
A Capability Calculus for Concurrency and

Determinism

TACHIO TERAUCHI

Tohoku University

and

ALEX AIKEN

Stanford University

This paper presents a static system for checking determinism (technically, partial confluence) of
communicating concurrent processes. Our approach automatically detects partial confluence in
programs communicating via a mix of different kinds of communication methods: rendezvous
channels, buffered channels, broadcast channels, and reference cells. Our system reduces the
partial confluence checking problem in polynomial time (in the size of the program) to the problem
of solving a system of rational linear inequalities, and is thus efficient.

Categories and Subject Descriptors: F.3.2 [Semantics of Programming Languages]: Program
analysis; D.3.3 [Language Classifications]: Concurrent programming structures

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Determinism, Capabilities, Type Systems

1. INTRODUCTION

Deterministic programs are easier to debug and verify than non-deterministic pro-
grams, both for testing (or simulation) and for formal methods. However, some-
times programs are written as communicating concurrent processes, for speed or for
ease of programming, and therefore are possibly non-deterministic. In this paper,
we present a system that automatically proves more such programs to be determin-
istic than previous methods [Kahn 1974; König 2000; Edwards and Tardieu 2005],
and can encode linear type systems which can also be used to guarantee determin-
ism [Nestmann and Steffen 1997; Kobayashi et al. 1999]. Our system is able to
handle programs communicating via a mix of different communication methods:
rendezvous channels, output buffered channels, input buffered channels (broadcast
channels), and reference cells. Section 3.2 shows a few examples that can be checked
by our system: producer consumer, token ring, and barrier synchronization.

We cast our system as a capability calculus [Crary et al. 1999]. The capability

This is a revised and extended version of a paper presented at the Concurrency Theory, [17th Inter-
national] Conference, CONCUR 2006 pp.218-232, 2006. This work was supported by KAKENHI
20700019 and 2024001.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0164-0925/20YY/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY, Pages 1–29.

2 · T. Terauchi and A. Aiken

calculus was originally proposed as a framework for reasoning about resources in
sequential computation and inspired a number of such applications [Smith et al.
2000; DeLine and Fähndrich 2001; Foster et al. 2002]. Recently, the framework
has been extended to reason about determinism in concurrent programs [Boyland
2003; Terauchi and Aiken 2005]. A key innovation of these systems is that they
allow concurrent imperative operations. However, these systems only reason about
synchronization at join points, and therefore cannot verify determinism of channel-
communicating processes. This paper extends the capability calculus to reason
about synchronization due to channel communications. The problem of finding a
flow assignment can be reduced in polynomial time (in the size of the program)
to the problem of solving a system of rational linear inequalities, for which many
efficient algorithms, such as the simplex algorithm and interior point methods,
exist. Therefore, in contrast to the more rigid, set-oriented approach taken in the
original capability calculus [Crary et al. 1999], not only are fractional capabilities
more flexible, but also more efficient for automatic inference.

This article is a revised and extended version of a conference paper with the
same title [Terauchi and Aiken 2006]. The main additions are a stronger notion of
determinism which guarantees (among other things) deterministic termination/non-
termination, type inference details including a prototype implementation, the |
operator, compatibility with a weak consistency memory model, and the proofs.

1.1 Utility of Concurrency and Determinism

Concurrency makes programs faster. For example, in the expression (a + b) × (c +
d), a + b and c + d can be computed in parallel, thus overlapping the time to
compute one addition with the other. The importance of concurrency for speed
has increased in recent years as many predict that we will soon reach the limits
of sequential computation, if we have not already [Sutter and Larus 2005]. Also,
concurrency is convenient when program parts must be placed at distant locations,
or when the application can be naturally designed as a union of concurrently running
components, as often is the case in embedded systems [Edwards and Tardieu 2005].
However, concurrency is difficult to get right. For example, the assignments x := 1
and x:=2 may not occur in parallel as x could be either 1 or 2 after the assignments.

In current software practice, a predominant style of concurrency is to express
programs as sets of communicating processes. Each process runs sequentially at
its own speed (i.e., asynchronously1) and communicates with other processes via
shared resources such as channels, locks, and basic reference cells. Many popular
programming models, including message passing and shared memory programming,
are derivatives of this general model. The model is popular partly because of its
resemblance to sequential programming. Usually, few syntactic changes are needed
to extend a sequential language to this concurrent model. Also, the absence of
a global synchronizing clock makes the model ideal for situations requiring the
program parts to be placed at distant locations.

However, writing bug-free programs in this model is notoriously difficult due
to asynchronous accesses to shared resources, which introduce non-determinism.

1We use the term in the sense of asynchronous circuits and systems, and not in the sense of
asynchronous process algebra [Honda and Tokoro 1992; Boudol 1992].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 3

For this reason, some advocate alternatives to this programming model [Lee 2006].
Instead, we believe that it is possible to keep this convenient model of programming
while (mostly) guaranteeing determinism, and we make a step toward this goal in
this paper.

Sometimes, notions such as race freedom and atomicity are used to reason about
possibly misbehaving concurrency. These properties can enforce, for example, that
there is no point in the program where x := 1 and x := 2 could simultaneously
execute. In contrast, determinism is an extensional property that can be stated
purely in terms of program semantics, that is, the program behaves semantically
the same under the same conditions. Neither race freedom nor atomicity implies
determinism, nor vice versa.

Determinism is the norm in sequential programming which dominates the current
software practice. We believe most concurrent programs are also expected to behave
deterministically. This assumption appears to be reasonable not only for non-
interactive applications (i.e., “batch processes”) such as scientific computing, but
also for interactive applications such as web servers because one would expect a
web server, in some state, to behave deterministically given a series of user requests
(which could come from multiple users). At the least, non-determinism is not the
reason for choosing concurrent over sequential computation.

Non-deterministic programs are difficult to debug because one cannot reproduce
the bug by just running the program again from the same initial state. Determinism
also helps formal methods. For example, in model checking, determinism implies
that there is no need to explore more than one (abstract) program path because
following any other paths would lead to an equivalent result [Groote and van de
Pol 2000; Blom and van de Pol 2002].

1.2 Utility of Non-Determinism

It seems rare for a real world application to require true non-determinism in the
sense that a program’s specification requires the program to behave differently
from previous executions in an identical environment. However, harmless non-
determinism sometimes appears as an artifact of programming convenience.

While this paper makes a step toward making provable deterministic concurrency
practical, it may be difficult to completely eliminate non-determinism in reality.
Our analysis is preliminary in that it often prohibits harmless instances of non-
determinism. For example, internal actions of a program that do not affect the
program output are arguably harmless and allowed to be non-deterministic, but
our analysis demands determinism even for such actions. Our analysis does allow
some degree of non-determinism by letting the user specify the communication
channels that could be used for non-deterministic inputs and outputs. We leave as
future work understanding and accommodating a wider variety of harmless non-
deterministic programming idioms.

2. A SIMPLE CONCURRENT LANGUAGE

We focus on the simple concurrent language shown in Figure 1. A program, p, is
a parallel composition of finitely many processes. A process, i.s, is a sequential
statement s prefixed by a process index i. Process indices are used to connect
processes to their input buffers and stores. We drop process indices when it is

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

4 · T. Terauchi and A. Aiken

p ::= i.s (process)
| p1 || p2 (parallel composition)

e ::= c (channel)
| x (local variable)
| n (integer constant)
| e1 op e2 (integer operation)

s ::= s1; s2 (sequence)
| if e then s1 else s2 (branch)
| while e do s (loop)
| skip (skip)
| x := e (assignment)
| !(e1, e2) (write channel)
| ?(e, x) (read channel)

Fig. 1. The syntax of the simple concurrent language.

convenient to do so. A sequential statement consists of the usual imperative features
as well as channel communication operations. Here, !(e1, e2) means writing the
value of e2 to the channel e1, and ?(e, x) means storing the value read from the
channel e to the variable x. The variables are process-local, and so the only means
of communication are channel reads and writes. We use meta-variables x, y, z,
etc. for variables and c, d, etc. for channels.

The language cannot dynamically create channels or spawn new processes, but
these restrictions are imposed only to keep the main presentation to the novel
features of the system. Section 4.3 shows that techniques similar to previous work
in the capability calculus can be used to handle dynamic channels and processes.

2.1 Channel Kinds

The literature on concurrency includes several forms of channels with distinct se-
mantics. We introduce these channel kinds and show how they affect determinism.

If c and d are rendezvous channels, then the following program is deterministic2

because (x, y) = (1, 2) when the process terminates. This is because !(d, 2) waits
for !(c, 1) to complete, which in turn waits for the reader ?(c, x) to be available,
and this is only after the write !(d, 3) is completed, and therefore, the first write
to d is always 3 and the second write to d is always 2.

!(c, 1); !(d, 2) || !(d, 3); ?(c, x) || ?(d, y); ?(d, y)

The same program is non-deterministic if c is output buffered because !(c, 1) does
not need to wait for the reader ?(c, x), and therefore (x, y) could be (1, 2) or (1, 3).

While all the processes share one output buffer per channel, each process has its
own input buffer per channel. Therefore,

!(c, 1); !(c, 2) || ?(c, x) || ?(c, y)

is deterministic if c is input buffered because both read 1 from their input channel,
but not if c is output buffered or rendezvous. Input buffered channels are often
called broadcast channels, and are the basis of Kahn process networks [Kahn 1974].

We also consider a buffered channel whose buffer is overwritten by every write
but never modified by a read. Such a channel is equivalent to a reference cell. If c
is a reference cell, !(c, 1); !(c, 2) || ?(c, x) is not deterministic because !(c, 2) may
or may-not overwrite 1 in the buffer before ?(c, x) reads the buffer. The program

2Here, we use the term informally. Determinism is formally defined in Section 2.2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 5

(S(i), e) ⇓ n n 6= 0

(B, S, i.(if e then s1 else s2); s||p) → (B, S, i.s1; s||p)
IF1

(S(i), e) ⇓ 0

(B, S, i.(if e then s1 else s2); s||p) → (B, S, i.s2; s||p)
IF2

(S(i), e) ⇓ n n 6= 0

(B, S, i.(while e do s1); s||p) → (B, S, i.s1; (while e do s1); s||p)
WHILE1

(S(i), e) ⇓ 0

(B, S, i.(while e do s1); s||p) → (B, S, i.s||p)
WHILE2

(S(i), e) ⇓ e′ S′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.x := e; s||p) → (B, S′, i.s||p)
ASSIGN

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c

¬buffered(c) S′ = S[j 7→ S(j) :: (x, e′2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) → (B, S′, i.s1||j.s2||p)
UNBUF

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c)
B′ = B.write(c, e′2)

(B, S, i.!(e1, e2); s||p) → (B′, S, i.s||p)
BUF1

(S(i), e) ⇓ c buffered(c)
(B′, e′) = B.read(c, i) S′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.?(e, x); s||p) → (B′, S′, i.s||p)
BUF2

Fig. 2. The operational semantics of the simple concurrent language.

is deterministic if c is any other channel kind. On the other hand,

!(c, 1); !(c, 2); !(d, 3); ?(c, x) || ?(d, x); ?(c, y)

is deterministic if c is a reference cell and d is rendezvous because both reads of c
happen after !(c, 2) overwrites the buffer. But the program is not deterministic if
c is output buffered.

2.2 Operational Semantics

The operational semantics of the language is defined as a series of reductions from
states to states. A state is represented by the triple (B, S, p) where B is a buffer,
S is a store.

A store is a mapping from process indices to histories of assignments where a
history is a sequence of pairs (x, e), meaning e was assigned to x. We use meta-
variables h, h′, etc. for histories. Let l :: l′ denote an append of lists l and l′ (l and
l′ can be a singleton list). A lookup in a history is defined as: (h :: (x, e))(x) = e
and (h :: (y, e))(x) = h(x) if y 6= x. We use history instead of memory for the
purpose of defining determinism.

Expressions are evaluated entirely locally. The semantics of expressions are de-
fined as: (h, c) ⇓ c, (h, x) ⇓ h(x), (h, n) ⇓ n, and (h, e1 op e2) ⇓ n if (h, e1) ⇓ n1

and (h, e2) ⇓ n2 and n = n1[[op]]n2 where [[op]] is the standard semantics of the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

6 · T. Terauchi and A. Aiken

B.write(c, e) =

8

>

>

>

>

<

>

>

>

>

:

B[c 7→ enq(B(c), e)] if c is output buffered

B[c 7→ 〈enq(q1, e), . . . , enq(qn, e)〉]

where B(c) = 〈q1, . . . , qn〉
if c is input buffered

B[c 7→ e] if c is a reference cell

B.read(c, i) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(B[c 7→ q′], e)

where B(c) = q and (q′, e) = deq(q)
if c is output buffered

(B[c 7→ 〈q1, . . . , q′i, . . . , qn〉], e)

where B(c) = 〈q1, . . . , qi, . . . , qn〉

(q′i, e) = deq(qi)

if c is input buffered

(B, B(c)) if c is a reference cell

Fig. 3. Buffer operations.

operator op.
Figure 2 shows the reduction rules. The sequential composition operator ; is

associative. Also, we let s = s; skip = skip; s. The parallel composition operator
|| is commutative and associative, e.g., p1 || p2 || p3 = p2 || p3 || p1. Note that
the rules only reduce the left-most processes, and so we rely on process re-ordering
to reduce other processes. We assume that the process indices are disjoint in any
program p. The rules IF1, IF2, WHILE1, and WHILE2 do not involve channel
communication and are self-explanatory. ASSIGN is also a process-local reduction
because variables are local. Here, S[i 7→ h] means {j 7→ S(j) | j 6= i ∧ j ∈
dom(S)} ∪ {i 7→ h}. We use the same notation for other mappings.

UNBUF handles communication over rendezvous channels. The predicate
¬buffered(c) says c is unbuffered (and therefore rendezvous). Note that the written
value e′2 is immediately transmitted to the reader. BUF1 and BUF2 handle com-
munication over buffered channels, which include output buffered channels, input
buffered channels, and reference cells. The predicate buffered(c) says that c is a
buffered channel. We write B.write(c, e′2) for the buffer B after e′2 is written to the
channel c, and B.read(c, i) for the pair (B′, e′) where e′ is the value process i read
from channel c and B′ is the buffer after the read.

Formally, a buffer B is a mapping from channels to buffer contents. If c is a
rendezvous channel, then B(c) = nil indicating that c is not buffered. If c is output
buffered, then B(c) = q where q is a FIFO queue of values. If c is input buffered,
then B(c) = 〈q1, q2, . . . , qn〉, i.e., a sequence of FIFO queues where each qi represents
the buffer content for process i. If c is a reference cell, then B(c) = e for some value
e. Let enq(q, e) be q after e is enqueued. Let deq(q) be the pair (q′, e) where q′ is q
after e is dequeued. Buffer writes and reads are defined as shown in Figure 3. Note
that B.read(c, i) and B.write(c, e) are undefined if c is rendezvous.

We write P →∗ Q for 0 or more reduction steps from P to Q. We define partial
confluence and determinism.

Definition 2.1. Let Y be a set of channels. We say that P is partially confluent
with respect to Y if for any P →∗ P1 communicating only over channels in Y , and
for any P →∗ P2, there exists a state Q such that P2 →∗ Q communicating only
over channels in Y and P1 →∗ Q.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 7

Definition 2.2. Let Y be a set of channels. We say that P is deterministic with
respect to Y if for each process index i, there exists a (possibly infinite) sequence
hi such that for any P →∗ (B, S, p) that communicates only over channels in Y ,

(1) S(i) is a prefix of hi, and

(2) if S(i) is shorter than hi, then there exists (B′, S′, p′) such that (B, S, p) →∗

(B′, S′, p′) communicating only over channels in Y and S′(i) is longer than S(i).

Note that, because of (1), S′(i) is a prefix of hi in (2). Determinism implies that
for any single process, interaction with the rest of the program is deterministic.
Condition (2) also implies that, if some processes deadlock they always deadlock.

Determinism and partial confluence are related in the following way.

Lemma 2.3. If P is partially confluent with respect to Y then P is deterministic

with respect to Y .

We leave the proof of this lemma to the appendix.
The definition of partial confluence is borrowed from [Kobayashi et al. 1999].

Because the operational semantics lacks explicit visible behavior, the definition of
determinism is somewhat different (if superficially) from the standard definitions
used in the literature [Hansen and Valmari 2006; Wang and Kwiatkowska 2006].
However, the definition is sufficient for programs taking inputs or interacting with
an environment. An environment can be modelled by designating a process as
an “observation process” whose store contents can be observed. Behavior of an
environment can be modelled by using operators with unknown (but deterministic)
semantics. Then, determinism implies the determinism of the transition system
modulo the observables and stutter equivalence, that is, there is no ambiguity in
the observation (if the program does not communicate over channels in Y).

Note that if a program taking inputs (in the form of initial configuration or in-
teractively from the environment) is deterministic with respect to Y , then it simply
means that it has a deterministic input to output (in the form of the final result
of the program or interactively as communication to the environment) relationship
when communicating only over channels in Y , i.e., it does not mean that given any
input the program always appears to behave identically.

3. CALCULUS OF CAPABILITIES

We now present a capability calculus for ensuring partial confluence. While capa-
bility calculi are typically presented as a type system in the literature, we take a
different approach and present the capability calculus as a dynamic system. We
then construct a type system to statically reason about the dynamic capability
calculus. This approach allows us to distinguish approximations due to the type
abstraction from approximations inherent in the capability concept. (We have taken
a similar approach in previous work [Terauchi and Aiken 2005].)

We informally describe the general idea. To simplify matters, we begin this initial
discussion with rendezvous channels and total confluence (i.e., confluence over all
channels). Given a program, the goal is to ensure that for each channel c, at most
one process can write c and at most one process can read c at any point in time.
To this end, we introduce capabilities r(c) and w(c) such that a process needs r(c)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

8 · T. Terauchi and A. Aiken

to read from c and w(c) to write to c. Capabilities are distributed to the processes
at the start of the program and are not allowed be duplicated.

Recall the following confluent program from Section 2:

1.!(c, 1); !(d, 2) || 2.!(d, 3); ?(c, x) || 3.?(d, y); ?(d, y)

Note that for both c and d, at most one process can read and at most one process
can write at any point in time. However, because both process 1 and process 2 write
to d, they must somehow share w(d). A novel feature of our capability calculus is
the ability to pass capabilities between processes. The idea is to let capabilities be
passed when the two processes synchronize, i.e., when the processes communicate
over a channel. In our example, we let process 2 have w(d) at the start of the
program. Then, when process 1 and process 2 communicate over c, we pass w(d)
from process 2 to process 1 so that process 1 can write to d.

An important observation is that capability passing works in this example because
!(d, 3) is guaranteed to occur before the communication on c because channel c is
rendezvous. If c is buffered (recall that the program is not confluent in this case),
then !(c, 1) may occur before !(d, 3). Therefore, process 1 cannot obtain w(d) from
process 2 when c is written because process 2 may still need w(d) to write on d.
In general, for a buffered channel, while the read is guaranteed to occur after the
write, there is no ordering dependency in the other direction, i.e., from the read
to the write. Therefore, capabilities can be passed from the writer to the reader
but not vice versa, whereas capabilities can be passed in both directions when
communicating over a rendezvous channel.

Special care is needed for reference cells. If c is a reference cell, the program
1.!(c, 1); !(c, 2)||2.?(c, x) is not deterministic although process 1 is the only writer
and process 2 is the only reader. We use fractional capabilities [Boyland 2003;
Terauchi and Aiken 2005] such that a read capability is a fraction of the write ca-
pability. Capabilities can be split into multiple fractions, which allows concurrent
reads on the same reference cell, but must be re-assembled to form the write capa-
bility. Fractional capabilities can be passed between processes in the same way as
other capabilities. Recall the following confluent program from Section 2 where c
is a reference cell and d is rendezvous:

1.!(c, 1); !(c, 2); !(d, 3); ?(c, x) || 2.?(d, x); ?(c, y)

Process 1 must start with the capability to write c. Because both processes read
from c after communicating over d, we split the capability for c such that one
half of the capability stays in process 1 and the other half is passed to process 2
via d. As a result, both processes obtain the capability to read from c. We have
shown previously that fractional capabilities can be derived in a principled way
from ordering dependencies [Terauchi and Aiken 2005].

We now formally present our capability calculus. Let

Capabilities = {w(c), r(c) | c is rendezvous or output buffered}
∪{w(c) | c is input buffered} ∪ {w(c) | c is a reference cell}

A capability set C is a function from Capabilities to rational numbers in the
range [0, 1]. If c is rendezvous, output buffered, or input buffered, C(w(c)) = 1
(resp. C(r(c)) = 1) means that the capability to write (resp. read) c is in C. Read

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 9

(S(i), e) ⇓ n n 6= 0

(X, B, S, i.C.(if e then s1 else s2); s||p) → (X, B, S, i.C.s1; s||p)
IF1’

(S(i), e) ⇓ 0

(X, B, S, i.C.(if e then s1 else s2); s||p) → (X, B, S, i.C.s2; s||p)
IF2’

(S(i), e) ⇓ n n 6= 0

(X, B, S, i.C.(while e do s1); s||p)
→ (X, B, S, i.C.s1; (while e do s1); s||p)

WHILE1’

(S(i), e) ⇓ 0

(X, B, S, i.C.(while e do s1); s||p) → (X, B, S, i.C.s||p)
WHILE2’

(S(i), e) ⇓ e′ S′ = S[i 7→ S(i) :: (x, e′)]

(X, B, S, i.C.x := e; s||p) → (X, B, S′, i.C.s||p)
ASSIGN’

Fig. 4. The capability calculus: sequential reductions.

capabilities are not needed for input buffered channels because each process has its
own buffer. For reference cells, C(w(c)) = 1 means that the capability to write is in
C, whereas C(w(c)) > 0 means that the capability to read is in C. To summarize,
we define the following predicates:

hasWcap(C, c) ⇔ C(w(c)) = 1

hasRcap(C, c) ⇔

C(r(c)) = 1 if c is rendezvous or output buffered

true if c is input buffered

C(w(c)) > 0 if c is reference cell

To denote capability merging and splitting, we define:

C1 + C2 = {cap 7→ C1(cap) + C2(cap) | cap ∈ Capabilities}

We define C1 − C2 = C3 if C1 = C3 + C2. (We avoid negative capabilities.)
Figure 4 and Figure 5 show the reduction rules of the capability calculus. The

reduction rules (technically, labeled transition rules) are similar to those of the oper-
ational semantics with the following differences. Each concurrent process is prefixed
by a capability set C representing the current capabilities held by the process. The
rules in Figure 4 do not utilize capabilities and therefore are almost identical to
the operational semantics reduction rules. Note that capabilities are not passed
between processes. Figure 5 shows how capabilities are utilized at communication
points. UNBUF′ sends capabilities C from the writer process to the reader process
and sends capabilities C′ from the reader process to the writer process. UNBUF′

checks whether the right capabilities are present by hasWcap(Ci, c)∧hasRcap(Cj , c).
The boolean value ℓ records whether the check succeeds. Because we are interested
in partial confluence with respect to some set Y of channels, we only check the
capabilities if c ∈ Y .

BUF1′ and BUF2′ handle buffered communication. Recall that the writer can
pass capabilities to the reader. BUF1′ takes capabilities C′ from the writer process
and stores them in X . BUF2′ takes capabilities C′ from X and gives them to the
reader process. The mapping X from channels to capability sets maintains the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

10 · T. Terauchi and A. Aiken

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c

¬buffered(c) S′ = S[j 7→ S(j) :: (x, e′2)]
ℓ = (c ∈ Y ⇒ (hasWcap(Ci, c) ∧ hasRcap(Cj , c)))

(X, B, S, i.Ci.!(e1, e2); s1||j.Cj?(e3, x); s2||p)
ℓ
→ (X, B, S′, i.(Ci − C + C′).s1||j.(Cj + C − C′).s2||p)

UNBUF’

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c)
S B′ = B.write(c, e′2)

ℓ = (c ∈ Y ⇒ hasWcap(C, c)) C′ = 0 if c is a reference cell

(X, B, S, i.C.!(e1, e2); s||p)
ℓ
→ (X[c 7→ X(c) + C′], B′, S, i.(C − C′).s||p)

BUF1’

(S(i), e) ⇓ c buffered(c)
(B′, e′) = B.read(c, i) S′ = S[i 7→ S(i) :: (x, e′)]

ℓ = (c ∈ Y ⇒ ¬hasRcap(C, c)) C′ = 0 if c is a reference cell

(X, B, S, i.C.?(e, x); s||p)
ℓ
→ (X[c 7→ X(c) − C′], B′, S′, i.(C + C′).s||p)

BUF2’

Fig. 5. The capability calculus: communication reductions.

capabilities stored in each channel. Due to difficulty in reasoning statically and
compatibility with realistic memory models, our system does not allow passing
capabilities through reference cells (see Section 4.2 for the details).

We now formally state when our capability calculus guarantees partial confluence.
Let erase(X, B, S, i1.C1.s1|| . . . ||in.Cn.sn) = (B, S, i1.s1|| . . . ||in.sn), i.e., erase()
erases all capability information from the state. We use meta-variables P , Q, R,
etc. for states in the operational semantics and underlined meta-variables P , Q, R,
etc. for states in the capability calculus.

A well-formed state is a state in the capability calculus that does not carry
duplicated capabilities. More formally,

Definition 3.1. Let P = (X, B, S, i1.C1.s1|| . . . ||in.Cn.sn). Let C =
∑n

i=1 Ci +
∑

c∈dom(X) X(c). We say P is well-formed if for all cap ∈ dom(C), C(cap) = 1.

We define capability-respecting states. Informally, P is capability respecting with
respect to a set of channels Y if for any sequence of reductions from erase(P),
there exists a strategy to pass capabilities between the processes such that every
communication over the channels in Y occurs under the appropriate capabilities.
More formally,

Definition 3.2. Let Y be a set of channels and M be a set of states in the
capability calculus. M is said to be capability-respecting with respect to Y if for
any P ∈ M ,

—P is well-formed, and

—for any state Q such that erase(P) → Q, there exists Q ∈ M such that,

erase(Q) = Q, P
ℓ
→ Q, and if ℓ is not empty then ℓ = true.

We now state the main claim of this section.

Theorem 3.3. Let P be a state. Suppose there exists M such that M is

capability-respecting with respect to Y and there exists P ∈ M such that erase(P) =

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 11

P . Then P is partially confluent with respect to Y .

The theorem is a straightforward application of the following lemma.

Lemma 3.4. Let P be a state. Suppose there exists M such that M is capability-

respecting with respect to Y and there exists P ∈ M such that erase(P) = P .

Suppose P → P1 communicating only over channels in Y and P → P2. Then

either P1 = P2 or there exists Q such that P2 → Q communicating only over

channels in Y and P1 → Q.

We leave the proof of this lemma to the appendix. We now prove Theorem 3.3.

Proof. Note that for any P ∈ M , if erase(P) →∗ Q then there exists Q ∈ M
such that erase(Q) = Q. Therefore, the proof is a standard proof by induction
using Lemma 3.4.

3.1 Static Checking of Capabilities

Theorem 3.3 tells us that to ensure that P is partially confluent, it is sufficient
to find a capability-respecting set containing some P such that erase(P) = P . 3

Ideally, we would like to use the largest capability-respecting set, but such a set is
not recursive (because it is reducible from the halting problem). Instead, we use a
type system to compute a safe approximation of the set.

We define four kinds of channel types, one for each channel kind.

τ ::= ch(ρ, τ, Ψ1, Ψ2) (rendezvous)
| ch(ρ, τ, Ψ) (output buffered)
| ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) (input buffered)
| ch(ρ, τ) (reference cell)
| int (integers)

Meta-variables ρ, ρ′, etc. are channel handles. Let Handles be the set of channel
handles. Let StaticCapabilities = {w(ρ), r(ρ) | ρ ∈ Handles}. Meta-variables
Ψ, Ψ′, etc. are mappings from some subset of StaticCapabilities to [0, 1]. We call
such a mapping a static capability set. If cap /∈ dom(Ψ), then we let Ψ(cap) = 0
for all cap ∈ StaticCapabilities. The rendezvous channel type can be read as
follows: the channel communicates values of type τ , any writer of the channel
sends capabilities Ψ1, and any reader of the channel sends capabilities Ψ2. For an
output buffered channel, because readers cannot send capabilities, only one static
capability set, Ψ, is present in its type. For an input buffered channel, the sequence
〈Ψ1, . . . , Ψn〉 lists capabilities such that each process i gets Ψi from a read. Recall
that our capability calculus does not allow passing of capabilities via reference cells.
Therefore, a reference cell type does not carry any static capability set.

Addition and subtraction of static capabilities is analogous to those of (actual)
capabilities:

Ψ1 + Ψ2 = {cap 7→ Ψ1(cap) + Ψ2(cap) | cap ∈ dom Ψ1 ∪ dom Ψ2}
Ψ1 − Ψ2 = Ψ3 if Ψ1 = Ψ3 + Ψ2

3It is not a necessary condition, however. For example, !(c, 1)||!(c, 1)||?(c, x)||?(c, x) is confluent
but does not satisfy the condition.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

12 · T. Terauchi and A. Aiken

We say Ψ1 ≥ Ψ2 if there exists Ψ3 such that Ψ1 = Ψ2 + Ψ3.
For channel type τ , hdl(τ) is the handle of the channel, and valtype(τ) is the type

of the communicated value. That is, hdl(ch(ρ, . . .)) = ρ and valtype(ch(ρ, τ, . . .)) =
τ . Also, writeSend(τ) (resp. readSend(τ)) is the set of capabilities sent by a writer
(resp. reader) of the channel. More formally,

writeSend(ch(ρ, τ, Ψ1, Ψ2)) = Ψ1

writeSend(ch(ρ, τ, Ψ)) = Ψ
writeSend(ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)) =

∑n
i=1 Ψi

writeSend(ch(ρ, τ)) = 0

readSend(τ) =

{

Ψ2 if τ = ch(ρ, τ ′, Ψ1, Ψ2)

0 otherwise

(0 is equivalent to the constant zero function λx.0, i.e., 0 (cap) = 0 for all
cap ∈ Capabilities.) Similarly, writeRecv(τ) (resp. readRecv(τ, i)) is the set of
capabilities received by the writer (resp. the reader process i):

writeRecv(τ) = readSend(τ)

readRecv(τ, i) =

{

Ψi if τ = ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)

writeSend(τ) otherwise

Note that the writer of the input buffered channel ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) must be
able to send the sum of all capabilities to be received by each process (i.e.,

∑n
i=1 Ψi),

whereas the reader receives only its own share (i.e., Ψi).
For channel type τ , hasWcap(Ψ, τ) and hasRcap(Ψ, τ) are the static analog of

hasWcap(C, c) and hasRcap(C, c). More formally,

hasWcap(Ψ, τ) ⇔ Ψ(w(hdl(τ))) = 1

hasRcap(Ψ, τ) ⇔

Ψ(r(hdl(τ))) = 1 if τ is rendezvous or output buffered

true if τ is input buffered

Ψ(w(hdl(τ))) > 0 if τ is reference cell

A type environment Γ is a mapping from channels and variables to types such
that for each channel c and d,

—the channel type kind of Γ(c) coincides with the channel kind of c, and

—if c 6= d then hdl(Γ(c)) 6= hdl(Γ(d)), i.e., each handle ρ uniquely identifies a
channel. (Section 4.3 discusses a way to relax this restriction.)

We sometimes write Γ[c] to mean hdl(Γ(c)). Expressions are type-checked as follows:

Γ ⊢ c : Γ(c) Γ ⊢ x : Γ(x) Γ ⊢ n : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 op e2 : int

Figure 6 shows the type checking rules for statements. The judgements are of the
form Γ, i, Ψ ⊢ s : Ψ′ where i is the index of the process that s appears in, Ψ the
capabilities before s, and Ψ′ the capabilities after s. SEQ, IF, WHILE, SKIP,
and ASSIGN are self-explanatory. WRITE handles channel writes and READ

handles channel reads. Here, confch(τ, Γ) is defined as:

confch(τ, Γ) ⇔ ∃c.(Γ[c] = hdl(τ) ∧ c ∈ Y)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 13

Γ, i, Ψ ⊢ s1 : Ψ1 Γ, i, Ψ1 ⊢ s2 : Ψ2

Γ, i, Ψ ⊢ s1; s2 : Ψ2
SEQ

Γ ⊢ e : int Γ, i,Ψ ⊢ s1 : Ψ1 Γ, i,Ψ ⊢ s2 : Ψ2 Ψ1 ≥ Ψ3 Ψ2 ≥ Ψ3

Γ, i, Ψ ⊢ if e then s1 else s2 : Ψ3
IF

Γ ⊢ e : int Γ, i,Ψ1 ⊢ s : Ψ2 Ψ2 ≥ Ψ1 Ψ ≥ Ψ1

Γ, i, Ψ ⊢ while e do s : Ψ1
WHILE

Γ, i,Ψ ⊢ skip : Ψ
SKIP

Γ ⊢ e : Γ(x)

Γ, i,Ψ ⊢ x := e : Ψ
ASSIGN

Γ ⊢ e1 : τ Γ ⊢ e2 : valtype(τ) confch(τ, Γ) ⇒ hasWcap(Ψ, τ)

Γ, i, Ψ ⊢ !(e1, e2) : Ψ − writeSend(τ) + writeRecv(τ)
WRITE

Γ ⊢ e : τ Γ(x) = valtype(τ) confch(τ, Γ) ⇒ hasRcap(Ψ, τ)

Γ, i,Ψ ⊢ ?(e, x) : Ψ − readSend(τ) + readRecv(τ, i)
READ

Fig. 6. Type checking rules.

We write Γ ⊢ B(c) if the buffer B(c) is well-typed, i.e., Γ ⊢ e : valtype(Γ(c)) for
each value e stored in the buffer B(c). We write Γ ⊢ h if the history h is well-typed,
i.e, Γ ⊢ h(x) : Γ(x) for each x ∈ dom(h). We write Γ ⊢ C : Ψ if Ψ represents C,
i.e., for each w(c) ∈ dom(C), Ψ(w(Γ[c])) = C(w(c)) and for each r(c) ∈ dom(C),
Ψ(r(Γ[c])) = C(r(c)).

An environment for P consists of a type environment Γ for typing the channels
and variables, the starting static capability Ψi for each process i, and the mapping
W from handles to static capabilities representing X . Because variables are process
local, without the loss of generality, we assume that each process uses a disjoint set
of variables.

Definition 3.5. Let P = (X, B, S, i1.C1.s1|| . . . ||in.Cn.sn). We write (Γ, Ψ1, . . . , Ψn, W)P
if

(1) For each c, Γ ⊢ B(c).

(2) For each i, Γ ⊢ S(i), Γ ⊢ Ci : Ψi, and Γ, i, Ψi ⊢ si : Ψ′

i for some Ψ′

i.

(3) For each c, Γ ⊢ X(c) : W (Γ[c]), i.e., W is a static representation of X .

(4) Let Ψtotal =
∑n

i=1 Ψi +
∑

ρ∈dom(W) W (ρ). Then for each cap ∈ dom(Ψtotal),

Ψtotal(cap) = 1, i.e., there are no duplicated capabilities.

(5) For all output buffered channels c, W (Γ[c]) = |B(c)| ×writeSend(Γ(c)). For all
input buffered channels c, W (Γ[c]) =

∑n

i=1 |B(c).i| × readRecv(Γ(c), i).

In the last condition, |B(c)| denotes the length of the queue B(c), and |B(c).i|
denotes the length of the queue for process i (for input buffered channels). The
condition ensures that there are enough capabilities in X for buffered reads. We
now state the main claim of this section.

Theorem 3.6. Let M = {P | ∃Env .Env ⊢ P}. Then M is capability-respecting

with respect to Y .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

14 · T. Terauchi and A. Aiken

We leave the proof of this theorem to the appendix. The theorem is a kind of a
progress theorem, that is, reducing a well-typed state (i.e., a state in M) results
in a well-typed state. In addition, we need to show that the reduction happens
under the appropriate capabilities to show that the state is capability-respecting.
Theorem 3.6 together with Theorem 3.3 implies that to check if P is confluent, it
suffices to find a well-typed P such that P = erase(P). More formally,

Corollary 3.7. P is partially-confluent and deterministic with respect to Y if

there exists P and Env such that P = erase(P) and Env ⊢ P .

Note that while the theorem implies that the static capability calculus is sound for
the dynamic capability calculus, it is not complete. An instance of incompleteness
is flow-insensitivity of capability-passing discussed in Section 3.2. In general, the
problem whether P is (dynamically) capability respecting with respect to Y is
undecidable and so any decidable static system is necessarily incomplete.

3.2 Examples

Producer-Consumer:. Let c be an output buffered channel. The following program
is a simple but common communication pattern of sender and receiver processes
being fixed for each channel; no capabilities need to be passed between processes.

1.while 1 do !(c, 1) || 2.while 1 do ?(c, x)

The type system can prove confluence by assigning the starting capabilities
0 [w(ρ) 7→ 1] to process 1 and 0 [r(ρ) 7→ 1] to process 2 where c : ch(ρ, int, 0).

Token Ring:. Let c1, c2, c3 be rendezvous and d be output buffered. The program
below models a token ring where processes 1, 2, and 3 take turns writing to d:

1.while 1 do (?(c3, x); !(d, 1); !(c1, 0))
|| 2.while 1 do (?(c1, x); !(d, 2); !(c2, 0))
|| 3.!(c3, 0); while 1 do (?(c2, x); !(d, 3); !(c3, 0))
|| 4.while 1 do ?(d, y)

Recall that variables x and y are process local. The type system can prove
confluence by assigning the channel d the type ch(ρd, int, 0) and each ci the
type ch(ρci

, int, 0 [w(ρd) 7→ 1], 0), which says that a write to ci sends w(d) to the
reader. The starting capabilities are 0 [r(ρc3

) 7→ 1, w(ρc1
) 7→ 1] for process 1,

0 [r(ρc1
) 7→ 1, w(ρc2

) 7→ 1] for process 2, 0 [r(ρc2
) 7→ 1, w(ρc3

) 7→ 1, w(ρd) 7→ 1] for
process 3, and 0 [r(ρd) 7→ 1] for process 4.

Barrier Synchronization:. Let c1, c2, c3 be reference cells. Let d1, d2, d3, d′1, d′2,
d′3 be input buffered channels. Consider the following program:

1.while 1 do (!(c1, e1); !(d1, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′1, 0);BR′)
|| 2.while 1 do (!(c2, e2); !(d2, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′2, 0);BR′)
|| 3.while 1 do (!(c3, e3); !(d3, 0);BR; ?(c1, y); ?(c2, z); ?(c3, w); !(d′3, 0);BR′)

Here, BR = ?(d1, x); ?(d2, x); ?(d3, x) and BR′ = ?(d′1, x); ?(d′2, x); ?(d′3, x). The
program is an example of barrier-style synchronization. Process 1 writes to c1,
process 2 writes to c2, process 3 writes to c3, and then the three processes synchro-
nize via a barrier so that none of the processes can proceed until all are done with

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 15

their writes. Note that !(di, 0);BR models the barrier for each process i. After
the barrier synchronization, each process reads from all three reference cells before
synchronizing themselves via another barrier, this time modelled by !(d′i, 0);BR′,
before the next iteration of the loop.

The type system can prove confluence by assigning the following types (assume
e1, e2, and e3 are of type int): c1 : ch(ρc1, int), c2 : ch(ρc2, int), c3 : ch(ρc3, int), and
for each i ∈ {1, 2, 3},

di : ch(ρdi
, int, 〈0 [w(ρci

) 7→ 1
3], 0 [w(ρci

) 7→ 1
3], 0 [w(ρci

) 7→ 1
3]〉)

d′i : ch(ρd′

i
, int, 〈0 [w(ρc1

) 7→ 1
3], 0 [w(ρc2

) 7→ 1
3], 0 [w(ρc3

) 7→ 1
3]〉)

The initial static capability set for each process i is 0 [w(ρci
) 7→ 1, w(ρdi

) 7→
1, w(ρd′

i
) 7→ 1]. Note that fractional capabilities are passed at barrier synchro-

nization points to enable reads and writes on c1, c2, and c3.
Type inference fails if the program is changed so that d1, d2, d3 are also used for

the second barrier (in place of d′1, d
′

2, d
′

3) because while the first write to di must
send the capability to read ci, the second write to di must send to each process
j the capability to access cj , and there is no single type for di to express this
behavior. This demonstrates the flow-insensitivity limitation of our type system,
i.e., a channel must send and receive the same capabilities every time it is used.
The modified program is still (dynamically) capability respecting because there is
no such limitation to the dynamic capability system.

However, if synchronization points are syntactically identifiable (as in this exam-
ple) then the program is easily modified so that flow-insensitivity becomes sufficient
by using distinct channels at each syntactic synchronization point.4 In our example,
the first barrier in each process matches the other, and the second barrier in each
process matches the other. Synchronizations that are not syntactically identifiable
are often considered as a sign of potential bugs [Aiken and Gay 1998]. Note that
reference cells c1 and c2 are not used for synchronization and therefore need no
syntactic restriction.

4. DISCUSSION

4.1 Type Inference

The problem of finding P and Env such that P = erase(P) and Env ⊢ P can be
translated to the problem of solving a system of rational linear inequalities. The
translation is divided into two phases. In the first phase, we look for a valid type
derivation while ignoring static capabilities. More formally, we look for P ′ and
Env′ such that P = erase(P ′) and Env′ ⊢ P ′ by assuming ∀Ψ, τ.hasWcap(Ψ, τ) =
hasRcap(Ψ, τ) = true. This is a simple type inference problem that can be solved,
for example, by a standard union-find based approach. (Note that it suffices to
let each Ψ = 0 and each C = 0 .) That is, we instantiate types appearing during
the type derivation by type variables α’s, and try to find a satisfying assignment
that satisfies the set of constraints of the form α = ch(ρ, σ, . . .) and α = int where
the type language σ is defined as σ ::= α | int | ch(ρ, σ, . . .). If the constraints

4This can be done without changing the implementation. See named barriers in [Aiken and Gay
1998].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

16 · T. Terauchi and A. Aiken

cannot be satisfied at this phase, it indicates that P fails to satisfy a basic type
safety property (e.g., trying to use an integer typed value as a channel) or contains
channel handle aliases (see Section 4.3 for extensions to resolve this issue).

In the second phase, we use the channel handles computed in the first phase
to complete the typing. More formally, we look for P and Env such that
P = erase(P), Env ⊢ P , and ∀c.Γ[c] = Γ′[c] where Env = (Γ, Ψ1, . . . , Ψn, W) and
Env’ = (Γ′, Ψ′

1, . . . , Ψ
′

n, W ′). Because every hdl(τ) appearing in the type derivation
is known, the problem can be solved by finding a satisfying assignments (for Ψ’s)
for the constraints of the form

∑

Ψ ≥
∑

Ψ′, Ψ(ρ) = 1, and Ψ(ρ) > 0. (The latter
two forms are induced by hasWcap(Ψ, τ) and hasRcap(Ψ, τ).) Let ρ1, . . . , ρn be the
channel handles appearing in Γ′. We represent each Ψ as a mapping from ρ1, . . . , ρn

to n fresh rational number variables q1, . . . qn such that Ψ(ρi) = qi. Then, a capabil-
ity constraint

∑

Ψ ≥
∑

Ψ′ can be represented by n rational inequality constraints
∑

q1 ≥
∑

q′1, . . . ,
∑

qn ≥
∑

q′n. Similarly, Ψ(ρ) = 1 becomes a constraint of the
form q = 1 where Ψ(ρ) = q, and Ψ(ρ) > 0 becomes a constraint of the form q > 0
where Ψ(ρ) = q. Because the range of a static capability is [0, 1], we also assert
1 ≥ q ≥ 0 for each q. These rational inequality constraints can be generated in
time polynomial in the size of P (in contrast to the number of states of P , which
is often exponential or worse in the size of P for software programs), which can
then be solved efficiently by linear programming algorithms, such as the simplex
algorithm and interior point methods. Note the importance of being able to use
rational numbers not just for reference cells but for all channel kinds, which allows
us to reduce the problem into a system of rational linear inequalities instead of, say,
a harder problem like integer programming. In fact, it is possible to show that the
type inference problem is NP-hard if we restrict capabilities to just integers instead
of rationals [Kobayashi 2007].

Theorem 4.1. Suppose the type system is altered such that for any capability

set Ψ appearing in the type derivation, Ψ(ρ) ∈ {0, 1} for all ρ. Then the set

{P | ∃.Env , P .Env ⊢ P ∧ P = erase(P)} is NP-hard.

This two phased approach is similar to the type inference algorithm in our pre-
vious work [Terauchi and Aiken 2005], only simpler thanks to the absence of multi-
plication (which can actually be eliminated in quadratic time due to the structure
of the constraints generated and thus is not a significant problem).

Megacz has implemented a prototype of the type inference algorithm [Megacz
2006] for the purpose of verifying determinism of FLEET programs. FLEET is
an experimental computer architecture with a high degree of asynchronous concur-
rency [Coates et al. 2001]. The prototype implementation was also able to check
all of the examples used in the paper.

4.2 Memory Model Issues

Both the operational semantics (Section 2.2) and the dynamic capability calculus
(Section 3) use the strict consistency memory model where every operation on the
buffer is serialized. While we do not give a formal proof, our system works even
with a weak consistency memory model for reference cells. Weak consistency allows
non-synchronizing operations to be unserialized, and therefore is often considered
more efficient than strict consistency for distributed computer architectures. Our

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 17

system does not consider a reference cell access to be a synchronizing operation
(and thus does not allow capability passing via reference cells). And therefore, our
system does not require strict consistency for reference cells. Here is the intuitive
justification: the only issue is when one process, say i, writes to a reference cell
while another process, say j, tries to read from it. But then the process i must have
capability = 1 for the reference cell, and so the the process j cannot read it because
it does not have the read capability. Therefore, the fact that capabilities can only
be passed via synchronizing communication is enough to guarantee soundness even
if reference cells are only weakly consistent.

As in the standard implementation of a weak consistency memory model, refer-
ence writes can be carried out locally such that changes are not necessarily broad-
cast before the next synchronization operation. In fact, the inferred capability sets
from the type system give a conservative approximation of which writes must be
broadcast by the time next synchronizing operation happens. Such information
may prove useful to reducing the communication cost in weak consistency memory
model implementations.

Note that our system is of course sound even with a strict memory model that
could synchronize all reference cell operations. Indeed, the conference paper [Ter-
auchi and Aiken 2006] uses such a dynamic system.

4.3 Extensions

We discuss extensions to our system which include coping with aliasing, encoding
linear types, and handling dynamic channel and process creation.

Regions. Aliasing becomes an issue when channels are used as values, e.g., as in
a π-calculus program (indeed, π-calculus is so minimalistic that it requires channel
passing to express even the most basic programming idioms such as reference cells
and integers), though fortunately, this seems rare in applications such as FLEET
programs [Coates et al. 2001] and embedded systems [Edwards and Tardieu 2005].
For example, our type system does not allow two different channels c and d to
be passed to the same channel because two different channels cannot be given the
same handle. One way to resolve aliasing is to use regions so that each ρ represents
a set of channels. Then, we may give both c and d the same type ch(ρ, . . .) at
the cost of sharing w(ρ) (and r(ρ)) for all the channels in the region ρ. There
are two approaches to regions. One is to use a conservative may-alias analysis to
automatically infer regions. Another approach is to let the programmer explicitly
manage regions. The former may be more convenient, but the latter may give more
control to the programmer when combined with expressive quantified and recursive
types [Crary et al. 1999; Walker and Morrisett 2000]

Existential Abstraction and Linear Types. Another way to resolve aliasing is to
existentially abstract capabilities as ∃ρ.τ ⊗Ψ. Existentially packing a capability set
results in subtracting the capabilities from the capabilities of the process packing
them. The capabilities are recovered by opening the existential package, i.e., the
packed capabilities are added to the capabilities of the process that opens them.

Existential types are equivalent up to renaming of bound channel handles,
i.e., ∃ρ.τ ⊗ Ψ = ∃ρ′.τ [ρ′/ρ] ⊗ Ψ[ρ′/ρ] when ρ′ /∈ freehandles(∃ρ.τ ⊗ Ψ) where
freehandles(τ) is the set of free channel handles of τ . Following our previous

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

18 · T. Terauchi and A. Aiken

work [Terauchi and Aiken 2005], any type containing a capability set must be
handled carefully to prevent the duplication of capabilities. Therefore, we extend
the addition relation we used for capabilities to types as shown below.

∃ρ.τ1 ⊗ Ψ1 + ∃ρ.τ2 ⊗ Ψ2 = ∃ρ.(τ1 + τ2) ⊗ (Ψ1 + Ψ2)

τ = int
τ + τ = τ

τ = ch(ρ, τ ′, Ψ1, Ψ2)

τ + τ = τ

τ = ch(ρ, τ ′, Ψ)

τ + τ = τ

τ + τ ′ = τ

ch(ρ, τ) + ch(ρ, τ ′) = ch(ρ, τ)

τ + τ ′ = τ

ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) + ch(ρ, τ ′, 〈Ψ1, . . . , Ψn〉) = ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)

τ1 + τ2 is undefined otherwise.
We can encode a linearly typed channel [Nestmann and Steffen 1997; Kobayashi

et al. 1999] as: ĉh(τ) = ∃ρ.ch(ρ, τ, 0 , 0) ⊗ 0 [w(ρ) 7→ 1, r(ρ) 7→ 1] (for ren-
dezvous channels). Note that the type encapsulates both the channel and the
capability to access the channel. This reduces the aliasing problem because
all linear (rendezvous) channels communicating a value of the type τ can be

given that same type ĉh(τ). If necessary, we can split the type into the reader

type ?ĉh(τ) = ∃ρ.ch(ρ, τ, 0 , 0) ⊗ 0 [r(ρ) 7→ 1] and the writer type !ĉh(τ) =
∃ρ.ch(ρ, τ, 0 , 0) ⊗ 0 [w(ρ) 7→ 1]. Note that the reader type and the writer type

add up to the linear channel type, i.e., ĉh(τ) = ?ĉh(τ) + !ĉh(τ). Furthermore, this
encoding allows transitions to and from linearly typed channels to the capabilities
world, e.g., it is possible to use a linearly-typed channel multiple times. An analo-
gous approach has been applied to express updatable recursive data structures in
the capability calculus [Walker and Morrisett 2000].

Dynamically Created Channels. Dynamically created channels can be handled
in much the same way heap allocated objects are handled in the capability calcu-
lus [Crary et al. 1999] (we only show the rule for the case where c is rendezvous).
We borrow the syntax from π-calculus: νc.s creates a new channel named c, and
then executes s.

ρ /∈ freehandles(Ψ) ∪ freehandles(Ψ′) ∪ freehandles(Γ)
Γ, c : ch(ρ, τ, Ψ1, Ψ2), i, Ψ + 0 [w(ρ) 7→ 1][r(ρ) 7→ 1] ⊢ s : Ψ′

Γ, i, Ψ ⊢ νc.s : Ψ′

where freehandles(Γ) =
⋃

τ∈ran(Γ) freehandles(τ). Existential abstraction allows
dynamically created channels to leave their lexical scope. An alternative approach
is to place the newly created channel in an existing region. In this case, we can
remove the hypothesis ρ /∈ freehandles(Ψ)∪ freehandles(Ψ′)∪ freehandles(Γ) but we
also must remove the capabilities 0 [w(ρ) 7→ 1][r(ρ) 7→ 1].

Dynamically Spawned Processes. Dynamic spawning of processes can be typed
as follows. (For simplicity, we assume that the local store of the parent process is

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 19

copied for the spawned process.)

Γ, m, Ψ2 ⊢ s : Ψ′ m /∈ {1, . . . , n}

Γ, i, Ψ1 + Ψ2 ⊢ spawn(s) : Ψ1

where n is the number of static (i.e., not dynamically spawned) processes. We
update readRecv(τ, i) as follows.

readRecv(τ, i) =

Ψi if τ = ch(ρ, τ, 〈Ψ1, . . . , Ψn〉)

0 if τ = ch(ρ, τ, 〈Ψ1, . . . , Ψn〉) ∧ i /∈ {1, . . . , n}

writeSend(τ) otherwise

Note that the premise m /∈ {1, . . . , n} in the type rule is sufficient because
readRecv(τ, i) = 0 for any i /∈ {1, . . . , n}.

Note that the spawned process may take capabilities from the parent process.
We can also express the classical | operator which combines process spawning

and process joining such that s; (s1|s2); s
′ means do s, then do s1 and s2 in parallel,

then do s′.

Γ, m, Ψ1 ⊢ s1 : Ψ′

1 Γ, i, Ψ2 ⊢ s2 : Ψ′

2 m /∈ {1, . . . , n}

Γ, i, Ψ1 + Ψ2 ⊢ s1|s2 : Ψ′

1 + Ψ′

2

Again, we assume that the local store of the parent process is copied for the spawned
processes.

With dynamic channel creation, it is possible to model | with spawn() and se-
quential composition.

s1|s2 = νc.spawn(s1; !(c, 0)); s2; ?(c, x)

where x is a variable that does not appear anywhere else in the program. Note
that the type derivation with this encoding matches the type rule for |. (Below,
Γ′ = Γ, c : ch(ρ, int, Ψ′

1, 0)).

Γ′, i, Ψ1 + Ψ2 + 0 [w(ρ) 7→ 1][r(ρ) 7→ 1] ⊢ spawn(s1; !(c, 0)) : Ψ2 + 0 [r(ρ) 7→ 1]
Γ′, i, Ψ2 + 0 [r(ρ) 7→ 1] ⊢ s2; ?(c, x) : Ψ′

1 + Ψ′

2 m /∈ {1, . . . , n}

Γ′, i, Ψ1 + Ψ2 ⊢ spawn(s1; !(c, 0)); s2; ?(c, x) : Ψ′

1 + Ψ′

2

Γ, i, Ψ1 + Ψ2 ⊢ νc.spawn(s1; !(c, 0)); s2; ?(c, x) : Ψ′

1 + Ψ′

2

where Γ, m, Ψ1 ⊢ s1 : Ψ′

1 for m /∈ {1, . . . , n} and Γ, i, Ψ2 ⊢ s2 : Ψ′

2.

4.4 Limitations

We discuss some limitations of our work. As mentioned in Section 4.1, the dynamic
capability calculus is undecidable5, and so any sound static approximation for the
dynamic capability calculus would be incomplete.

One source of incompleteness is the flow-insensitivity of capability passing men-
tioned Section 3.2. Precisely, this means that a channel can only be used to transmit
the same capabilities regardless of when the communication happens. In practice,

5This is easy to see via a reduction from the halting problem, e.g., for an arbitrary sequence code
s that does not contain c, 1.s; !(c, 1) || 2.!(c, 2) is capability respecting with respect to c iff s does
not halt.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

20 · T. Terauchi and A. Aiken

this implies that a channel used to synchronize processes sharing resource in one
way cannot be used to synchronize them in another way. For instance, if an output
buffered channel is used to allow a certain shared resource used by process 1 to
be used by process 2 temporarily, then the same output buffered channel cannot
be used by process 2 to give the capability to access the resource to some other
process.

Other sources of incompleteness are quite standard for a typical (non-dependent)
type-based analysis, e.g., our analysis is insensitive to branch conditions (and results
of arithmetic expressions in general), and, so for example,

1.if 0 then !(c, 0) else skip || 2.!(c, 1)

would be reported to be non-deterministic.
Another source of incompleteness is due to the incompleteness of the dynamic

capability calculus relative to partial confluence. For example, even the dynamic
capability calculus is insensitive to the integer values sent across a channel, and
so 1.!(c, 0) || 2.!(c, 0) where c is a buffered channel is not capability respecting
with respect to c even though it is partially confluent with respect to c. Also, the
capability calculus cannot reason about any determinism relying on commutativity
of arithmetic operations.

Finally, the criteria that every aspect of the program must be deterministic may
be too strict for some real world applications.

We do not currently have the experience with realistic applications that would
allow us to judge how serious these limitations are in practice. Assuming some or
all of these issues needed to be addressed, We believe that it should be possible to
combine our analysis with more powerful (and perhaps more expensive) techniques
such as state exploration based analyses, and relax the capability requirements to
allow some degree of non-determinism when it is harmless.

5. RELATED WORK

We discuss previous approaches to checking and inferring determinism of commu-
nicating concurrent processes. Kahn process networks [Kahn 1974] restrict com-
munication to input buffered channels with a unique sender process to guarantee
determinism. Edwards et al. [Edwards and Tardieu 2005] restricts communication
to rendezvous channels with a unique sender process and a unique receiver process
to model deterministic behavior of embedded systems. These models are the easy
cases for our system where capabilities are not passed between processes.

Linear type systems can infer partial confluence by checking that each channel is
used at most once [Nestmann and Steffen 1997; Kobayashi et al. 1999]. Section 4.3
discusses how to express linearly typed channels in our system. A fundamental
difference between these “one-use-per-channel” approaches and our approach is
that our system allows a channel to be used multiple times, just that at any point
in time, only one process can write to it (and read from it, for a rendezvous or
output buffered channel).

König presents a type system that can be parameterized to check partial
confluence of π-calculus programs [König 2000]. König’s system corresponds
to the restricted case of our system where each (rendezvous) channel is given
a type of the form ch(ρ, τ, 0 [w(ρ) 7→ 1], 0 [r(ρ) 7→ 1]), i.e., each channel must

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 21

send its own write capability at writes and must send its own read capa-
bility at reads. Therefore, for example, while their system can check the
confluence of !(c, 1); ?(c, x)||?(c, x); !(c, 2), it cannot check the confluence of
!(c, 1); !(c, 2)||?(c, x); ?(c, x).

The literature on process algebra has popularized the asynchronous π-calculus [Boudol
1992; Honda and Tokoro 1992], which is often studied in close conjunction with lin-
ear type systems [Kobayashi et al. 1999; Yoshida et al. 2004]. Here, the term
asynchronous is different from the notion we have been using in this paper. (The
processes in vanilla π-calculus are asynchronous in the sense of asynchronous circuits
and systems because they do not run in lock step.) Essentially, the asynchronous
π-calculus is π-calculus with the following restriction: a write to a channel cannot
be sequentially followed by an action (i.e., !(e, e′); s is not allowed). Because the
asynchronous π-calculus is a subset of the (full) π-calculus, and our system can
handle the fragment of π-calculus without the non-deterministic choice (+) opera-
tor, the fragment of the asynchronous π-calculus without + can be handled by our
system. In fact, our system is quite powerful even in this restricted setting. For
example, our approach can check that the following program is confluent.

!(c, 1)||?(d, x); !(c, 2)||?(c, y); (!(d, 0)|?(c, y))

More exhaustive approaches for checking determinism and confluence have been
proposed in which the determinism and confluence are checked by explicitly ex-
ploring the program states [Groote and van de Pol 2000; Blom and van de Pol
2002; Hansen and Valmari 2006]. These approaches are precise, and are language
independent and thus potentially work with any model of concurrent computation.
However, an issue with these approaches is that their worst-case running time is at
least linear in the number of run-time states of the program, which can be much
larger than the size of the program (indeed, it is common for a software program
to have a super-exponential number of states), whereas our algorithm can run in
time polynomial in the size of the program. Recently, a compositional approach
has been proposed which may alleviate the problem [Wang and Kwiatkowska 2006].
Also, these methods have a somewhat different aim from our work because they are
designed specifically to drive state space reduction instead of just checking deter-
minism, i.e., in some sense, the price for exhaustive state space exploration is paid
by state space reduction.

This work was motivated by our previous work on inferring confluence of func-
tional languages with global mutable states [Terauchi and Aiken 2005] (see also
[Boyland 2003]). These systems can only reason about synchronization at join
points, and therefore cannot infer confluence of channel-communicating processes.
These systems were in turn motivated by the original capability calculus sys-
tem [Crary et al. 1999], which was designed to reason about resource usage in
sequential programs. Whereas the original capability calculus uses rather rigid and
complex set-oriented rules for manipulating (e.g., splitting and joining) capabili-
ties, fractional capabilities are more flexible and cheaper to reason with because
capability manipulations are based on rational linear arithmetic.

We note that the idea that capabilities can be passed at channel communi-
cation points is analogous to ideas underlying various type systems for channel-
communicating processes [Kobayashi et al. 1995; Gordon and Jeffrey 2001; 2002;

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

22 · T. Terauchi and A. Aiken

Igarashi and Kobayashi 2004], for various applications ranging from authentication
protocol to deadlock freedom.

6. CONCLUSIONS

We have presented a system for inferring partial confluence of concurrent programs
communicating via a mix of different kinds of communication methods. We have
cast our system as a capability calculus where fractional capabilities can be passed
at synchronizing channel communications, and have presented a type system for
statically inferring partial confluence by finding an appropriate capability passing
strategy in the calculus, which can be reduced in polynomial time to the problem
of solving a system of rational linear inequalities.

7. ACKNOWLEDGEMENTS

We thank Adam Megacz for implementing a type inference prototype [Megacz 2006]
as well as suggesting the | operator extension (Section 4.3), a feature missing from
the conference paper [Terauchi and Aiken 2006] that was needed for expressing
some FLEET [Coates et al. 2001] programs. We also thank Naoki Kobayashi for
useful discussions, especially his observation that allowing rationals for every kind
of capability provably decreases the computational complexity of type inference,
assuming P 6= NP.

REFERENCES

2002. Types and Effects for Asymmetric Cryptographic Protocols. IEEE Computer Society, Cape
Breton, Nova Scotia, Canada.

Aiken, A. and Gay, D. 1998. Barrier inference. In Proceedings of the 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. San Diego, Cali-
fornia, 342–354.

Blom, S. and van de Pol, J. 2002. State space reduction by proving confluence. In Proceedings
of the 14th International Conference on Computer Aided Verification. Copenhagen, Denmark,
596–609.

Boudol, G. 1992. Asynchrony and the pi-calculus. Tech. Rep. 1702, INRIA Sophia Antipolis.
May.

Boyland, J. 2003. Checking interference with fractional permissions. In Static Analysis, Tenth
International Symposium. San Diego, CA, 55–72.

Coates, W. S., Lexau, J. K., Jones, I. W., Fairbanks, S. M., and Sutherland, I. E. 2001.
Fleetzero: An asynchronous switching experiment. In 7th International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems (ASYNC 2001). IEEE Computer So-
ciety, Salt Lake City, UT, 173–.

Crary, K., Walker, D., and Morrisett, G. 1999. Typed memory management in a calculus
of capabilities. In Proceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. San Antonio, Texas, 262–275.

DeLine, R. and Fähndrich, M. 2001. Enforcing High-Level Protocols in Low-Level Software. In
Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and
Implementation. Snowbird, Utah, 59–69.

Edwards, S. A. and Tardieu, O. 2005. Shim: a deterministic model for heterogeneous embedded
systems. In Proceedings of the 5th ACM International Conference On Embedded Software.
Jersey City, NJ, 264–272.

Foster, J. S., Terauchi, T., and Aiken, A. 2002. Flow-sensitive type qualifiers. In Proceedings of
the 2002 ACM SIGPLAN Conference on Programming Language Design and Implementation.
Berlin, Germany.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 23

Gordon, A. D. and Jeffrey, A. 2001. Typing correspondence assertions for communication

protocols. Theoretical Computer Science 45.

Groote, J. F. and van de Pol, J. 2000. State space reduction using partial tau-confluence. In
Proceedings of 25th International Symposium on the Mathematical Foundations of Computer
Science 2000. Bratislava, Slovakia, 383–393.

Hansen, H. and Valmari, A. 2006. Operational determinism and fast algorithms. In CON-
CUR 2006 - Concurrency Theory, 17th International Conference. Vol. 4137. Springer, Bonn,
Germany, 188–202.

Honda, K. and Tokoro, M. 1992. On asynchronous communication semantics. In Proceedings
of the ECOOP’91 Workshop on Object-Based Concurrent Computing. Springer-Verlag, 21–51.

Igarashi, A. and Kobayashi, N. 2004. A generic type system for the pi-calculus. Theoretical
Compututer Science 311, 1-3, 121–163.

Kahn, G. 1974. The semantics of a simple language for parallel programming. In Information
processing. Stockholm, Sweden, 471–475.

Kobayashi, N. 2007. Personal communication.

Kobayashi, N., Nakade, M., and Yonezawa, A. 1995. Static analysis of communication for
asynchronous concurrent programming languages. In Static Analysis, Second International
Symposium. Glasgow, Scotland, 225–242.

Kobayashi, N., Pierce, B. C., and Turner, D. N. 1999. Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems 21, 5 (Sept.), 914–947.

König, B. 2000. Analysing input/output-capabilities of mobile processes with a generic type
system. In Proceedings of the 27th International Colloquium on Automata, Languages and
Programming. Geneva, Switzerland, 403–414.

Lee, E. A. 2006. The problem with threads. Tech. Rep. UCB/EECS-2006-1, EECS Department,
University of California, Berkeley. January 10.

Megacz, A. 2006. CCCD implementation. http://research.cs.berkeley.edu/project/cccd-
impl/README.

Nestmann, U. and Steffen, M. 1997. Typing confluence. In Proceedings of FMICS ’97. 77–101.

Smith, F., Walker, D., and Morrisett, G. 2000. Alias Types. In 9th European Symposium on
Programming, G. Smolka, Ed. Lecture Notes in Computer Science, vol. 1782. Springer-Verlag,
Berlin, Germany, 366–381.

Sutter, H. and Larus, J. 2005. Software and the concurrency revolution. Queue 3, 7, 54–62.

Terauchi, T. and Aiken, A. 2005. Witnessing side-effects. In Proceedings of the 10th ACM
SIGPLAN International Conference on Functional Programming. ACM, Tallinn, Estonia, 105–
115.

Terauchi, T. and Aiken, A. 2006. A capability calculus for concurrency and determinism. In
CONCUR 2006 - Concurrency Theory, 17th International Conference. Vol. 4137. Springer,
Bonn, Germany, 218–232.

Walker, D. and Morrisett, G. 2000. Alias Types for Recursive Data Structures. In Interna-
tional Workshop on Types in Compilation. Montreal, Canada.

Wang, X. and Kwiatkowska, M. 2006. Compositional state space reduction using untangled
actions. In EXPRESS’06 13th International Workshop on Expressiveness in Concurrency.
Bonn, Germany, 16–28.

Yoshida, N., Berger, M., and Honda, K. 2004. Strong normalisation in the pi -calculus.
Information and Computation 191, 2, 145–202.

A. PROOFS

Lemma A.1. Suppose (B, S, p) →∗ (B′, S′, p′) and i ∈ dom(S). Then S(i) is a

prefix of S′(i).

Proof. By induction on the reduction sequence.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

24 · T. Terauchi and A. Aiken

Lemma 2.3. If P is partially confluent with respect to Y then P is deterministic

with respect to Y .

Proof. Suppose P is partially confluent with respect to Y . We show (1). Let
i be a process index. For contradiction, suppose that there exist reductions P →∗

(B1, S1, p1) and P →∗ (B2, S2, p2) both communicating only over channels in Y
such that neither S1(i) nor S2(i) is a prefix of the other. But because P is partially
confluent, there exists Q such that (B1, S1, p1) →∗ Q and (B2, S2, p2) →∗ Q. But
by Lemma A.1, such a Q cannot exist.

We now show (2). For contradiction, suppose (2) does not hold. Then it must be
the case that there exist reductions P →∗ (B1, S1, p1) and P →∗ (B2, S2, p2) both
communicating only over channels in Y such that S1(i) is shorter than S2(i) (and
so S1(i) is a prefix of S2(i) because of (1)) and there exists no (B′

1, S
′

1, p
′

1) such
that (B1, S1, p1) →

∗ (B′

1, S
′

1, p
′

1) communicating only over channels in Y and S′

1(i)
is longer than S1(i). But because P is partially confluent, there exists Q such that
(B1, S1, p1) →∗ Q and (B2, S2, p2) →∗ Q communicating only over channels in Y .
But then Q is such a (B′

1, S
′

1, p
′

1).

Lemma 3.4. Let P be a state. Suppose there exists M such that M is capability-

respecting with respect to Y and there exists P ∈ M such that erase(P) = P .

Suppose P → P1 communicating only over channels in Y and P → P2. Then

either P1 = P2 or there exists Q such that P2 → Q communicating only over

channels in Y and P1 → Q.

Proof. We prove the result by case analysis on P → P1. Note that because
P ∈ M , there exist P1 and P2 such that

—erase(P1) = P1 and erase(P2) = P2, and

—P
ℓ1→ P1 and P

ℓ2→ P2 and neither ℓ1 nor ℓ2 is false.

The case where P → P1 is a sequential reduction (i.e., IF1, IF2, WHILE1,
WHILE2, or ASSIGN) is trivial because a sequential reduction affects only one
process and does not interfere with other processes. Suppose P → P1 is:

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c
¬buffered(c) S′ = S[j 7→ S(j) :: (x, e′2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) → (B, S′, i.s1||j.s2||p)

where P = (B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) and P1 = (B, S′, i.s1||j.s2||p). By
assumption, c ∈ Y . If P → P2 does not communicate over c, then the result follows
trivially. So suppose P → P2 communicates over c. Let i′ and j′ be the process

indices such that P
ℓ2→ P2 is between the writer process i′ and the reader process

j′. But because ℓ1 = ℓ2 = true, P being well-formed implies that i = i′ and j = j′.
Therefore, P1 = P2.

Suppose P → P1 is:

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c)
B′ = B.write(c, e′2)]

(B, S, i.!(e1, e2); s||p) → (B′, S, i.s||p)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 25

where P = (B, S, i.!(e1, e2); s||p) and P1 = (B′, S, i.s||p). Suppose c is output
buffered or input buffered. By the assumption, c ∈ Y . If P → P2 does not
communicate over c, then the result follows trivially. Also, if P → P2 is a read
from c, then because buffers are FIFO, the result follows trivially. So suppose

P → P2 writes c. Let i′ be the process indices such that P
ℓ2→ P2 is a write by

process i′. But because ℓ1 = ℓ2 = true, P being well-formed implies that i = i′.
Therefore, P1 = P2.

The case where P → P1 reads an output buffered channel is similar. The case
where P → P1 reads an input buffered channel follows trivially from the fact that
input buffers are process local.

Suppose c is a reference cell. By assumption, c ∈ Y . If P → P2 does not commu-
nicate over c, then the result follows trivially. So suppose P → P2 communicates

over c (read or write). Let i′ be the process indices such that P
ℓ2→ P2 is a write or

a read by process i′. But because ℓ1 = ℓ2 = true, P being well-formed implies that
i = i′ (so P → P2 is in fact a write). Therefore, P1 = P2.

Suppose P → P1 is:

(S(i), e) ⇓ c buffered(c) (B′, e′) = B.read(c, i) S′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.?(e, x); s||p) → (B′, S′, i.s||p)

where P = (B, S, i.?(e, x); s||p) and P1 = (B′, S′, i.s||p). Suppose c is a reference
cell. By assumption, c ∈ Y . If P → P2 does not communicate over c, then the
result follows trivially. Also, if P → P2 is a read from c then because reading a
reference cell is non-destructive, the result follows trivially. So suppose P → P2

writes to c. But because ℓ1 = ℓ2 = true, P being well-formed implies that P → P2

is, in fact, not a write to c.

Lemma A.2. If Γ, i, Ψ1 ⊢ s : Ψ2 and Ψ′

1 ≥ Ψ1, then Γ, i, Ψ′

1 ⊢ s : Ψ′

2 for some

Ψ′

2 ≥ Ψ2

Proof. By structural induction on the type derivation.

Lemma A.3. If Γ ⊢ h, Γ ⊢ e : τ , and (h, e) ⇓ e′, then Γ ⊢ e′ : τ .

Proof. By structural induction on the type derivation.

Lemma A.4. Γ, i, Ψ ⊢ (s1; s2); s3 : Ψ′ iff Γ, i, Ψ ⊢ s1; (s2; s3) : Ψ′.

Proof. By inspection of the type checking rules.

Theorem 3.6. Let M = {P | ∃Env .Env ⊢ P}. Then M is capability-respecting

with respect to Y .

Proof. It suffices to show that if Env ⊢ P , then

(1) P is well-formed, and

(2) for any state Q such that erase(P) → Q, there exists Q and Env′ such that

Env′ ⊢ Q, erase(Q) = Q, P
ℓ
→ Q, and if ℓ is not empty then ℓ = true.

Suppose Env ⊢ P . From the second, the third, and the fourth conditions of Env ⊢ P ,
it follows that P is well-formed. Thus it suffices to show that (2) holds.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

26 · T. Terauchi and A. Aiken

Let Q be a state such that erase(P) → Q. Let P = erase(P). Let
(Γ, Ψ1, . . . , Ψn, W) = Env. We show that there exist Q, Ψ′

1, . . . , Ψ
′

n, and W ′ such

that (Γ, Ψ′

1, . . . , Ψ
′

n, W ′) ⊢ Q, P
ℓ
→ Q, and if ℓ is not empty then ℓ = true. (So

in fact, Env and Env′ share the same Γ, indicating the flow-insensitivity of our
system.) We prove by case analysis on P → Q.

Throughout this proof, we implicitly use Lemma A.4 to convert a type deriva-
tion for any sequential composition s1; s2; . . . ; sn to a derivation for s1; (s2; . . . ; sn).
Also, note that typability is invariant under process re-ordering and sequential skip
compositions (i.e., s = s; skip = skip; s).

Suppose P → Q is

(S(i), e) ⇓ n n 6= 0 S

(B, S, i.(if e then s1 else s2); s||p) → (B, Si.s1; s||p)

where P = (B, S, i.(if e then s1 else s2); s||p) and Q = (B, S, i.s1; s||p). Let
(X, B, S, i.Ci.((if e then s1 else s2); s||p

′) = P . Let Q = (X, B, S, i.Ci.s1; s||p
′).

Note that erase(Q) = Q and P → Q. By assumption,

Γ ⊢ e : int Γ, i, Ψi ⊢ s1 : Ψi1 Γ, i, Ψi ⊢ s2 : Ψi2 Ψi1 ≥ Ψi3 Ψi2 ≥ Ψi3

Γ, i, Ψi ⊢ if e then s1 else s2 : Ψi3

Γ, i, Ψi ⊢ if e then s1 else s2 : Ψi3 Γ, i, Ψi3 ⊢ s : Ψi4

Γ, i, Ψi ⊢ (if e then s1 else s2); s : Ψi4

Therefore, by Lemma A.2, Γ, i, Ψi1 ⊢ s : Ψi5 for some Ψi5. And so, Γ, i, Ψi ⊢
s1; s : Ψi5. Let Ψ′

j = Ψj for each j ∈ {1 . . . n} and W ′ = W . Then it follows that
(Γ, Ψ′

1, . . . , Ψ
′

n, W ′) ⊢ Q.
The cases where P → Q is IF2, WHILE1, or WHILE2 can be proven in a

similar manner.
Suppose P → Q is

(S(i), e) ⇓ e′ S′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.x := e; s||p) → (B, S′, i.s||p)

where P = (B, S, i.x:=e; s||p) and Q = (B, S′, i.s||p). Let (X, B, S, i.Ci.x:=e; s||p
′) =

P . Let Q = (X, B, S′, i.Ci.s||p
′). Note that erase(Q) = Q and P → Q. By assump-

tion,

Γ ⊢ e : Γ(x)

Γ, i, Ψi ⊢ x := e : Ψi

Γ, i, Ψi ⊢ x := e : Ψi Γ, i, Ψi ⊢ s : Ψi1

Γ, i, Ψi ⊢ x := e; s : Ψi1

From Γ ⊢ S(i), Γ ⊢ e : Γ(x), and Lemma A.3, it follows that Γ ⊢ S′(i). Let Ψ′

j = Ψj

for each j ∈ {1, . . . , n} and W ′ = nW . Then it follows that (Γ, Ψ′

1, . . . , Ψ
′

n, W ′) ⊢ Q.
Suppose P → Q is

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 (S(j), e3) ⇓ c
¬buffered(c) S′ = S[j 7→ S(j) :: (x, e′2)]

(B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) → (B, S′, i.s1||j.s2||p)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 27

where P = (B, S, i.!(e1, e2); s1||j.?(e3, x); s2||p) and Q = (B, S′, i.s1||j.s2||p). Let
(X, B, S, i.Ci.!(e1, e2); s1||j.Cj .?(e3, x); s2||p

′) = P . By assumption,

Γ ⊢ e1 : τ Γ ⊢ e2 : valtype(τ) confch(τ, Γ) ⇒ hasWcap(Ψi, τ)

Γ, i, Ψi ⊢ !(e1, e2) : Ψi1

Γ, i, Ψi ⊢ !(e1, e2) : Ψi1 Γ, i, Ψi1 ⊢ s : Ψi2

Γ, i, Ψi ⊢ !(e1, e2); s : Ψi2

Γ ⊢ e3 : τ ′ Γ(x) = valtype(τ ′) confch(τ ′, Γ) ⇒ hasRcap(Ψj , τ
′)

Γ, j, Ψj ⊢ ?(e3, x) : Ψj1

Γ, j, Ψj ⊢ ?(e3, x) : Ψj1 Γ, j, Ψj1 ⊢ s : Ψj2

Γ, j, Ψj ⊢ ?(e3, x); s : Ψj2

where Ψi1 = Ψi − writeSend(τ) + writeRecv(τ) and Ψj1 = Ψj − readSend(τ ′) +
readRecv(τ ′, j). Lemma A.3 implies that Γ(c) = τ = τ ′. Let C and C′ be ca-
pability sets such that Γ ⊢ C : writeSend(τ) and Γ ⊢ C′ : readSend(τ). Let
Q = (B, S′, i.(Ci − C + C′).s1||j.(Cj + C − C′).s2||p). Note that erase(Q) = Q.
Let Ψ′

i = Ψi1, Ψ′

j = Ψj1, and Ψ′

k = Ψk for each k ∈ {1, . . . , n} \ {i, j}. Because
c must be rendezvous, Ψ′

i + Ψ′

j = Ψi + Ψj . Also, Γ ⊢ (Ci − C + C′) : Ψ′

i and
Γ ⊢ (Cj + C − C′) : Ψ′

j. Therefore it follows that (Γ, Ψ′

1, . . . , Ψ
′

n, W ′) ⊢ Q.
Suppose c ∈ Y . Then confch(τ, Γ) and confch(τ ′, Γ), and so hasWcap(Ψi, τ) and

hasRcap(Ψj , τ
′). Therefore, hasWcap(Ci, c) and hasRcap(Cj , c). Thus it follows

that P
true
→ Q. On the other hand, if c /∈ Y , then P

true
→ Q trivially.

Suppose P → Q is

(S(i), e1) ⇓ c (S(i), e2) ⇓ e′2 buffered(c)
B′ = B.write(c, e′2)

(B, S, i.!(e1, e2); s||p) → (B′, S, i.s||p)

where P = (B, S, i.!(e1, e2); s||p) and Q = (B′, S, i.s||p). Let (X, B, S, i.C.!(e1, e2); s||p) =
P . By assumption,

Γ ⊢ e1 : τ Γ ⊢ e2 : valtype(τ) confch(τ, Γ) ⇒ hasWcap(Ψi, τ)

Γ, i, Ψi ⊢ !(e1, e2) : Ψi1

Γ, i, Ψi ⊢ !(e1, e2) : Ψi1 Γ, i, Ψi1 ⊢ s : Ψi2

Γ, i, Ψi ⊢ !(e1, e2); s : Ψi2

where Ψi1 = Ψi−writeSend(τ)+writeRecv(τ), and Γ and Ψi are from the definition
of Γ ⊢ P . Let C′ be a capability set such that Γ ⊢ C′ : writeSend(τ). Let
Q = (X [c 7→ X(c) + C′], B′, S, i.(C − C′).s||p). Note that erase(Q) = Q. Let
W ′ = W [Γ[c] 7→ W (Γ[c]) + writeSend(τ)]. Note that ∀d.Γ ⊢ X [c 7→ X(c) + C′](d) :
W ′(Γ[d]). Lemma A.3 implies that Γ(c) = τ . Let Ψ′

i = Ψi1 and Ψ′

j = Ψj for each
j ∈ {1, . . . , n} \ {i}. Because c is not rendezvous, writeRecv(τ) = 0 . Therefore,
Ψi +

∑

ρ∈dom(W) W (ρ) = Ψ′

i +
∑

ρ∈dom(W ′) W ′(ρ). Also, Γ ⊢ (Ci − C) : Ψ′

i. Also,

for each d output buffered, W ′(Γ[d]) = |B′(d)| × writeSend(Γ(d)), and for each d

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

28 · T. Terauchi and A. Aiken

input buffered, W ′(Γ[d]) =
∑n

j=1 |B
′(d).j| × readRecv(Γ(d), j). Therefore it follows

that (Γ, Ψ′

1, . . . , Ψ
′

n, W ′) ⊢ Q.
Suppose c ∈ Y . Then confch(τ, Γ), and so hasWcap(Ψi, τ). Therefore,

hasWcap(C, c). Thus it follows that P
true
→ Q. On the other hand, if c /∈ Y ,

then P
true
→ Q trivially.

Suppose P → Q is

(S(i), e) ⇓ c buffered(c)
(B′, e′) = B.read(c, i) S′ = S[i 7→ S(i) :: (x, e′)]

(B, S, i.?(e, x); s||p) → (B′, S′, i.s||p)

where P = (B, S, i.?(e, x); s||p) and Q = (B′, S′, i.s||p). Let (X, B, S, i.C.?(e, x); s||p) =
P . By assumption,

Γ ⊢ e : τ Γ(x) = valtype(τ) confch(τ, Γ) ⇒ hasRcap(Ψi, τ)

Γ, i, Ψi ⊢ ?(e, x) : Ψi1

Γ, i, Ψi ⊢ ?(e, x) : Ψi1 Γ, i, Ψi1 ⊢ s : Ψi2

Γ, i, Ψi ⊢ ?(e, x); s : Ψi2

where Ψi1 = Ψi − readSend(τ) + readRecv(τ, i). Let C′ be a capability set such
that Γ ⊢ C′ : readRecv(τ, i). Let Q = (X [c 7→ X(c) − C′], B′, S′, i.(C + C′).s||p).
Note that erase(Q) = Q. Let W ′ = W [Γ[c] 7→ W (Γ[c]) − readRecv(τ, i)]. Note that
∀d.Γ ⊢ X [c 7→ X(c) − C′](d) : W ′(Γ[d]). Lemma A.3 implies that Γ(c) = τ . Let
Ψ′

i = Ψi1 and Ψ′

j = Ψj for each j ∈ {1, . . . , n} \ {i}. Because c is not rendezvous,
readSend(τ) = 0 . Therefore, Ψi +

∑

ρ∈dom(W) W (ρ) = Ψ′

i +
∑

ρ∈dom(W ′) W ′(ρ).

Also, for each d output buffered, W ′(Γ[d]) = |B′(d)| × writeSend(Γ(d)), and for
each d input buffered, W ′(Γ[d]) =

∑n
j=1 |B

′(d).j| × readRecv(Γ(d), j). Therefore it
follows that (Γ, Ψ′

1, . . . , Ψ
′

n, W ′) ⊢ Q.
Suppose c ∈ Y . Then confch(τ, Γ), and so hasRcap(Ψi, τ). Therefore,

hasRcap(C, c). Thus it follows that P
true
→ Q. On the other hand, if c /∈ Y , then

P
true
→ Q trivially.

Theorem 4.1. Suppose the type system is altered such that for any capability

set Ψ appearing in the type derivation, Ψ(ρ) ∈ {0, 1} for all ρ. Then the set

{P | ∃.Env , P .Env ⊢ P ∧ P = erase(P)} is NP-hard.

Proof. We prove the result by reduction from one-in-three 3-SAT, a restricted
version of 3-SAT where a satisfying assignment must set exactly one literal in each
clause (instead of at least one) to 1. One-in-three 3-SAT is known to be NP-
complete.

Let φ = c1∧c2∧· · ·∧cm where each clause ci is of the form l1∨l2∨l3 where each li
is a literal, i.e., either a variable or a negation of a variable. Let {a1, . . . , an} be the
set of variables appearing in φ. For each variable ai, let ai and ai be distinct output
buffered channels, representing the literals a and ¬a, respectively. Let truech be a
distinct output buffered channel.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

A Capability Calculus for Concurrency and Determinism · 29

Let p be the following program consisting of n + 1 processes:

p = !(truech, 0); !(a1, 0); !(a1, 0)
|| ?(a1, x); ?(a1, x); !(truech, 0); !(a2, 0); !(a2, 0)
|| . . . || ?(an−1, x); ?(an−1, x); !(truech, 0); !(an, 0); !(an, 0)
|| ?(an, x); ?(an, x); !(truech, 0)

For each literal l, let l∗ denote its representative channel, i.e., for a variable a,
a∗ = a and (¬a)∗ = a. For each clause c = l1 ∨ l2 ∨ l3, let pc be the process defined
as follows.

pc = ?(l∗1 , x); ?(l∗2 , x)?(l∗3, x); !(truech, 0)

Let pφ = p || pc1
|| pc2

|| . . . || pcm
. Let P = (B, {x 7→ 0}, pφ) where B(c) is an

empty queue for all channels c. We claim that φ is one-in-three 3SAT satisfiable
iff there exists Env and P such that Env ⊢ P and P = erase(P) where the set of
channels to be checked for partial confluence is {truech} (i.e., c ∈ Y ⇔ c = truech).
To see this, note that the typability of p implies that for each variable a, exactly
one of a and a sends the w(truech) capability on channel write. Thus p makes the
channels a and a represent the boolean value of the variable a. For each clause c,
the typability of pc ensures that exactly one of its literals are set to 1, i.e., receives
the w(truech) capability on channel read. Thus Γ ⊢ P implies that φ is one-in-three
3SAT satisfiable, and vice versa.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

