
A Type System for Observational Determinism

Tachio Terauchi
Tohoku University

terauchi@ecei.tohoku.ac.jp

Abstract

Zdancewic and Myers introduced observational deter-
minism as a scheduler independent notion of security for
concurrent programs. This paper proposes a type system
for verifying observational determinism. Our type system
verifies observational determinism by itself, and does not
require the type checked program to be confluent. A poly-
nomial time type inference algorithm is also presented.

1 Introduction

Non-interference is a property of a program which states
that the program’s publicly observable (i.e., low security)
behavior is independent of its confidential (i.e., high secu-
rity) inputs. Non-interference has applications in software
security. We refer to the survey by Sabelfeld and Myers [11]
for a general overview.

Motivated by earlier work by Roscoe [10], Zdancewic
and Myers proposed observational determinism [14] as a
notion of non-interference for concurrent programs which
roughly says that a program is secure if and only if its
publicly observable behavior is independent of its confiden-
tial data and independent of process/thread scheduling. As
such, unlike other notions of non-interference such as possi-
bilistic security, observational determinism implies security
regardless of the scheduler choice.

In the same paper, Zdancewic and Myers proposed a type
system for enforcing observational determinism. However,
their type system required the type checked program to be
confluent in order to be verified secure. Confluence, even if
relaxed to confluence up to observational parts of the pro-
gram, can be a restrictive requirement. (Definitional ob-
servational determinism does not imply confluence.) This
paper presents, to the best of our knowledge, the first type
system that verifies observational determinism by itself for
non-trivial concurrent programs. The type system integrates
a flow-based security analysis with a fractional capabilities-
based determinism checker in a novel way to allow pro-
grams to be non-deterministic in non-security-relevant por-

e ::= x (variable)
| ` (location)
| n (integer constant)
| e1 op e2 (integer operations)
| !e (location read)

s ::= ref x = e in s (new location)
| chan x in s (new channel)
| s1; s2 (sequence)
| e := e (location write)
| if e then s1 else s2 (branch)
| while e do s (loop)
| spawn {s} (new thread)
| send e (signal send)
| wait e (signal receive)
| skip (skip)

Figure 1. The syntax of the simple concurrent
language.

tions of the program. In particular, our type system does not
force confluence and can verify some non-confluent pro-
grams to be secure. In addition to added flexibility (e.g.,
being able to check determinism of concurrent reads), frac-
tional capabilities enable efficient (polynomial time) type
inference algorithm via linear programming.

2 Preliminaries

To concretize the presentation, we focus on the simple
concurrent language shown in Figure 1. We briefly de-
scribe the syntax. Meta variables x, x1, etc. range over
(program) variables. Variables are immutable like in func-
tional languages, whereas locations (i.e., first class refer-
ence cells) can be used for destructive updates. The con-
struct ref x = e in s, creates a new location and initial-
izes it to the result of evaluating e, and binds the location
to the variable x. Note that the language allows locations to
appear in the source syntax. This is needed so that low se-

curity variables and high security variables in the classical
information flow setting can be expressed as low security
locations and high security locations. The language con-
tains branches and loops. The construct spawn {s} creates
a new thread to evaluate s. Threads may synchronize each
other by sending signals over channels. Channels are dy-
namically created by chan x in s, which allocates a fresh
channel, binds it to the variable x, and evaluates s. Signals
are “asynchronous” in the sense that the sender does not
need to wait for a receiver to send the signal. Finally, the
language contains integer constants. Binary (deterministic)
operations over integers (+,−,×,≤, etc.) are ranged over
by the symbol op.

To describe non-interference, we consider programs with
free locations, some of which are classified as high security
locations or low security locations. The essence of informa-
tion flow is to check if information contained in high secu-
rity locations could leak to an attacker who can only observe
the contents of low security locations. For instance, the pro-
gram below leaks information in the high security location
`h to the low security location `l.

`l := 0;while !`h > 0 do (`l := !`l + 1; `h := !`h − 1)

We define the semantics of the language by small-step
reductions from states to states. A state is a triple (S,B, p)
where S is a store mapping locations to values (v, see be-
low), B is a mapping from channel constants (c) to a non-
zero integer indicating the number of pending signals, and
p is a program state defined as follows.

v ::= c | ` | n
e ::= · · · | c
p ::= s | p1 || p2

Here, the meta variable c ranges over channel constants.
Expressions are extended to contain channel constants. A
program state (p) is a parallel composition of (extended)
statements.

We define the following general notations. Given a func-
tion f , f [u 7→ v] denotes the function {w 7→ f(w) | w ∈
dom(f) \ {u}} ∪ {u 7→ v}. Given a function f and a set
X ⊆ dom(f), f |X denotes the restriction of f to X , that
is, {u 7→ f(u) | u ∈ X}. Given strings u and v, we write
u ∼ v if u and v are stutter equivalent. We write u ≺ v if
there exists a prefix w of v such that u ∼ w.

Figure 2 shows the reduction rules. The evaluation con-
texts are defined as follows.

E ::= [] | E; s | E||p | p||E

The reduction rules are mostly self-explanatory. The reduc-
tion rules use the evaluation rules for expressions of the
form (S, e) ; v, also shown in Figure 2. In the rule for
binary operation, [[op]] denotes the standard semantics of

(S, v) ; v

(S, e1) ; n1 (S, e2) ; n2

(S, e1 op e2) ; n1[[op]]n2

(S, e) ; `

(S, !e) ; S(`)

(S, e) ; n n 6= 0

(S,B,E[if e then s1 else s2])→ (S,B,E[s1])

(S, e) ; 0

(S,B,E[if e then s1 else s2])→ (S,B,E[s2])

(S,B,E[while e do s])
→ (S,B,E[if e then (s;while e do s) else skip])

(S,B,E[spawn {s}])→ (S,B,E[skip] || s)

(S, e) ; v ` /∈ dom(S)

(S,B,E[ref x = e in s])→ (S[` 7→ v], B,E[s[`/x]])

(S, e1) ; ` (S, e2) ; v

(S,B,E[e1 := e2])→ (S[` 7→ v], B,E[skip])

c /∈ dom(B)

(S,B,E[chan x in s])→ (S,B[c 7→ 0], E[s[c/x]])

(S, e) ; c

(S,B,E[send e])→ (S,B[c 7→ B(c) + 1], E[skip])

(S, e) ; c B(c) > 0

(S,B,E[wait e])→ (S,B[c 7→ B(c)− 1], E[skip])

Figure 2. The reduction rules.

the binary operator op. We let the sequential composition
operator ; be associative with skip as an identity, that is,

s1; s2; s3 = (s1; s2); s3 = s1; (s2; s3)
skip; s = s;skip = s

The bottom three rules handle communication of signals
over channels. A new channel is created with its number
of pending signals set to 0. When a sender sends a signal
over the channel, the number is incremented. The receiver
blocks on a channel until there is a signal over the channel,
and decrements the number by receiving the signal.

A trace, T , is a finite sequence of states. For i ≤ |T |, we
write T (i) to denote the ith state of T . We write (S,B, p) ⇓
T if (S,B, p) = T (1) and T (i) → T (i + 1) for 1 ≤ i <
|T |. We write s ⇓ T if (S, ∅, s) ⇓ T for some S such
that dom(S) is the set of free locations in s and ran(S) ⊆ Z
(for simplicity, we assume that the initial store only contains

integers). For a set of locations K ⊆ dom(S), we write
(S,B, p)|K for S|K . We extend the same notation to traces,
that is, T |K is a sequence of stores restricted to K such that
the ith element is T (i)|K .

We define observational determinism following [14, 6]1.
Informally, s is observationally deterministic if its trace re-
stricted to the updates to the low security locations is inde-
pendent of thread scheduling and the initial contents of the
high security locations.

Definition 2.1 (Observational Determinism) Let s be a
program with no free variables and K be the set of free
locations of s. Let L ⊆ K be low security locations and
H ⊆ K be high security locations. Let H̄ = K \ H . We
say that s is observationally deterministic w.r.t. (L,H) if for
any T, T ′ such that s ⇓ T , s ⇓ T ′, and T (1)|H̄ = T ′(1)|H̄ ,
we have T |L ≺ T ′|L or T ′|L ≺ T |L.

Observational determinism is a quite strong notion of se-
curity. For instance, observational determinism implies de-
terministic updates to the low security locations (because
t|H̄ = t|H̄ for any state t). Therefore, for example,
the following program is not observationally deterministic
w.r.t. ({`l}, ∅). (There are no high security locations.)

spawn {`l := 0}; `l := 1

For motivation behind the definition of observational deter-
minism, we refer to the paper by Zdancewic and Myers [14]
(or the paper by Huisman et al. [6]) which contains excellent
examples illustrating why a more relaxed notion of security
may be problematic.

3 The Type System

We present a type system that guarantees that a typable
program is observationally deterministic. We informally
describe the basic idea. In short, the type system combines
a flow-based analysis for non-interference [14] with a frac-
tional capability-based determinism checker for concurrent
programs [2, 13]. Intuitively, the type system applies a se-
curity flow analysis to check that there is no flow (including
implicit flow from branches and loops) from high security
level to low security level, and also infers the program parts
that must be at low security level and therefore need to be
deterministic. Then, the type system applies a fractional
capability analysis to verify that those parts are indeed de-
terministic. Only checking determinism for parts of the pro-
gram allows the type system to accept programs that are not
totally deterministic (see Section 3.1 and 4 for some exam-
ples.)

1The definition given here differs somewhat from those in [14] and [6].
It turns out that there are some subtle issues with their definitions, which
are discussed in Appendix A

The following example illustrates the basic idea.

ref x = 0 in

spawn {x := 1};
if !x then `l := 0 else `l := 1

Note that the program is not observationally deterministic
w.r.t. ({`l}, ∅) because depending on the thread scheduling,
`l is either assigned 0 or 1. To detect this, the type system
first infers that, for `l to be at low security level, the branch
condition !x must be at low security level and thus needs to
be deterministic. Then, the type system tries to find a frac-
tional capability assignment that would prove the determin-
ism of !x, and fails to do so (because it is non-deterministic),
and the program is rejected as possibly not observationally
deterministic.

We now formally describe the type system. The types
are defined as follows.

κ ∈ Abstract Locations
γ ∈ Abstract Channels
ρ ::= κ | γ
q ::= h | l
τ ::= intq | ref(κ, τ)q | chan(γ,Ψ)q

Each type is qualified by a security level: h or l. Intuitively,
values of the type qualified by h may depend on high secu-
rity information or thread scheduling, whereas those quali-
fied by l are guaranteed to be independent of them. Security
levels form the usual two point lattice such that l v h and
h 6v l. The least upper bound of q1 and q2 is written q1tq2.

The accessor function qual and ty are defined as follows.

qual(intq) = q
qual(ref(κ, τ)q) = q

qual(chan(γ,Ψ)q) = q
ty(intq) = int

ty(ref(κ, τ)q) = ref(κ, τ)
ty(chan(γ,Ψ)q) = chan(γ,Ψ)

Security levels induce the subtyping relation

qual(τ1) v qual(τ2) ty(τ1) = ty(τ2)

τ1 v τ2

The type system represents locations statically as ab-
stract locations, ranged over by meta variables κ, κ1, etc.
Each abstract location denotes a set of (concrete) loca-
tions so that a location of the type ref(κ, τ)q is in the set
represented by κ. Similarly, channels are represented by
as abstract channels, ranged over by γ, γ1, etc., each de-
noting a set of (concrete) channels. Meta variables ρ, ρ1,
etc. range over abstract resources, used to refer to both
abstract locations and abstract channels. Meta variables
Ψ,Ψ1, etc. range over capability mappings, which are func-
tions from abstract resources to non-negative rational num-
bers [0,∞).

There are two reasons for using abstract resources. One
is to allow aliasing of resources, because both locations and
channels are first class objects and so the static system can-
not track their identity precisely. The second reason is to
group all low security locations in the same abstract loca-
tion. The type system ensures that accesses to l-level lo-
cations (i.e., locations with the type of the form ref(κ, τ)q

such that qual(τ) = l) happen observationally determinis-
tically at the granularity of abstract resources. Therefore, if
multiple l-level locations are grouped in the same abstract
location, then access to all those locations as a whole hap-
pen observationally deterministically.

Recall capability mapping (Ψ,Ψ1, etc.) is a function
from abstract resources to non-negative rational numbers
[0,∞). A capability mapping denotes access capabilities to
abstract resources. Each thread holds some amount of ca-
pabilities, representing the access capabilities of the thread.

Only the threads holding the capability Ψ such that
Ψ(κ) ≥ 1 are allowed to write to an l-level abstract lo-
cation κ, whereas only the threads holding the capability Ψ
such that Ψ(κ) > 0 are allowed to read low security values.
(Therefore, the write capability implies the read capability.)
The type system ensures that the total amount of capabilities
summed across all live threads is at most 1 for any abstrac-
tion location. This guarantees that there are no other threads
that can access an l-level location when some thread is writ-
ing to the location, guaranteeing deterministic low-security
accesses to the location.

For example, this scheme soundly rejects the following
program where `l is a low security location. To see this, note
that in order to type check both writes to `l, both threads
must be given the capability 1 to access the abstract location
representing `l, but this violates the “at most 1” criteria.

spawn {`l := 0}; `l := 1

Only demanding non-negative rationals for reads allow par-
allel deterministic reads. For instance, the following pro-
gram, where `l is a low security location, can be type
checked by giving both the spawned and the spawner
threads a fractional amount (e.g., 0.5) of the capability to
access x.

ref x = 0 in

ref y = 0 in

spawn {`l := !x}; y := !x

The type system allows capability passing between
threads so that multiple threads may access the same l-level
location. Capabilities can be passed when threads synchro-
nize over a channel. For instance, to type check the fol-
lowing program (where `l is a low security location), we
pass the capability to access `l initially held by the spawned
thread (i.e., the one that does `l := 0) to the spawner thread

(i.e., the one that does `l := 1) when sending a signal over
the channel c.

chan c in
spawn {`l := 0;send c};
wait c; `l := 1

To statically reason about capability passing, a channel type
contains a capability mapping indicating the amount of ca-
pabilities passed from the sender to the receiver when com-
municating over the channel. That is, a channel of the type
type chan(γ,Ψ)q can be used to pass Ψ amount of capabil-
ities from the sender to the receiver.

It is necessary to check that capability passing happens
observationally deterministically to disallow cases such as
the one below where `l is a low security location.

chan c in
spawn {wait c; `l := 0};
spawn {wait c; `l := 1};
send c

To this end, the type system only allows the threads holding
the capability Ψ such that Ψ(γ) ≥ 1 to receive capabili-
ties from channels in γ. As with abstract locations, the type
system ensures that the total amount of capabilities summed
across all live threads is at most 1 for an abstract channel.
Therefore, at any point in time, there is at most one thread
that can receive capabilities from the channel. As with lo-
cations, capabilities to access channels can also be passed,
allowing multiple threads to use the same channel to pass
capabilities.

We define arithmetic operations over capabilities. The
addition and subtraction of capability mappings are defined
point-wise as Ψ1 + Ψ2 = λρ.Ψ1(ρ) + Ψ2(ρ) and Ψ1 −
Ψ2 = λρ.Ψ1(ρ) − Ψ2(ρ). Because capabilities must be
non-negative, Ψ1 − Ψ2 is undefined if Ψ1(ρ) < Ψ2(ρ) for
some ρ. The relation Ψ1 ≥ Ψ2 is defined as ∀ρ.Ψ1(ρ) ≥
Ψ2(ρ), and Ψ1 > Ψ2 is defined as ∀ρ.Ψ1(ρ) > Ψ2(ρ). For
convenience, we let 0 denote a constant capability mapping
that maps all abstract resources to 0, that is, 0 = λρ.0.
Therefore, for example, 0 [ρ 7→ 1] is a capability mapping
that maps ρ to 1 and ρ′ to 0 for all ρ′ 6= ρ.

Figure 3 and Figure 4 show the type checking rules. The
judgement for expressions is of the form Γ,Ψ ` e : τ where
Γ is a type environment mapping variables and locations to
their types, Ψ is the pre-capability before the evaluation of
e (and after, because expressions do not change thread’s ca-
pabilities), and τ is the type of e. The judgement for state-
ments is of the form Γ,Ψ1, q ` s : Ψ2 where the con-
text security level q is used to capture implicit flow induced
by branches, Ψ1 is the pre-capability of s, and the post-
capability Ψ2 is the capability after the evaluation of s.

We briefly discuss each rule. VAR, INT, LOC, OP,
SEQ, and SKIP are self-explanatory. IF and WHILE in-
crease the security level inside the branch/loop bodies by

Γ,Ψ ` x : Γ(x)
VAR

Γ,Ψ ` n : intq1 INT
Γ,Ψ ` ` : Γ(`)

LOC

Γ,Ψ ` e1 : intq1 Γ,Ψ1 ` e2 : intq2 q1 t q2 v q3

Γ,Ψ ` e1 op e2 : intq3 OP

Γ,Ψ ` e : ref(κ, τ1)q1 τ1 v τ q1 v qual(τ)
qual(τ) = l⇒ Ψ(κ) > 0

Γ,Ψ ` !e : τ
READ

Figure 3. The type checking rules for expressions.

Γ,Ψ ` e : intq1 Γ,Ψ, q2 ` s1 : Ψ1 Γ,Ψ, q2 ` s2 : Ψ2 q t q1 v q2 Ψ1 ≥ Ψ3 Ψ2 ≥ Ψ3

Γ,Ψ, q ` if e then s1 else s2 : Ψ3
IF

Γ,Ψ1 ` e : intq1 Γ,Ψ1, q2 ` s : Ψ2 q t q1 v q2 Ψ2 ≥ Ψ1 Ψ ≥ Ψ1

Γ,Ψ, q ` while e do s : Ψ1
WHILE

Γ,Ψ, q ` skip : Ψ
SKIP

Γ,Ψ, q ` s1 : Ψ1 Γ,Ψ1, q ` s2 : Ψ2

Γ,Ψ, q ` s1; s2 : Ψ2
SEQ

Γ,Ψ ` e : τ1 τ1 v τ Γ[x 7→ ref(κ, τ)q1],Ψ, q ` s : Ψ1

Γ,Ψ, q ` ref x = e in s : Ψ1
REF

Γ,Ψ ` e1 : ref(κ, τ)q1 Γ,Ψ ` e2 : τ1 τ1 v τ
q t q1 v qual(τ) qual(τ) = l⇒ Ψ(κ) ≥ 1

Γ,Ψ, q ` e1 := e2 : Ψ
WRITE

Γ,Ψ1, q ` s : Ψ2

Γ,Ψ, q ` spawn {s} : Ψ−Ψ1
SPAWN

Γ[x 7→ chan(γ,Ψ1)q1],Ψ, q ` s : Ψ2

Γ,Ψ, q ` chan x in s : Ψ2
NEWC

Γ,Ψ ` e : chan(γ,Ψ1)l

Γ,Ψ, l ` send e : Ψ−Ψ1
SEND

Γ,Ψ ` e : chan(γ,Ψ1)l 0 < Ψ1 ⇒ Ψ(γ) ≥ 1

Γ,Ψ, l ` wait e : Ψ + Ψ1
RECV

Figure 4. The type checking rules for statements.

the security level of the branch/loop condition to account
for the implicit information flow. Note that these rules
make sure that capabilities are “conserved” through the se-
quential flow of computation, that is, the post-capability
may not exceed their pre-capability. At SPAWN, the par-
ent thread gives a part of its capability (Ψ1) to the newly
created thread, and so Ψ − Ψ1 amount of capability is left
for the continuation of the parent thread.

REF, READ, and WRITE type location accesses. REF
is self-explanatory. At WRITE, the hypothesis q t q1 v
qual(τ) ensures that the context security level (i.e., q) is
below that of the location (i.e., qual(τ)). This is needed to
disallow implicit information flow such as

if !`h then `l := 0 else `l := 1

where `h is a high security location and `l is a low security
location. Also, the security level of the reference (i.e., q1)

must be below qual(τ). This is needed because locations
are first class, and disallows programs like the one below.

ref x = `l1 in

if !`h then x := `l2 else skip;
`l1 := 1;

where `h is a high security location and `l1, `l2 are low
security locations. As remarked before, the hypothesis
qual(τ) = ` ⇒ Ψ(κ) ≥ 1 asserts that to write to a low
security location, the thread must own the full (i.e., 1) capa-
bility to access it. Note that WRITE allows writing a low
security level value to an h-level location. In such a case,
no capability constraints are imposed.

As remarked before READ’s hypothesis qual(τ) = l ⇒
Ψ(κ) > 0 ensures that only a thread holding a non-zero
capability may read a low security value from the location.
Also, READ ensures q1 v qual(τ). As in WRITE, this is

Γ,Ψ ` e : chan(γ,Ψ1)q1

0 < Ψ1 ⇒ q = q1 = l

Γ,Ψ, q ` send e,Ψ−Ψ1
SEND’

Γ,Ψ ` e : chan(γ,Ψ1)q1

0 < Ψ1 ⇒ (Ψ(γ) ≥ 1 ∧ q = q1 = l)

Γ,Ψ, q ` wait e : Ψ + Ψ1
RECV’

Figure 5. The relaxed rules for signal send
and receive.

needed because locations are first class and disallows pro-
grams like the one below.

ref x = `a in

if !`h then x := `b else skip;
`l := !!x

where `h is a high security location and `l is a low secu-
rity locations. (`a, `b are some arbitrary locations.) Note
that READ allows reading a high security value from an l-
level location. In such a case, no capability constraints are
imposed.

NEWC, SEND, and RECV handle signals. NEWC
checks channel allocation, and is self-explanatory. Note that
the post-capabilities in SEND and RECV reflect the capa-
bility passing remarked earlier, that is, the capability Ψ1 is
passed from the sender to the receiver.

At RECV, the hypothesis 0 < Ψ1 ⇒ Ψ(γ) ≥ 1 ensures
that if the passed capability is non-zero, then the thread
must have the full capability to access the channel. As re-
marked before, this is needed to ensure that the capability
passing happens deterministically. SEND and RECV re-
quire the context security level and the security level of the
channel to be at l. This disallows cases such as the one
below where `h is a high security location and `l is a low
security location.

chan c in
chan d in
spawn {wait c; `l := 0};
spawn {wait d; `l := 1};
if !`h then send c; else send d;

Note that this program would type check if the hypothesis
were missing because it would allow sending the capability
to access `l via both the channel c and d. The type system
remains sound if the rule is relaxed so that the security lev-
els need to be l only if the passed capability is non-zero,
as shown in Figure 5. Unfortunately, these rules induce
cyclic dependencies between capability constraints and se-

curity level constraints, and make type inference somewhat
more complex.

We now state the soundness of the type system.

Definition 3.1 (Well-typed Program) Let s be a program
with no free variables and L,H be its low security locations
and high security locations. We write ` (s, L,H) if there
exists Γ such that

(1) For all free location ` of s, Γ(`) = ref(κ, intq1)q2 for
some κ, q1, q2.

(2) For all ` ∈ H , Γ(`) = ref(κ, inth)q for some κ, q.

(3) There exists κ such that for all ` ∈ L, Γ(`) =
ref(κ, intl)q for some q.

(4) Γ,Ψ, q ` s : Ψ′ for some Ψ, q,Ψ′ such that Ψ(ρ) ≤ 1
for all ρ.

The condition (1) follows from the fact that initial stores
map locations to integers. The condition (2) ensures that
high security locations have high security level. The condi-
tion (3) ensures that low security locations share the same
abstract location, and have low security level. The condi-
tion (4) ensures that s can be typed with a pre-capability of
at most 1 for any abstract resource.

Theorem 3.2 (Soundness) If ` (s, L,H) then s is obser-
vationally deterministic w.r.t. (L,H).

The proof of the theorem appears in Appendix B.

3.1 Example

Consider the following program.

chan c in
spawn {
`a := 1;
wait c;
if !`h then `b := 1 else 0;
`2 := 1; send c};

`a := 0; `b := 0; `c := 0;
send c;wait c;
`l := !`c

The program is observationally deterministic
w.r.t. ({`l}, {`h}) as the content of `c at the last line
of the program must be 1 because the reads and writes are
synchronized properly via communication over the channel
c. Note that the contents of `a at the end of the program is
non-deterministic as it depends on the thread scheduling,
and the content of `b at the end of the program depends on
the value of the high security location.

The type system can type check this program. The
key is to give the channel c the type of the form

ref x = 0 in

ref i = 0 in

ref j = 0 in

chan c1 in

chan c2 in

chan d in
spawn {while !i < 10 do

(x := !i; i := !i+ 1;send c1;wait c2)};
spawn {while 1;do

(wait c1;wait d; `l := !x;send c2)};
spawn {while !j < 10 do (j := !j + 1;send d)};
spawn {while 1 do wait d}

Figure 6. Producer-consumer example.

chan(γ, 0 [κ 7→ 1])q where `c is given the type of the form
ref(κ, intl)l. This allows passing of the (full) capability to
access `c to the spawned thread after the write to `c by the
spawner thread, and back to the spawner thread after the
spawned thread is done with its write to `c. Thus, !`c at the
last line can be given a low security type, and the program
type checks.

4 Confluence and Observational Determin-
ism

Note that the example above is not confluent as updates
to `a cannot be “undone”, though the low security part of
the store (i.e., `l) is confluent. However, in general, ob-
servational determinism does not imply confluence even re-
stricted to the low security locations. We show that our type
system can actually check some of such “observationally
non-confluent” programs to be observationally determinis-
tic.

Let t1 →∗ t2 be 0 or more reduction steps from t1 to
t2. Formally, a state t is said to be confluent if t→∗ t1 and
t →∗ t2 imply that there exist states t′1, t

′
2 such that t1 →∗

t′1 and t1 →∗ t′2 and t′1 ≡ t′2 where ≡ is some suitable
equivalence relation. A program s is confluent if for all S
such that dom(S) is the set of free locations in s, (S, ∅, s)
is confluent. A reasonable choice for ≡ may be equality
up to renaming of variables/locations/channels and process
reordering. A more relaxed notion can be obtained by only
requiring such a relation on the stores, or some portion of
the stores.

Consider the simple producer-consumer program shown
in Figure 6. The program spawns four threads, the first
thread is the producer thread that writes 0, 1, . . . , 9 to x. The
second thread is the consumer thread that reads from x. Via
channels c1 and c2, the second thread (the consumer) syn-
chronizes with the first thread (the producer) to read (some

prefix of) 0, 1, . . . 9. The consumer thread also waits on sig-
nals sent via d, which are sent by the third thread. Finally,
the fourth thread also receives signals via d.

The program is observationally deterministic
w.r.t. ({`l}, ∅). Note that because there are no high
security locations, the only source of information leak is
through non-determinism due to the thread scheduling.
The program is observationally deterministic because the
updates to `l is some prefix of 0, 1, . . . , 9 regardless of
the thread scheduling. Our type system is able to type
check this program by assigning the location `l the type
ref(κ, int)l, channels c1, c2 the type chan(γ, 0 [κ 7→ 1])l for
some γ, and channel d the type chan(γ′, 0)q for some q, γ′.

This program is not confluent even restricted to the low
security location `l. To see this, consider a series of reduc-
tions in which the loop in the fourth thread waits on d until
after the consumer thread writes to `l ten times. In this se-
ries, the updates to `l are exactly 0, 1, . . . , 9. Now, consider
another series of execution where the fourth thread receives
a signal from d at least once before the consumer thread
writes to `l ten times. Then, the sequence of updates to `l is
some strict prefix of 0, 1, . . . , 9. It is impossible for the two
series to reduce to states that have the same value for `l, in
particular, the latter series cannot reach the 10th update.

In general, even when restricted to differences in low
security locations, it would be difficult to guarantee con-
fluence because it would mean that any potential operation
preceding an update to a low security location must be de-
terministically blocking or non-blocking. In particular, this
implies that termination/non-termination of the preceding
loops must be deterministic.

5 Type Inference

We give a polynomial time type inference algorithm
(more precisely, a typability algorithm). That is, given
(s, L,H), the algorithm decides whether ` (s, L,H). We
informally describe the algorithm. The algorithm is sep-
arated in three phases. The first phase is a security flow
analysis phase that decorates the derivation tree with secu-
rity levels. We make the first phase find the greatest se-
curity level assignments (i.e., preferring h over l wherever
possible). If no solution can be found in this phase (e.g.,
trying to find q such that h v q and q v l), the algorithm
rejects the program as untypable. The first phase ignores
capability constraints. The second phase finds capability
assignments for channels, which involves resolving the con-
straints 0 < Ψ1 ⇒ Ψ(γ) ≥ 1 from RECV, i.e., determines
when Ψ2(γ) < 1 so that it must be the case that Ψ = 0 .
Finally, the third phase uses the information obtained from
the first two phases to find capability assignments for lo-
cations. The third phase uses the inferred security levels to
determine which Ψ(ρ) > 0 and Ψ(ρ) ≥ 1 constraints to dis-

∆, ϕ ` x : ∆(x); ∅
α, r fresh

∆, ϕ ` n : αr; {α = int} ∆, ϕ ` ` : ∆(`); ∅

∆, ϕ1 ` e1 : αr1
1 ;C1 ∆, ϕ2 ` e2 : αr2

2 ;C2 r fresh
∆, ϕ1 ` e1 op e2 : αr

2;C1 ∪ C2 ∪ {α1 = α2 = int, r1 v r, r2 v r, ϕ1 = ϕ2}

∆, ϕ ` e : αr;C α1, r1, r2, % fresh
∆, ϕ ` !e : αr1

1 ;C ∪ {α = ref(%, αr2
1), r v r1, r2 v r1, (r1 = l⇒ ϕ(%) > 0)}

∆, ϕ ` e : αr1
1 ;C1 ∆, ϕ1, r ` s : ϕ2;C2 %, r2, r3 fresh

∆, ϕ, r ` ref x = e in s : ϕ2;C1 ∪ C2 ∪ {ref(%, αr3
1)r2 = ∆(x), r1 v r3, ϕ = ϕ1}

∆, ϕ ` e : αr1 ;C r, ζ, ϕ1, ϕ2 fresh
∆, ϕ, r ` wait e : ϕ2;C ∪ {α = chan(ζ, ϕ1), r = r1 = l, ϕ2 = ϕ+ ϕ1, (0 < ϕ1 ⇒ ϕ(ζ) ≥ 1)}

Figure 7. Representative type inference rules.

charge (i.e., the hypothesis qual(τ) = l ⇒ . . . at WRITE
and READ). The second and the third phase finds the ca-
pability assignments by reducing the capability constraint
satisfaction problem to linear programming instances.

5.1 Phase 1

The first phase is mostly a standard unification-based
type inference, generating security level constraints and ca-
pability constraints on the side. Figure 7 shows a few
representative constraint generation rules (corresponding to
the type rules VAR, INT, LOC, OP, READ, REF, and
RECV). Here, r’s are security level variables, ϕ’s are ca-
pability mapping variables, α’s are type variables (actually,
types with the outer-most security level stripped), %’s are ab-
stract location variables, and ζ’s are abstract channel vari-
ables. Each rule is a straightforward syntax-directed con-
straint generation rule for a rule from Figure 3 and Figure 4.

The judgement for expressions, ∆, ϕ ` e : αr;C, is
read “given environment ∆, e is inferred to have the type
αr and the pre-capability ϕ, with the set of constraints C.”
The judgement for statements is of the form ∆, ϕ1, r ` s :
ϕ2;C, and is read “under given environment ∆, s is in-
ferred to have the pre-capability ϕ1, the post-capability ϕ2,
and the context security level r, with the set of constraints
C.” For simplicity, we assume that let-bound variables are
distinct. We initialize ∆ to map each variable and location
to a fresh type variable qualified by a fresh security level
variable (i.e., αr’s where each α and r are distinct). Then,
we visit each expression in a bottom up manner to build
the set of constraints, applying a syntax-directed constraint
generation rule at each AST node.

Analyzing a program s, we get ∆, ϕs, r ` s : ϕ′s;C. We
use the generated constraintsC and the pre-capability of the
whole program, ϕs, in the rest of the algorithm.

We add toC the following constraints to enforce the con-
ditions (1), (2), and (3) from Definition 3.1.

• For each ` free in the program s, the constraint ∆(`) =
ref(%, intr1)r2 where %, r1, r2 are fresh.

• For each ` ∈ H , the constraint ∆(`) = ref(%, inth)r

where %, r are fresh.

• Let % be a fresh abstract location variable, then, for
each ` ∈ L, the constraint ∆(`) = ref(%, intl)r where
r is fresh.

The resulting set of constraints contains six kinds of con-
straints:

(a) Type unification constraints: σ1 = σ2.

(b) Abstract resource constraints: %1 = %2 and ζ1 = ζ2

(c) Security level constraints: o1 v o2

(d) Capability inequality constraints: φ1 ≥ φ2.

(e) Channel access constraints: 0 < ϕ1 ⇒ ϕ2(ζ) ≥ 1.

(f) Location access constraints: r = l ⇒ ϕ(%) ≥ 1 and
r = l⇒ ϕ(%) > 0.

where

σ ::= α | ref(%, αr) | chan(%, ϕ) | int
φ ::= ϕ | φ+ φ | φ− φ
o ::= r | l | h

Note that an equality constraint o1 = o2 can be expressed
by the constraints o1 v o2 and o2 v o1, and an equal-
ity constraint φ1 = φ2 can be expressed by the constraints
φ1 ≥ φ2 and φ2 ≥ φ1.

Input : C and ϕe computed by the first phase
Output : ZC

NonNeg := {ϕ ≥ 0 | ϕ appears in C}
CI := Capability inequality constraints in C
Consts := {1 ≥ ϕe} ∪ CI ∪NonNeg
Z := ∅
loop :

for each ζ /∈ Z do
if ¬LPSat(Consts ∪ CC (ζ) ∪ {cz (ζ) | ζ ∈ Z})

then Z := Z ∪ {ζ}
goto loop

ZC := {cz (ζ) | ζ ∈ Z}

Figure 8. The second phase of the type infer-
ence algorithm.

The first phase deals with the constraint kinds (a), (b),
and (c), and leaves the rest for the other two phases. Con-
straints of the kind (a) can be solved by the standard unifi-
cation algorithm, which may generate more constraints of
the kinds (b) and (c) (as types may contain security levels
and capability mappings). Constraints of the kind (b) can
also be resolved by the standard unification algorithm. The
unification may fail to find a solution to the constraints of
the kind (a), e.g., if the program uses an integer constant
as a channel. If so, the algorithm rejects the program as
untypable at this point.

After processing all constraints of the kind (a) and (b),
the algorithm tries to find the greatest solution for the con-
straints of the kind (c). By greatest, we mean the solution
that assigns h to the largest set of security level variables.
The reason for wanting the greatest solution is to prevent
discharging local access constraints (f) as much as possible
to reduce capability constraints solved in the third phase.
The greatest solution can be obtained by repeatedly select-
ing a constraint r v l from the constraint set, and substitut-
ing l for r until there are no more constraints of that kind.
The constraints are unsatisfiable if h v l appears in the con-
straints as a result, in which case, the program is rejected
as untypable. Otherwise, all unassigned security level vari-
ables are set to h, and phase 1 returns the resulting con-
straint set C with all the security level variables, type vari-
ables, and abstract location/channel variables substituted by
their computed assignments.

5.2 Phase 2

The second phase takes care of the channel access con-
straints, i.e., the constraints of the kind (e) and (d) (con-
straints (d) are also used in phase 3). We informally de-
scribe the process. Note that each channel access con-

straint, that is, 0 < ϕ1 ⇒ ϕ2(ζ) ≥ 1, can be restated
as ϕ2(ζ) < 1 ⇒ 0 ≥ ϕ1. For each ζ (that is, its equiva-
lence class obtained by the unification in phase 1), we look
for a capabilities assignment that minimizes discharging of
the right hand side of ϕ2(ζ) < 1 ⇒ 0 ≥ ϕ1. Note
that the constraint resolution in phase 1 guarantees that if
ϕ2(ζ) < 1 ⇒ 0 ≥ ϕ1 and ϕ′2(ζ) < 1 ⇒ 0 ≥ ϕ′1 are in
C, then ϕ1 = ϕ′1 (more precisely, it is implied by the chan-
nel inequality constraints of the kind (d)) because ϕ1, ϕ

′
1

are both denote the capabilities passed when communicat-
ing over a channel in ζ. Thus, it suffices to add a single
constraint 0 ≥ ϕ1 to discharge all constraints for ζ if their
left hand sides (in the original form) are found to be unsat-
isfiable.

We now describe the process more formally. For each ζ,
let CC(ζ) be the right hand side of set of all channel access
constraints for ζ, and cz(ζ) is negation of one of the left
hand sides. More precisely, CC(ζ) and cz(ζ) are defined
as follows.

CC(ζ) = {ϕ2 ≥ 1 | (0 < ϕ1 ⇒ ϕ2(ζ) ≥ 1) ∈ C}
cz(ζ) = 0 ≥ ϕ2 such that (0 < ϕ1 ⇒ ϕ2(ζ) ≥ 1) ∈ C

The algorithm maintains the set Z of ζ’s that are found to
have unsatisfiableCC(ζ), and tries to minimize Z. We start
withZ = ∅, and iterate over each ζ and try to satisfyCC(ζ)
along with the capability inequality constraints and the con-
straints {cz(ζ) | ζ ∈ Z}. If unsatisfied, we add ζ to Z, and
repeat the process all over. Eventually, the algorithm comes
to a fixed point where no more elements are added to Z.

Figure 8 shows the pseudo-code implementing phase 2.
The algorithm takes the set of constraints C computed by
phase 1 as the input. The algorithm instantiates each capa-
bility variable as a fresh linear programming variable so that
the procedure LPSat checks whether the given set of ratio-
nal linear inequality constraints is satisfiable. Such a pro-
cedure can be implemented by well-known linear program-
ming algorithms such as the simplex algorithm and interior
points methods. Recall that ϕe is the pre-capability of the
whole program. The constraint 1 ≥ ϕe enforces the condi-
tion (3) from Definition 3.1. The constraints NonNeg en-
forces the non-negativity of capabilities. The algorithm re-
turns ZC which contains the capability variables that must
be set to 0 .

5.3 Phase 3

The third phase completes the type inference by taking
care of the location access constraints (i.e., the constraints
of the kind (f)). Like phase 2, we use linear programming to
find satisfying assignments for the location access capabili-
ties. For each %, let LC(%) be the set of constraints consist-
ing of the right hand sides of the discharged location access
constraints for %. More precisely, LC(%) can be defined as

follows.
LC(%) = {ϕ ≥ 1 | (l = l⇒ ϕ(%) ≥ 1) ∈ C}

∪{ϕ > 0 | (l = l⇒ ϕ(%) > 0) ∈ C}
where C is the constraints computed by phase 1. Note that
phase 1 has computed assignments for all the security level
variables and so we know which location access constraints
to discharge at this point. As in phase 2, let

NonNeg := {ϕ ≥ 0 | ϕ appears in C}
CI = Capability inequality constraints in C

Then, we check whether LPSat(LC(%)∪NonNeg ∪ZC ∪
CI ∪ {1 ≥ ϕe}) where ZC was computed by phase 2. If
the constraints are satisfiable for all %, then the program is
found to be typable. Otherwise, the program is rejected as
untypable.

Handling Strict Inequalities Note that the constraint
ϕ > 0 is strict, which is often not (directly) supported by
linear programming algorithms. To this end, we add a fresh
linear programming variable ε and replace each ϕ > 0 with
ϕ ≥ ε, and set the objective function to be ε. We ask the
linear programming algorithm to find a solution that max-
imizes ε. If the solver returns a solution such that ε > 0,
then we have found a satisfying assignment. Otherwise, the
constraint set is rejected as unsatisfiable.

5.4 Computational Complexity

We discuss the computational complexity of the type
inference algorithm. The size of linear programming in-
stances solved in phase 2 and phase 3 is linear in the size of
the capability constraints generated by phase 1. The num-
ber of linear programming instances solved in phase 2 is at
most quadratic to the number of distinct equivalence classes
ζ from phase 1, and the number of linear programming in-
stances solved in phase 3 is at equal to the number of distinct
equivalence classes % from phase 1. The linear program-
ming instances from phase 1 and phase 2 can be solved in
polynomial time by linear programming algorithms such as
interior points methods. Hence, both phase 1 and phase 2
can be solved in time polynomial in the size of the con-
straints generated by phase 1.

Finally, phase 1 can resolve the type and security levels
constraints in time polynomial in the size of the program,
and therefore, the size of the constraints passed to phase
2 and 3 is at most polynomial in the size of the program.
Hence, the total running time is polynomial in the size of
the program.

6 Related Work

Most type systems (e.g., [5, 9, 7]) for non-interference in
concurrent programs are designed to check a security notion

weaker than or incomparable to observational determinism,
such as possibilistic security. As such, they are unsuitable
for enforcing observational determinism.

Zdancewic and Myers [14] propose to verify observa-
tional determinism by applying security flow analysis and
determinism checking (in fact, confluence) separately. In
contrast, our type system utilizes information obtained from
the security flow analysis to check determinism only for
the parts of the program that are inferred to require de-
terminism. Among other things, this scheme allows the
type system to verify some non-confluent observationally-
deterministic programs.

Huisman et al. [6] propose to check observational de-
terminism via self composition [4, 1]. Because they use
a different definition of observational determinism (see Ap-
pendix A), their self composition does not reduce to a safety
problem. It is easy to reduce observational determinism de-
fined in this paper to a safety problem via self composition.
Combining security type systems with self composition has
been investigated for sequential programs [12, 8]. We leave
for future work to investigate if they can be combined for
checking observational determinism.

The use of fractional capabilities for checking determin-
ism is inspired by Terauchi and Aiken’s type system for
checking determinism of concurrent programs [13], which
was in turn inspired by static capability systems for reason-
ing about program resources [2, 3]. However, their type
system enforces confluence and demands determinism over
the entire program, whereas the type system in this paper
only checks determinism for some parts of the program.

7 Conclusions

We have presented a type system for verifying obser-
vational determinism. The type system enforces observa-
tional determinism by itself, and does not require the type
checked program to be confluent. The type system com-
bines a flow-based analysis for non-interference with a frac-
tional capability-based determinism checker so that only the
parts that are inferred to be relevant for security are checked
for determinism. We have also presented a polynomial time
type inference algorithm that utilizes linear programming.

References

[1] G. Barthe, P. D’Argenio, and T. Rezk. Secure in-
formation flow by self-composition. In 17th IEEE
Computer Security Foundations Workshop, (CSFW-17
2004), pages 100–114, Pacific Grove, CA, June 2004.
IEEE Computer Society.

[2] J. Boyland. Checking interference with fractional per-
missions. In Static Analysis, Tenth International Sym-
posium, pages 55–72, San Diego, CA, June 2003.

[3] K. Crary, D. Walker, and G. Morrisett. Typed memory
management in a calculus of capabilities. In Proceed-
ings of the 26th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 262–275, San Antonio, Texas, Jan. 1999.

[4] A. Darvas, R. Hähnle, and D. Sands. A theorem prov-
ing approach to analysis of secure information flow. In
R. Gorrieri, editor, Workshop on Issues in the Theory
of Security, WITS. IFIP WG 1.7, ACM SIGPLAN and
GI FoMSESS, 2003.

[5] K. Honda and N. Yoshida. A uniform type structure
for secure information flow. In Proceedings of the 29th
Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 81–92, Port-
land, Oregon, Jan. 2002.

[6] M. Huisman, P. Worah, and K. Sunesen. A tempo-
ral logic characterisation of observational determin-
ism. In 19th IEEE Computer Security Foundations
Workshop, (CSFW-19 2006), pages 3–, Venice, Italy,
July 2006. IEEE Computer Society.

[7] N. Kobayashi. Type-based information flow analysis
for the pi-calculus. Acta Informatica, 42(4-5):291–
347, 2005.

[8] D. A. Naumann. From coupling relations to mated
invariants for checking information flow. In Com-
puter Security - ESORICS 2006, 11th European Sym-
posium on Research in Computer Security, Proceed-
ings, pages 279–296, Hamburg, Germany, Sept. 2006.

[9] F. Pottier. A simple view of type-secure information
flow in the pi-calculus. In 15th IEEE Computer Se-
curity Foundations Workshop (CSFW-15 2002, pages
320–330.

[10] A. W. Roscoe. CSP and determinism in security mod-
elling. In SP’95: Proceedings of the 1995 IEEE
Symposium on Security and Privacy, pages 114–127,
Washington, DC, 1995. IEEE Computer Society.

[11] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J. Selected Areas in
Communications, 21(1):5–19, Jan. 2003.

[12] T. Terauchi and A. Aiken. Secure information flow
as a safety problem. In Static Analysis, Eleventh In-
ternational Symposium, pages 352–367, Verona, Italy,
August 2004.

[13] T. Terauchi and A. Aiken. A capability calculus
for concurrency and determinism. In Concurrency
Theory, 17th International Conference, volume 4137,
pages 218–232, Bonn, Germany, Aug. 2006.

[14] S. Zdancewic and A. C. Myers. Observational deter-
minism for concurrent program security. In 16th IEEE
Computer Security Foundations Workshop (CSFW-16
2003), pages 29–, Pacific Grove, CA, June 2003. IEEE
Computer Society.

A Definitions of Observational Determinism

The definition of observational determinism in this pa-
per differs from the ones given previously in the litera-
ture [14, 6]. Zdancewic and Myers’ original definition can
be obtained by weakening ours such that the traces only
need to agree on updates to individual locations in L in-
stead of L as a whole. More precisely, their notion can be
stated as follows. (Only the last sentence differs from Defi-
nition 2.1.)

Definition A.1 (Observational Determinism [14]) Let s
be a program with no free variables andK be the set of free
locations of s. Let L ⊆ K be low security locations and
H ⊆ K be high security locations. Let H̄ = K \ H . We
say that s is observationally deterministic w.r.t. (L,H) if for
any T, T ′ such that s ⇓ T , s ⇓ T ′, and T (1)|H̄ = T ′(1)|H̄ ,
we have T |{`} ≺ T ′|{`} or T ′|{`} ≺ T |{`} for all ` ∈ L.

Huisman et al. [6] noted an issue with this definition,
citing the following program as an example that leaks infor-
mation while being observationally deterministic.

`l1 := 0; `l2 := 0;
while !`h > 0 do (`l1 := !`l1 + 1; `h := `h − 1);
`l2 := 1

Here, `h is a high security location, and `l1, `l2 are low se-
curity locations. The program satisfies Definition A.1 as a
sequence of updates to `l1 is always a prefix of 0, 1, 2, . . . ,
and a sequence of updates to `l2 is always a prefix of 0, 1.
But the attacker can learn about the content of `h by check-
ing the value written to `l1 just before 1 is written to `l2

Our definition of observational determinism is strong
enough to reject this program. For instance, with the ini-
tial content of `h set to 1, the sequence of updates to the
low security locations is

`l1 ← 0, `l2 ← 0, `l1 ← 1, `l2 ← 1

but with the initial content of `h set to 2, the sequence of
updates to the low security locations is

`l1 ← 0, `l2 ← 0, `l1 ← 1, `l1 ← 2, `l2 ← 1

Huisman et al. [6] proposed yet another definition of
observational determinism as a remedy for the above is-
sue. Essentially their definition still enforces observational
determinism only per location basis, but requires that the
traces to eventually be able to perform all the updates to
a low security location made by the other traces. To for-
mally state their definition, we need to introduce infinite
traces. For a state t, we write t ⇓∞ U where U is a in-
finite sequence of states such that either U(1) = t and
U(i)→ U(i+ 1) for all i ≥ 1, or there exists n ≥ 1 where
U(1) = t, U(i) → U(i+ 1) for all 1 ≤ i < n, there exists
no state t′ such that U(n)→ t′, and U(i) = U(i+1) for all
i ≥ n. We write s ⇓∞ U if (S, ∅, s) ⇓∞ U where dom(S)
is the set of free locations in e. We extend restriction oper-
ation (|K) and stutter equivalence (∼) to infinite strings in a
straightforward way. Then, their definition of observational
determinism can be stated as follows.

Definition A.2 (Observational Determinism [6]) Let s be
a program with no free variables and K be the set of free
locations of s. Let L ⊆ K be low security locations and
H ⊆ K be high security locations. Let H̄ = K \ H . We
say that s is observationally deterministic w.r.t. (L,H) if
for any U,U ′ such that s ⇓∞ U , s ⇓∞ U ′, and U(1)|H̄ =
U ′(1)|H̄ , we have U |{`} ∼ U ′|{`} for all ` ∈ L.

There are two issues with this definition. One is that it
still allows information leak as seen in the program below.

if !`h then `l1 := 1; `l2 := 1 else `l2 := 1; `l1 := 1

Here, `h is a high security location and `l1, `l2 are low secu-
rity locations. The program is observationally determinis-
tic according to their definition (and not according to ours).
But, the attacker can learn information about the content of
`h by observing if `l1 is updated before `l2.

The second issue is that checking observational deter-
minism according to their definition requires the static anal-
ysis to be able to answer a liveness2 question of the form
“eventually, the traces agree on each other, forever.” For
this reason, the self composition reduction in their paper [6]
is not a safety problem. It also seems difficult to enforce
such a requirement via type-based methods without being
overly conservative.

B Proof of Soundness

We give a rough outline of the proof. The idea is to de-
fine an instrumented semantics that records updates to the
low security locations. Then, confluence with this seman-
tics implies determinism restricted to updates to the low se-
curity locations. Unfortunately, our type system does not

2Definitionally, it is not a liveness property as it is not a property about
a single trace.

guarantee confluence, and we also have to take in account
of high security locations. To this end, we define an era-
sure operation that erases all portions of the program that
are typable in a high security program context or has a high
security level type. In addition to recording updates for each
abstract location, we let the reduction rules for erased states
ignore updates to h-level locations and the number of pend-
ing signals for non-capability passing channels. It is shown
that the erased semantics is confluent, and simulates the low
security updates of the original. Then, observational deter-
minism follows from these facts.

The individual techniques used in the proof are not
new. Erasure technique is often used to prove correctness
of non-interference type systems (e.g., [7]), and fractional
capabilities-based confluence argument is from [13]. There-
fore, we only detail the part of the proof that shows how the
existing techniques are integrated.

First, we define the notion of a well-typed state. We ex-
tend the type rule to type run-time states by extending Γ to
map constant channels to types and introducing the follow-
ing rule.

Γ,Ψ ` c : Γ(c)

Let cap(chan(γ,Ψ)) = Ψ. We write Γ ` S if for each
` ∈ dom(S), Γ, 0 , l ` S(`) : τ, 0 where Γ(`) = ref(κ, τ)
for some κ. Recall that a program state p is a parallel com-
position of finitely many threads, that is, it is of the form
s1||s2|| . . . ||sn.

Definition B.1 (Well-typed State) Suppose

p = s1|| . . . ||sn

We write Γ ` (S,B, p) if there exist Ψ1, . . . ,Ψn such that

(1) For all ` ∈ H , Γ(`) = ref(κ, inth)q for some κ, q.

(2) There exists κ such that for all ` ∈ L, Γ(`) =
ref(κ, intl)q for some q.

(3) For each si, Γ,Ψi, q ` si : Ψ′ for some Ψ, q,Ψ′.

(4) Γ ` S.

(5) Let

Ψ =
∑

c∈dom(B)

B(c)× cap(Γ(c)) +

n∑
i=1

Ψi

Then ∀ρ.1 ≥ Ψ(ρ).

In (5), a×Ψ = λρ.a×Ψ(ρ).

Lemma B.2 Initial states of a well-typed program are well-
typed.

B.1 Marking

To prepare the source program for erasure, we define a
marking of the program which marks program parts to be
erased. Given a typable program , we mark each state-
ment with its context security level and each expression
with the security level of its type. We write mark(s) to
denote the mark of s and mark(e) to denote the mark of
e. That is, if Γ,Ψ ` e : τ is a subderivation for the pro-
gram, then mark(e) = qual(τ), and if Γ,Ψ1, q ` s : Ψ2 is
a subderivation of the type derivation for the program, then
mark(s) = q. Note that the type rules guarantee that if a
subexpression is marked h, then the expression is marked
h, and if a statement is marked h, then its substatements are
marked h.

To preserve marks across reductions, we introduce the
following derived type rule.

Γ,Ψ1, h ` s : Ψ2

Γ,Ψ1, l ` s : Ψ2

Above, we let mark(s) = h. Note that adding the rule does
not change the power of the type system as the rule can be
derived as a lemma. With the additional rule, the following
holds.

Lemma B.3 (Preservation) Suppose Γ1 ` (S1, B1, p1)
and (S1, B1, p1) → (S2, B2, p2). Then there exists Γ2 ⊇
Γ1 such that Γ2 ` (S2, B2, p2), preserving the marks. Also,
Γ2) Γ1 only if allocating a new location or a channel.

Proof: By case analysis on the reduction kind. The derived
rule is used to prove the cases for if and while. 2

Justified by the above lemma, in the remainder of the
proof, we usually carry typing along the reductions, e.g.,
Γ1 ` (S1, B1, p1) → Γ2 ` (S2, B2, p2), and assume that
the statements are marked according to the typing.

B.2 Erasure

Let loclev(ref(κ, τ)q) = qual(τ). We extend values for
erasure states with a special value > such that v � v′ iff
v = v′ or v′ = >. Given Γ ` (S,B, p), we define erasure
as follows. We type > by

Γ,Ψ ` > : τ

Definition B.4 (Erasure) Γ′ ` (S′, B′, p′) is an erasure of
Γ ` (S,B, p), written

Γ ` (S,B, p) � Γ′ ` (S′, B′, p′)

if the following holds.

• Γ′ ` (S′, B′, p′)

• p2 is p1 with the statements marked h replaced by
skip and expression marked h replaced by >.

• dom(S) ⊇ dom(S′) ⊇ L.

• For all ` ∈ dom(S′), S(`) � S′(`).

• For all ` ∈ dom(S′) such that loclev(Γ′(`)) = l,
S′(`) 6= >.

• dom(B) ⊇ dom(B′)

• For all c ∈ dom(B′), B(c) � B′(c).

• For all c ∈ dom(B′) such that cap(Γ′(c)) 6= ∅,
B′(c) 6= >.

Note that > may appear as a counter in the buffer. Essen-
tially, an erasure state agrees on l-marked parts of the pro-
gram, l-level locations with the original, and the buffers for
channels with non-0 capability.

We also define the semantics for erasure states to be
equivalent to the original except that writes to a h-level loca-
tion writes >, and receives from a 0 -channel never blocks,
and branch on > is arbitrary (it does not matter as both
branch bodies are guaranteed to be skip). A write to >
is a no-op. More formally, we use the following modified
rules.

(S, e1) ; ` loclev(Γ(`)) = h

Γ ` (S,B,E[e1 := e2])
→ Γ ` (S,B, S[` 7→ >], E[skip])

(S, e) ; c cap(Γ(c)) = 0

Γ ` (S,B,E[wait c])
→ Γ ` (S,B[c 7→ >], E[skip])

Γ ` (S,B,E[if > then skip else skip])
→ Γ ` (S1, B1, E[skip])

Γ ` (S,B,E[> := e2])
→ Γ ` (S,B, S,E[skip])

Γ ` on the reduced state is justified by preservation lemma
essentially equivalent to Lemma B.3.

Note that all expressions whose type is h are erased.
Then, the following follows from the type rule READ.

Lemma B.5 Erasure semantics never reads a h-level loca-
tion (which includes high security locations H).

We can construct an erasure from the initial state.

Lemma B.6 Let Γ ` (S, ∅, s) be an initial state of the pro-
gram. Then there exists an erasure Γ′ ` (S′, ∅, s′) of that
state. In particular, it suffices to let Γ′ = Γ and S′ = S.

B.3 Simulation

Erasure semantics simulates the original up to l-level lo-
cations. More formally,

Lemma B.7 Suppose

Γ1 ` (S1, B1, p1) � Γ′1 ` (S′1, B
′
1, p
′
1)

Γ1 ` (S1, B1, p) → Γ2 ` (S2, B2, p2)

Then, either

• Γ2 ` (S2, B2, p2) � Γ′1 ` (S′1, B
′
1, p
′
1), or

• There exists Γ′2 ` (S′2, B
′
2, p
′
2) such that

Γ′1 ` (S′1, B
′
1, p
′
1)→ Γ′2 ` (S′2, B

′
2, p
′
2)

Γ2 ` (S2, B2, p2) � Γ′2 ` (S′2, B
′
2, p
′
2)

Proof: By case analysis on the reduction kind. The key ob-
servation is that non-erased parts of the program are equiv-
alent in the both sides of �. 2

From Definition B.4 and the lemma above, it is imme-
diate that the erasure semantics simulates the updates to l-
level locations by the original. More formally,

Lemma B.8 Suppose Γ ` (S,B, p) � Γ′ ` (S′, B′, p′).
Let K = {` ∈ dom(S′) | loclev(Γ′(`)) = l}. Then, Γ `
(S,B, p) ⇓ T implies that there exists T ′ such that Γ′ `
(S′, B′, p′) ⇓ T ′ and T |K ∼ T ′|K . In particular, T |L ∼
T ′|L

B.4 Instrumented Semantics

We now instrument the semantics for erased states so
that updates to locations are recorded per abstract loca-
tion basis. Let absloc(ref(κ, τ)q) = κ. A state is now
Γ ` (S,B, p);R where R is a mapping from abstract lo-
cations such that R(κ) contains list of updates for `’s such
that absloc(Γ(`)) = κ. We extend the transition rules in a
straightforward manner to record the updates.

B.5 Determinism

Let the states to be equivalent up to process reordering
and renaming of locations, channels, and variables. The
erased states (with the instrumentation) are confluent.

Lemma B.9 Suppose Γ ` (S,B, p);R is a erased state.
Then for all t1, t2 such that Γ ` (S,B, p);R →∗ t1 and
Γ ` (S,B, p);R →∗ t2, there exists a state t3 such that
t1 →∗ t3 and t2 →∗ t3.

The proof is much like the confluence theorem from [13].
The key observation is that capabilities guarantee that there
can be at most one thread that can write to an l-level lo-
cation, and that there can be at most one thread that can
be blocked on a channel (recall that 0 channels are non-
blocking in the erasure semantics). Thus any possible com-
bination of reductions at a state commutes.

Because all the updates are recorded, the above lemma
implies that updates to locations are deterministic as records
cannot be “undone.”

Lemma B.10 Suppose Γ ` (S,B, p) is an erased state. Let
K(κ) = {` | absloc(Γ(`)) = κ}. Then Γ ` (S,B, p) ⇓ T
and Γ ` (S,B, p) ⇓ T ′ imply T |K(κ) ∼ T ′|K(κ). In
particular, T |L ∼ T ′|L

The formal proof is much like that for confluence implying
per-thread determinism from [13].

Finally, the soundness theorem follows from Lem-
mas B.2, B.5, B.6 B.8, and B.10, that is, it follows from
the fact that updates to low security locations L in the origi-
nal semantics are simulated (i.e., over-approximated) by the
erasure semantics (B.6,B.8), and that the erasure semantics
is observationally deterministic (Lemmas B.5,B.10).

