
Quicksilver/OCaml: A Poor Man’s Type-Safe and
Abstraction-Secure Communication Library

(Work in Progress)

Hisatoshi Sutou Eijiro Sumii
Tohoku University

{sutou,sumii}@kb.ecei.tohoku.ac.jp

Abstract
We present Quicksilver/OCaml, an Objective Caml library for com-
municating data in a possibly hostile network environment without
losing type safety or abstraction. It is entirely implemented at user
level, i.e., without modifying the compiler or the runtime at all. The
key ideas are (1) representing types by (tuples of) functions, (2) ab-
straction by encryption, and (3) distinction of type representations
for input and output. We show by examples that the library is use-
ful for implementing applications where not onlysafety, but also
securityagainst malicious attackers is required.

1. Introduction
Safety and security are considered important.1 In programming lan-
guages,type safetyandabstractionare two major ways of achiev-
ing safety and security. Although opinions vary even among ex-
perts,2 we here take the position that a type represents the set of op-
erations applicable to values of that type. (Dually, an effect would
represent the set of operations that a term may perform on the en-
vironment.) Thus, a program is type-safe when no unexpected op-
erations are applied to values in the program. Type abstraction is a
traditional means of proper user-defined types: it not only defines
an abbreviation for a combination of preexisting types, but also re-
stricts operations on values of the new type.

Type safety and abstraction are well guaranteed in friendly en-
vironments, where all programs are statically type-checked or dy-
namically monitored by the runtime environment. However, they
do not always extend to hostile environments such as open net-
works. (In this paper, we use the word “network” in the broad sense
of any environment where programs can communicate with each
other. Thus, even file systems or databases may be considered as
instances of networks.)

[Copyright notice will appear here once ’preprint’ option is removed.]

1 They have even become a main political slogan of the Japenese govern-
ment, “Anzen-Anshin” (meaning “security and safety”).
2 See, for instance, the gigantic thread in the TYPES mailing list, start-
ing at http://www.seas.upenn.edu/~sweirich/types/archive/
1999-2003/msg00270.html. See also [13, Section 1].

For example, in Objective Caml—the implementation of an
almost type-safe programming language—the following code

Marshal.from_channel inchan ^ "abc"

incurs unspecified behavior (such as segmentation fault), when
executed in parallel with code like

Marshal.to_channel outchan 123 []

as clearly warned in the official manual [11, Chapter 20, Module
Marshal]. Superficially, this is becauseMarshal.from channel
has the unsafe typein channel -> ’a, but the real reason is
of course that (the standard version of) Objective Caml does not
support dynamic typing.

A similar observation applies to CORBA [12]. That is, it is
neither type-safe, nor meant to be. Although the specification [12]
does mention type safety in several places, a simple experiment—
like sending adouble and receiving it as along—reveals that it is
not always guaranteed (e.g., when a client and a server use different
interface definition files).

Even with dynamic typing, confusion of abstract data types may
occur. For example, if one program sends a complex number in
Cartesian representation (either by mistake or by malice) to another
program that expects a polar representation, then its absolute value
can become negative, breaking the invariant and perhaps producing
an arbitrary result. Java RMI tries to prevent such problems by
considering the location of a class file as part of the class type, but it
is too strong in the sense that it breaks the compatibility of identical
classes loaded from different locations. HashCaml [1] solves this
problem by using the hash value of the source code of a module
as its type, but it is not intended for protection against malicious
attackers, either passive or active.

In addition, most implementations of type-safe and “abstraction-
safe” [10] communication are done at the meta-level—i.e., by mod-
ifying the compiler and/or the runtime—raising the hurdle for ca-
sual users.

We therefore are developing Quicksilver/OCaml, a user-level
library (and preprocessor) in Objective Caml (and Camlp4) for
type-safe and abstraction-safe communication. It is a poor man’s
implementation: it does not cover all the types in Objective Caml,
and it requires some annotations by programmers. To be more
specific, (i) functions and references cannot be communicated, and
(ii) type representations must be provided by hand to marshaling
and unmarshaling functions (to channel and from channel).
However, it supports many standard data types as well as user-
defined ones, and reports a static type error if the annotations are
inconsistent with the rest of the program.

The rest of this report proceeds as follows. Section 2 reviews
related work. Section 3 introduces the basic idea of our type rep-

1 2007/6/15



resentation, which is standard. Section 4 explains how to automat-
ically generate representations of algebraic data types defined in
user programs. Section 5 discusses abstraction by encryption, and
Section 6 gives an example. Section 7 extends our framework by
refining the type representations to support asymmetric encryption,
Section 8 gives another example, and Section 9 concludes, describ-
ing the inherant limitations of our approach and the current status
of our project.

The main contributions of this work are: (i) the automatic gener-
ation of type representations for user-defined algebraic data types,
and (ii) abstraction by encryption, with examples of applications
that require security in addition to safety.

This submission intentionally falls far short of the 12-page limit
of full research papers, following the spirit of “functional pearls”
(see [2] for example) and that of work-in-progress reports (as de-
scribed in the call for papers).

2. Related Work
In general, implementing marshaling and unmarshaling—also
known as serialization and deserialization, or pickling and unpickling—
is an easy exercise. However, safely implementing theminsidea
statically typed language (i.e., not using unsafe operations, not
modifying the language runtime, and not resorting to runtime re-
flection) is harder.

Kennedy [8] and Elsman [6] presented pickler combinators or
type-specialized serialization, which are similar to our type rep-
resentations (as well as Danvy and Yang’s type encoding [5, 16],
which was inspired by Filinski’s implementation of type-directed
partial evaluation [4] in ML). On one hand, our current implemen-
tation does not support sharing of data structures [8, Section 4] [6,
Section 3.7]. On the other hand, we support automatic generation
of type representations for algebraic data types defined by users,
which [6, 8] do not. We also support abstraction by encryption (Sec-
tion 5 and 7), which is essential for security in some applications
(see Section 6 and 8). As discussed in the examples, the combina-
tion of marshaling and encryption is also essential there.

Marshaling is an example of generic programming. Although
generic programming is not the goal of our work, one can neverthe-
less compare our approach with marshaling implemented by means
of generic programming. To our knowledge, existing methods of
generic programming either (i) require an extension to the language
itself, as in Generic Haskell [7] and GHC [15, Section 7.4.11] (so
that instances of the type classesData andTypeable [9] can be
derived automatically), and/or (ii) are not so automatic for user-
defined algebraic data types.

Sumii and Pierce [14] briefly mentioned the idea of using en-
cryption for abstraction. Their work was mainly theoretical and im-
plementation was not discussed at all.

3. Type Representation
By definition, dynamic typing requires runtime type information.
However, the naive approach—i.e., defining functions like

to_channel : rep -> out_channel -> ’a -> unit

and

from_channel : rep -> in_channel -> ’a

along with the typerep of type representations—does not work
in the standard type system of ML, which lacks dependent types.
(Type classes are not available, either, in ML.)

Thus, we adopt the idea of type encoding by Danvy and Yang [5,
16] and define functions

to_channel : ’a rep -> out_channel -> ’a -> unit

and

from_channel : ’a rep -> in_channel -> ’a

whereτ rep is the representation of typeτ . Concretely, the value
of typeτ rep is a triple of

• thetag (name in string) for values of typeτ ,

• theputter (writer) function for values of typeτ , and

• thegetter(reader) function for values of typeτ .

Even more concretely, the definition of type constructorrep is:

type ’a rep =
string (* tag *)

* (Buffer.t -> ’a -> unit) (* putter *)
* (string -> int -> int -> ’a) (* getter *)

The “getter” function takes two integers so that it can read the value
from the middle of a string, for the sake of efficiency.

For example, the representation of typefloat can be defined
like:

let float : float rep =
"Pervasives.float",
(fun buf x -> Printf.bprintf buf "%.20f" x),
(fun s pos len ->

float_of_string (String.sub s pos len))

(Of course, we could just as well use more efficient binary repre-
sentation of floating point numbers.) Representations of other prim-
itive types are defined one by one in similar ways.

Then, the input and output functionsfrom channel andto channel
have only to take a type representation, project its elements (which
are putter and getter functions themselves), and use them appropri-
ately.

4. Automatic Representation Generation for
Algebraic Data Types

Although representations of predefined types can be given a priori
by the library, ML-like languages also have user-defined algebraic
data types like:

type ’a tree =
| Leaf of ’a
| Node of ’a tree * ’a tree

We automatically generate their representations in a type-directed
manner by using Camlp4 (a pre-processor-pretty-printer for Ob-
jective Caml). We consider the following aspects of algebraic data
types.

Enumeration. For simple enumeration types such as

type day = Sun | Mon | Tue | ... | Sat

we assign a 1-byte value to each data constructor, like

let day : day rep =
"(M.day = <M.Sun, ..., M.Sat>)",
(fun buf x -> match x with

| Sun -> Buffer.add_char buf ’\001’
...

| Sat -> Buffer.add_char buf ’\007’),
(fun s pos len -> match s.[pos] with

| ’\001’ -> Sun | ... | ’\007’ -> Sat
| _ -> raise DynamicTypeError)

whereM is the absolute path of the current module. (This only
supports up to 255 data constructors for each type, but a similar

2 2007/6/15



restriction already exists in Objective Caml itself if any of the
constructors have an argument.3)

Constructor Arguments. For constructors with arguments, like
ISome below,

type int_option = INone | ISome of int

we use the type representations of the arguments as in

let int_option : int_option rep =
("(M.int_option = " ^

"<M.INone, M.ISome : Pervasives.int>)"),
(fun buf x -> match x with

| INone -> Buffer.add_char buf ’\001’
| ISome y1 ->

Buffer.add_char buf ’\002’;
put int buf y1),

(fun s pos len -> match s.[pos] with
| ’\001’ -> INone
| ’\002’ ->

ISome(get int s (pos + 1) (len - 1))
| _ -> raise DynamicTypeError)

whereput and get are functions to extract the second or third
element from the triple representing a type.

Type Operators. Parametrized types such as

type ’a option = None | Some of ’a

are naturally represented by functions from type representations to
type representations:

let option (_a : ’a rep) : ’a option rep =
(let a = tag _a in
Printf.sprintf

"(%s M.option = <M.None, M.Some : %s)"
a a),

(fun buf x -> match x with
| None -> Buffer.add_char buf ’\001’
| Some y1 ->

Buffer.add_char buf ’\002’;
put _a buf y1),

(fun s pos len -> match s.[pos] with
| ’\001’ -> None
| ’\002’ ->

Some(get _a s (pos + 1) (len - 1))
| _ -> raise DynamicTypeError)

Here, tag is a function to retrieve the third element of a type
representation triple.

Recursive Types. Last, recusrive types like’a tree (see above)
are represented by using recursive putter and getter functions:

let rec put_tree _a =
fun buf x -> match x with

| Leaf y1 ->
Buffer.add_char buf ’\001’;
put _a buf y1

| Node(y1, y2) ->
Buffer.add_char buf ’\002’;
put_tree _a buf y1;
put_tree _a buf y2

let rec get_tree _a =
fun s pos len -> match s.[pos] with

3 “The current implementation limits each variant type to have at most
246 non-constant constructors.” (http://caml.inria.fr/pub/docs/
manual-ocaml/manual010.html#htoc58)

| ’\001’ ->
Leaf(get _a s (pos + 1) (len - 1))

| ’\002’ ->
let len1, len2 = ... in (* see below *)
Node(get_tree _a s (pos + 1) len1,

get_tree _a s (pos + 1 + len1) len2)
| _ -> raise DynamicTypeError

let tree (_a : ’a rep) : ’a tree rep =
(let a = tag _a in
Printf.sprintf

("(%s M.tree = " ^
"<M.Leaf : %s, " ^
"M.Node : %s M.tree * %s M.tree>)")

a a a a),
put_tree _a,
get_tree _a

Mutually recursive types are supported by the implementation but
omitted in this presentation.

In addition, we actually prepend length information in front
of the value representation of every constructor argument. This
design is chosen in favor of uniformity over efficiency. We could
alternatively have the getter functions return the length of the string
that they consumed, except for a few necessary cases such as strings
and arrays.

Appendix A shows generic rules for generating type represen-
tations.

5. Abstraction by Encryption (and Encryption by
Abstraction)

The previous type representations suffice for simple and parametric
types, but did not support abstract types. To implement abstraction
in possibly hostile environments, we actually use encryption.4

Specifically, values of abstract types are encrypted when sent,
and decrypted when received, using a temporary buffer for storing
the plain texts. For this purpose, we define a higher-order function
abs of typekey -> ’a rep -> ’a rep, defined roughly like:

let abs k r =
encrypt k (tag r),
(fun buf x ->

let tmp = Buffer.create 16 in
put r tmp x;
let str = Buffer.contents tmp in
put string buf (encrypt k str)),

(fun str pos len ->
let (str’, pos’, len’) =

decrypt k str pos len in
get r str’ pos’ len’)

Like the getter functions, the decryption function also handles
substrings for efficiency. (For concreteness, we are using Xavier
Leroy’s Cryptokit library, available athttp://pauillac.inria.
fr/~xleroy/software.html#cryptokit, in our implementa-
tion.)

4 One might think that encryption is too expensive an operation, but mod-
ern cipher such as AES is rather fast [3], in particular when compared to
network (or file) input and output. Indeed, AES was originally targeted for
smart cards with 8-bit processors, so efficiency was the main point [3]. (Ac-
cording to the README file, the throughput of 128-bit AES raw encryption
in CryptoKit is about 0.3 Gbits/s on a 2 GHz Pentium 4 processor.) Even
asymmetric encryption can often be as fast: one usually encrypts only a
shared key, and uses symmetric encryption in fact. In addition, encryption
is usually anO(n) operation anyway, while checking the invariant of an
abstract data type may take more time (and space).

3 2007/6/15



For example, if a group of programs implements complex num-
bers by polar representation and wishes to hide their implementa-
tion, then they can (and should) be communicated by usingabs k
t as type representation, wheret is the representation of the con-
crete type andk is a secret key shared by the program group.

The fact that the use ofabs—as well as the proper management
of the secret keyk—is manual (rather than automatic) can actually
be a strength, not weakness, as it gives more flexibility: by “exploit-
ing” the encryption operatorabs, one can conveniently implement
security protocols, as shown in the following sections.

6. Example I: Rock, Paper, Scissors
As a sample for the utility of Quicksilver/OCaml, we implemented
a client-server system for the rock-paper-scissors game (http://
en.wikipedia.org/wiki/Rock,_Paper,_Scissors) among
multiple parties. For simplicity, assume that each clienti a priori
shares a secret keyki with the server. Then, after connecting to
the server, each clienti generates a fresh secret key (nonce)k′i, en-
crypts its throwti underk′i, and sends the ciphertext to the server.
Here, a throw is a value of the enumeration type defined as:

type throw = Rock | Paper | Scissors

After receiving the throws of all clients, the server sends an ac-
knowledgement() to the clients. The clients sends backk′i en-
crypted underki. Then, the server decrypts the clients’ throws and
notifies of the winner(s). In case of a draw, the whole process is
repeated.

Thus, the server program (simplified for the two-party case)
looks like:

(* receives encrypted throws and sends ack *)
let th1’ = from_channel string ic1 in
let th2’ = from_channel string ic2 in
to_channel unit oc1 ();
to_channel unit oc2 ();
(* receives keys and decrypts the throws *)
let k1’ = from_channel (abs k1 key) ic1 in
let k2’ = from_channel (abs k2 key) ic2 in
let th1 = from_string (abs k1’ throw) th1’ in
let th2 = from_string (abs k2’ throw) th2’ in
... (* judges and notifies of the winner(s) *)

(The functionfrom string reads a value from a string instead of
a channel.) Correspondingly, the client program looks like:

let th = ... (* the client’s throw *) in
let k’ = generate_fresh_key () in
let th’ = to_string (abs k’ throw) th in
to_channel string oc th’;
from_channel unit ic;
to_channel (abs k key) oc k’;
...

These are reasonably simpler than possible implementations with-
out Quicksilver/OCaml, which would require manual dynamic
checks for the types of keys and throws. A mere combination of
dynamic typing and encryption does not help, either, as the encryp-
tion and decryption functions themselves would require injection
to/projection from type dynamic. Thus, theintegrationof encryp-
tion into dynamic typing is crucial here.

7. Distinguishing input and output type
representations

Once one begins to use Quicksilver/OCaml to implement security
protocols, support for asymmetric encryption is desired almost
immediately. However, it does not fit the framework presented

so far, becauseabs takes only one key for both encryption and
decryption.

Thus, in addition to the developments above, the library (and
preprocessor) also provides output- or input-only type representa-
tion. To be specific, we define:

type ’a orep = (* output-only *)
string (* tag *)

* (Buffer.t -> ’a -> unit) (* putter *)

type ’a irep = (* input-only *)
string (* tag *)

* (string -> int -> int -> ’a) (* getter *)

Theabs function is also split into two versions, namely:

let oabs (ek : enckey) (or : ’a orep) : ’a orep =
encrypt ek (tag or),
(fun buf x ->

let tmp = Buffer.create 16 in
put or tmp x;
let str = Buffer.contents tmp in
put string buf (encrypt ek str))

let iabs (dk : deckey) (ir : ’a irep) : ’a irep =
encrypt dk (tag ir),
(fun str pos len ->

let (str’, pos’, len’) =
decrypt dk str pos len in

get ir str’ pos’ len’)

The other type representations, as well as the types of various func-
tions that take type representations as arguments, are changed ac-
cordingly. In particular,to channel andfrom channel are now
typed as

to_channel : ’a orep -> out_channel -> ’a -> unit

and

from_channel : ’a irep -> in_channel -> ’a

respectively.
This change does not incur any disadvantage against programs

that do not need asymmetric encryption, for (1) the modified library
can be used together with the original one just under different
module names (theirvalue representations are compatible except
for encrypted ones), and (2) it is easy to convert’a rep to the pair
of ’a orep and’a irep or vice versa.

8. Example II: Chat
To test the asymmetric encryption functionality, we wrote a simple
chat server and its client in Quicksilver/OCaml, with the function-
ality of sending private messages to specific participants only.

Let the server’s encryption and decryption keys beeks anddks,
respectively. Let also clienti’s keys beek i and dk i. The server
waits for new connections and messages from existing clients (if
any) at the same time.5 A client connects to the server, registers the
user’s name, and waits for input from the user as well as replies
from the server.

Messages from clients to the server are given the following type:

type message =
Message of string

(* to all participants *)

5 Since the standard library of Objective Caml does not support the “select”
function over high-level channels (http://caml.inria.fr/mantis/
view.php?id=3579), we used Cash (http://pauillac.inria.fr/
cash/) instead.

4 2007/6/15



| Secret of string * string
(* to particular participant *)

| Rename of string
(* change name *)

| Member
(* request participant list *)

| Quit
(* log out *)

Replies from the server to clients are:

type reply =
Reply of string * string

(* message from participant *)
| Info of string

(* information from server *)
| Disconnect

(* disconnection from server *)

So the client’s (pseudo-)code for processing user input is roughly

let msg = the_user_input in
to_channel (oabs ek_s omessage) outchan msg;
return_to_select

and for receiving server replies:

let rep = from_channel (iabs dk_i ireply) inchan in
process_rep ;
return_to_select

(We adopt the convention that type representations for output have
prefix o and those for inputi.) The server’s code for processing
client i’s message looks like Figure 1.

Again, the client and server programs are greatly simplified
thanks to “encryption by abstraction.” In addition, the automatic
generation of type representations is essential here, because the
types are far more complex than the trivial enumeration in the
previous example.

9. Conclusion
To repeat the title of the paper, Quicksilver/OCaml is a poor man’s
implementation. Although easy to use, it is by no means intended
to replace a real distributed language. Specifically,

• We do not support sending or receiving function closures (be-
tween different programs, in particular).

• We do not preserve sharing of mutable data structures—such
as reference cells, defined astype ’a ref = {mutable
contents : ’a} in Objective Caml—across multiple pro-
grams (though it would be possible to preserve sharing within
a single data structure, as in [6, 8]).

• We do not support objects or polymorphic variants, either.

• Tuples are also a difficulty: in ML, we cannot define a function
tuple such thattuple n has type’a1 -> ... -> ’an ->
’a1 * ... * ’an for all natural numbersn; we therefore
maketuple n (wheren is a non-negative integer constant) a
special form and preprocess it away.

Nevertheless, we believe that Quicksilver/OCaml will be useful
enough in that it is “lightweight” and easy to deploy. Above all, it
illustrates the fun of programming with functions.

A prototype of Quicksilver/OCaml has already been imple-
mented and working. We plan to work on polishing and document-
ing it for public release in the near future.

Acknowledgments
We would like to thank Benjamin Pierce for coining the name
Quicksilver as a programming environment with “fluid boundary”
(of type abstraction). We also thank Naoki Kobayashi and members
of the laboratory for comments on this work.

References
[1] John Billings, Peter Sewell, Mark Shinwell, and Rok Strniša. Type-

safe distributed programming for OCaml. InProceedings of the 2006
ACM SIGPLAN Workshop on ML, pages 20–31, 2006.

[2] Richard Bird. How to write a functional pearl. Invited talk at
the 11th ACM SIGPLAN International Conference on Functional
Programming. Slides available athttp://icfp06.cs.uchicago.
edu/bird-talk.pdf, 2006.

[3] Joan Daemen and Vincent Rijmen. The block cipher Rijndael. In
Smart Card – Research and Applications, volume 1820 ofLecture
Notes in Computer Science, pages 277–284. Springer-Verlag, 2000.

[4] Olivier Danvy. Type-directed partial evaluation. InProceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 242–257, 1996.

[5] Olivier Danvy. A simple solution to type specialization. InAutomata,
Languages and Programming, volume 1443 ofLecture Notes in
Computer Science, pages 908–917. Springer-Verlag, 1998.

[6] Martin Elsman. Type-specialized serialization with sharing. InSixth
Symposium on Trends in Functional Programming, 2005.

[7] Generic Haskell.http://www.generic-haskell.org/.

[8] Andrew Kennedy. Functional pearls: Pickler combinators.Journal of
Functional Programming, 14(6):727–739, 2004.

[9] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with
class: Extensible generic functions. InProceedings of the 10th ACM
SIGPLAN International Conference on Functional Programming,
pages 204–215, 2005.

[10] James J. Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough.
Global abstraction-safe marshalling with hash types. InProceedings
of the Eighth ACM SIGPLAN International Conference on Functional
Programming, pages 87–98, 2003.

[11] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. The Objective Caml system – documentation and
user’s manual. Available athttp://caml.inria.fr/pub/docs/
manual-ocaml/.

[12] Object Management Group. Common object request broker
architecture: Core specification. Available athttp://www.omg.
org/docs/formal/04-03-12.pdf.

[13] Benjamin C. Pierce.Types and Programming Languages. MIT Press,
2002.

[14] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic
sealing. Theoretical Computer Science, 375(1–3):169–192, 2007.
Extended abstract appeared inProceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 161–172, 2004.

[15] The GHC Team. The glorious Glasgow Haskell compilation system
user’s guide. Available athttp://www.haskell.org/ghc/docs/
latest/html/users_guide/.

[16] Zhe Yang. Encoding types in ML-like languages. InProceedings
of the Third ACM SIGPLAN International Conference on Functional
Programming, pages 289–300, 1998.

A. Generic Rules for Generating Type
Representations

Let D the declaration of an algebraic data type

D = type (α1, . . . , αn) t =

| C1 of τ11 × . . .× τ1`1

5 2007/6/15



let msg = from_channel (iabs dk_s imessage) inchan_i in
begin match msg with

Message(x) ->
for each i’ <> i,

to_channel (oabs ek_i’ oreply) outchan_i’ (Reply(names_i, x))
| Secret(x’, x) ->

for i’ such that names_i’ = x’,
to_channel (oabs ek_i’ oreply) outchan_i’ (Reply(names_i, x))

| Rename x ->
if no_conflict_of_names then

for all i’,
to_channel (oabs ek_i’ oreply) outchan_i’ (Info(names_i ^ " renamed to " ^ x))

else
to_channel (oabs ek_i oreply) outchan_i (Info("failed"))

| Member ->
to_channel (oabs ek_i oreply) outchan_i (Info(all names ))

| Logout ->
for each i’ <> i,

to_channel (oabs ek_i’ oreply) outchan_i’ (Info(names_i ^ " logged out"));
to_channel (oabs ek_i oreply) outchan_i Disconnect

end;
return_to_select

Figure 1. Chat server (pseudo-code excerpt).names i denotes the name of clienti as registered to the server.

...

| Cm of τm1 × . . .× τm`m

where metavariableτ denotes types,b base types,α type variables,
andt type constructors.

τ ::= b | α | (τ1, . . . , τk) t

Then, the representation of type(α1, . . . , αn) t is given as follows.
(We are omitting modules paths here. Also, we abuse notations and
write α or τ in term contexts, meaning term variables or function
applications. In particular, ifτ = (τ1, . . . , τk) t, thenτ as a term
denotest τ1 . . . τk.)

Rep(D) =

let rec put α1 . . . αn buf = function

PutPat(D)

and get α1 . . . αn str pos len =

match str.[pos] with

GetPat(D)

and t α1 . . . αn =

(Printf.sprintf

"(%s . . . %s t =

〈C1 : τ11 × . . .× τ1`1 , . . . , Cm : τm1 × . . .× τm`m〉)"
(tag α1) . . . (tag αn)),

put α1 . . . αn,

get α1 . . . αn

PutPat(D) =

| C1(x11, . . . , x1`1) →
Buffer.add char buf ’\001’;
let tmp = Buffer.create 16 in

put τ11 tmp x11;

put int buf (Buffer.length tmp);

Buffer.add buffer buf tmp;

...

let tmp = Buffer.create 16 in

put τ1`1 tmp x1`1;

put int buf (Buffer.length tmp);

Buffer.add buffer buf tmp;

| . . .
| Cm(xm1, . . . , xm`m) →
Buffer.add char buf ’\00m’;
let tmp = Buffer.create 16 in

put τm1 tmp xm1;

put int buf (Buffer.length tmp);

Buffer.add buffer buf tmp;

...

let tmp = Buffer.create 16 in

put τm`m tmp xm`m;

put int buf (Buffer.length tmp);

Buffer.add buffer buf tmp;

GetPat(D) =

| ’\001’→
let pos, len = pos - 3, 0 in

let pos = pos + 4 + len in

let len = get int str pos 4 in

let x11 = get τ11 str (pos + 4) len in

...

let pos = pos + 4 + len in

let len = get int str pos 4 in

let x1`1 = get τ1`1 str (pos + 4) len in

C1(x11, . . . , x1`1)

6 2007/6/15



| . . .
| ’\00m’→
let pos, len = pos - 3, 0 in

let pos = pos + 4 + len in

let len = get int str pos 4 in

let xm1 = get τm1 str (pos + 4) len in

...

let pos = pos + 4 + len in

let len = get int str pos 4 in

let xm`m = get τm`m str (pos + 4) len in

Cm(xm1, . . . , xm`m)

7 2007/6/15


