn〉 tupling
#i(M) projection
` location
ref M allocation
! M dereference
M := N update

M1
ptr
= M2 ? N1 : N2 pointer equality

U, V, W ::= value
x variable
λx : τ. M function
Λα. M type function
pack (τ, V ) as ∃α. σ package
〈V1, . . . , Vn〉 tuple
` location

E ::= evaluation context
[ ] hole
EM application (left)
V E application (right)
pack (τ, E) as ∃α. σ packing
open E as (α, x) in M opening
〈V1, . . . , Vm, E, Mm+1, . . . , Mn〉 tupling
#i(E) projection
ref E allocation
! E dereference
E := M update (left)
V := E update (right)

E
ptr
= M ? N1 : N2 pointer equality (left)

V
ptr
= E ? N1 : N2 pointer equality (right)

Fig. 1. Syntax

we use integers and Booleans, which are easy to add as primitives or encode as
functions. We write {x 7→ v} for a finite map {(x, v)} in general. We also write
f{x 7→ v} for {(x, v)}∪{(y, f(y)) | y 6= x}, and f ]{x 7→ v} for f{x 7→ v} only
if x 6∈ dom(f) (it is undefined otherwise).

For simplicity, we (very) often use the abbreviation a to mean the se-
quence a1, . . . , an when n is unimportant, for any kind of meta-variable
a. Furthermore, we often write op(a, b, . . . , c) to mean the sequence
op(a1, b1, . . . , c1), . . . , op(an, bn, . . . , cn) for various (meta-level) operators op.
For instance, x : τ means x1 : τ1, . . . , xn : τn. We always take care that these
notations do not create confusion or introduce ambiguity.

The following lemma is important for the “up-to reduction” technique ex-
plained in Section 5. Here, we use permutations π on locations because they
behave better than substitutions [9].

Lemma 1. Reduction is deterministic up to renaming of fresh locations. That
is, if s . M → t . N and s . M → t0 . N0, then t0 . N0 = π(t . N) for some
permutation π on Loc \ dom(s).

Proof. By induction on the derivation of s . M → t . N .

Note that the above property is not trivial. For instance, reduction would be
non-deterministic (even modulo renaming of fresh locations) under the presence
of deallocation [24], which disallows the general up-to reduction technique.



The following definition and lemma observe that contexts are reduced either
“by themselves without using the value in the hole” or else “by destructing the
value in the hole.”

Definition 1. Variable x is at the destruction position in term M if M is of
the form E[xV ], E[x[τ ]], E[open x as (α, y) in N ], E[#i(x)], E[!x], E[x :=V ],
E[x

ptr
= V ? N1 : N2] or E[V

ptr
= x ? N1 : N2].

Note that destruction positions are different from redex positions, e.g., when
M = V x. Recall also that our reduction is call-by-value.

Lemma 2 (context reduction). Suppose α, x : τ ` C1 : τ . If C1 is not a value
and not of the form E[ref V ], and if no xi ∈ {x} is at the destruction position
in C1, then for some C2 with α, x : τ ` C2 : τ , we have

s . θC1 → s . θC2

for any s and θ = [V /x][ρ/α] with Σ ` s and Σ ` V : θτ .

Proof. By induction on the syntax of C1. All cases are trivial, given the standard
type soundness theorems (i.e., progress and preservation).

4 Environmental bisimulation

We now define our environmental bisimulation. Readers are referred to previous
work for more comprehensive introduction to environmental bisimulations, for
polymorphic types (with big-step semantics) [26] or local state (with small-step
semantics) [21, Section 1 and 4]. (A subsection in a recent paper [24, Section 1.3]
would perhaps be the easiest introduction, even though their language is untyped
and includes deallocation.)

Definition 2. A concretion environment ∆ is a partial map from type variables
to pairs of closed types. We define ∆1(α) = σ and ∆2(α) = σ′ if ∆(α) = (σ, σ′).
We extend their domain from type variables to types in the obvious manner.

Intuitively, ∆(α) = (σ, σ′) means that the abstract type α is implemented by σ
on the left hand side of equivalence, and by σ′ on the right.

Definition 3. A typed value relation R is a set of triples of the form (V, V ′, τ).
We write ∆, (Σ, Σ′) ` R if Σ ` V : ∆1(τ) and Σ′ ` V ′ : ∆2(τ) for all
(V, V ′, τ) ∈ R.

Intuitively, R represents the “knowledge” of a context and (V, V ′, τ) ∈ R means
V (resp. V ′) is known under type τ to the context on the left (resp. right) hand
side. Note that τ may be open (with FTV (τ) ⊆ dom(∆)), while V and V ′ are
closed (though they may still contain locations). Intuitively, free type variables
in τ represent names of abstract data types.

Definition 4. An environmental relation X is a set of tuples of the form
(∆,R, s . M, s′ . M ′, τ) or (∆,R, s, s′) with appropriate typing, i.e.,



– ∆, (Σ,Σ′) ` R,
– Σ ` M : ∆1(τ) with Σ ` s, and
– Σ′ ` M ′ : ∆2(τ) with Σ′ ` s′

for some Σ and Σ′.

Again, note that τ may be open and contain free (i.e., abstract) type variables,
while M and M ′ are closed.

Informally, X is a set of the states of a program and a context. (∆,R, s .
M, s′ . M ′, τ) ∈ X means program M (resp. M ′) of type τ is running under
store s (resp. s′) on the left (resp. right) hand side, while (∆,R, s, s′) ∈ X
means that the two programs have stopped with stores s and s′, respectively.
In both cases, R represents the knowledge of the context (i.e., the environment)
that has already been given out by the programs.

Definition 5. The context closure (∆,R)? of R under ∆ is defined as:
{ ([V /x]∆1(C), [V

′
/x]∆2(C), τ) | dom(∆), x : τ ` C : τ, (V , V

′
, τ) ∈ R }

Informally, context closure represents synthesis of knowledge by contexts. With
types omitted and infix notation used, it simply says: if V RV

′
, then ([V /x]C)R?

([V
′
/x]C). Recall that our context C is just a term with free variables x.
The intuitions above lead to the following definition of environmental bisimu-

lation, which asserts that X is preserved by execution (reduction and evaluation)
of the program and by observations (application, type application, opening, pro-
jection, allocation, dereference, update, and pointer equality) from the context.

Definition 6. X is an environmental simulation if:

1. For any (∆,R, s . M, s′ . M ′, τ) ∈ X,
(a) [Reduction] If s . M → t . N , then s′ . M ′ ³ t′ . N ′ for some t′ and N ′

with (∆,R, t . N, t′ . N ′, τ) ∈ X.
(b) [Evaluation] If M = V , then s′ . M ′ ³ t′ . V ′ for some t′ and V ′ with

(∆,R∪ {(V, V ′, τ)}, s, t′) ∈ X.
2. For any (∆,R, s, s′) ∈ X,
(a) [Application] If (λx : ∆1(τ1).M, λx : ∆2(τ1).M ′, τ1→ τ2) ∈ R, then

(∆, R, s.[W/x]M, s′.[W ′/x]M ′, τ2) ∈ X for any (W,W ′, τ1) ∈ (∆,R)?.
(b) [Type Application] If (Λα.M, Λα. M ′, ∀α. τ) ∈ R, then (∆, R,

s. [∆1(σ)/α]M, s′ . [∆2(σ)/α]M ′, [σ/α]τ) ∈ X for any σ with FTV (σ) ⊆
dom(∆).

(c) [Opening] If (pack (σ, V ) as ∃α.∆1(τ), pack (σ′, V ′) as ∃α. ∆2(τ),
∃α. τ) ∈ R, then (∆ ∪ {α 7→ (σ, σ′)},R ∪ {(V, V ′, τ)}, s, s′) ∈ X for
some α, or else (∆,R ∪ {(V, V ′, [ρ/α]τ)}, s, s′) ∈ X for some ρ with
FTV (ρ) ⊆ dom(∆), σ = ∆1(ρ) and σ′ = ∆2(ρ).

(d) [Projection] If (〈V1, . . . , Vn〉, 〈V ′
1 , . . . , V ′

n〉, τ1 × · · · × τn) ∈ R, then (∆,R ∪
{(Vi, V

′
i , τi)}, s, s′) ∈ X for any i ∈ {1, ..., n}.

(e) [Allocation] (∆,R∪ {(`, `′, τ ref)}, s ] {` 7→ W}, s′ ] {`′ 7→ W ′}) ∈ X for
any ` 6∈ dom(s), `′ 6∈ dom(s′) and (W,W ′, τ) ∈ (∆,R)?.



(f) If (`, `′, τ ref) ∈ R, then
i. [Dereference] (∆,R∪ {(s(`), s′(`′), τ)}, s, s′) ∈ X.
ii. [Update] (∆,R, s{` 7→ W}, s′{`′ 7→ W ′}) ∈ X for any (W,W ′, τ) ∈

(∆,R)?.
(g) [Pointer Equality] If (`, `′1, τ ref) ∈ R and (`, `′2, τ ref) ∈ R, then `′1 = `′2.

X is an environmental bisimulation if both X and X−1 are environmental sim-
ulations, where

X−1 = {(∆−1,R−1, s′ . M ′, s . M, τ) | (∆,R, s . M, s′ . M ′, τ) ∈ X}
∪ {(∆−1,R−1, s′, s) | (∆,R, s, s′) ∈ X}

R−1 = {(V ′, V, τ) | (V, V ′, τ) ∈ R}
and ∆−1 is defined (at the risk of confusion with the inverse map) by
dom(∆−1) = dom(∆) and ∆−1(α) = (σ′, σ) for any α with ∆(α) = (σ, σ′).
Environmental bisimilarity ∼ is the largest environmental bisimulation, which
exists because all the conditions above are monotone on X, i.e., the union of
environmental (bi)simulations is again an environmental (bi)simulation.

5 Up-to techniques

As we shall prove in Section 6, environmental bisimilarity characterizes observa-
tional equivalence. However, the above definition by itself is not yet convenient
enough for proving instances of observational equivalence between programs. As
in concurrency theory [22], various up-to techniques are useful for getting rid
of this inconvenience. Below, we report a few of such up-to techniques in our
setting.

Definition 7. The reduction (and renaming) closure X→ of X is defined as

X→ = {(∆,R, s . M, s′ . M ′, τ) |
s . M ³ t . N, s′ . M ′ ³ t′ . N ′, (∆,R, t . N, t′ . N ′, τ) ∈ π1(X)}

∪ {(∆,R, s . M, s′ . M ′, τ) | s . M diverges}
∪ {(∆,R, s . M, s′ . M ′, τ) |

s . M ³ t . V, s′ . M ′ ³ t′ . V ′, (∆,R∪ {(V, V ′, τ)}, t, t′) ∈ π1(X)}
∪ {(∆,R, s, s′) | (∆,R, s, s′) ∈ π1(X)}

where

π1(X) = {(∆,π1(R), π(s) . π(M), s′ . M ′, τ) | (∆,R, s . M, s′ . M ′, τ) ∈ X}
∪ {(∆,π1(R), π(s), s′) | (∆,R, s, s′) ∈ X}

π1(R) = {(π(V ), V ′, τ) | (V, V ′, τ) ∈ R}.

In short, X→ is the set of elements that reduce or evaluate to some element of
X (modulo renaming of locations). We “cross-sell” up-to reduction and up-to
renaming, because our reduction is deterministic only up to renaming of fresh
locations (Lemma 1).



Definition 8. X is an environmental simulation up-to reduction (and renam-
ing) if the conditions of Definition 6 hold with all the positive occurrences of X
replaced by X→. To spell out,

1. For any (∆,R, s . M, s′ . M ′, τ) ∈ X,
(a) If s . M → t . N , then s′ . M ′ ³ t′ . N ′ for some t′ and N ′ with (∆,R, t .

N, t′ . N ′, τ) ∈ X→.
(b) If M = V , then s′ . M ′ ³ t′ . V ′ for some t′ and V ′ with (∆,R ∪

{(V, V ′, τ)}, s, t′) ∈ X→.
2. For any (∆,R, s, s′) ∈ X,
(a) If (λx : ∆1(τ1).M, λx : ∆2(τ1).M ′, τ1 → τ2) ∈ R, then (∆,R, s .

[W/x]M, s′ . [W ′/x]M ′, τ2) ∈ X→ for any (W,W ′, τ1) ∈ (∆,R)?.
(b) If (Λα. M, Λα.M ′,∀α. τ) ∈ R, then (∆,R, s . [∆1(σ)/α]M, s′ .

[∆2(σ)/α]M ′, [σ/α]τ) ∈ X→ for any σ with FTV (σ) ⊆ dom(∆).
(c) If (pack (σ, V ) as ∃α. ∆1(τ), pack (σ′, V ′) as ∃α. ∆2(τ), ∃α. τ) ∈ R, then

(∆∪{α 7→ (σ, σ′)},R∪{(V, V ′, τ)}, s, s′) ∈ X→ for some α, or else (∆,R∪
{(V, V ′, [ρ/α]τ)}, s, s′) ∈ X→ for some ρ with FTV (ρ) ⊆ dom(∆), σ =
∆1(ρ) and σ′ = ∆2(ρ).

(d) If (〈V1, . . . , Vn〉, 〈V ′
1 , . . . , V ′

n〉, τ1 × · · · × τn) ∈ R, then (∆,R ∪
{(Vi, V

′
i )}, s, s′) ∈ X→ for any i ∈ {1, ..., n}.

(e) (∆,R ∪ {(`, `′, τ ref)}, s ] {` 7→ W}, s′ ] {`′ 7→ W ′}) ∈ X→ for any
` 6∈ dom(s), `′ 6∈ dom(s′) and (W,W ′, τ) ∈ (∆,R)?.

(f) If (`, `′, τ ref) ∈ R, then
i. (∆,R∪ {(s(`), s′(`′), τ)}, s, s′) ∈ X→.
ii. (∆,R, s{` 7→ W}, s′{`′ 7→ W ′}) ∈ X→ for any (W,W ′, τ) ∈ (∆,R)?.

(g) If (`, `′1, τ ref) ∈ R and (`, `′2, τ ref) ∈ R, then `′1 = `′2.

Lemma 3 (soundness of up-to reduction). Suppose X is an environmental
simulation up-to reduction. Then X→ is an environmental simulation.

Proof. We check each condition of Definition 6 for each element of X→ by ex-
panding Definition 7. Details are found in Appendix A.

The next up-to technique is the most powerful one.

Definition 9. The context (and environment) closure X? of X is defined as:
X? = {(∆, R, s . [V /y]∆1

0(E)[M ], s′ . [V
′
/y]∆2

0(E)[M ′], τ) |
(∆0,S, s . M, s′ . M ′, τ0) ∈ X,
∆ ⊆ ∆0, R ⊆ (∆0,S)?, FTV (R) ⊆ dom(∆),
(V , V

′
, τ) ∈ S, dom(∆0), y : τ ` E[τ0] : τ, FTV (τ) ⊆ dom(∆)}

∪ {(∆,R, s . M, s′ . M ′, τ) |
(∆0,S, s, s′) ∈ X, ∆ ⊆ ∆0, R ⊆ (∆0,S)?, FTV (R) ⊆ dom(∆)
(M, M ′, τ) ∈ (∆0,S)?, FTV (τ) ⊆ dom(∆)}

∪ {(∆,R, s, s′) |
(∆0,S, s, s′) ∈ X, ∆ ⊆ ∆0, R ⊆ (∆0,S)?, FTV (R) ⊆ dom(∆)}

Here, E[τ0] denotes an evaluation context E with a hole of type τ0, rather than
a type application.



As in Definition 5, the above definition is easier to understand if we omit types
(and stores), and use an infix notation S |= M X M ′ for (S, M, M ′) ∈ X.

– If S |= M X M ′ and V S V
′
, then R |= ([V /y]E[M ]) X? ([V

′
/y]E[M ′]) for

any R ⊆ S?.
– If S ∈ X and M S? M ′, then R |= M X? M ′ for any R ⊆ S?.
– If S ∈ X, then R ∈ X? for any R ⊆ S?.

Here, up-to context and up-to environment (the subset inclusion R ⊆ S?) are
cross-sold because of small-step semantics: during reduction under context E or
C, newly known values need to be substituted into their holes, but they cannot
be added to R until the reduction terminates.

In the first item above, the restriction to evaluation contexts E is impor-
tant (the up-to technique would otherwise be unsound in general) but is not a
weakness of our approach: see Section 6.

Definition 10. X is an environmental simulation up-to reduction and context
(and environment) if the conditions of Definition 6 hold with all the positive
occurrences of X replaced by (X?)→. To spell out,

1. For any (∆,R, s . M, s′ . M ′, τ) ∈ X,
(a) If s . M → t . N , then s′ . M ′ ³ t′ . N ′ for some t′ and N ′ with (∆,R, t .

N, t′ . N ′, τ) ∈ (X?)→.
(b) If M = V , then s′ . M ′ ³ t′ . V ′ for some t′ and V ′ with (∆,R ∪

{(V, V ′, τ)}, s, t′) ∈ (X?)→.
2. For any (∆,R, s, s′) ∈ X,
(a) If (λx : ∆1(τ1).M, λx : ∆2(τ1).M ′, τ1 → τ2) ∈ R, then (∆,R, s .

[W/x]M, s′ . [W ′/x]M ′, τ2) ∈ (X?)→ for any (W,W ′, τ1) ∈ (∆,R)?.
(b) If (Λα. M, Λα.M ′,∀α. τ) ∈ R, then (∆,R, s . [∆1(σ)/α]M, s′ .

[∆2(σ)/α]M ′, [σ/α]τ) ∈ (X?)→ for any σ with FTV (σ) ⊆ dom(∆).
(c) If (pack (σ, V ) as ∃α.∆1(τ), pack (σ′, V ′) as ∃α. ∆2(τ), ∃α. τ) ∈ R,

then (∆ ∪ {α 7→ (σ, σ′)},R ∪ {(V, V ′, τ)}, s, s′) ∈ (X?)→ for some α, or
else (∆,R ∪ {(V, V ′, [ρ/α]τ)}, s, s′) ∈ (X?)→ for some ρ with FTV (ρ) ⊆
dom(∆), σ = ∆1(ρ) and σ′ = ∆2(ρ).

(d) If (〈V1, . . . , Vn〉, 〈V ′
1 , . . . , V ′

n〉, τ1 × · · · × τn) ∈ R, then (∆,R ∪
{(Vi, V

′
i )}, s, s′) ∈ (X?)→ for any i ∈ {1, ..., n}.

(e) (∆,R ∪ {(`, `′, τ ref)}, s ] {` 7→ W}, s′ ] {`′ 7→ W ′}) ∈ (X?)→ for any
` 6∈ dom(s), `′ 6∈ dom(s′) and (W,W ′, τ) ∈ (∆,R)?.

(f) If (`, `′, τ ref) ∈ R, then
i. (∆,R∪ {(s(`), s′(`′), τ)}, s, s′) ∈ (X?)→.
ii. (∆,R, s{` 7→ W}, s′{`′ 7→ W ′}) ∈ (X?)→ for any (W,W ′, τ) ∈ (∆,R)?.

(g) If (`, `′1, τ ref) ∈ R and (`, `′2, τ ref) ∈ R, then `′1 = `′2.

It is also possible to consider just X? in place of (X?)→. We here consider the
latter because we often want to use up-to reduction and up-to context at the
same time.



Lemma 4 (soundness of up-to reduction and context). Suppose X is an
environmental simulation up-to reduction and context. Then X? is an environ-
mental simulation up-to reduction (so (X?)→ is an environmental simulation).

Proof. We check each condition of Definition 8 for each element of X? by ex-
panding Definition 9. Details are in Appendix B.

The last one is specific to calculi with generative names (like our locations).

Definition 11. The allocation closure Xν of X is defined as

Xν = {(∆,R, s . M, s′ . M ′, τ) | (∆,R, s . M, s′ . M ′, τ) ∈ X}
∪ {(∆,R, s, s′) | (∆,S, t, t′) ∈ X, (R, s, s′) ∈ (∆,S, t, t′)ν}

where

(∆,S, t, t′)ν = { (R, s, s′) | R = S ∪ {(`, `′, τ ref)}, (V , V
′
, τ) ∈ (∆,R)?,

s = t ] {` 7→ V }, s′ = t′ ] {`′ 7→ V
′} }.

Informally, Xν is an extention of X with extra locations ` and `
′
allocated (and

initialized with V and V
′
) by the context. (This extention is limited only to

elements of the form (∆,R, s, s′) in the definition above. A similar extention is
also possible for (∆,R, s . M, s′ . M ′, τ), but is less useful because M and M ′

often contain the extended locations ` and `
′
. See, e.g., Example 2 and 3.)

This time, the definition of up-to can almost be obtained by replacing positive
X with ((Xν)?)→ in Definition 6. However, Condition 2a, 2b and 2(f)ii require
adjustments, as underlined below. Such adjustments were unnecessary in up-to
reduction (and context) roughly because reduction (and context) closure does
not essentially increase (∆,R, s, s′) ∈ X. This is not the case in allocation clo-
sure. Note also that the underlined conditions are still necessary for soundness,
e.g., when the observed terms are functions that take n locations as arguments
and return true if and only if these locations are pairwise different.

Definition 12. X is an environmental simulation up-to reduction, context, and
allocation (or just an environmental simulation up-to in short) if:

1. For any (∆,R, s . M, s′ . M ′, τ) ∈ X,
(a) If s . M → t . N , then s′ . M ′ ³ t′ . N ′ for some t′ and N ′ with (∆,R, t .

N, t′ . N ′, τ) ∈ ((Xν)?)→.
(b) If M = V , then s′ . M ′ ³ t′ . V ′ for some t′ and V ′ with (∆,R ∪

{(V, V ′, τ)}, s, t′) ∈ ((Xν)?)→.
2. For any (∆,R, s, s′) ∈ X,
(a) If (λx : ∆1(τ1).M, λx : ∆2(τ1).M ′, τ1→ τ2) ∈ R, then (∆, S, t .

[W/x]M, t′ . [W ′/x]M ′, τ2) ∈ ((Xν)?)→ for any (S, t, t′) ∈ (∆,R, s, s′)ν

and (W,W ′, τ1) ∈ (∆,S)?.
(b) If (Λα. M, Λα.M ′, ∀α. τ) ∈ R, then (∆, S, t . [∆1(σ)/α]M, t′ .

[∆2(σ)/α]M ′, [σ/α]τ) ∈ ((Xν)?)→ for any (S, t, t′) ∈ (∆,R, s, s′)ν and σ
with FTV (σ) ⊆ dom(∆).



(c) If (pack (σ, V ) as ∃α. ∆1(τ), pack (σ′, V ′) as ∃α. ∆2(τ), ∃α. τ) ∈ R, then
(∆ ∪ {α 7→ (σ, σ′)},R∪ {(V, V ′, τ)}, s, s′) ∈ ((Xν)?)→ for some α, or else
(∆,R ∪ {(V, V ′, [ρ/α]τ)}, s, s′) ∈ ((Xν)?)→ for some ρ with FTV (ρ) ⊆
dom(∆), σ = ∆1(ρ) and σ′ = ∆2(ρ).

(d) If (〈V1, . . . , Vn〉, 〈V ′
1 , . . . , V ′

n〉, τ1 × · · · × τn) ∈ R, then (∆,R ∪
{(Vi, V

′
i )}, s, s′) ∈ ((Xν)?)→ for any i ∈ {1, ..., n}.

(e) No condition required (item left only for the sake of consistent numbering).
(f) If (`, `′, τ ref) ∈ R, then

i. (∆,R∪ {(s(`), s′(`′), τ)}, s, s′) ∈ ((Xν)?)→.
ii. (∆,S, t{` 7→ W}, t′{`′ 7→ W ′}) ∈ ((Xν)?)→ for any (S, t, t′) ∈

(∆,R, s, s′)ν and (W,W ′, τ) ∈ (∆,S)?.
(g) If (`, `′1, τ ref) ∈ R and (`, `′2, τ ref) ∈ R, then `′1 = `′2.

Lemma 5 (soundness of up-to reduction, context, and allocation). Sup-
pose X is an environmental simulation up-to reduction, context, and alloca-
tion. Then Xν is an environmental simulation up-to reduction and context (so
((Xν)?)→ is an environmental simulation).

Proof. We check each condition of Definition 10 for each element of Xν by
expanding Definition 11. Details in Appendix C.

6 The characterization theorem

We now prove that environmental bisimilarity coincides with a form of observa-
tional equivalence. Let ≡ be the largest environmental relation such that ≡? ⊆ ≡
and for any (∆,R, s . M, s′ . M ′, τ) ∈ ≡, s . M converges if and only if s′ . M ′

does. It exists because the union of all such environmental relations trivially
satisfies the same property (X appears only once in a negative position in each
clause of Definition 9).

The relation ≡ corresponds to the conventional definition of contextual equiv-
alence in the following way. Take two closed values V and V ′ of type τ . If
(∅, {(V, V ′, τ)}, ∅, ∅) ∈ ≡, then (∅, ∅, ∅ . [V/x]C, ∅ . [V ′/x]C) ∈ ≡? by Defini-
tion 9 for any well-typed C. Therefore, [V/x]C and [V ′/x]C coterminate by
the definition above. Conversely, if V and V ′ coterminate under arbitrary (well-
typed) contexts, then {(∅, {(V, V ′, τ)}, ∅, ∅)}? satisfies the above property. Hence
(∅, {(V, V ′, τ)}, ∅, ∅) ∈ ≡.

Although the argument above assumed closed values, it is also straightfor-
ward to treat open terms N and N ′, by taking V = λx.N and V ′ = λx.N ′ for
{x} ⊇ FV (N) ∪ FV (N ′) as in previous work [26, Section 6][11, Appendix A.2].

Lemma 6 (soundness of environmental bisimulation). Environmental
bisimilarity ∼ is included in ≡.

Proof. Let ¹ be the environmental similarity. By Lemma 4, (¹?)→ is an envi-
ronmental simulation and therefore ¹? ⊆ (¹?)→ ⊆ ¹. By symmetry, º? ⊇ º



(where º denotes ¹−1). Hence ∼? = (¹∩º)? ⊆ (¹?∩º?) ⊆ (¹∩º) = ∼. Also,
by Condition 1a and 1b of Definition 6, for any (∆,R, s . M, s′ . M ′, τ) ∈ ∼,
s . M converges if and only if s′ . M ′ does. Hence ∼ ⊆ ≡.

Lemma 7 (completeness). ≡ is an environmental bisimulation.

Proof. By checking each condition of Definition 6 for each element of ≡, expand-
ing Definition 9. Again, details are found in Appendix D.

Theorem 1 (characterization). Environmental bisimilarity ∼ equals obser-
vational equivalence ≡.

7 Examples

Below, we present examples of equivalence proofs by our environmental bisim-
ulation. In each example, we prove the equivalence of the first two terms by
constructing an environmental bisimulation X up-to reduction, context, and al-
location. More examples are given in Appendix E.

Example 1 (abstract counters with and without bounds checking [3, Section 5.1]).
Let
mkCnt = (let x = ref 0 in cntx) mkCnt ′ = (let x = ref 0 in cnt ′x)

cntx = pack (int, 〈incrx, chkx〉) as τ cnt ′x = pack (int, 〈incrx, chk ′〉) as τ
chkx = λz. z ≤ !x chk ′ = λz. true
incrx = λ . ++ x τ = ∃α. (1 → α)× (α → bool)

with the standard syntactic sugar below.
++x = (x := ! x + 1; ! x) M ; N = let = M in N

let x = M in N = (λx.N)M λ .M = λx.M x 6∈ FV (M)
Then mkCnt and mkCnt ′ are equivalent because of the following X.
X = {(∅, ∅, ∅ . mkCnt , ∅ . mkCnt ′, τ)}
∪ {(∆,R, s, s′) |

R = {(incr `, incr `′ ,1 → α), (chk `, chk ′, α → bool), (1, 1, α), . . . , (n, n, α)},
∆ = {α 7→ (int, int)}, s = {` 7→ n}, s′ = {`′ 7→ n}, n ∈ {0, 1, 2, . . . }}

Let us check that X is indeed an environmental bisimulation up-to reduction,
context, and allocation. Most conditions hold just by construction. The only
cases that need to be checked are Condition 2a for the first and second elements of
the above R. Both of them are straightforward, given the fact that (W,W ′,1) ∈
(∆,R)? implies W = W ′ = 〈〉 and (W,W ′, α) ∈ (∆,R)? implies W = W ′ ∈
{1, 2, . . . , n} (immediate from Definition 5).

Example 2 (irreversible state change [3, Section 5.5], or the “awkward” exam-
ple [19, Example 5.9]). Below is an example that can be proved by recent work [3]
but cannot by classic one [19]. This example uses no existential types, but is still
interesting because of local state. (It can easily be turned into an equivalence
involving packages, like Example 3.)

M = (let x = ref 0 in Vx) M ′ = V ′



Vx = λf. x := 1; f〈〉; ! x V ′ = λf. f〈〉; 1 τ = (1 → 1) → int

for which we take

X = {(∅, ∅, ∅ . M, ∅ . M ′, τ)}
∪ {(∅,R, s, ∅) | R = {(V`, V

′, τ)}, s = {` 7→ i}, i ∈ {0, 1}}
∪ {(∅,R, s ] t . N, t′ . N ′, int) |

R = {(V`, V
′, τ), (k, k

′
, ρ ref)}, s = {` 7→ 1},

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (∅,R)?,

(N, N ′, int) ∈ {(E1[...[En[C; ! `]; ! `]...]; ! `, E1[...[En[C; 1]; 1]...]; 1)}(∅,R)}.
Here, T (∆,R) denotes closure under contexts in T , i.e.,

T (∆,R) = {([V /x]∆1(C), [V
′
/x]∆2(C ′), τ) | (C, C ′) ∈ T , (V , V

′
, τ) ∈ R,

dom(∆), x : τ ` C : τ, dom(∆), x : τ ` C ′ : τ}.
The irreversible change of state is represented by the requirement s = {` 7→ 1}
in the third subset of X above. Stores t and t′ account for locations k and k

′

(and their contents) created by the contexts. The most important technique
here is the inclusion of all contexts of the form E1[. . . [En[C; ! `]; ! `] . . . ]; ! ` and
E1[. . . [En[C; 1]; 1] . . . ]; 1, representing nested calls to V` and V ′. Then, the only
non-trivial case to prove is Condition 1a for N and N ′, which follows from
Lemma 2.

Example 3 (well-bracketed state change [3, Section 5.7], credited to Jacob
Thamsborg). This is an existential variant of a negative example in [3] (i.e.,
they could not prove it).

M = pack (int ref, 〈ref 1, λx. Vx〉) as σ M ′ = pack (1, 〈〈〉, λ . V ′〉) as σ
Vx = λf. (x := 0; f〈〉; x := 1; f〈〉; ! x) V ′ = λf. (f〈〉; f〈〉; 1)
σ = ∃α. α× (α → τ) τ = (1 → 1) → int

The difficulty of this example lies in how to represent the fact that the mutations
x := 0 and x := 1 are “well-bracketed,” i.e., whenever x is mutated to 0, it will
eventually be restored to 1.

Consider first the context’s observations on M . By opening and projection,
the context learns some location ` under an abstract type α (with store {` 7→ 1})
and the function λx. Vx of type α → τ . By applying the latter to the former, it
then learns function V`. This function can be applied to some f = λ . [V /x]C
(where V are taken from the context’s knowledge), yielding a term N1 of the
form [V /x]C1; ` := 1; [V /x]D1; ! ` with store {` 7→ 0}. By Lemma 2, any non-
value of the form [V /x]C1 either reduces to another term of the same form, or
else “uses” some Vi. In the former case, the form of N1 does not change. In the
latter case, suppose Vi = V` and N1 = E[V`W ] for some E and W , that is, N1

makes a nested call to V` (otherwise, the form of N1 does not change, either).
Then N1 reduces to a term of the form E[[V /x]C2; ` := 1; [V /x]D2; ! `] and the
above arguments can be repeated for the subterm [V /x]C2; ` := 1; [V /x]D2; ! `.
(Similar arguments apply to V ′ as well.) To enumerate all such terms that are
possible under the store {` 7→ 0}, we define a binary relation T 0

` on contexts by
induction, using free variable v as a hole to substitute V` (or V ′).



– (C; ` := 1;D; ! `) T 0
` (C;D; 1)

– If E[vW ] T 0
` E′[vW ], then E[C; ` := 1;D; ! `] T 0

` E′[C; D; 1]

On the other hand, if [V /x]C converges to value 〈〉, then [V /x]C; `:=1; [V /x]D; ! `
reduces to [V /x]D; ! ` with store {` 7→ 1}. Similarly, E[[V /x]C; ` :=1; [V /x]D; ! `]
reduces to E[[V /x]D; ! `]. We therefore define another binary relation T 1

` on
contexts to enumerate possible terms under the store {` 7→ 1}.
– (D; ! `) T 1

` (D; 1)
– If E[vW ] T 0

` E′[vW ], then E[D; ! `] T 1
` E′[D; 1]

Again by Lemma 2, any non-value of the form [V /x]D either reduces to the
same form or makes a nested call to V`. Hence the additional rules:

– If E[vW ] T 1
` E′[vW ], then E[C; ` := 1;D; ! `] T 0

` E′[C; D; 1]
– If E[vW ] T 1

` E′[vW ], then E[D; ! `] T 1
` E′[D; 1]

This concludes the definition of T 0
` and T 1

` . The following lemmas—
proved by simple case analysis on the derivations of E[vW ] T 0

` E′[vW ] and
E[vW ] T 1

` E′[vW ]—are used when [V /x]D converges to value 〈〉 and therefore
E[[V /x]D; ! `] reduces to E[1].

– If E[vW ] T 1
` E′[vW ], then E[1] T 1

` E′[1].
– If E[vW ] T 0

` E′[vW ], then E[1] T 1
` E′[1].

Then, take:

X = {(∅, ∅, ∅ . M, ∅ . M ′, σ)}
∪ {(∆,R, s, ∅) |

s = {` 7→ 1}, ∆ = {α 7→ (int ref,1)},
R = {(`, 〈〉, α), (λx. Vx, λ . V ′, α → τ), (V`, V

′, τ)}}
∪ {(∆, R, s ] t . N, t′ . N ′, int) |

(N,N ′, int) ∈ T 0
`

(∆,R)
, s = {` 7→ 0}, ∆ = {α 7→ (int ref,1)},

R = {(`, 〈〉, α), (λx. Vx, λ . V ′, α → τ), (V`, V
′, τ), (k, k

′
, ρ ref)}

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (∆,R)?}

∪ {(∆, R, s ] t . N, t′ . N ′, int) |
(N,N ′, int) ∈ T 1

`
(∆,R)

, s = {` 7→ 1}, ∆ = {α 7→ (int ref,1)},
R = {(`, 〈〉, α), (λx. Vx, λ . V ′, α → τ), (V`, V

′, τ), (k, k
′
, ρ ref)}

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (∆,R)?}

Thanks to the construction of T 0
` and T 1

` with the lemmas above, the proof that
X is a bisimulation up-to is routine, using Lemma 2 for reduction of the terms
N and N ′.

As one can see in some of the examples, our method has the ability to prove
equivalences that depend on sequentiality. In fact, part of our reasoning—namely,
the proof of Condition 1a by Lemma 2—resembles a classic syntactic disproof



against the definability of parallel-or in PCF [16, p. 117]. Note, however, that
the standard equivalence between

isPor = λf. if ¬f〈λ . true, λ .⊥〉 then ⊥ else
if ¬f〈λ .⊥, λ . true〉 then ⊥ else
if f〈λ . false, λ . false〉 then ⊥ else 〈〉

and λf.⊥ does not hold in our language because of state (for instance, f can
count the number of calls to itself). This becomes apparent if one tries to con-
struct a bisimulation proof, where the difference between states obstructs the
use of Lemma 2. More specifically, for x : 1 → bool, y : 1 → bool ` C : bool,

s0 . [λ . true, λ .⊥/x, y]C ³ s1 . true

and
s1 . [λ .⊥, λ . true/x, y]C ³ s2 . true

do not imply
s2 . [λ . false, λ . false/x, y]C ³ s3 . true

because of the differences among s0, s1 and s2. Without state, our method could
prove the equivalence between isPor and λf.⊥.

8 Conclusion

We have presented the first complete, purely syntactic (“semantics-free,” as op-
posed to syntax-free) proof technique for observational equivalences in polymor-
phic λ-calculus with full references, with non-trivial examples that could not be
proved previously. Although we omitted explicit recursion, recursive functions
can be encoded [17, Exercise 13.5.8]. Treatment of recursive types (either equi-
recursive or iso-recursive) is also straightforward (see, e.g., [26]). Deallocation
and pointer arithmetic (by defining stores as partial maps from locations to ar-
rays of values) can also be added without essential difficulty, though deallocation
introduces non-determinism [24] and invalidates the up-to reduction technique
in general (but “up-to deterministic reduction” is still possible).

Of course, the above facts do not mean other approaches are useless. On the
contrary, the inclusion of an infinite number of contexts in examples with call-
backs suggests that, at least for some special cases, more convenient techniques
(like [3]) can be devised to reduce the “size” of the set to be constructed by the
user. (On the other hand, those examples have also shown that, with the help of
Lemma 2, our “brute-force” method is often simple enough.) Logical relations
are also better at giving a compositional model of universal types, as in [3] and
[6, 7].

As we have shown in recent work [24], our approach is applicable to more
general properties other than observational equivalence, such as memory safety
and space improvement. It would also be possible to adapt them to our typed
setting. Contrary to the previous (too negative) conjecture [26, Section 8], it is
possible as well to use our method to prove free theorems à la Wadler [28] based
on parametricity [20]. Work is ongoing on this topic.
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Appendices

A Proof of Lemma 3



Case (∆,R, s . M, s′ . M ′, τ) ∈ X→ where s . M ³ t . N and s′ . M ′ ³ t′ . N ′

with (∆,R, t . N, t′ . N ′, τ) ∈ π1(X).
Condition 1a. Suppose s.M → t0.N0. We prove (∆,R, t0.N0, t

′.N ′, τ) ∈ X→.
Since s.M ³ t.N , we have t0.N0 ³ ξ(t.N) for some permutation ξ on Loc \s
by Lemma 1. Since (∆,R, t . N, t′ . N ′, τ) ∈ π1(X), we have (∆,R, ξ(t . N), t′ .
N ′, τ) ∈ (ξ ◦ π)1(X)). Hence (∆,R, t0 . N0, t

′ . N ′, τ) ∈ X→ by Definition 7.
Condition 1b. Suppose M = V and therefore s.M = t.N . We prove s′.M ′ ³
t′0.V ′ with (∆,R∪{(V, V ′, τ)}, t, t′0) ∈ X→. This is immediate from s′.M ′ ³ t′.
N ′ and Condition 1b of Definition 8 for (∆, (π−1)1(R), π−1(t.N), t′.N ′, τ) ∈ X.

Case (∆,R, s.M, s′.M ′, τ) ∈ X→ where s.M diverges. We prove Condition 1a
of Definition 6, i.e., (∆,R, t . N, t′ . N ′, τ) ∈ X→ if s . M → t . N . This is
immediate from Definition 7 because t . N also diverges by Lemma 1.

Case (∆,R, s . M, s′ . M ′, τ) ∈ X→ where s . M ³ t . V and s′ . M ′ ³ t′ . V ′

with (∆,R∪ {(V, V ′, τ)}, t, t′) ∈ π1(X).
Condition 1a. Suppose s . M → t0 . N . We prove (∆,R, t0 . N, t′ . V ′, τ) ∈
X→. Since s . M ³ t . V , we have t0 . N ³ ξ(t . V ) for some permutation
ξ on Loc \ s by Lemma 1. Since (∆,R ∪ {(V, V ′, τ)}, t, t′) ∈ π1(X), we have
(∆, ξ1(R∪{(V, V ′, τ)}), ξ(t), t′) ∈ (ξ◦π)1(X). Hence (∆,R, t0.N, t′.V ′, τ) ∈ X→

by Definition 7.
Condition 1b. Suppose M = V and therefore s . M = t . V . Trivial because
(∆,R∪ {(V, V ′, τ)}, t, t′) ∈ π1(X) ⊆ X→.

Case (∆,R, s, s′) ∈ X→ where (∆,R, s, s′) ∈ π1(X). We have only to check
Conditions 2a–2g of Definition 6, which are immediate from the corresponding
conditions of Definition 8 for (∆, (π−1)1(R), π−1(s), s′) ∈ X.

B Proof of Lemma 4

Case (∆,R, s . [V /y]∆1
0(E)[M ], s′ . [V

′
/y]∆2

0(E)[M ′], τ) ∈ X? where ∆ ⊆ ∆0,
R ⊆ (∆0,S)? with FTV (R) ⊆ dom(∆), and (V , V

′
, τ) ∈ S for (∆0,S, s .M, s′ .

M ′, τ0) ∈ X and dom(∆0), y : τ ` E[τ0] : τ with FTV (τ) ⊆ dom(∆). We
proceed by case analysis on whether M reduces or is a value.

Sub-case s.M → t.N and therefore s. [V /y]∆1
0(E)[M ] → t. [V /y]∆1

0(E)[N ].
We prove Condition 1a of Definition 8, i.e., s′ . [V

′
/y]∆2

0(E)[M ′] ³ t′ .

[V
′
/y]∆2

0(E)[N ′] for (∆,R, t. [V /y]∆1
0(E)[N ], t′ . [V

′
/y]∆2

0(E)[N ′], τ) ∈ (X?)→.
Since (∆0,S, s.M, s′ .M ′, τ0) ∈ X, we have s′ .M ′ ³ t′ .N ′ with (∆0,S, t .

N, t′.N ′, τ0) ∈ (X?)→ by Condition 1a of Definition 10. Since s′.M ′ ³ t′.N ′, we
have s′.[V

′
/y]∆2

0(E)[M ′] ³ s′.[V
′
/y]∆2

0(E)[N ′]. Since (∆0,S, t.N, t′.N ′, τ0) ∈
(X?)→, we also have (∆,R, t . [V /y]∆1

0(E)N, t′ . [V
′
/y]∆2

0(E)N ′, τ) ∈ (X?)→

(simple calculation with Definition 7 and 9).



Sub-case M = V . Since (∆0,S, s.M, s′.M ′, τ0) ∈ X, we have s′.M ′ ³ t′.V ′

with (∆0,S ∪ {(V, V ′, τ0)}, s, t′) ∈ (X?)→ by Condition 1b of Definition 10.
Since s′ . M ′ ³ t′ . V ′, we have s′ . [V

′
/y]∆2

0(E)[M ′] ³ t′ . [V
′
/y]∆2

0(E)[V ′].
Since (∆0,S ∪ {(V, V ′, τ0)}, s, t′) ∈ (X?)→, we have (∆, (π−1)1(R), π−1(s .

[V /y]∆1
0(E)[V ]), t′ . [V

′
/y]∆2

0(E)[V ′], τ) ∈ X? (simple calculation with Defi-
nition 7 and 9). The rest of the proof amounts to the next case.

Case (∆,R, s . M, s′ . M ′, τ) ∈ X? where ∆ ⊆ ∆0, R ⊆ (∆0,S)? with
FTV (R) ⊆ dom(∆), and (M,M ′, τ) ∈ (∆0,S)? with FTV (τ) ⊆ dom(∆) for
(∆0,S, s, s′) ∈ X.

If M = V , then M ′ = V ′ (immediate from Definition 5 for (M, M ′, τ) ∈
(∆0,S)?). We have only to check Condition 1b of Definition 8, i.e., (∆,R ∪
{(V, V ′, τ)}, s, s′) ∈ (X?)→, which is immediate from Definition 9 because
(V, V ′, τ) ∈ (∆0,S)? and FTV (τ) ⊆ dom(∆).

Otherwise, s . M → t . N . We prove Condition 1a of Definition 8, i.e.,
s′ . M ′ ³ t′ . N ′ and (∆,R, t . N, t′ . N ′, τ) ∈ (X?)→. Expanding Definition 5
for (M,M ′, τ) ∈ (∆0,S)?, let M = [V /x]∆1

0(C) and M ′ = [V
′
/x]∆2

0(C) with
dom(∆0), x : τ ` C : τ and (V , V

′
, τ) ∈ S. We proceed by case analysis on the

form of C.

Sub-case C is not of the form E[ref V ] and no xi ∈ {x} is at the destruction
position in C. Since s . M → t . N , we have N = [V /x]∆1

0(D) with t = s,
and s′ . M ′ → t′ . N ′ for N ′ = [V

′
/x]∆1

0(D) with t′ = s′ by Lemma 2. Hence
(∆,R, t . N, t′ . N ′, τ) ∈ X? ⊆ (X?)→ by Definition 9.

Sub-case C = E[ref V ] with dom(∆0), x : τ ` V : σ and dom(∆0), x :
τ ` E[σ ref] : τ . Then N = [V /x]∆1

0(E)[`] and t = s ] {` 7→ W} for W =
[V /x]∆1

0(V ), and s′ . M ′ → t′ . N ′ with N ′ = [V
′
/x]∆2

0(E)[`′] and t′ = s′ ]
{`′ 7→ W ′} for W ′ = [V

′
/x]∆1

0(V ). Since (∆0,S, s, s′) ∈ X, we have (∆0,S ∪
{(`, `′, σ)}, t, t′) ∈ (X?)→ by Condition 2e of Definition 10. Hence (∆,R, t.N, t′.
N ′, τ) ∈ (X?)→ (simple calculation with Definition 7 and 9).

Sub-case xi is at the destruction position in C. We expand Definition 1. (For
brevity, we show two important cases only. The other cases are similar and
simpler.)

Sub-sub-case C = E[xiV ] where τi = τi1 → τi2 with dom(∆0), x : τ `
V : τi1 and dom(∆0), x : τ ` E[τi2] : τ . Let Vi = λx : ∆1

0(τi1).M0 and
V ′

i = λx : ∆2
0(τi1).M ′

0. Since (∆0,S, s, s′) ∈ X, we have (∆0,S, s . [W/x]M0, s
′ .

[W ′/x]M ′
0, τi2) ∈ (X?)→ for W = [V /x]∆1

0(V ) and W ′ = [V
′
/x]∆2

0(V ) by
Condition 2a of Definition 10. Hence (∆,R, s . [V /x]∆1

0(E)[[W/x]M0], s′ .

[V
′
/x]∆2

0(E)[[W ′/x]M ′
0], τ) ∈ (X?)→ (simple calculation with Definition 7 and

9).

Sub-sub-case C = E[open xi as (α, x) in D] where τi = ∃α. τi0 with
dom(∆0), α, x : τ , x : τi0 ` D : τ0 and dom(∆0), x : τ ` E[τ0] : τ . Let Vi =
pack (σ, Vi0) as τi and V ′

i = pack (σ′, V ′
i0) as τi. Since (∆0,S, s, s′) ∈ X, we have



(∆0 ∪ {α 7→ (σ, σ′)},S ∪ {(Vi0, V
′
i0, τi0)}, s, s′) ∈ (X?)→ by Condition 2c of Def-

inition 10. Hence (∆,R, s . E[[σ, Vi0/α, x]D], s′ . E[[σ′, V ′
i0/α, x]D], τ) ∈ (X?)→

(simple calculation with Definition 7 and 9).

C Proof of Lemma 5

Case (∆,R, s .M, s′ .M ′, τ) ∈ Xν where (∆,R, s .M, s′ .M ′, τ) ∈ X. Trivial.

Case (∆,R, s, s′) ∈ Xν where (R, s, s′) ∈ (∆,S, t, t′)ν with (∆,S, t, t′) ∈ X.
We check Condition 2a–2g of Definition 10. Again, we only show important
cases.
Condition 2a. Let (λx : ∆1(τ1).M, λx : ∆2(τ1).M ′, τ1 → τ2) ∈ R and
(W,W ′, τ1) ∈ (∆,R)?. We prove (∆,R, s . [W/x]M, s′ . [W ′/x]M ′, τ2) ∈
((Xν)?)→. This is identical to Condition 2a of Definition 12 for (∆,S, t, t′) ∈ X.
Condition 2e. Let ` 6∈ dom(s) and `′ 6∈ dom(s′) with (W,W ′, τ) ∈ (∆,R)?.
We prove (∆,R ∪ {(`, `′, τ ref)}, s ] {` 7→ W}, s′ ] {`′ 7→ W ′}) ∈ ((Xν)?)→.
This is immediate from Definition 11 because (∆,S, t, t′) ∈ X.
Now, expanding Definition 11 for (R, s, s′) ∈ (∆,S, t, t′)ν , let s = t ] {` 7→ V }
and s′ = t′ ] {`′ 7→ V

′} with R = S ∪ {(`, `′, τ ref)} for (V , V
′
, τ) ∈ (∆,R)?.

Condition 2(f)i. Let (`, `′, τ ref) ∈ R. We prove (∆,R ∪
{(s(`), s′(`′), τ)}, s, s′) ∈ ((Xν)?)→.

Sub-case (`, `′, τ ref) ∈ S. Since (∆,S, t, t′) ∈ X, we have (∆,S ∪
{(t(`), t′(`′), τ)}, t, t′) ∈ ((Xν)?)→ by Condition 2(f)i of Definition 12. Hence
(∆,R∪{(s(`), s′(`′), τ)}, s, s′) ∈ ((Xν)?)→ (simple calculation with Definition 7,
9 and 11).

Sub-case ` = `i and `′ = `′i with τ = τi. Since (∆,R, s, s′) ∈ Xν and
(Vi, V

′
i , τi) ∈ (∆,R)?, we have (∆,R ∪ {(Vi, V

′
i , τi)}, s, s′) ∈ (Xν)? by Defini-

tion 9.
Condition 2(f)ii. Let (`, `′, τ ref) ∈ R and (W,W ′, τ) ∈ (∆,R)?. We prove
(∆,R, s{` 7→ W}, s′{`′ 7→ W ′}) ∈ ((Xν)?)→.

Sub-case (`, `′, τ ref) ∈ S. Since (∆,S, t, t′) ∈ X, we have (∆,R, s{` 7→
W}, s′{`′ 7→ W ′}) ∈ ((Xν)?)→ by Condition 2(f)ii of Definition 12.

Sub-case ` = `i and `′ = `′i with τ = τi. Since (W,W ′, τ) ∈ (∆,R)?, we have
(R, s{`i 7→ W}, s′{`′i 7→ W ′}) ∈ (∆,S, t, t′)ν by (the latter half of) Definition 11.
Then, since (∆,S, t, t′) ∈ X, we have (∆,R, s{`i 7→ W}, s′{`′i 7→ W ′}) ∈ (Xν)?

by (the former half of) Definition 11.
Condition 2g. Let (`, `′1, τ ref) ∈ R and (`, `′2, τ ref) ∈ R. We prove `′1 = `′2.

Sub-case ` ∈ dom(t). Since ` 6∈ {`}, we have (`, `′1, τ ref) ∈ S and
(`, `′2, τ ref) ∈ S. Since (∆,S, t, t′) ∈ X, we have `′1 = `′2 by Condition 2g
of Definition 12.

Sub-case ` = `i. Trivial.



D Proof of Lemma 7

Case (∆,R, s . M, s′ . M ′, τ) ∈ ≡.
Condition 1a. Suppose s . M → t . N . We prove (∆,R, t . N, s′ . M ′, τ) ∈ ≡,
i.e., t . [V /y]∆1

0(E)[N ] converges if and only if s′ . [V
′
/y]∆2

0(E)[M ′] does for any
E etc. (with the same assumptions as in the first part of Definition 9). Suppose
t . [V /y]∆1

0(E)[N ] converges. Then so does s . [V /y]∆1
0(E)[M ] and therefore

s′ . [V
′
/y]∆2

0(E)[M ′] also converges. Conversely, suppose s′ . [V
′
/y]∆2

0(E)[M ′]
converges. Then so does s. [V /y]∆1

0(E)[M ] and therefore t. [V /y]∆1
0(E)[N ] also

converges by Lemma 1.
Condition 1b. Suppose M = V . We prove s′ . M ′ ³ t′ . V ′ and (∆,R ∪
{(V, V ′, τ)}, s, t′) ∈ ≡, i.e., s . [V , V/y, y]∆1

0(C) converges if and only if t′ .

[V
′
, V ′/y, y]∆2

0(C) does (again with due assumptions). The former is immediate
because s . M converges and therefore so does s′ . M ′. The latter follows from
the cotermination for (∆,R, s . M, s′ . M ′, τ) ∈ ≡ under evaluation context
let y = [ ] in C.

Case (∆,R, s, s′) ∈ ≡. We spell out important cases only.
Condition 2a. Let (λx : ∆1(τ1).M, λx : ∆2(τ1). M ′, τ1 → τ2) ∈ R. We prove
(∆,R, s . [W/x]M, s′ . [W ′/x]M ′, τ2) ∈ ≡ for any (W,W ′, τ1) ∈ (∆,R)?. That
is, s . [V /y]∆1

0(E)[[C/x]M ] converges if and only if s′ . [V
′
/y]∆2

0(E)[[C/x]M ′]
does. This follows from the cotermination for (∆,R, s, s′) ∈ ≡ under context
E[zC].
Condition 2c. Let (pack (σ, V ) as ∃α. ∆1(τ),
pack (σ′, V ′) as ∃α. ∆2(τ), ∃α. τ) ∈ R. We prove (∆ ∪ {α 7→
(σ, σ′)},R ∪ {(V, V ′, τ)}, s, s′) ∈ ≡. That is, s . [V , V, σ/y, y, α]∆1

0(C)
converges if and only if s′ . [V

′
, V ′, σ′/y, y, α]∆2

0(C) does. This follows from the
cotermination for (∆,R, s, s′) ∈ ≡ under context open z as (α, y) in C.
Condition 2e. We prove (∆,R ∪ {(`, `′, τ ref)}, s ] {` 7→ W}, s′ ] {`′ 7→
W ′}) ∈ ≡ for any ` 6∈ dom(s), `′ 6∈ dom(s′) and (W,W ′, τ) ∈ (∆,R)?.
That is, s ] {` 7→ [V /y]∆1

0(D)} . [V , `/y, y]∆1
0(C) converges if and only if

s′ ] {`′ 7→ [V
′
/y]∆2

0(D)} . [V
′
, `′/y, y]∆2

0(C) does. This follows from the
cotermination for (∆,R, s, s′) ∈ ≡ under context let y = ref D in C.

E More examples

Example 4 (twin abstraction with integers and references as generative names [3,
Section 5.2 and 5.3]). Let

mkGenPkg = genPkg
mkGenPkg ′ = (let x = ref 0 in genPkg ′x)

genPkg = pack (1 ref,1 ref, 〈gen, gen, cmp〉) as τ
genPkg ′x = pack (int, int, 〈gen ′x, gen ′x, cmp′〉) as τ

gen = λ . ref 〈〉



gen ′x = λ . ++x

cmp = λp. #1(p)
ptr
= #2(p) ? true : false

cmp′ = λp. #1(p) int= #2(p)
τ = ∃α, β. (1 → α)× (1 → β)× (α× β → bool)

with

X = {(∅, ∅, ∅ . mkGenPkg , ∅ . mkGenPkg ′, τ)}
∪ {(∆,R, s, s′) |

∆ = {α 7→ (1 ref, int)} ] {β 7→ (1 ref, int)},
R = {(genPkg , genPkg ′, τ),

(gen, gen ′k,1 → α),
(gen, gen ′k,1 → β),
(cmp, cmp′, α× β → bool),
(`, i, α), (m, j, β)},

s = {` 7→ 〈〉} ] {m 7→ 〈〉}, s′ = {k 7→ n},
{i} ∩ {j} = ∅, i, j ≤ n}.

Then X is an environmental bisimulation up-to reduction, context, and al-
location. Checking this is just as easy as in Example 1. Note in particular
that the comparison functions cmp and cmp′ always give false. That is,
t . ∆1(cmp)(W ) ³ t . false and t′ . ∆2(cmp′)(W ′) ³ t′ . false for any
(W,W ′, α× β) ∈ (∆,S)? with (t, t′,S) ∈ (∆,R, s, s′)ν .

Example 5 (generic cell classes [3, Section 5.4] [11, Section 6.3]). Let

genCell = Λα. pack (Cellα, 〈newα, readα,writeα〉) as τα

genCell ′ = Λα. pack (Cell ′α, 〈new ′α, read ′α,write ′α〉) as τα

Cellα = α ref
Cell ′α = bool ref× α ref× α ref
newα = λx. ref x
new ′α = λx. 〈ref true, ref x, ref x〉
readα = λcell . ! cell
read ′α = λ〈switch, cell1 , cell2 〉.

if ! switch then ! cell1 else ! cell2
writeα = λ〈cell , x〉. cell := x
write ′α = λ〈〈switch, cell1 , cell2 〉, x〉.

switch := ¬ ! switch;
if ! switch then cell1 := x else cell2 := x

τα = ∃β. (α → β)× (β → α)× (β × α → 1)

and then the following X is a bisimulation up-to.

X = {(∆,R, s, s′) |
∆ = {β 7→ (Cell∆1(ρ),Cell ′∆2(ρ))},
FTV (Cell i) ⊆ {β1, . . . , βi−1} for all i ∈ {1, . . . , n},
R = {(genCell , genCell ′, ∀α. τα),

(newCelli ,new ′Celli ,Cell i → βi),
(readCelli , read

′
Celli , βi → ρi),



(writeCelli ,write ′Celli , βi × ρi → 1),
(`i, 〈bi, `

′
i, m

′
i〉, βi) |

i ∈ {1, ..., n}}
{(s(`ij), s′(`′ij),Cell i) | bij = true} ⊆ (∆,R)?,

{(s(`ij), s′(m′
ij),Cell i) | bij = false} ⊆ (∆,R)?}

The only news here (with respect to previous examples) is the first element of
R, for which Condition 2b is checked.

Example 6 (callback with lock [3, Section 5.6][5]). We show the equivalence of
two terms LM and LM ′ at type σ × τ , where:

Lz = (let b, x = ref true, ref 0 in 〈Ux,Wb,x,z〉)
Ux = λ . ! x

Wb,x,z = λf. if ! b then (b := false; z; b := true)
M = f〈〉; x := ! x + 1
M ′ = let y = !x in f〈〉;x := y + 1

τ = (1 → 1) → 1
σ = 1 → int

Take:

X = {(∅,R, s, s′) |
R = {(Um, Um′ , σ), (W`,m,M ,W`′,m′,M ′ , τ),
s = {` 7→ true} ] {m 7→ n},
s′ = {`′ 7→ true} ] {m′ 7→ n}}

∪ {(∅,R, s ] t . N, s′ ] t′ . N ′,1) |
R = {(Um, Um′ , σ), (W`,m,M ,W`′,m′,M ′ , τ), (k, k

′
, ρ ref)},

s = {` 7→ false} ] {m 7→ n},
s′ = {`′ 7→ false} ] {m′ 7→ n},
dom(t) = {k}, dom(t′) = {k′},
(t(k), t′(k

′
), ρ) ∈ (∅,R)?,

(N, N ′,1) ∈ {(C;m := ! m + 1; ` := true,

C;m′ := n + 1; `′ := true)}(∅,R)

v : σ,w : τ, z : ρ ref ` C : 1}
As in Example 2, the inclusion of contexts C accounts for the body of the callback
function f , with the help of Lemma 2 for proving Condition 1a for the reduction
of N and N ′. Note that (unlike in Example 2) nested calls to Wb,x,z have no
effect, thanks to the “lock” b. Other than these, everything is straightforward
again. Note that step-indexed logical relations [3] require non-trivial use of step
indices to prove this equivalence.

Example 7 (deferred divergence [3, Section 5.8], credited to Hongseok Yang).
Like Example 3, this is an existential version of an example for which [3] could
not give a proof. For brevity, we use syntactic sugar for pattern matching on
tuples (with the obvious meaning).

V = λf. f(pack (1, 〈〈〉, λ .W 〉) as σ)



V ′ = λf. let 〈x, y〉 = 〈ref 0, ref 0〉 in
f(pack (int ref× int ref, 〈〈x, y〉, λ〈x, y〉.W ′

x,y〉) as σ); N ′
x,y

N ′
x,y = if ! y = 0 then x := 1 else ⊥
W = λ .⊥ W ′

x,y = λ . if ! x = 0 then y := 1 else ⊥
σ = ∃α. α× (α → 1 → 1) τ = (σ → 1) → 1

The difficulty here is how to keep track of the fact that N ′
x,y is waiting to be

executed after every call to f by V ′, even if f may make nested calls to V ′.
The following X represents this simply by nested contexts D′. (For readability,
typings of the contexts are omitted.) The first half of X corresponds to states
where W and W ′

x,y have not been called, while the second to states where they
have already been called (and therefore the reductions diverge).

X = {(∆, R, t . M, s′ ] t′ . M ′, 1) |
(M, M ′,1) ∈ {(D, D′)}(∆,R),
D = E1[E2[. . . [Ep−1[C]]]],
D′ = E1[E2[. . . [Ep−1[C; N ′

`p,mp
];N ′

`p−1,mp−1
] . . . ];N ′

`1,m1
],

s′(`1) = · · · = s′(`p) = 0, s′(`p+1) = · · · = s′(`p+q) = 1,
s′(m1) = · · · = s′(mp+q) = 0,
∆ = {α 7→ (1, int ref× int ref)},
R = {(V, V ′, τ), (〈〉, 〈`,m〉, α), (λ . W, λ〈x, y〉. W ′

x,y, α → 1 → 1),
(W,W ′

`,m
,1 → 1), (k, k

′
, ρ ref)},

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (∆,R)?}

∪ {(∆, R, t . M, s′ ] t′ . M ′, 1) |
(M, M ′,1) ∈ {(D, D′)}(∆,R),
D = E[⊥],
D′ = E1[E2[. . . [Ep−1[C; N ′

`p,mp
];N ′

`p−1,mp−1
] . . . ];N ′

`1,m1
],

s′(`1) = · · · = s′(`p) = 0, s′(`p+1) = · · · = s′(`p+q) = 1,
s′(mj) = 1 for some j ∈ {1, . . . , p},
∆ = {α 7→ (1, int ref× int ref)},
R = {(V, V ′, τ), (〈〉, 〈`,m〉, α), (λ . W, λ〈x, y〉. W ′

x,y, α → 1 → 1),
(W,W ′

`,m
,1 → 1), (k, k

′
, ρ ref)},

dom(t) = {k}, dom(t′) = {k′}, (t(k), t′(k
′
), ρ) ∈ (∆,R)?}

Once more, it is routine to check X to be a bisimulation up-to, because most
of the conditions hold just by the construction of X, again using Lemma 2 for
reduction of the terms M and M ′.



S ] {α}, Γ, Σ ` M : τ

S, Γ, Σ ` Λα. M : ∀α. τ

S, Γ, Σ ` M : ∀α. σ FTV (τ) ⊆ S

S, Γ, Σ ` M [τ ] : [τ/α]σ

FTV (τ) ⊆ S S, Γ, Σ ` M : [τ/α]σ

S, Γ, Σ ` pack (τ, M) as ∃α. σ : ∃α. σ

S, Γ, Σ ` M : ∃α. σ S ] {α}, Γ ] {x 7→ σ}, Σ ` N : τ α 6∈ FTV (τ)

S, Γ, Σ ` open M as (α, x) in N : τ

S, Γ, Σ ` ` : Σ(`)

S, Γ, Σ ` M : τ

S, Γ, Σ ` ref M : τ ref

S, Γ, Σ ` M : τ ref

S, Γ, Σ ` ! M : τ

S, Γ, Σ ` M : τ ref S, Γ, Σ ` N : τ

S, Γ, Σ ` M := N : 1

S, Γ, Σ ` M1 : σ ref S, Γ, Σ ` M2 : σ ref

S, Γ, Σ ` N1 : τ S, Γ, Σ ` M2 : τ

S, Γ, Σ ` M1
ptr
= M2 ? N1 : N2 : τ

s . (Λα. M)[τ ] → s . [τ/α]M

s . open (pack (τ, V ) as ∃α. σ) as (α, x) in N → s . [τ, V/α, x]N

s . ref V → s ] {` 7→ V } . ` s . ! ` → s . s(`)

s ] {` 7→ V } . ` := W → s ] {` 7→ W} . 〈〉
s . `

ptr
= ` ? N1 : N2 → s . N1 s . `1

ptr
= `2 ? N1 : N2 → s . N2 (`1 6= `2)

Fig. 2. Typing and Reduction Rules (Excerpt)


