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Abstract

Motivated by recent research in abstract model checking, we

present a new approach to inferring dependent types. Unidey
of the existing approaches, our approach does not rely argmo
mers to supply the candidate (or the correct) types for therséve
functions and instead does counterexample-guided refimetoe
automatically generate the set of candidate dependens.tjje
main idea is to extend the classical fixed-point type infeeerou-
tine to return a counterexample if the program is found uaitye
with the current set of candidate types. Then, an interjpgahe-
orem prover is used to validate the counterexample as ayeal t
error or generate additional candidate dependent typeduterthe
spurious counterexample. The process is repeated uhtgireitreal
type error is found or sufficient candidates are generatqudee
the program typable. Our system makes non-trivial use ogdi”
intersection types in the refinement phase.

The paper presents the type inference system and repottg on t
experience with a prototype implementation that infersetelent

let rec mult x y =
if x <= 0 || y <= 0 then
0
else
x + mult x (y - 1)
in assert (100 <= mult 100 100)

Figure 1. The multiplication example.

logic formulas. For instance, suppose we want to check tesa$-
sertion never fails in the program shown in Figure 1. (Here use
the Ocaml syntax.)

One way to check the assertion is by givimglt the following
dependent typé.

T :int = y:int —
{u:int | (x >0Ay>0=u>zx)
ANy <0=u>0)}

types for a subset of the Ocaml language. The implementation The type says thatult takes integers andy, and returns an

infers dependent types containing predicates from the tiigan
free theory of linear arithmetic and equality with uninteted
function symbols.
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1. Introduction

This paper follows the work on applying dependent types &xkh
ing complex properties of programs that are beyond the reéich
conventional type systems like ML types. In this paperdepen-

dent typeswe mean refinement types [14] that embed first-order
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integer that is at least as large:a$ « > 0 andy > 0, and non-
negative ify < 0. (As usual,= binds weaker than other logical
operators, ang» associates to the right.) Indeed, the type is a valid
type formult and is sufficient to prove that the assertion does not
fail. Note that the type is neither the strongest (i.e., thstprecise)
type nor the weakest necessary type that can be assigmed to

to prove the assertion. The strongest typerfiart would be

z:int — y:int —
{u:int | (x >0Ay>0=>u=x Xxy)
ANz <0Vy<0=u=0)}

which contains non-linear arithmetic, as expected.

This paper presents a method for inferring sufficiently ragro
dependent types to check the given properties of a program. O
approach avoids computing the strongest or the weakessserge
type, and instead returns some type that is sufficient toeptbe
property when terminating with success.

Many existing dependent type systems (e.qg., [4, 10, 40))ireq
the programmer to annotate recursive functions fika@t with
the correct types. Other systems [14, 34] require the dorofin
candidate types to be pre-defined and form a finite-heigtitéat
so that the type checking can be implemented as a fixed-point
algorithm that infers the strongest types in a bottom-upmean

We propose a different approach to checking and inferring de
pendent types that does not require a pre-defined set ofctanre
candidate dependent types. Our approach is inspired bgrasim
counterexample guided abstraction refinement (CEGAR) fateh
checking [3, 9, 16, 28]. The core of our system is a CEGAR loop
that iteratively refines the lattice of candidate depentges until
either the program is found to be actually untypable or thigck

1The type syntax is borrowed from Augustsson [1] (also usefdn 22,
23, 34, 37)).



dU{FZ=e}|0
x|c|F|letx=eiines | ex

e =
| if r thene; else ey | asserte

Figure 2. The syntax of the simple functional language.

becomes refined enough to type check the program. We stéut wit
a coarse lattice containing few candidates and graduatiyhygubs
that are sufficient to refute the spurious counterexampiesien-
tered during the CEGAR iteration.

A counterexample in our system is an “unwound” slice of the
program that is untypable with the current candidates. Efiaa-
ment phase decides whether the slice can be typed if the &ypes
not confined to the candidates, and if so, generates newdzadi
from the inferred typing (if not, then the program is reallyty+
pable). For this, we employ recent techniques from both syze
tems and model checking researtihear intersection typeq21]
andinterpolation[27]. We use linear intersection type inference to
infer a type derivation “shape” that is sufficient for typitige coun-
terexample, and we use an interpolating theorem proveritkigu
compute good candidate types from the type derivation (itiqua
lar, without explicit quantifier elimination).

The rest of the paper is organized as follows. Section 24ntro
duces the language and the dependent type system. The nmain co
tribution of the paper is the CEGAR-inspired type infereggstem
described in Sections 3, 4, 5, and 6. While the paper mostlysies
on the assertion checking application for simplicity, ie&sy to ex-
tend the system to more general program specification ahgeld
discussed in Section 7. Section 8 describes the prototypé&eim
mentation for a subset of the Ocaml language, Section 9 s8ssu
related work, and Section 10 concludes. The proofs of ther&ey
sults appear in Appendix C.

2. Preliminaries

We focus on a small functional language shown in Figure 2. We
briefly describe the syntax. program d, is a finite set of function
definitions,FF @ = e, which defines a function namefd with the
formal parameters? and the bodye. The notation@ denotes a
possibly empty sequence. We often use letigs, v, z, u., etc. to
range over program variables and first-order logic varsbéad
lettersF', G, H, F;, etc. to range over function names. Functions
can be mutually recursive in that the body of a function mdgrre
to other functions, including itself. We assume that eactction
is closed (except for the free function names). We also asshat
every function name is unique and that there is a functionetam
main that takes no arguments. Note that nested function defisitio
can be supported via lambda lifting [19].

An expressiong, is a variable, a constant a function name, a
let expressionet x = e; ines, a (constant or function) application
ex, a conditional branchif = then e; else e, Or an assertion

E:=letz=Fine|FEe|vE

Figure 3. The non-CPS evaluation contexts.

Fd=ececd |7|=|7|

Fo seelv/z]  OFF
arity(c) = |0
FEAT s P O
letz=vine —q4e[v/z] LET
if true then e elsees —4e1 IF1
if false then ej else ex —4e2 IF2
Elassert true] —4 E[0] AS1
Elassert false] —4 fail AS2

Figure 4. The semantics of the simple functional language.

tion context (i.e., not in a non-CPS evaluation cont&xhown in
Figure 3). CPS is only enforced on user-defined functiondab t
constant operations need not be CPS.

The CPS restriction is imposed only to simplify the expositi
Non-CPS expressions may be supported indirectly via CP&con
sion or directly by extending the type system with conditildypes
and union (i.e., disjunctive) typés.

The rest of the syntax is straightforward. As usual, a functi
application associates to the left so thak; e2 = (ep e1) e2. We
write eo € for the series of applicationsy e1 ez ... e, Where
= e1,€e2,...,en. We writees; ez for let z = e; iney such that
x ¢ free(ez). Without loss of generality, we assume that bound
variables are distinct.

Note that, because of higher-order functions and partiglicap
tions, function calls are not syntactically obvious, and eyntactic
occurrence of a function name may end up being called from mul
tiple places.

We define the call-by-value semantics of the language as a
small-step reduction relation from states to statestaieis a run-
time expressiom that extends the source expressions with values
and a special failure state, defined as follows.

v

=c| F|vive
e =

- | v | fall
(We overload the symbelto range over run-time expressions when
it is clear from the context.) We restrict the applicatBrv (resp.

assert e. Constants include integer and boolean constants such asc @) to be a value only when it is partial, that is, only when ttigyar

0 and true, as well as integer and boolean operations such- as
and <. For simplicity, we restrict branch condition and function
arguments to just variablés.

We restrict the body of a function to continuation passirygest
(CPS) so that a function does not return. We also impose tt& CP
restriction to the body of a let expression (i€.in letx =eine’)
and those of a branch (i.e2; andez in if x then e; else e2)
so that they are also non-returning. As usual, non-retgrexpres-
sions (i.e., non-partial function applications, let exgsiens, and
conditional expressions) are restricted to occur only inrioua-

2The implementation lifts this restriction by online A-naatization [13].

of F (resp.c) is greater tharj7|. Note that a partial application
denotes a closure value.

Figure 3 defines the non-CPS evaluation contexts. Figure 4
shows the reduction rules. The reduction rules are mostygsit-
forward. INCST, the notatiorurity (c) denotes the arity of the con-
stant operatiore. Here,[c] is the relation denoting the semantics
of ¢, so that, for exampl§+] (i, j) = ¢ + j for all integersi andj.
AS1lreturns a dummy value, andAS2aborts the program with an
assertion failure. Note that, because of CRBP, LET, IF1, and
IF2 only occur at the top-level.

3The latter approach is taken in the implementation disclizs&ection 8.



6 which is a formula in some first-order theory. We sometimes
abbreviate{u: B | 6} simply asB when§ is a tautology (e.g.,
{u:int | T} = int). Intuitively, {u: B | 8} denotes the type of
some value, of the base type satisfying the formuld. The type
x:0 — 7 is adependent function typmonsisting of the argument
typeo and the return type. Intuitively, x:0 — 7 denotes the type
of a function (or a constant operation) that returns a vafuth®
typer[y/x] when applied to any argumegiof the typeo.

The type{z:B | 6} bindsz within 6. Likewise,z : ¢ — 7
bindsz in 7 (but not ing). We sometimes abbreviateo — 7 as
o — 7 whenzx does not occur free in. Types are equivalent up to
renaming of bound variables.

We use the symbat to distinguish types with possible top-level
intersections from those without (for which we usg Here, the
intersection operatox is associative, commutative, and idempotent
(ACI), so that, for exampler A 7 = 7. We sometimes writé\ , ;
or AT forthetyperi A7a A+ A7, suchthaf{r,..., 7} =T
is a non-empty set. Note that, because of ACI, aman be written
in such a form.

A For any intersection of type4, 7:, we enforce that each is of
pp the same simple-type shape. Formally, siraple-type shapef o
is the simple typeimple(o) defined inductively as follows:

T
o

* | {u:B |0} |zi0 > T
T|o1Ao2

Figure 5. The syntax of dependent types.

sty(x) is base
Di0Fz:{u:B|u=ux} a

sty(x) is not base
Lo\, 7;0F a7

VaF

Fun Cst

L F:N\, 1,0 F 1y ;0 c:ty(e)

I I';0bae:01 FQ;QFAe:UQI
ntl T'1AT2;0 A e:01 ANo2 nt2

I'Fe:r
Ii0kne: T

I'i;0bner:0 Da,zi0;0F e
TiAT2;0F letz=e;ines: %

Let

I';0Fe:yio—r To;0Fnxz:0 To0Fo <o
ATl 0Fex: 7[z/y]

Ti;0 Nz =truet e :x T2;0 Ax = false ez : x It

stmple(x:0 — 7) = simple(o) — simple(T
I't AT'2;0 F if x thenej elsees : x ( ) (o) (7)

simple({u:B | 0}) = B
stmple(*) = *
simple(A\{r,...}) = simple(7)

Then, we enforce that for any typg T',simple(r) = simple(’)

for all 7,7' € T. This does not reduce expressibility because the
type system is a refinement type system [14] of the simple type
system, and so only the types of the same simple-type shape ar

We define arun of a program to be a sequence of reductions Meaningful to intersect. Without loss of generality, we licifly
from the initial stateemai, wheremain () = emin € d. (Here, () assume that any dependent typassigned te in the dependent

denotes the empty argument sequence.) We writg; ¢’ for zero type system satisfiedmple (o) = sty(e).

or more reductions frora to ¢’. Figure 6 shows the type checking rules of the dependent type
We assume that a program is typable with the standard simple System. The judgements are of the fofmd I~ e : 7 where’

type systerfiso that it is guaranteed to not get stuck, for example, IS @ type environmenmapping variables and function names to

by trying to use an integer as a function. Therefore, a progrither types possibly containing top-level intersections (ices), and 6

runs forever safely (due to CPS, a program cannot returabarts is a formula. The formuld is used to accumulate the assumptions

with an assertion failure. We call a prograsafeif its run does not ~ ["0M nesting branch conditions. .
cause an assertion failure. We discuss each typing rul&/aB types base-type variables.

Note that the rule ignores the environment. Expressibiftyiot
reduced, however, because the assumption abauthe environ-
ment gets discharged at subtyping. The rule is borrowed fran
vious work [32, 34, 37].VaF types function-type variables by
looking up the environment and selecting a type from thersete
tion. Here, as usual}, z : o denotes the mapping U {z — o}
if z ¢ domT'), and is undefined otherwis®un is exactly like
VaF except that it is for function name€st types constants.
Here, ty(c) is some sourfddependent type for the constante.g.,
ty(+) = z:int — y:int — {w:int |u =z + y}).

Int1 andInt2 introduce intersection types. Hefé; A I's is
defined as follows.

50kne:o0 T;0F 0 < {u:bool | u = true}
;0 assert e: {u:int | u = 0}

Assert

Figure 6. The type checking rules.

DEFINITION 2.1 (Safety).A program d is said to be safe if
Enain 7+ fail wheremain () = epain € d.

Being simply-typable does not imply safety. In the follogirwe
present a dependent type system that guarantees the shfgty o
pable programs.

2.1 Dependent Type System

Our dependent type system is essentially the previousragdte?,
34, 37] extended with intersection types. The reason foinadd
intersection types is not just to increase expressibilitig; actually
crucial to the type inference system described later in #pep

Recall that a program is simply-typed. For each expression
the program, we writaty(e) to denote its simple type. A simple
type, s, is formally defined by the following grammar:

Iy ATz = {2+ Dy (z) AT2(z) | 2 € dom(I'y) N dom(T'2)}
U{z — I'1(z) | 2 € dom(T1) Az ¢ dom(T's)}
U{z — Da(z) | « ¢ dom(T1) Az € dom(I2)}

B := int|bool

We could have used a simpler set of rules that shares theoanvir
s u= x|B|s—=s

ments of the sub-judgements because intersections arénean-
(recall thatA is ACI), but this format makes the introduction of
the linearity restriction smoother later in Section 5.2té\that we
write -, to distinguish judgements that can introduce top-level in-
tersections.

Here, B is calledbase typeand the dummy type represents the
type of a CPS expression.

Figure 5 shows the syntax of dependent types. HereB | 6}
is arefinement base typhat refines the base tygeby the formula

4See Appendix A for the definition of the simple type system. 5See Appendix B for the definition of a sound constant type.



F;G}—*S*SUbC
u ¢ free([I]) ([LCPAO A1) = 62
SubB
;50 {u:B|60:} <{u:B|0:}
IOk oe <oy DIax:og0bF11 <7
2 < 01 2 1 2 GubF

IOk xior > 11 <xi02 = T2

Fi.(T;0 -1 <7)

Vi.(I; 00 < 15)
LoFEN,7 <7

F;Ql—ag/\in Subl2

Subl1l

Figure 7. The subtyping rules.

Let is self-explanatory. Note that the typing fer may intro-
duce top-level intersectionA pp types applications. Here [z /y]
is the usual capture-avoiding substitutidopp checks that the ac-
tual argument conforms to the formal argument type via the su
typing I'2;0 = ¢’ < o. Figure 7 shows the subtyping rules,
which are a straightforward extension of those of the previys-
tems [12, 34, 37] with intersection types.SmbB, [I'] is the first-
order logic formula denoting the assumptions about the-bgse
variables, and is formally defined as follows.

[TT = AM{A; Oilz/u] | T(z) = N{uw:B | 0:}}

Thelf rule types conditional expressions. Note that the assump-
tion about the branch condition (i.e:) is recorded in the environ-
ment. Finally,Assert checks the assertion via subtyping.

We say that a type islosedif it has no free variables. Let
A be a top-level type environment mapping function names to
types. We say that is a well-formed typefor F' if o is closed
and simple(c) = sty(F'). We say thatA is awell-formed top-
level type environmerit A(F') is well-formed for each. Unless
mentioned otherwise, we restrifitto range only over well-formed
top-level type environments in the rest of the paper.

Let us writeZ:¢ — 7 to abbreviate the function type

X1:01 —> " —> Tpn:On — T

wherez:é = z1:01,...,Tn:0n. We define the notion of a well-

typed program.

DEFINITION 2.2 (Well-typed program)We write A + d if for
each functionF 7 = e € d, we haveA, 7:4; T F e :  for each
Ti :m%*lnA(F) :/\LTZ

We say that a progrard is well-typed (equivalently, typable) if
there existsA such thatA + d.

Assuming that the types of the constangc) are sound, the
type system ensures that a well-typed program does not eause
assertion failure.

THEOREM2.3 (Soundness)f A + d thend is safe.

The proof is analogous to that of the soundness result fategim
dependent type systems [12, 34, 37] and is omitted.

EXAMPLE 2.4. Letd consist of the following three functions. (We
elide A-normalization for readability.)

sumx y k =

ifz <Othenk yelsesum (z—1) (x +y) k
checkz =

assert (100 < z); check x
main () =

sum 100 0 check

Note thatsum is a function that, given integersandy, computes
Y + Xicqo,... .y ¢ and applies the continuatiok to the result.
Therefore,d runs safely forever ifl00 < Zie{o """ 100 & and

aborts with an assertion failure otherwise (i.e., it withriorever).
Assume that we are given the following constant types.

ty(<) = z:int — y:int — {u:bool |u =2z < y}
ty(—) = z:int — y:int — {u:int |u =z — y}
ty(+) = z:int — y:int — {w:int |u =z + y}
ty(i) = {u:int |u =14} wherei € {0,1,100}

We show that we can prové to be safe with our type system
assuming that the underlying theory supports booleansiaedrl
arithmetic.

Let A be the following typing environment.

A(main) = () —
A(check) = {u:int | u > 100} — %
A(sum) = AT

where

T =
{z:{u:int |u > 100} = y:{u:int | u > 0} —
({u:int | uw > 100} — *) — *,
z:int = y:int = ({uiint |u >y} — %) = * }

(Here,() — «is the special function type farmain having an empty
sequence of arguments. See Definition 2.2.)

It is a routine to check thaf + d. Note that the type ofum
does not say that it actually returns (i.e., calls the cauatiion with)
Y+ > icqo,....«) i but only that it returns some integer at least as
large as100 when called withz > 100 andy > 0, and some
integer at least as large asinconditionally, which is sufficient for

typing d.

3. Type Inference Overview

We now present our CEGAR-inspired procedure that checkeif t
given program is typable, and if so, return& such thatA + d.
The inference procedure is a semi-algorithm as it is notanteed
to terminate, but it is sound and complete in that it is guieah
to return some correct typing when terminating with suceess
reject the program as untypable only if it is actually untyea
(In practice, we make the procedure give up after some number
of iterations, returning “unknown.”)

The type inference maintains a lattice of candidate toptlev
type environments, and repeatedly executes the followirmyai-
gorithms, one after the other.

¢ The fixed-point type inferencalgorithm checks if there exist
a typing for the program within the current candidates via a
fixed-point iteration over the lattice of candidate topeletype
environments. The algorithm returns a counterexampleef th
program is found untypable with the current candidates. The
counterexample records the number of times the fixed-point
iteration was executed to reach the type error. Otherwise, t
program is found typable and the process exits by returiiag t
inferred typing. (Section 4)

Given a counterexample, thefinemenglgorithm unwinds the
recursive definitions the number of times recorded in thaeou
terexample, generating a non-recursive program slicen,the
algorithm decides the slice’s typability completely (j.eot re-
stricted to any candidates). If the slice is found untypathien

so is the original, and the process exits. Otherwise, therdep
dent types that are used to type the slice are added as the new
candidates to refine the lattice. This phase uses lineaséete

tion type inference and interpolation to infer types for thre
wound program slice. (Section 5)



The two components are both algorithms in that they are gteed
to terminate. The following sections describe the two congmds
in detail.

4. Fixed-point Type Inference

A candidate se® is a mapping from function symbols to a non-
empty finite set of dependent types with no top-level inteisas
such that for allr € ©(F'), 7 is closed andimple(r) = sty(F).

© induces the latticg\ © defined as follows.

NO ={A|VF.A(F) = AT whereT C ©(F)}
For Ai,A; € ANO, we orderA; < A, if for all F, we have

T1 O T> whereA(F) = ATy andAq(F) = A Ts. Itis easy to
see that\ © with < forms a lattice with the mappindF. A § as
the top element andF. A ©(F) as the bottom element. Note that
except for the ones containiny @, anyA € A © is a well-formed
top-level type environment.

We define the algorithninferNexzt that takesA € A © and re-
turns the strongest typindy’ € A © for d that can be typed withh
(d is an implicit parameter tdnferNext). More precisely, forA a
type environment (i.e., for al’, A(F') # A 0), InferNext(A) =
A’ such that for eacl’ 77 = e € d,

N(F)= Nzd > +€OF) | A78; T ke x}

If Ais not a type environment, then we takeferNext(A) = A.

InferNext(A) can be effectively computed assuming that we
can decide the typing judgemerifsé + e : 7. The main com-
plexity involved here is deciding the subtyping relat®abB (cf.
Figure 7), which can be done by the help from a theorem prover
supporting the underlying first order theory.

It is easy to see that if a fixed point dhferNext is a type
environment then it is a valid typing fat. That is,

THEOREM4.1. Suppose\ € A O is a type environment such that
InferNext(A) = A. Then, we have | d.

Moreover, itis easy to show thatferNezt is monotonic. Then, the
following theorem is immediate from the fact thAt® is a finite
(and therefore, a complete) lattice.

THEOREM4.2. The least fixed poinA of InferNext is a type
environment if and only if there exisfs' € A © such thatA’ +- d.

Therefore, to decide it is typable with the current can-
didate set, it suffices to compute the least fixed paint =
L;c., InferNext'(AF. A ©(F)) and check that\(F') # A @ for
all F'. If such A exists, we stop the CEGAR process and retf\rn
as the inferred typing fod.

Otherwise, we have\ = InferNext!(A\F. \ ©(F)) such that
A(F) = A\ 0 for someF at some iteration. In this case, we pass
the pair(F, i) as thecounterexampléo the refinement algorithm
described in Section 5.

ExAamMPLE 4.3. Letd consist of the following four functions.

Frxy=ifxthen FyxelseGuay
Gry=asserty;Fyx

Hzx=assertz;Hx

main () = if true then F true false else H false

Let the current candidate set Beshown below.
O(main) = {() — *}
O(F) = {bool — bool — x,
{u:bool | u = true} — {u:bool | u = false} — *}
0(G) =1
{u:bool | u = false} — {u:bool | u = true} — *}
O(H) = {{u:bool | L} — *}

6Here, A’s are allowed to range over non type environments.

Let A be the least element of the lattide®, that is,

A = {main — A O(main), F — A O(F),
G— ANO(G),H— \NO(H)}

Then, InferNext(Ao) = A1 where

Aj(main) = () — *

A1 (F) = {u:bool | u = true} — {u:bool | u = false} — *
A1 (G) = {u:bool | u = false} — {u:bool | u = true} — *
A1(H) = {u:bool | L} — *

A, is a type environment buh; # A,. Therefore, iterating one
more time, we getlnferNext(A1) = Az where Az(main)
Aj(main), A2(G) = A1(G), Az(H) = A1(H), but Ax(F)
A\ 0. Because\z (F) is not a type, we have reached the fixed point
and can returF, 2) as the counterexample.

5. Refinement

Recall that the goal of the refinement phase is to check if thiac
terexample is spurious by constructing a non-recursivgrara
fragment from the counterexample and checking if the fragrise
typable, not restricted to any candidate set. And if so, wiel iImew
candidates from the inferred typing, and otherwise, we egect
the program as untypable.
We separate the refinement phase into the following three sub

phases, executed in order.

¢ We take the counterexamplg, i) and unwind the recursive
definitions: times fromF' to produce a non-recursive program
fragment. (Section 5.1)

* We infer the type derivation shape that is sufficient for igpi
the unwound fragment via linear intersection type infeeenc
(Section 5.2)

e Given the linear derivation shape, we generate constreamts
sisting of first-order logic formulas and predicate varéhland
check if the constraints are satisfiable by using an intetpol
ing theorem prover. If not, then the unwound fragment is unty
pable, and we stop the CEGAR process declaring the program
untypable. Otherwise, from the typing inferred for the freemt,
we produce new candidate types that are sufficient to reffigte t
counterexample. (Sections 5.3 and 5.4)

Next, we describe the three sub-phases in detail.

5.1 Unwinding

The unwinding phase is the simplest phase of the refinement pr
cess. Given a counterexampli, ), we inline recursive definitions
i times fromF in d, leavingleaffunction name occurrences with no
definitions. The resulting program fragmedit, is then guaranteed
to be free of recursive definitions.

We demonstrate the process by unwinding the progidrom
Example 4.3. Recall that we are given the counterexartiple).
Then, unwinding produces the following program skite

Gixzy=asserty; Fayzx
Fory=if xthen FzyxelseGazy
Fixy=if rthen FhayrelseGixy

Here, F1, F5, F5, F4, G1, G2 are inlined function names created
fresh. Note thatfs, Fy, and G2 are leaf functions. We maintain
the mappinginames that maps the original function names of
d to the set of its inlined copies id’. In the above example,
Inames(F) = {F1, F», F3, Fi}, Inames(G) = {G1, G2}, and
Inames(H) = Inames(main) = (. Note that the unwinding only



contains functions that are involved in the counterexamntpiat is,
main andH (as well asF” andG beyond deptl2) are sliced out.

We discuss the key properties of unwinding. First, becalise
is simply typable,d’ is also simply typable, and we assume that
sty(e) is given for each expressianin d'. Let us extend the type
judgement- to leaf function name occurrences in the obvious way
by allowing any well-formed type for the function to be assg.
The following is immediate.

THEOREM5.1. SupposeA + d and d’ is an unwinding ofd.
Let A’ be a top-level type environment fdf such that for each
G € Inames(F), A'(G) = A(F). ThenA’ - d'.

Therefore, showing that’ is untypable is sufficient for showing
thatd is untypable.

As a contrapositive, we show that the current candidatesset i
insufficient for typingd’, using candidates for the originals for the
inlined functions.

THEOREM5.2. Let d’ be the unwinding ofl produced from the
counterexample passed from the fixed-point type inferehasep
using the candidate se. Let®’ be a candidate set fai’ such
that for eachG € Inames(F), ©'(G) = ©(F). Then, there exists
noA € A © such thatA - d'.

The above theorems justify us callifg, 7) a counterexample
That is, the unwinding’ produced fron(F, 7) is a counterexample
to the typability ofd under the current candidate set.

5.2 Linear Intersection Types

The goal of the rest of the refinement phase is to check if the un
winding d’ is typable, without confining the types of the functions
to any candidate set. An issue here is that the type systemvsall
unboundedly many intersections, and so we cannot naivelyede
a type inference algorithm from the type checking rules fi®ac-
tion 2.1. To overcome the issue, we use the observation tigt o
linear intersections are needed for typitdgand that the linear in-
tersection “shapes” can be inferred. The crucial propedfd’ that
enable this is that!’ does not contain recursive definitions and is
simply typable. Linearity is also important to the consitaiolving
phase of the refinement algorithm because it ensures thiditgyc
of the generated constraints (cf. Section 5.3).

Informally, in thelinear intersection dependent type systehy
for a non-base-type binding : o, the top-level intersections of
determine how the variableis used. For example, it is possible to
derive

I'y; TH if ythenzyelsexy : *
wherel's = y :bool, z:(bool — %) A (bool — %), but

I';; TH if ythenzyelsexy : %
g TH' if ythenzyelsexy: %

wherel'; = y :bool,z :bool — xandI's = y : bool,x :
(bool — %) A (bool — %) A (bool — x).

Essentially}-! is equivalent td- except that it disallows non-
linear use of function-type bindings. The linearity restion is only
imposed on function types; base types are used non-linearly

We formally define the type syste'. The syntax of linear
intersection types is equivalent to that lef(cf. Figure 5). But
now, A is neither associative, commutative, nor idempotent. We
also modify the typing rules so that the rules in Figure 8aeel
VaB, VaF, Fun, Cst and Let from Figure 6 andSubI1 and
Subl2 from Figure 7. The rest of the rules remain the same, just
replacing- with -, and-  with -} . We eliminate any intersection
of base types via the equivalende:B | 61} A {u:B |62} =

7The implementation performs additional optimizationst than further
reduce the size of the unwinding by slicing out more irreté\vzarts.

sty(x) is base isBaseEnv(I")
0 2: {u:B|u=2a}

VaB?

sty(x) is not base isBaseEnv(I)

e 0F o7

VaF!

isBaseEnv(I")

50k c:ty(e)
dorr(l‘% are all function names isBaseEnv(I")
FZ=eccd T, 76\X;Tr e:x
X = {x; € {2} \ free(e) | sty(z:) not base
I, I F:76 > x0F F:2:6 — *

Fisleaf isBaseEnv(I)
IFr0F For

Cst?! Fun1?!

Fun2?

;0 el:o To,z:0\ X;0 Fleg:x
X ={z | z ¢ free(e2) andsty(z) not basé

Iy /\FQ;G}—l let x=e71 ines : %

Let?!

Fl—lcngai F|—102§U§
I'H o1 Aog < o) Ao

SubI!

Figure 8. The key+' typing rules.

{u:B | 61 A 02}. As with -, we assume that any typeassigned
to an expression satisfiessimple(o) = sty(e).

We discuss the new ruledVaB* replacesVaB. Here, the
conditionisBaseEnv(I") says that all bindings ifi are base types,
that is,dom(I") does not contain function names and for &l
dom(I"), I'(z) is a base typeVaF* replacesVaF and requires that
the only function-type binding in the environmentais Similarly,
Cst! replacesCst and requires thalf contains no function-type
bindings.

Funl' and Fun2! replaceFun. Funl? types leaf function
names and is much lik&aF!. Fun2! types non-leaf function
names. (Note that judgements are implicitly parameterigethe
unwound fragment’.) Unlike Fun, it type checks the body of the
function in the sub-derivation. Note that this does not lea@n
infinite derivation tree becaus# does not contain recursive defi-
nitions. Here 74 \ X denotes the bindings:4 with the bindings
for X removed. We need this because linearity implies that a non-
base-type variable that are not useceicannot be bound in the
environmentLet® similarly takes care of unused non-base vari-
able bindings. FinallySubI* replacesSubI1 and SubI2 from
Figure 7. It just structurally applies subtyping insideeirsiections.

Note that any unwound program fragment has a unimquoe
function from where the unwinding started and whose nams doe
not occur free in the unwinding. We define the notion of limgar
typable programs.

DEFINITION 5.3 (Linearly typable programs).et d’ be an un-
wound program fragment witlf" as the root function. Then, we
write A ! d' if A ! F : 7 for somer. (Incidentally, it must be
the case that = A(F').)

The following theorem states that we can decid€ if typable
by deciding ifd’ is linearly typable.
THEOREMb5.4. Let d’ be an unwound program fragment. Then,
the following are equivalent.

(1) There existg\ such thatA ' d'.
(2) There exist&\ such thatA - d’.



We defer the proof to Appendix C.

Unlike I, H' is completely structural because the shape of a
derivation, including the number of intersections in thpey, is
determined by how variables occur i To infer the derivation
shape, we adopt thexpansion-variablkdased inference algorithm
of Kfoury and Wells [21], modified so that expansions are ot a
plied to base-type bindings. For space, we refer to theiepgi]
for the details of the algorithm. The inferred shape satsdiethe
structural requirements 6f', that is, everything except for the log-
ical validity premise aBubB.

More precisely, we introducshape-only typethat haveholes
—"in place of first-order logic formulas, defined as follows.

“
*|{x:B|-}|z:6 > 7
%l&l/\&Q

[STREN

Let shape-only type environmefitbe a mapping from variables
and function names té’s, andtop-level shape-only type environ-
mentA be a mapping from functions namesits. Then,linear in-
tersection type shape inference judgeniéntt1e : 7 consists of
F! rules, but using® (resp.4) whereverr (resp.c) appears, using
the hole— for formulas, and replacin§ubB with the following
rule.

D —F{u:B | =} <{u:B| -}
We also replace formulas in constant tyggéc) with holes, pro-
hibit intersection of base types, and use types containingnter-
sections for the unused bindingsat Fun2® andLet!. Then, the
linear intersection type shape inferenicders a shape-only deriva-
tion AF1d’. The fact that such a derivation exists is the conse-
quence of the fact that’ is recursion free and is simply typabile,
and follows from well-known properties of intersection égp(see,
e.g., [21]).

The linear intersection type shape inference is non-trinithe
presence of higher-order functions. In fact, it is knownt ttre
complexity of the inference is non-elementary time hard (3.
But the expansion-variable-based algorithm appears t& well
in practice, perhaps because functions of high rdnkkich could
cause the inference to explode, are used sparingly in peacti

5.3 Constraint Generation and Constraint Solving

Having generated the derivation shape &y the next step is to
check if the shape can be turned into an acttladerivation by
filling in the holes with first-order logic formulas. To thi,
we introducepredicate variableghat serve as placeholders for
first-order logic formulas in the derivation. We use largteles
P, Q, etc. to range over predicate variables. We generate amistr
containing predicate variables and formulas from the uUgiohey
theory, and use an interpolating theorem prover to solvetHer
predicate variables.

We extend the syntax of dependent types to allow predicate
variables in place of formulas in refinement base types:

p el p:[z/y]

T - | {u:B | Pp}
(We overloadr to range over the extended types when it is clear
from the context.) The sequence of substitutipris calledpend-
ing substitutiong34] (or delayed substitution®3]). Pending sub-
stitutions records the substitutionge/y] made afA pp so that, for
example{u:B | P}[z/y] = {u:B | P[z/y]}. (The empty substi-
tutione is elided.)

8 Actually, typability under any type system that ensureswadization of
recursion-free terms is sufficient.

9Roughly, arank is the number of times a type can be nested in the left
hand side of-.

Let AF1d’ be the inferred derivation shapd is a mapping
from non-root functions ind’ to shape-only types. We build a
function type templaté\ from A such that for eaci\(F) = &,
we haveA(F) = o whereo is & with its holes filled with fresh
predicate variables with empty pending substitutions.gxample,
from the shape

A ={F~ z:{u:int | =} = *,G — z:{u:int | =} — +}
we make the template
A ={F ~ z:{u:int | P} = %, G — z:{u:int | Q} — *}

whereP # Q. (Here, we writeA to emphasize that it may contain
predicate variables.)

To generate constraints, we converft type checking rules to
constraint generation rules by modifying the base-typeygithg
rule SubB so that instead of checking logical validity, the premise
[TT A6 A6 = 6 is recorded as a constraint. Here, we use
the symbold to range over formulas possibly containing predicate
variables, (and reservefor concreteformulas that do not contain
predicate variables). Then, having the templateat hand, we
follow the derivation shape and record the constraintsdbatir at
eachSubB instance. Let be the set of constraints obtained this
way. Note that is a set of formulas containing predicate variables.

To define a solution for the constraints, we define sieepe
variablesof eachP in the templateA, written scopevars(P), to
be the set of variables that are allowed to appear free inuicol
Formally, scopevars is a mapping from predicate variables to the
largest set of variables such that for any mappshigom predicate
variables to concrete formulas wifiee(S(P)) C scopevars(P)
for all P, S(o) is closed for all- € ran(A). Here,S(o') denotes
o with its predicate variable® replaced by the concrete formula
S(P). Scope variables can be computed by a linear scan over
the template. For examplegopevars(P) = {z,u} for A =
{F— z:0 = y:{u:int | P} — *}.

We say thatS is asolutionfor C, written S |= C, if S(P) C
scopevars(P) for all P and for eachd € C, S(f) is valid. It is

easy to see that i§ is a solution, ther§(A) ' d’ whereS(A) is

defined{ ' — S(A(F)) | F € domA)}.

5.3.1 Least Solution

To solve the constraints, we first compute the least solsitfon
the predicate variables. The least solutions are used wiraput-
ing interpolants in the second phase of the constraint sol(Ef.
Section 5.3.2).

Note that each constraint in the generated set of consi@ist
either of the following forms. (Recall that- binds the weakest.)

L TAI=0
(2 UAO= Pp

where § and 6’ do not contain predicate variables addis a
conjunction of predicate variables with pending substns:

Uu=T|WAPp

Predicate variables appearing in a constraint are gua@ritebe
distinct. Furthermore( is acyclic in the following sense.

THEOREMS.5. The generated set of constrairsdoes not con-
tain constraints of the form{ P;p; A 0; = Piy1p; |1 <i<n}
for somen > 1 with P, = P,41.

We defer the proof to Appendix C. The result follows from the
fact that the derivation is linear. Indeed, cyclic constraicould be
generated if we had used the simple types to obtain the deriva
shape as seen Example 5.6 below.



Because of acyclicity, we can totally order predicate \#€es
via topological sort so that if there is a constraint of thenfo
PpAO = Qp inC,thenP < Q.

EXAMPLE 5.6. This example illustrates the importance of linearity

in avoiding cyclic constraints. Let the unwound fragméntonsist
of the following functions™
Hfk=f0(Gfk) Gfkx=fzk Fxk=kx
Kx=assertx <0; Kz main ()=H F K

Let AF1d’ be the inferred linear intersection type shape. Then,
AH) = 7 A% = k:(z:{usint | =} — %) — *

where? = {u:int | =} — ({u:int | —} — %) — *. FromA,
we get the templaté such thatA(H) = f:7, A 72 — ... where
71 = {w:int | P} — ... andm = {u:int | P2} — ..., for P,
and P, fresh. The set of constraintsgenerated from\ - d’ is
acyclic, but induces the ordering, < P-». Hence, if we had used
simple-type shapes so thAt(H) = f:7 — ...instead, then we
would haveP; = P», and the constraints become cyclit.

Thanks to acyclicity, we can systematically derive the tleas
solution forC in a bottom up manner, that is, in the ascending order

of <. (Although we call it the leastolution it is an actual solution
only if C is satisfiable.)

We describe the method to obtain the least solutiorPfbaving
obtained the least solutions for 8l < P. Let

{é1 =>Pp17é2 =>Pp27...,én = Ppn}

be the set of constraints ihof the formd = Pp. We set the least
solution for P to be

Least(P) = 3X. \/ Least(6:)p; "
whereX = free(\/, Least(6;)p; ') \ scopevars(P). We explain

the construction. We first concretize each lowerboindf Pp; by
substituting the least solutions for the predicate vaeislppearing

free inf;. Note that such least solutions are already obtained. Then,

we reverse substitute the pending substitutipngo obtain the
concretized lowerbounds fdP, that is, Least (6;)p; * for eachi.
The correctness of the construction requires the targejs o6
not occur free inLeast(6;), which can be met by renaming the
bound variables in the types. Finally, we take the disjumciof
the concretized lowerbounds, and existentially quantifyfrae
variables except for the scope variablesriaf The latter ensures
that free(Least(P)) C scopevars(P).

The following is immediate from the construction béast.

THEOREMDS.7. If C is satisfiable, ther.east is the least solution
for C. Thatis,Least |= C, and for all solutionsS such thatS |= C,
Least(P) = S(P) forall P.

Thuﬂs, to checlC’s satisfiability, it sufficgs to check whether
Least(6) is logically valid for each constrait € C. And if so, we

haveLeast(A) ' d’, and we can obtain new candidate types from

Least(A). (Recall thatA is the template obtained from such
thatAFAld’.) While this is a sound and complete way to salfvend
generate new candidates, it tends to produce suboptimdidzaas.

There are two problems with usinteast(A) as the new can-
didates. One problem is that the least solutions may coebds:
tential quantifiers that need to be eliminated before udiegntas
candidates so that the fixed point type inference phase @dygs
to work with quantifier-free formulas.

10The code is somewhat contrived because of the CPS regtricfioe
essence i$’ being applied to the “return value” of another instances#lit

sumlxy k=

if 2 <Othenk yelsesum2 (z — 1) (x4 y) k
checklr =

assert (100 < z); check2 z
maini () =

suml 100 O check1

Figure 9. Example 2.4 unwound twice froamin.

The second, more critical, issue is that the least solutioBs
often too strong as candidates. We illustrate the problangube
summation progrand from Example 2.4. Suppose we are given
the counterexamplénain, 2). Unwindingd twice frommain, we
obtaind’ shown in Figure 9. Then, using the least solutions, we

obtain the following top-level type environmeit = Least(A).

A(sum2) =
z:{u:int | u = 99} — y:{u:int | u = 100} —
{u:int | L} = %) = *
A(suml) =
z:{u:int | w = 100} — y:{u:int | u = 0} —
({usint | L} = %) A ({usint | L} = %) = *
A(checkl) = ({u:int | L} = %) A ({uiint | L} — %)
A(check2) = {u:int | L} — *

Note thatA says thatsum2 (resp.sum1) can only take99 (resp.
100) as its first argument. Nevertheless, we have-' d’, and
so A is sufficient for typingd’. However, it is too strong to type
the original program. Indeed, if we had used the least swiatto
build candidates every time, then we would be generatingdtea
candidate types to type the original program.

More generally, the least solutions are too strong when the u
winding is “incomplete,” which is often the case for progsoon-
taining recursive functions. We would suffer from the duallgem
had we used the greatest solutions instead, that is, thelg\wetoo
weak. To overcome these issues, we use interpolation [fitjd@
quantifier-free solutiorinterp that can be weaker thakeast (i.e.,
Least(P) = Interp(P)) but is still strong enough to typé# (i.e.,
Interp = C).

5.3.2 Interpolants

We computelnterp via interpolation and the least solutidieast
obtained by the process in Section 5.3.1. We briefly revievbtsic
properties of interpolation.

Interpolation Review Given formulag); andf; wheref; = 0,,

aninterpolantbetweerfd; and6, written (61, 62), is a formulad

such that; = 0,6 = 02, andfree(0) C free(61) N free(62). Itis

known that quantifier-free interpolants exist and can bemded
for many useful first-order theories, such as the quanfifies-
theory of linear arithmetic and uninterpreted function bgfs [5,

20, 27].

Recall the total ordering of predicate variablesfrom Sec-
tion 5.3.1. We computénterp(P) for eachP in the descending
order of <. We describe how to computiterp(P) having com-
puted/nterp(Q) for all @ > P. Let

{Pp1 /\él:>é/17Pp2/\éQ:>é/27...7ppn/\én:>éfn}

be the set of constraints i@ of the formPp A 6 = 0'. We set
Interp(P) = (Least(P),0) if Least(P) = 6 where

0= \SG = io



whereS is the substitution such tha{ Q) = Interp(Q) if P < Q
andS(Q) = Least(Q) if @ < P. (P is guaranteed to not appear
in 6; = 6..) Otherwise,Least(P) # 6 and we rejectd’, and
therefore also the original progradnas untypable.

We explain the construction of the upperbouhdbove. First,
we concretize the upperbound of eakp; (i.e.,0; = 0;) by sub-
stituting formulas for the free predicate variables $iaSome free
predicate variables ifi; = 6, may not have itdnterp computed
yet, and soS usesLeast for such predicate variables. However,
because of acyclicity, such predicate variables are gtegdrno
appear only negatively (i.e., to the left ef). Then, we reverse
substitutep; to obtain the concretized upperbounds forthat is,
S(0; = 0})p; ! for eachi. The correctness of the construction re-
quires that the targets pf do not occur free ir5(0; = 6;), which
can again be ensured by renaming of bound variables. Fimadly
take the conjunction of the concretized upperbounds tambta

The following theorem states that the above algorithm finds a

correctInterp if and only if C is satisfiable.

THEOREM5.8. The algorithm computeBiterp such thatinterp =
C if and only ifC is satisfiable.

The proof is by induction on the (totally-ordered) predi-
cate variables. See Appendix C for details. Note that becaus
free(Least(P)) C scopevars(P), we havefree(Interp(P)) C
scopevars (P) from the property of interpolants.

From the construction, we haveast(P) = Interp(P) for all
P. Although Theorem 5.8 does not imply thatterp # Least,
interpolating theorem provers tend to produce small irtiamts
that often work better as candidates than do the least sphiti

Computing without Quantifiers It is possible to compute the
interpolant(Least(P), ) by renaming the existentially quantified
variables in the least solutions with fresh variables. Hpproach
is justified by the following lemma and the fact that exisiint
quantifiers appear only positively ibeast(P) and only negatively
ing.

LEMMA 5.9. A formulaé is an interpolant betweed X .0, and
(3Y.0:) = 05 if and only if it is an interpolant betweeh [ 7/ X]
andf.[/ /Y] = 6; where@ andy/ are fresh variables.

Thus, we can check for the satisfiability@and obtain a quantifier-
free Interp without explicit quantifier elimination by using a the-
orem prover that can produce quantifier-free interpolaotstte
formulas in the underlying theory.

5.4 New Candidate Types
Given Interp, we generate the new candidates sufficient for typ-

ing the counterexample. Recall that we haveerp(A) H' d'.
Interp(A) is a mapping from function names if to their types.
Recall thatinamesmaps the original function names déhto their
inlined copies ind’.

We define the new candidaté€x as follows: for each¥” in d,
O'(F) = {m: | \;, 7« = Interp(A)(G) whereG € Inames(F)}.
Then, we pas®’ to the fixed-point type inference component
which updates the candidates By := © W ©’, where® v ©’
is the point-wise unioMF.©(F) U ©'(F). From the property
free(Interp(P)) C scopevars(P), the new types are guaranteed
to be closed, and so the.‘updat@dis a valid candidate set. Fur-
thermore, becaustuterp(A) + d', it follows from Theorem 5.2
that the updated candidate set is sufficient to eliminatesphei-
ous counterexample from future CEGAR iterations, as stattte
following theorem.

THEOREM5.10. Suppose that the lattice of candidates was refined
by refuting the counterexamp(é”, 7). Then, for any counterexam-
ple (F, 7) reported in futurej > i.

Fixed-point 3IAEAO.AR

Type Inference

Typable(A)

Counterexamplé F,4)

New Candidate®’

Untypable(d’) AT

Figure 10. The type inference CEGAR loop.

It is worth noting that the theorem would hold true even if
Least had been used instead diterp. Nonetheless, the idea is
that Interp is likely to eliminate other spurious counterexamples
that we would see in future had we uskehst instead.

6. Putting Type Inference Components Together

Figure 10 summarizes our CEGAR-inspired type inference pro
cess. The fixed-point type inference algorithm checks ifphe
gramd is typable under the current set of candida®s and if
so, returnsTypable with the inferred typingA, and otherwise,
passes the counterexamplg, ) to the refinement algorithm. The
refinement algorithm creates the unwinditigrom the counterex-
ample and decided’s typability completely. Ifd’ is found unty-
pable, then the refinement algorithm retuksstypable with the
real counterexampléd’, and otherwise, returns new candidat¥s
that is sufficient for typingd’. The fixed-point routine refines the
candidates by updating := © w ©’, and the CEGAR iteration
repeats.

As remarked before, while the fixed point type inference @&ad r
finement algorithms are each guaranteed to terminate, tiARE
loop may iterate forever, producing an ever more refinedfssro
didates. But, the type inference is sound and complete isghse
that it always returns the correct answer when it terminates

6.1

The remaining question is about priming the CEGAR loop, that
how to pick the initial set of candidates. In principle, a@ysuch
that each9(F) is a finite non-empty set of well-formed types can
be used as the starting set of candidates.

One approach to building a sensible init&lis to run the re-
finement process with artificial counterexamp(é3:) for eachF’
for somei, and take the point-wise union 6 produced from each
counterexample as the initiél. The implementation discussed in
Section 8 takes this approach witk= 1.

Another possible approach is to heuristically create titgaln
candidates by scanning the program text, for example, hygusi
expressions appearing in branch conditions as the fornimiltese
refinement base types. This is also the approach taken indRond
et al. [34] for building the domain of possible types. Figailve
may allow the programmer to suggest additional candidaes, (
as type annotations).

Initializing Candidates

6.2 Example

Recall the summation prograthfrom Example 2.4. Suppose that
the current set of candidates@sshown below:
O(sum) = {int — int — (int — %) — *,
{u:int | w > 100} — {u:int | u > 0} —
({u:int | uw > 100} — %) — x}
O(main) = {() — *}
O(check) = {{u:int | u > 100} — x}



Then, InferNext>(A\F. A O(F)) = A with A(main) = A0, and
so the counterexamplénain, 2) is reported. Hence, we unwind
frommain twice, and obtain’ shown earlier in Figure 9.
Next, linear intersection type shape inference infersuch that
AF1d’. FromA we obtain the templatd such that
A(suml) =
z:{u:int | P} — y:{u:int | P2} —
k:(z:{u:int | Ps} = %) A (z:{u:int | P4} — %) = %
A(sum2) =
z:{u:int | @1} — y:{u:int | Q2} —
k:(z:{u:int | Qs} — %) = *
where the predicate variables are fresh. (We omit the teempfar
maini, checkl, andcheck2.) Generating constraints and solving
for the least solutions, we obtain

Least(P1) < u =100 Least(Q1) < u=99
Least(P2) ©u=0 Least(Q2) < u =100
Least(Ps) < Least(Py) < Least(Q3) < L

As remarked in Section 5.3.1, these solutions, while cori@e
stronger than desired. It is possible, though not guardnfee an
interpolating theorem prover to generdigerp such that

Interp(Q1) < Interp(Q2) < T
Interp(Qs) < u > y

From Interp(A), we obtain the new candidat€® such that
©’'(sum) = z:int — y:int —
{u:int |u >y} = %) = *
Then, as shown in Example 2.4, there exiAte A(© W ©') such

that A  d, and the fixed-point type inference algorithm returns
Typable(A).

7. Beyond Assertion Checking

Program| Time | T-TP | T-INT | Candidates]
boolflip 0.2 | 95% 72% 10
sum 01| 97% 26% 6
sum-acm 05| 98% 14% 9
sum-all 0.1 | 93% 46% 9
mult 0.6 | 99% 31% 6
mult-cps 1.0 | 98% 31% 13
mult-all 0.5 | 98% 50% 10

Table 1. Experiment results - typable programs.

Program| Time | T-TP | T-INT | Candidates

boolflip-e 0.2 | 95% 79% 8
sum-e 2.8 | 99% 85% 9
sum-acm-e| 9.9 | 99% 94% 10
sum-all-e 0.3 | 97% 75% 9
mult-e | 13.9 | 99% 91% 9
mult-cps-e| 42.1| 99% 90% 16
mult-all-e 1.1 | 98% 71% 10

Table 2. Experiment results - untypable programs.

the type system with conditional types and union types, andlles
non-A-normal forms by online A-normalization [13].

Depcegar is implemented as a modification to the Ocaml 3.10.2
compiler. We use Ocaml’s parser and ML-type inference as the
front-end to parse the program and obtain the simple typide
use CSlsat 1.2 [5] as the interpolating theorem prover. &Slg-
ports the quantifier-free first-order theory of uninterpdefunc-
tion symbols and linear arithmetic (EUF+LA). CSlsat suppoeal
arithmetic but not integer arithmetic, and so integers qEr@x-
imated as reals in Depcegar (it does not affect the examples i

We have shown that our system can be used to check the absencehis paper). For convenience, we use CSlsat both to genierate

of assertion failures. This section presents an extenbatrchecks
more general program properties specified via user-prdviglees.
Specifically, we allow the user to provide a mappifigrom func-
tion names to types and ask if there exists a typhnk d such that

0; T+ A(F) < Y(F) for all F. Such a specification conformance
check can be handled by a simple extension outlined belote No
that this can also be used to force the system to infer a tygfiag
desired precision.

We assume thall (F') is well-formed for each”’. We mod-
ify the fixed-point type inference algorithm from Sectionaltbat
InferNext reports the counterexamplé’, 7) if it reachesA such
that®; T I/ A(F) < YT(F) at theith fixed-point iteration. Other-
wise, a fixed poinfA such that for all", §; T -+ A(F) < T(F) s
reached and the system declares thabnforms toY'.

We also extend the refinement algorithm from Section 5 so that
given the counterexamplg?, 1), it unwindsd to getd’ as before,
and then checks if there exists such thatA - d’ and for all
F,forall F' € Inames(F), 0; T = A(F') < Y(F). If so, the
refinement algorithm returns new candida@sconstructed from
such A, and otherwise, declares thdtdoes not conform tor.
Note that the additional conditiols T = A(F’) < Y(F') can be
reduced to constraints that can be solved by the constraliving
algorithm.

8. Implementation and Experiments

We have implemented a prototype of the type inference system
Depcegar, which takes a subset of Ocaml programs corresgpnd
to the simple functional language (cf. Figure 2) extendedirtect-
style syntax. Depcegar handles non-CPS expressions hydixte

terpolants in the refinement phase and to decide base-tiggpsu
ing judgements in the fixed-point type inference phase §.ebB

from Figure 7). The implementation contains about 5000sliok
original code. A web demo of Depcegar and the benchmark pro-
grams are available online [36].

We have conducted experiments on small hand-crafted pro-
grams, including the ones used as examples in the papee Tabl
summarizes the results. Here, the first column is the progizame
and the second column is the running time in seconds. The col-
umn T-TP is the fraction of the running time spent by the inter
polating theorem prover CSlsat (both interpolant comnaand
subtyping judgements), and the column T-INT is the fractibthe
running time CSlsat spent computing interpolants. The gimie
not include the parsing and ML-type inference time. The eoiu
Candidates shows the total number of candidates genefateall(
functions combined). The experiments were conducted orteh In
Core 2 Extreme 3GHz machine with 2GB of ram, running Linux.

All of the programs in Table 1 are typable. We briefly describe
each program. The prograbpolflip is the boolean program
from Example 4.3. The progragum-acm is the summation pro-
gram from Example 2.45um is the same summation program writ-
ten in direct-style (i.e., without using the accumulaticargmeter
y), andsum-all is sum recursively applied to all non-negative inte-
gers (i.e., it asserts < Zie{o _____ Y for all z > 0). The program
mult is the multiplication program from Figure dult-cps is the
same program written in CPS, amd1t-all ismult recursively

1 pepcegar does not take advantage of ML's parametric polghism, but
in principle, let polymorphism can be handled by inlining.



applied to all non-negative integers, that is, it replateslast line
of mult with the following??

and f y = assert (y <= mult y y); £ (y+1)
and main () = £ 0

Depcegar was able to successfully infer a typing for eachef t
programs. The Candidates column shows that relatively tevdie
dates are generated to type the programs, confirming outinsgie
that the interpolation-based candidate generation meghodite
effective at generating good candidates.

To test Depcegar on untypable programs, we injected asssrti
errors into each of the programs. For examplge,t-e replaces the
last line ofmult with the following to assert tha00 < 100 x 5:

and main () assert (600 <= mult 100 5)

andboolflip-e appliesF to y y instead ofy x inside the body of
F (cf. Example 4.3).

Depcegar successfully detected the type error in all of the p
grams. Table 2 summarizes the results. Note that the irtgipo
fraction T-INT tends to be higher for the untypable prografiss
is primarily because their run ends during the last refindmplease,
whereas for typable programs, the run ends when the last-fixed
point type inference phase has finished. The results alse tai
Depcegar quickly detects thabolflip-e (andsum-all-e and
mult-all-e) are untypable, but is quite slow amlt-e (and
sum-acm-e andmult-cps-e).

More generally, we have observed that while Depcegar can of-
ten quickly detect typable programs to be typable by geimgrat
good candidates early in the CEGAR loop, for untypable oty,
it must iterate the CEGAR loop long enough until a real corgxte
ample is encountered. This may result in a large unwindimgafo
type error that only occurs “deep” in the program. A similss i
sue occurs in CEGAR-based model checking when detectingserr
that take many steps from the initial state to reach [2, 26k @os-
sible remedy is to multiply the unwinding depth by an inciegs
factor as the CEGAR loop progresses. We leave for future wrk
address the issue in a more depth.

We also observe that Depcegar’s running times are almost com
pletely dominated by that of theorem proving, with a nonligggle
fraction dedicated to computing interpolants. As discdseeSec-
tion 9.3, interpolating theorem provers are fairly new teslbgy
and are actively being researched. Hence, we expect thénginn
times to improve as interpolating theorem provers matungogsi-
ble optimization is to use a faster, non-interpolating theoprover
for deciding subtyping judgements and use an interpolatieg-
rem prover only for computing interpolants.

Finally, we note that while the interpolation-based refieam
guarantees the elimination of the given spurious counsengie,
it does not guarantee the convergence of our system on alblyp
programs:® An interesting future research direction is to investi-
gate a more complete approach to candidate generation.

9.
9.1

Inferring complex types via fixed-point type inference don is
a classic idea. For instance, Freeman and Pfenning [14kitlie
strongest refinement types given a user-provided lattiaefofe-

Related Work
Inferring Dependent Types

the program text and the user-provided set of formulas, afets
the strongest types within the lattice of dependent typafined to
these formulas via fixed-point iteration and theorem prgysim-
ilar to the fixed-point type inference phase of our systenckiragy
automatic refinement, these approaches require the lafteandi-
date types to be pre-defined and be of finite height. In canivas
system automatically infers candidate types within an itgido-
main of types (i.e., unbounded intersections and arbifamulas)
via counterexample analysis.

One advantage of our approach is that the type inference be-
comes complete. That is, when the system declares the prnogra
to be untypable, the user is assured that it is actually adtgp
rather than wondering if more candidates were needed. Aeeons
quence of this is that the inferred types may not be the s&sing
But, this is generally unavoidable as the strongest typeg moa
even be finitely expressible within the underlying theosyjra for
example, thenult program from Figure 1. However, as remarked
in Section 7, the system can be made to infer types of the user-
specified strength.

Concurrent to our work, Unno and Kobayashi [37] have pro-
posed to infer dependent types via interpolation and iteratn-
rolling of recursive constraints. Chin et al. [6, 7] haveocaisig-
gested a constraint unrolling approach with the Omega 3&$tds
the backend solver. These approaches use neither cantiigate
nor a fixed-point type inference routine, but they resemiwere-
finement phase of our work in that they also reduce the infer-
ence problem to finding a solution to a set of first-order |lagin-
straints. One issue with these purely constraint-basecbapbes is
the presence of “false constraint cycles” like the one shimnix-
ample 5.6 In contrast, our approach divides type inference into
the fixed-point type inference phase and the constrainireple-
finement phase so that the latter is able to leverage unvgratia
linear intersection types to ensure constraint acyclicity

We note that none of the previous systems listed above stgppor
unbounded intersection types. To the best of our knowledge,
system is the first dependent (or refinement) type infereystes
that can infer unbounded intersection types embedded wiith a
trary formulas from a first-order theory.

9.2 Inferring Intersection Types

The success of our system owes much to intersection types. No
only do intersection types make the underlying dependeme ty
system more expressive by being able to type more safe pnsgra
they are also crucial to the refinement phase of the systemska
linear intersection type inference [21] to infer a derigatishape
that is sufficient for ensuring both type inference compless and
constraint acyclicity.

Linear intersection type inference cannot be applied direc
to programs containing recursive definitions as linearrggetion
types are not even defined for such programs. Our approach cir
cumvents the issue by iteratively producing non-recurpiegram
fragments as counterexamples, and then checking if thadzted
types inferred for the fragments are also sufficient for rigpihe
original, recursive program.

In our system, intersection types are restricted to onkyragct
types of the same simple-type shape, but intersection hfpesince
algorithms are capable of inferring arbitrary intersectid types,

ment types. The recent work by Rondon et al. [34] can be castedas well as inferring principal typing [38], which we also dotn

as an instance of this approach to dependent types. Theéensys
chooses a finite set of candidate formulas by a syntactic stan

12pepcegar does not handle arithmetic overflows.

3However, it is trivial to show that the system is guaranteecbinverge on
programs with only finitary-data base types (e.g., just &aas).

utilize in this work. We leave for future work to capitalize ¢the
full potential of intersection type inference.

14For [6, 7], if extended to higher-order functions.



9.3 Model Checking

Counterexample-guided abstraction refinement has beenwite
great success in hardware and software model checkingggee,
[3, 9, 16]). However, most of the existing software modelaktees
only target low-level imperative programs such as devideeds
written in C, and are unsuitable for functional programsase
they cannot accurately model higher-order functions amdtfan
closures.

Recently, researchers have proposed model checking tilgnsri
for typed higher-order functional programs by leveragihgirt
equivalence to higher-order pushdown systems [24, 31].édew
these algorithms only handle finite data domains, whereasysd
tem supports infinite data domains such as integers byinglian
interpolating theorem prover.

Interpolation has found various applications in model &irey,
such as predicate abstraction [15, 18] and reachable siptexa
imation [26, 28]. We have shown that interpolation is alséequ
effective for inferring dependent types. Algorithms fommouting
interpolants for various theories are actively being resesd (e.g.,

[5, 8, 17, 20]). As future work, we plan to extend our system to

other data types, such as lists and arrays, by using intgipgl
theorem provers for their theories.

10. Conclusion

We have presented a new approach to inferring dependerg.type

The key to the success is the iterative refinement of carelidiat
pendent types via counterexample analysis, utilizingdinater-
section type inference and interpolation. We have shownttiea

[14] T. Freeman and F. Pfenning. Refinement types for MIRLLDI, pages
268-277, 1991.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMiila Ab-
stractions from proofs. IROPL, pages 232—-244, 2004.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.ylalastrac-
tion. In POPL, pages 58-70, 2002.

[17] H. Jain, E. M. Clarke, and O. Grumberg. Efficient Craiteipolation
for linear Diophantine (dis)equations and linear modutpragions. In
CAV, pages 254-267, 2008.

[18] R. Jhala and K. L. McMillan. Interpolant-based traiusit relation
approximation. INCAV, pages 39-51, 2005.

[19] T. Johnsson. Lambda lifting: Transforming programsrécursive
equations. IFFPCA pages 190-203, 1985.

[20] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolatiom &ata
structures. I'SIGSOFT FSEpages 105-116, 2006.

[21] A. J. Kfoury and J. B. Wells. Principality and type inégice for
intersection types using expansion variableEheor. Comput. Sci.
311(1-3):1-70, 2004.

[22] K. Knowles and C. Flanagan. Compositional reasonirgjdetidable
checking for dependent contract types.PIoPV, pages 27-38, 2009.

[23] K. W. Knowles and C. Flanagan. Type reconstruction feneyal
refinement types. IESOR pages 505-519, 2007.

[24] N. Kobayashi. Types and higher-order recursion sclscfioreverifica-
tion of higher-order programs. IROPL, pages 416-428, 2009.

[25] D. Kroening and G. Weissenbacher. Counterexamplds laitps for
predicate abstraction. @AV, pages 152-165, 2006.

[26] K. L. McMillan. Interpolation and SAT-based model chaw. In
CAV, pages 1-13, 2003.
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pressive dependent type system that allows unboundedéatérn
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A. Simple Type System

We formally present the simple type system. The syntax opEm
types is defined by the following grammar: (Also shown in Sec-



T'H F:T(F) TF c:simple(ty(c))
I'+° e : bool
' z:T(z) TF° asserte:int
e :s DaiskFies:x HFe:is—s TH y:s
TH*letx=e; ines : + ' ey:s

' 2z:bool I'H°e1:x T'Feg:x
*

I'F° if  then e else ey :

Figure 11. The simple type system type checking rules.

tion 2.1.)

B
s

int | bool
x| B|s—s

Figure 11 shows the type checking rules. Here, we overload th
symbolsI” and A to range over mappings to simple types.

DEFINITION A.1 (Simply-typed program)Let A be a top-level
simple type environment. We writ® +° d if for each function
FT =ced wehavel z:6 F° e : x whereA(F) = 7:5 — .

We say that a progrand is simply-typed if there exist& such
that A +° d.

The simple type of a sub-expressierof d, sty(e), is defined
to be the type assigned to the (unique) occurrence of the
derivationA +° d.

The following theorem is the standard type safety result tha
says that a simply-typed program does not get stuck, whigtbea
proven via the standard method [39]. (Recall that due to GPS,
program does not return.)

THEOREMA.2 (Simple Type Safety)Let d be simply-typed and
main () = emin € d. Then, for anye such thater.in — €, either
e —4 fail or there existg’ such thate —4 €.

B. Sound Constant Types

For a constant operationover booleans and/or integers, we say

that the dependent type = 2B - {u:B | ¢} is soundif the
following properties all hold:

e 7 is closed.
o simple(T) = sty(c).

e For any ¥/ in the input domain of, ¢[7/Z][[<](7)/u] is
logically valid.

Sound types for boolean and integer constants are definéd-ana
gously. For example, a sound type for the constaaf the base
typeBis{u:B | u = c}.

While a constant operator in our language accepts all inputs
its domain, behaviors such as the divide-by-0 error can baehed
by inserting appropriate assert statements.

C. Proofs of Key Results

We prove Theorem 5.4, Theorem 5.5, and Theorem 5.8. To facil-
itate the proofs of Theorem 5.4 and Theorem 5.5, we defifie a
reduction like semantics for unwound program fragments.

Cl(st £in Ap.e) q] —p
Clst £:: (b=q)ine[b/p]]

Ci[let a=ein Co[(st £ in Ap.€’')a]] —p
Cilleta=einChlst £ :: (b=¢) i

Ci[st a = ein Cs[(st £in Ap.€') a]] =5
Ci[sta=einCs[st £:: (b=e) ine'[b/p]]]

Ci[let a=ein Cilaz]] —p Ci[let a=e in Cale ]|
Ch[sta =einCslaz]] —=p Ci[st a = e in Cae z]]

Figure 12. The— s reduction rules.

First, we update the syntax of the language soXtaistractions
are used to denote functions and function closures:

e z|c|F|Apelex|leta=e1ines

if z thene; elseey | asserte|stline
pla

a =

T

L

We separate variables to two kindsack variablesranged over
by symbolsa, b, etc., andparameter variablesranged over by
symbolsp, g, etc. Symbols, y, etc. range over both kinds. A stack
variable are bound atet and the new construett. Conceptually,
the expressiost @ = ¢ in e represents a function-call stack frame
with the stacka =¢, and the program counter We use stacks
instead of explicit substitution so that we can type intetiat
states via theA pp andIf rules as they require a variable for the
argument and the branch condition. Stack frames are alsbtase
mark function bodies to avoid base-type variables in theeqtar
context from affecting their typing.

We translate an unwound fragmedftto its representation in
the updated syntatam(d") by replacing all non-leaf functions
with the equivalent\ representation enclosed in an empty stack
frame, and replacing all let-bound variables with a freshclst
variable. More formally, for’ T =ced, we definelam (F)
st ¢ in A .lam(e[P /7)) where ' are fresh, andam/(e) is
defined inductively ag with all its non-leaf free function name
G replaced bylam(G) and all let bindingslet x =e; in ez
replaced bylet a =e; in ez2[a/z] for a fresh stack variable.
(Here e denotes the empty sequence, and.e is a short hand for
AZ1.AZ2. ... \Tn.e WhereZ = x1, 2o, . .., z,.) Then, we define
lam(d’) = lam(F) whereF is the root function ofi’. Note that
only the leaf functions off’ may appear free ibam(d’).

We definenormal forms ranged over byuf, by the grammar
below:

nf w= x|p@|c@|FZ | pnf|stnlinnf
| leta=nf, innf, | assert nf
if
|  if z then nf, else nf,
nl = a=nf

Let C range over any expression context. Figure 12 defines a
[ reduction like semantics. Intuitively, these rules impérthe
usuals reduction, but using stacks instead of explicit substtnsi
In the first three rules, the stack variablappearing to the right of
— g is fresh (i.e., it does not appear free to the left). In thedes;
we interpretst a1 = e1,...,an = e, in €’ as the nested stack
sta; = e1 in...st an = e, in ¢’. The first three rules, differing
only on whether the variable (or ¢) is a parameter variable, let-
bound or st-bound, applies the functigt¥ in Ap.e to the argument
a (or g). The last two rules, differing only on whether the variable
a is let-bound or st-bound, substitut@esvith e.

Note that the semantics do not reduce conditionals, asserts
constant applications, nor leaf function applications, faduces



I,pio;0ke:T
0 Ape:pio—1

am

Foreach.T';0 bx ¢e; : o;

a1:01,...,Gn:0n; T e 1%
— St
I'0Fstar =e1,...,an =€, ine’ : %
Iypo\X;0F e: 7
X ={p|p ¢ free(e) andsty(p) not basé
am

;0 Mpe:po—r

Foreachi.I';0 4 e; : 0y
a1:01,. .. a0, \X; T H €& 1 %
X ={a; | a; ¢ free(e) andsty(a;) not basé

I0H stai=ey,...

. /
,an =epine :x

Figure 13. Dependent type checking rules for the extended expres-
sions.

(partial) user-defined function applications everywhétrés easy
to see that a normal form cannot be reduced, i.e.,

LEMMA C.1. For any normal formnf, there exists ne such that
nf —g e.
We update the simple type systérhin a straightforward way
to the extended syntax by adding the rules below.
I,p:sFe:s
' Ape:s—s

Foreach.' F° ¢; : s;
@1:81,...,0n:8, F° € 1%

St

I'stai=e1,...,an =€, ine : %

The next lemma states the expected, that is, simple typabfli
d' andlam(d’) coincides.

LEMMA C.2.Let d’ be an unwound program fragment. Then,
JA.A F° d'if and only if3A.A ° lam/(d")

Proof: By induction on the structure df. O

It can be shown that® typing is preserved across g using the
standard method [39].

LEMMA C.3.If T e:xande —4 €', thenl ° ¢’ : «.

Also, by the standard strong normalization result for thapdy
typed A calculus, we have thatss is strongly normalizing for
simply typable terms. (See, e.g., [29].)

LEMMA C.4. Supposd” I° e : x. Then,e strongly normalizes to
some normal form.

Henceforth, we assume that any expression is simply typadl, a
that its simple typesty(e), is available.

We also update the dependent type systerand ! to the
extended expressions so that the typabilityoéind lam (d’) also
coincides there. Formally, we add the rules shown in Figie 1
Note that the typing rules for a stack franft(andSt') ignores
the parent’s environment assumption.

We restate the expected property as a lemma.

LEMMA C.5. Let d’ be an unwound program fragment. Then,
JA.AF ' ifand only if3A.A; T F lam(d), and3A. A F! d' if
and only if3A.A; T + lam(d').

Proof: By induction on the structure df. O

It is easy to show the preservation result for the dependgrg t
systemt-, again via the standard method [39].

LEMMA C.6.If T e:xande —3 €', thenl ¢’ : x.

Now, let us cast the extendéd type rules as constraint gen-
eration rules by modifying th&ubB rule just as we have done
for the original set of rules in Section 5.3. We show that tha-g
erate set of constraints coincides féfrand lam(d’). For conve-
nience, we assume that the derivation is modified so thatdhe ¢
straint generated by each subderivation is written explias in
I';¢ H' e : 7;C whereC is the set of constraints generated by the
derivationT'; ¢ ' e : 7. To generate constraints frolam (d’), it
suffices to just make fresh predicate variables appeareheng in
the argument type atLam®.

The following theorem states that constraints generated &
is equivalent to those generated fréam.(d’).

LEMMA C.7. LetC be the set of constraints generated frexr*
d’. Then, we havé \ {F | Fis not leal; T F' lam(d’) : %;C.

Proof: By induction on the structure df. O

C.1 Theorem5.4

THEOREMS.4. Let d’ be an unwound program fragment. Then,
the following are equivalent.

(1) There existg\ such thatA ! d'.
(2) There exist\ such thatA + d’.

By Lemma C.5, it suffices to show that the typabilitylefn(d’)
coincides for-* andt-. (1) = (2) is trivial because any' typing
derivation is a valid- derivation that just does not use function type
bindings non-linearly.

We prove (2)= (1) by showing that any strongly-normalizing
I typable terms aré-! typable. Then, because arym(d’') is
strongly normalizing by Lemma C.4 anyway, it follows thatyan
I typable term is-! typable.

For a free non-base type stack varialklen nf, we write
I(a,nf) for the set of typesr such thatsimple(o) sty(a)
and the top level linear intersections®imatches the occurrences
of a in nf. For example,

I(a,A\p.paa) = {7 AT" | simple(T) = simple(t') = sty(a)}

For a type environment’, let I(T", nf) be the set of type en-
vironmentsI” that maps all base-type variables and (non-base-
type) stack variables idom(T") (i.e., it does not map non-base-
type parameter variables and function names) suchltfaf) €
I(a,nf) for a € domI") a non-base-type stack variable and
I(z) = (T(z)) for x € domT') a base type variable, where
(AN {u:B|0:}) = {u:B | A\, 6:}. Essentiallyl” € I(T, nf) is
a type environment that is equivalentIofor base-type variables
and has arbitrary well-shaped types for non-base-type siac-
ables.

We now show that any- typable normal form ig-! typable
under such an environment.

LEMMA C.8.Supposel’; T Fa nf : o. LetTY € I(T,nf).
Then, there exists” D TV ando’ such thatl; T +4 nf : o/,
simple(c’) = simple(o), and ifo is a base typey’ = (o).

Proof: By induction on the structure af . The casef is a variable

is trivial. For the caseif isp 7 (resp.F Z), we setl' (p) (resp.

I (F)) appropriately so that it is a function taking the argumeifits
the typeF’(?) (if an argument is also a function-type parameter
variable or a function name, then it too can be set to be of any

appropriate type).



The casenf is ¢ @ follows from the sound constant type as-
sumption (cf. Section B) that all arguments to a constantaipe
are of base types. The caggis a lambda abstraction follows triv-
ially from the induction hypothesis.

For the case:f is a let expressiolet a = nf, in nf,, we split
on whethersty(a) is a function type or not, and apply induction
hypothesis. The cas¢ is a stack framet nfinnf’ is similar. The
casenf is an assert expression or a conditional expression follows
from induction hypothesis and the fact that asserted egjmes
and branch conditions are always of base types.

Next, we show the “subject-expansion” property.

LEMMA C.9. Suppose; — g ez, andT’; ¢ F! ey : . Then, there
existsI” such thafl”; ¢ ! e : *.

Proof: We prove by case analysis on the reduction kinds. r t
case the reduction is one of the first three rules in Figurenk2,
type e1 by setting the type of the parameter variapléo be the
type ofb in the typing fore-.

The case the reduction is one of the last two rules in Figure 12
follows trivially from the inspection of the ruleSt* andLet*. O

By Lemmas C.4,C.6,C.8,and C.9, itfollows thatNf T F e : *
then there existd’ such thatA’; T F* e : . This proves (2=

(1).
C.2 Theorem5.5

THEOREMS.5. The generated set of constrair@sdoes not con-
tain constraints of the forr{Pip; A 0; = Piy1p; |1 <i < n}
for somen > 1 with Py = P,41.

By Lemma C.7, it suffices to show thdam(d') generates
acyclic constraints. Because we are only concerned withtcaint-
generation in this section, we assume that judgements and
derivations are that of constraint generation and not typeck-
ing. Recall that constraint generation judgements havefdaima
I';¢ F' e : 7;C where(C is the set of constraints generated by
the derivation (cf. Section C). Also, for readability, wedel the
decorated notatiofl, 7, A, etc., which was used in the main body
of the paper to emphasize the fact that the object may copteik
icate variables, and simply use the non-decorated vetsionA,
etc.

We prove the theorem semantically, like (& (1) of The-
orem 5.4. This time, we show that any strongly normalizing

(w.r.t. — ) expression generates acyclic constraints. Then, the re-

sult follows from Lemma C.4 which says that any unwound pro-
gram fragment is actually strongly normalizing.

In a spirit similar to the construction of(T", nf) from Sec-
tion C.1, for a normal formuf, let I(nf) be the set of type environ-
mentsT” mapping base-type variables (both parameter and stac
and non-base-type stack variables freewjnto arbitrary types of
the correct linear shape. For example,

I(A\p.paa)
= {{a— 7 AT} | simple(r) = simple(r’) = sty(a)}
We now show that the set of constraints generated from a Horma
form expression under such an environment is acyclic.

LEMMA C.10.LetI" € I(nf) andC be any acyclic set of con-
straints. Then, there exisi¥ O T" and 7’ such thatl’; ¢ ' nf :
7';C" andC U C’ is acyclic.

Proof: By induction on the structure af . The casef is a variable
is trivial. The casesf is an applicatiorp 2’ (resp.F ?) holds by
letting the type ofp (resp.F) in I to be of a type containing fresh
predicate variables everywhere (i.e., distinct, and ndf ior C).
Note thatp ¢ dom(I") because is a function-type variable. The
constant application caser is trivial.

The casenf is a lambda abstraction follows trivially from in-
duction hypothesis. The casg is a stack frame or a let expression
is also straightforward from induction hypothesis, insigting C to
be the constraints from the other subterms. The egise an assert
expression or a conditional expression is simifar.

Note that the lemma implies that constraigtgenerated from
a program-level environment (i.e); T F' nf : x;C for A with
fresh predicate variables everywhere.) is acyclic.

Given constraint€ we say that there is aedgefrom P to @
if there exists a constraint of the forfip A 0 = Qp’ € C. We
say that there is path from P to Q if there exists a non-empty
sequence of edges connectiRgo (). Note thatC is acyclic if and
only if there exists no path connecting a predicate varibitself.

We now show the “subject-expansion” property.

2 x; C with C
s % C with ¢’

LEMMA C.11.Suppose; — 5 ez, andT; ¢ H es
acyclic. Then, there exist¥ such thatl; ¢ ' e;
acyclic.

Proof: We prove by case analysis on the reduction kinds. f®r t
first three rules in Figure 12, we use fresh predicate vartafir
the type of the argument

Then, it can be shown that’ comprises of the predicate vari-
ables inC' and the fresh predicate variables from the typg.dfhe
new constraints from the function applicationdn do not induce
new paths irC’ between variables that are ¢h and that there are
no edges directly connecting the new predicate variablpsang
in the type ofp. Thus,C’ is acyclic.

The case the reduction is one of the last two rules follows
trivially from the inspection of the ruleSt* andLet®. O

Lemma C.10 and Lemma C.11 imply that constraints gener-
ated from any strongly normalizing is acyclic. Therefore, by
Lemma C.7 and Lemma C.4, we have proven Theorem 5.5.

C.3 Theorem5.8

THEOREMS.8. The algorithm computeBiterp such thatinterp =
C ifand only ifC is satisfiable.
The only if direction is trivial. We prove the if direction. &/
enumerate the predicate variablegas. . ., P, whereP; < P11
for 1 < ¢ < n. (Recall that predicate variables are totally ordered.)
Let S be a mapping from predicate variables to formulas. For
ik <n,we definesf to be the following mapping:
& Least(P;)
S5 (Pi) = {S(Pi)

if i <j
if k<1

K) (S¥(P;) is undefined forj < i < k.) Recall that a predicate

variable can occur at most once in any constréint- ¢ € C.
For eachP;, let ®; C C be the set of constraints of the form
PipnO=0.

Let us write Ok;(S) if for all j > 4, we haveLeast(P;) =
S(P;) andS(P;) = (S5 (0) = S(6"))p~ ' forall Pjpnd = 0" €
®;. Note thatS such thatOk: (S) is exactlyInterp.

The following lemma shows that if is satisfiable, then the
algorithm is able to compute sonigterp.

LEMMA C.12. Supposéd.east = C. Then, there existS such that
Ok1(9).

Proof: We proveOk; (.S) for all ¢ by induction in descending order.
Base casge

We show that there exist$ such thatOk., (S). Pick Prp A 6=

Q’ € &,,. By the property of the ordering, it must be the case that

6" is concrete. Then, becaugeast = C, we haveLeast(Py,)p =




(Least(§) = 6')p~'. So, there exists an interpolasi(P,) =

(Least(Py), (Least(6) = 6')p~') and we havek, (S).

Inductive casg

Let S be such thaOk; (.S) for all j > i (by definition the samé&
can be used for all sucf). We show that there exist$’ such that
Ok;(S").

Pick Pip A6 = 6’ € ®;. Letk > i be the smallest such that
Py, appears if. The following is a tautology.

Least(P)p = (SE(B) A (SE1 (Pip A ) = S(@)) = S(0))

Let P pi A = 6. By induction hypothesis, we ha®&(P;) pi. =
(SEL (Pip A 6y) = S(0")). Therefore, we have

Least(P;)p = (55(9) = S(al))

Let S'(P,) = (Least(P;), (SF(0) = S(6)p~') and S'(P;) =
S(P;) forall j > i. Then,Ok;(S’).
Now suppose no such > i exists. Becausdeast = C,

we haveLeast(P;)p = (Least(0) = Least(6')). By induction

hypothesis, we havéeast (6') = S(6'). Therefore,
Least(P;)p = (Least(6) = S(0'))

And we can sels’(P;) = (Least(P;), (Least(6) = S(6"))p™ ")
andS’(P;) = S(P;) for all j > 4, and getOk;(S’). O

To complete the proof of the theorem, we show thaterp
obtained this way (i.e.Qk1(Interp)) is actually a solution fo€.

LEMMA C.13. SupposeDk1(S). Then, for alli, S |= ¥;.
Proof: We prove by induction ohin ascending order.

[Base cast
For ¢« = 1, the result follows trivially from the definition of
Ok1(9).

Inductive case

Pick P;p A 6 = 6" € ®,. It suffices to show tha$(P;) = S(d =

0)p "
Let k < i be the largesk such thatP appears ind. Let
Pypi A 0, = 0. The following is a tautology.

S(P)p = ((S(B) A (S(Pip Aby) = S()) = S(6))

By induction hypothesis, we also ha¥ P,)pr = (S(Pip A
Gx) = S(8")). Therefore,S(P;) = S(6 = 6')p~*.

Now, suppose no such < ¢ exists. Then, we havs(P;) =
S(6 = 0")p~* by the definition ofOk1 ().

]

Finally, Theorem 5.8 follows from Lemma C.12 and Lemma C.13.



