
Secure Information Flow as a Safety Problem ⋆

Tachio Terauchi1 and Alex Aiken2

1 EECS Department, University of California, Berkeley
2 Computer Science Department, Stanford University

Abstract. The termination insensitive secure information flow problem
can be reduced to solving a safety problem via a simple program transfor-
mation. Barthe, D’Argenio, and Rezk coined the term “self-composition”
to describe this reduction. This paper generalizes the self-compositional
approach with a form of information downgrading recently proposed
by Li and Zdancewic. We also identify a problem with applying the
self-compositional approach in practice, and we present a solution to
this problem that makes use of more traditional type-based approaches.
The result is a framework that combines the best of both worlds, i.e.,
better than traditional type-based approaches and better than the self-
compositional approach.

1 Introduction

A termination insensitive secure information flow problem can be defined as
follows:

Definition 1 (Secure Information Flow). Given a program P whose vari-
ables H = {h1, h2, . . . , hn} are high security variables and L = {l1, . . . , ln} are
low-security variables, P is said to be secure if and only if the values of L at the
point P terminates are independent of the initial values of H.

In this paper, we only deal with the case where programs are deterministic. The
secure information flow problem is a type of non-interference problem. In prac-
tice, it expresses the problem of whether some selected information in a program
or a fragment of a program (i.e., the information stored in the high-security
variables) does not leak to an adversary (i.e., the low-security variables). Se-
cure information flow has applications in software security. There is an excellent
survey by Sabelfeld and Myers on issues ranging from applications to analysis
techniques [1]. We note that the definition above can be extended to multi-label
cases (i.e., beyond just “high” and “low”) by posing the problem multiple times
with different choices of high-security variables and low-security variables.

An equivalent way to state the termination insensitive secure information
flow problem is:

⋆ This research was supported in part by NASA Grant No. NNA04CI57A; NSF Grant
Nos. CCR-0234689, CCR-0085949, and CCR-0326577. The information presented
here does not necessarily reflect the position or the policy of the Government and
no official endorsement should be inferred.

Definition 2 (Secure Information Flow - Alternative Definition). Given
a program P whose variables H = {h1, . . . , hn} are high security variables and
L = {l1, . . . , ln} are low-security variables, P is said to be secure if and only if
for any stores M1 and M2 such that M1|Hc = M2|Hc ,

(〈M1, P 〉 6= ⊥ ∧ 〈M2, P 〉 6= ⊥)⇒ 〈M1, P 〉|L = 〈M2, P 〉|L

Formally, a store M is a mapping from variables to values. The notation M |X
is the restriction of the store M to the variable domain X , i.e., M |X = {x 7→ v |
(x 7→ v) ∈ M ∧ x ∈ X}. The set Xc is the complement of X . If P terminates
given the initial store M , 〈M, P 〉 denotes the final store; 〈M, P 〉 = ⊥ if non-
terminating.

Both definitions appear frequently with some variation in superficial details.
It is easy to see that the definitions are equivalent. The second definition is
particularly nice for our purpose because it is easy to see the reduction from the
definition into a safety problem. Intuitively, a safety property is a property of a
program which can be refuted by observing a finite trace of the program. Our
definition of secure information flow only concerns the final store. Then a safety
problem can be formally defined as

Definition 3 (Safety). Let Pr be the set of all programs (for some fixed pro-
gramming language). Then a safety property is a set S ⊆ Pr such that there
exists a logical formula φ(X, Y) such that

S = {P | ∀M.〈M, P 〉 6= ⊥ ⇒ φ(〈M, P 〉, M)}

A safety problem is a membership problem for some safety property.
Secure information flow, termination sensitive or not, is not a safety property

(see, e.g., [2] for a proof). However, the termination insensitive secure information
flow problem is almost a safety problem. To this end, we introduce the concept
of a 2-safety property which is intuitively a property that can be refuted by
observing two finite traces. More formally,

Definition 4 (2-Safety). Let Pr be the set of all programs (for some fixed
programming language). Then a 2-safety property is a set S ⊆ Pr such that
there exists a logical formula φ(X, Y, Z, W) such that

S = {P | ∀M1, M2.(〈M1, P 〉 6= ⊥∧〈M2, P 〉 6= ⊥)⇒ φ(〈M1, P 〉, 〈M2, P 〉, M1, M2)}

To distinguish, we say 1-safety when we mean safety. Clearly, any 1-safety prop-
erty is a 2-safety property. The following is immediate:

Theorem 1. The termination insensitive secure information flow problem is a
2-safety problem.

For any program P , let V (P) be the set of all variables appearing in P and let
C(P) be the copy of P with each x ∈ V (P) replaced by a fresh variable C(x).
Any 2-safety problem can be reduced to a 1-safety problem by the following
self-composition reduction:

Definition 5 (Self-Composition). Let S be a 2-safety property, i.e., S = {P |
∀M1, M2.(〈M1, e〉 6= ⊥ ∧ 〈M2, e〉 6= ⊥) ⇒ φ(〈M1, e〉, 〈M2, e〉, M1, M2)} for some
φ. Then a self-composition reduction of S is the set

{P ′ | P ′ = P ; C(P) ∧ ∀M1, M2.〈M1 ∪ C(M2), P
′〉 6= ⊥ ⇒ θ}

where θ = φ(〈M1 ∪ C(M2), P
′〉|V (P), 〈M1 ∪ C(M2), P

′〉|V (C(P)), M1, M2).

where the symbol ; is the sequential composition. It is easy to see that a self-
composition of any 2-safety property S is a recursive subset of some 1-safety
property S′, i.e., given an oracle access to S′, we can decide (in fact easily) if
P ∈ S′′ where S′′ is the self-composition reduction of S. Furthermore it is easy
to see that the self-composed form is equivalent to the original in the following
sense:

Theorem 2. Let S be a 2-safety property and let S′ be its self-composition.
Then P ∈ S if and only if P ; C(P) ∈ S′.

Thus any 2-safety problem can be solved by reducing it to an equivalent 1-safety
problem via self-composition and then solving the 1-safety problem.

In the case of the termination insensitive secure information flow problem,
self-composition reduces the problem into the following problem:

Definition 6 (Secure Information Flow - Self-Composed Version). Given
a program P whose variables H = {h1, . . . , hn} are high security variables and
L = {l1, . . . , ln} are low-security variables, P is said to be secure if and only if
for any stores M1 and M2 such that dom(M1) = V (P) and dom(M2) = V (C(P))
and M1|Hc = M2|C(Hc),

〈M1∪M2, P ; C(P)〉 6= ⊥ ⇒ C(〈M1∪M2, P ; C(P)〉|L) = 〈M1∪M2, P ; C(P)〉|C(L)

where C(M) is a store identical to M except that each variable x appearing in M

is replaced by C(x). Note that it is possible to see the above formulation directly
from Definition 2 without going through the generalization of defining a 2-safety
property as we have done here. As far as we know, the direct formulation appears
in at least two recent papers [3, 4]. We borrowed the term “self-composition” from
Barthe, D’Argenio, and Rezk [4], although they define it slightly differently.

Self-composition is a promising approach to solving difficult secure informa-
tion flow instances thanks to the recent success on generic automatic software
safety analysis tools such as SLAM [5] and BLAST [6], to name a few. Both
SLAM and BLAST combine theorem proving and model checking in an itera-
tively refining manner to achieve robust safety analysis that can scale to pro-
grams of non-trivial size written in feature-rich programming languages like C.
Also, they are in theory almost complete [7]. In practice, they have been able to
verify many safety properties that were too difficult for older approaches that
were not fully path-sensitive and sometimes not even flow-sensitive.

What does this progress in automatic safety analysis actually mean to secure
information flow? For example, type-based information flow analysis algorithms,

z := 1;
if (h) then x := 1 else skip;

if (¬h) then x := z else skip;

l := x + y

Figure 1: The variable h is high-security and the variable l is low-security. (The
variable y is not high-security.) This code is secure: regardless of the valuation
of h, the low-security variable l will be 1 + y at the end of the program.

z := 1;
if (h) then x := 1 else skip;

if (¬h) then x := z else skip;

l := x + y;

z′ := 1;
if (h′) then x′ := 1 else skip;

if (¬h′) then x′ := z′ else skip

l′ := x′ + y′

Figure 2: Self-composition reduction applied to the program in Figure 1. For
each variable x, C(x) = x′.

flow-sensitive or not, cannot show that the program shown in Figure 1 is secure
since the low-security variable l is assigned in a branch of a conditional that
depends on the high-security variable h. But a self-compositional approach can
easily check that this program is secure as follows. Figure 2 is the result of
applying the self-composition reduction to the program. The safety problem of
whether l = l′ at the end of the program given x = x′ ∧ y = y′ ∧ z = z′ ∧ l =
l′ at the entry can be verified easily by a modern safety analysis tool. So by
Theorem 2, we have automatically proved that the original program is secure.
In fact, Theorem 2 implies that given a complete safety analysis, we can solve
the termination insensitive secure information flow problem completely.

Before we go on to the main results of the paper, we note that it is fairly
easy to carry out a similar construction for termination sensitive secure infor-
mation flow problem by defining a “2-liveness” property which may observe up
to two possibly infinite traces to refute the property. Self-composition can then
be defined using a parallel composition instead of a sequential composition to
reduce any 2-liveness problem to a 1-liveness problem. But since there are not
practical frameworks for checking general software liveness properties (though
some promising proposals are starting to appear [8]), we limit the content of this
paper to the termination insensitive case. Also, non-deterministic programs are
outside of the scope of this paper.

1.1 Contributions

The two main contributions of this paper are as follows:

– We extend the self-compositional approach to the secure information
flow problem with information downgrading recently proposed by Li and
Zdancewic [9].

– We identify a problem with applying the self-compositional approach in prac-
tice. We then present a solution to this problem that makes use of more
traditional type-based approaches.

The first contribution was motivated by an elegant characterization of in-
formation downgrading called relaxed non-interference proposed recently by Li
and Zdancewic [9]. Their paper contains a type-based approach for automati-
cally checking relaxed non-interference. The self-compositional approach can in
theory verify a wider range of secure programs than their type-based approach.

The second contribution starts from a disappointing discovery that the self-
compositional approach, even when combined with current state-of-the-art generic
automatic safety analysis tools, is too inefficient in practice. We will point out
why this is the case, and offer a remedy based on previous and on-going re-
search on type-based approaches to secure information flow, including Li and
Zdancewic type system for information downgrading. The result is a framework
that combines the best of both worlds, i.e., better than type-based approaches
and better than the self-compositional approach.

2 Information Downgrading

“Vanilla” secure information flow as defined in Section 1 is often criticized for
being too strict. For example, a security policy may permit information stored in
the high-security variable secret to leak as long as the hash of the password from
the user, say initially stored in the non-high-security variable input , matches with
the high-security variable hash. For example, the following program is secure
according to this policy:

if (hashfunc(input) = hash) then l := secret else skip;

where l is a low-security variable. Unfortunately, the above program is not secure
according to the definition of vanilla secure information flow because the valu-
ation of l depends on the valuation of the high-security variable secret (and on
hash too). In general, vanilla secure information flow does not allow any method
of leaking anything about the high-security variables.

Researchers have proposed various ways to relax secure information flow to
permit policies like the one above, such as robust declassification [10], delim-
ited information release [11], and abstract non-interference [12]. A particularly
nice approach called relaxed non-interference has been recently proposed by Li
and Zdancewic [9]. Their idea is to express downgrading by the existence of a
clean function that takes “downgraded” high-security information but does not
look directly at high-security variables. Their paper is restricted to the purely
functional setting, but when extended to the imperative setting, their idea can
be described roughly as follows. A security policy is stated by associating high-
security variables h1, . . . , hn to a downgrading function f , and then we define the

security of a program P by the existence of a program F (f(h1, . . . , hn)) such
that F does not mention the high security variables and F (f(h1, . . . , hn)) agrees
with P on low-security variables at termination. Here, the notation F (e) refers
to a program that first evaluates e and stores it in some variable prior to the
evaluation of the rest of the program. F (e) can be arbitrary powerful, i.e., it
need not be computable. (Readers familiar with relaxed non-interference may
notice another difference – in addition to the imperative extension – from Li and
Zdancewic’s original definition, i.e., the use of semantic equivalence instead of
syntactic equivalence rules. The consequence of this difference is discussed later
in this section.) Note that secure information flow with information downgrading
is more general than vanilla secure information flow; vanilla secure information
flow can be expressed by setting the downgrading function to a constant func-
tion.

For example, in our password example, the downgrading function for secret
can be set to

f = λx.λy.if (hashfunc(input) = y) then x else c

where c is some constant not in the range of values for secret . Then, one only
needs to prove that there exists F such that F (f(secret , hash)) is equivalent
to our original program, which in this case is true by inspection. Relaxed non-
interference is surprisingly general and natural. For example, it is easy to see
that associating the downgrading function λx.length(x) to a secret string data
implies that only the length of the string may be leaked.

We simplify the definition slightly for purpose of exposition. Formally, we
use the following definition of the terminating insensitive secure information
flow with information downgrading.

Definition 7 (Secure Information Flow with Information Downgrad-
ing). Given a program P whose variables H = {h1, . . . , hn} are high security
variables and L = {l1, . . . , ln} are low-security variables, P is said to be secure
with respect to the downgrading policy e if and only if there exists F such that
F does not mention any variable in H and for any M ,

〈M, P 〉 6= ⊥ ⇒ (〈M, F (e)〉 6= ⊥ ∧ 〈M, P 〉|L = 〈M, F (e)〉|L)

Here, e is any side-effect free expression. It is easy to see that our definition is
at least as expressive as Li and Zdancewic style of using explicit downgrading
functions. For example, vanilla secure information flow can be obtained by setting
e to some constant c. For the password example, e is

if (hashfunc(input) = hash) then secret else c

It is worth pointing out that the above definition is slightly different from
that of Li and Zdancewic’s since we use semantic equivalence to check that
〈M, P 〉|L = 〈M, F (e)〉|L whereas Li and Zdancewic take a less complete (but
still sound) equivalence relation as the definition. Their paper contains a discus-
sion on why a weaker equivalence may be desirable in some situations. However,

it is not clear whether using a weaker equivalence based on intentional syntac-
tic equivalence rules as done in their paper is best. Perhaps a more principled
approach is to equate some computational hardness properties as well as se-
mantic equivalence. For example, any F (λx.if (password = x) then 1 else 0)
semantically equivalent to l := password on the variable l will be computation-
ally expensive assuming that the set of valuations of password is large. Note that
there is an F such that semantic equivalence alone will not be able to distinguish
F (λx.if (password = x) then 1 else 0) from l:=password , namely the one that
tries all possible strings. In this paper, we stick with semantic equivalence.

We now prove the following.

Theorem 3. The termination insensitive secure information flow with infor-
mation downgrading is a 2-safety problem.

The formal proof appears in our companion technical report [13]. The proof
establishes the equivalence of Definition 7 to the following predicate

∀M1, M2.(〈M1, P 〉 6= ⊥ ∧ 〈M2, P 〉 6= ⊥)⇒
((M1|Hc = M2|Hc ∧ 〈M1, e〉 = 〈M2, e〉)⇒ 〈M1, P 〉|L = 〈M2, P 〉|L)

The predicate is actually equivalent to the definition of delimited information
release [11] restricted to the safety case. Therefore, the above proof shows that
relaxed non-interference with semantic equivalence is roughly (modulo the im-
perative extension) equivalent to that of delimited information release. Since
Barthe, D’Argenio, and Rezk [4]’s formulation of self-composition is flexible
enough to handle delimited information release, our result also shows that their
framework can be used as a black box to solve secure information flow problems
with information downgrading in the style of relaxed non-interference.

Concretely, self-composition reduces the termination insensitive secure infor-
mation flow with information downgrading to the following problem:

Definition 8 (Secure Information Flow with Information Downgrad-
ing - Self-Composed Version). Given a program P whose variables H =
{h1, . . . , hn} are high security variables and L = {l1, . . . , ln} are low-security
variables, P is said to be secure with respect to the downgrading policy e if and
only if for any stores M1 and M2 such that dom(M1) = V (P) and dom(M2) =
V (C(P)), M1|Hc = M2|C(Hc), and 〈M1, e〉 = 〈M2, C(e)〉,

〈M1∪M2, P ; C(P)〉 6= ⊥ ⇒ C(〈M1∪M2, P ; C(P)〉|L) = 〈M1∪M2, P ; C(P)〉|C(L)

As in the case of vanilla secure information flow, this self-compositional re-
duction is complete. Hence in theory, a complete safety analysis can decide
any instance of the problem. In practice, the self-compositional approach can
check cases where Li and Zdancewic’s type-based approach would fail. For ex-
ample, the program in Figure 3 is secure according the downgrading policy
if (hashfunc(input) = hash) then secret else c. Essentially, the program is
same as our original example except that we have added a few small things so
that the code isn’t exactly like the downgrading policy. The program can be

if (hashfunc(input) = hash) then

t := t + 1; l := l + secret

else skip

Figure 3: The variables secret and hash are high-security and the variable input
and l are low-security. This code is secure according to the downgrading policy
if (hashfunc(input) = hash) then secret else 0.

easily proved to be secure via the self-compositional approach; the downgrad-
ing policy leads to a conditional predicate, but that is no harder than handling
conditionals in the program body, and therefore a path-sensitive safety analy-
sis can quickly check that the safety property is satisfied in the self-composed
program (not shown). On the other hand, conventional type-based approaches
would break in the presence of these small changes since they are more dependent
on the structure of downgrading operations.

3 Self-composition in practice, its problem, and a solution

The main appeal of the self-compositional approach to secure information flow
comes from the recent successes with automatic safety analysis tools in veri-
fying a very broad range of safety properties in real programs, including ones
that are path-sensitive, flow-sensitive, and (linear) arithmetic sensitive. Further-
more, automatic safety property checking is an active area of research with
frequent improvements, and therefore even if some self-composed instances of a
secure information flow problem cannot be solved by the existing tools today,
it may not be unreasonable to expect them to be solved by the next generation
of safety analysis tools. That is, the self-compositional approach automatically
benefits from improvements to the underlying safety analysis. Furthermore, the
self-compositional approach needs nothing more than off-the-shelf tools, and so
it has an engineering advantage over type-based approaches.

In this section, we argue that such an optimistic prospect is unrealistic in
practice. When we actually applied the self-composition approach, we found that
not only are the existing automatic safety analysis tools not powerful enough to
verify many realistic problem instances efficiently (or at all), but also that there
are strong reasons to believe that it is unlikely to expect any future advance
in safety analysis designed for “natural” safety problems (i.e., ones that are
naturally 1-safety) to be able to close the gap significantly.

We first motivate our argument by a simple example. Figure 4 is a program
which computes the nth Fibonacci number and sets the low-security variable l to
1 if the nth Fibonacci number is greater than k and to 0 otherwise. The program
contains no high-security variables, so it is trivially secure. Let us apply the self-
composition reduction by renaming each variable x to x′ in the copy (shown in
Figure 5). We would like the safety analysis tools to check that l = l′ at the
end of the program provided that for each variable x in the original, x = x′ at

while (n > 0) do

f1 := f1 + f2; f2 := f1 - f2; n := n - 1;
if (f1 > k) then l := 1 else l := 0;

Figure 4: The while loop computes the nth Fibonacci number. The variable l

is low security, which is set to 1 if the nth Fibonacci number is greater than k,
and is set to 0 otherwise. There are no high-security variables.

while (n > 0) do

f1 := f1 + f2; f2 := f1 - f2; n := n - 1;
if (f1 > k) then l := 1 else l := 0;
while (n′ > 0) do

f ′

1 := f ′

1 + f ′

2; f ′

2 := f ′

1 - f ′

2; n′ := n′ - 1;
if (f ′

1 > k′) then l′ := 1 else l′ := 0;

Figure 5: The program in Figure 4 after self-composition.

the beginning of the program. However, a state-of-the-art safety analysis tool
BLAST [6] fails to terminate given this query; more precisely, BLAST endlessly
keeps discovering more and more predicates getting closer and closer to the
answer but never actually converging.3

Why does this happen? The reason is that the modern generic safety analysis
tools gain their robustness by moving away from structure-dependent reasoning
and instead trying to solve the problem semantically. In the case above, if BLAST
could verify that l = l′ at the end of the self-composed program, then that
roughly means that it was able to show that the upper part of the original code
was computing a Fibonacci number for each n. We believe that this problem also
applies to other safety analysis tools for imperative languages based on a Hoare-
style reasoning framework since the framework encourages verifying a property
about the whole program by locally reasoning about the store update at each
statement. We give more details supporting this argument in Section 3.1.

Even if BLAST was improved with more arithmetic-related reasoning power
or if we used another tool that can verify the correctness of our Fibonacci com-
putation loop, there would be always another example whose partial correctness
would be too difficult for the tool to verify automatically. Why does this matter
to the self-compositional approach to secure information flow? Because there are
many programs that compute arbitrary values in complex ways, and it is fair to
expect that these values can flow to low-security variables since the low-security
variables are the observable outputs of the program. (On the other hand, parts
of the program where high-security values flow can be expected to be small and
not too complex in most real security-aware applications.)

3 We used the latest version (as of March 2005) obtained directly from the BLAST
group.

P ::= x := e | if e then P1 else P2 | while e do P | P1; P2 | skip

Figure 6: The syntax of While. e is some reasonable expression such as integer
arithmetics, comparisons, and boolean operations.

ε ::= [] | x := ε | if ε then P1 else P2 | if e then ε else P | if e then P else ε |
while ε do P | while e do ε | ε; P | P ; ε

Figure 7: The contexts of While.

Therefore, what the self-compositional approach needs is some reasoning ex-
tension that can make use of the inherent symmetry and redundancy in self-
composed programs but not in ordinary programs. For example, in the case of
the Fibonacci program, this reasoning extension should be able to tell that the
loops are equivalent by the fact that both loops are just copies of the same code
with each copied variable in the code starting with the same value as the original.
On the other hand, if copies of some code actually use variables with different
initial values, then this reasoning system should safely say that “I do not know
if they are equivalent” so that a more powerful reasoning logic can work out the
details.

Such a reasoning extension is exactly where type-based approaches to secure
information flow excel. That is, the “same value variables” are the low security
variables, and “different value variables” are the high-security variables. Indeed,
type-based approaches can easily verify our Fibonacci program by carrying out
roughly the following logical reasoning: f1 is only assigned low-security values in a
while loop with a low-security guard, and hence l is assigned only in a conditional
statement of a low-security condition which implies that l is low-security. But as
we have seen in the previous sections, there are instances of secure information
flow that cannot be verified by type-based approaches but can be easily verified
by the self-compositional approach. To this end, we generalize this line of thought
to design an approach to secure information flow that combines the best parts
of the two approaches.

3.1 Type-directed transformation for secure information flow

We illustrate our idea using the imperative language While defined in Figure 6.
The semantics of While is completely standard. While we choose this simple
language for purpose of exposition, it is not hard to adapt our approach to more
complex languages.

To motivate the idea, consider the program P = if e then P1 else P2. If
a secure information flow type system gives e a low-security type, then the self

Γ ⊢ e : τ where τ is a low-security type

x := e →Γ x := e;C(x) := x

Γ 6⊢ e : τ where τ is a low-security type

x := e →Γ x := e;C(x) := C(e)

Γ ⊢ e : τ where τ is a low-security type P1 →Γ P ∗

1 P2 →Γ P ∗

2

if e then P1 else P2 →Γ if e then P ∗

1 else P ∗

2

Γ 6⊢ e : τ where τ is a low-security type

if e then P1 else P2 →Γ if e then P1 else P2; if C(e) then C(P1) else C(P2)

Γ ⊢ e : τ where τ is a low-security type P →Γ P ∗

while e do s →Γ while e do P ∗

Γ 6⊢ e : τ where τ is a low-security type

while e do P →Γ while e do P ; while C(e) do C(P)

P1 →Γ P ∗

1 P2 →Γ P ∗

2

P1; P2 →Γ P ∗

1 ; P ∗

2 skip →Γ skip

Figure 8: Type-directed translation →Γ . “Γ 6⊢ e : τ where τ is a low-security
type” means that Γ ⊢ e : τ is not derivable for any low-security type τ .

composition P ; C(P) is equivalent to the program

if e then (P1; C(P1)) else (P2; C(P2))

provided that the values of the low-security variables between the original and
the copy are equal at the beginning of the program. Now, suppose that e is (or
was the result of) a complex computation like our Fibonacci loop. Then using the
second form instead of P ; C(P), a safety analysis tool is able to bypass checking
whether e is equal to C(e) without losing precision or efficiency. Furthermore,
we may recursively apply the same idea to P1 and P2 so that we may not even
need to use C(P1) and C(P2).

We now generalize this idea to design a type-directed transformation for se-
cure information flow. To this end, we first define the contexts ε of While in a
completely standard manner given in Figure 7. Our type-directed transformation
is parametrized by a secure information flow type system. Rather than defining
a type-directed transformation for each different type system and proving the
correctness each time, we formally state what our type-directed transformation
expects from a secure information flow type system so that we can design one
type-directed transformation for all type systems satisfying the definition and
prove its correctness once and for all.

Definition 9. Given a secure information flow problem with information down-
grading problem instance (P, H, L, e) (see Definition 7), secure information flow

type inference is an algorithm that outputs a type environment Γ with the relation
∼Γ satisfying all of the following.

(1) For any M1 and M2, if M1|Hc = M2|Hc and 〈M1, e〉 = 〈M2, e〉 then M1 ∼Γ

M2.
(2) For any P such that Γ ⊢ P and for any M1 and M2 such that M1 ∼Γ M2,
〈M1, P 〉 ∼Γ 〈M2, P 〉.

(3) For any e such that Γ ⊢ e : τ and τ is a low-security type, for any M1 and
M2 such that M1 ∼Γ M2, 〈M1, e〉 = 〈M2, e〉.

(4) For any ε and P , if Γ ⊢ ε[P], then Γ ⊢ P .
(5) Γ ⊢ P

Intuitively, the first condition says that the precondition of the original security
policy is at least as strong as the relation ∼Γ . The second condition says that
∼Γ is preserved by the program semantics. The third condition says that if an
expression is typed with a low-security type, then it in fact is low-security with
respect to ∼Γ . The fourth condition is a standard structural property for (flow-
insensitive) type systems. The last condition says that P itself can be typed
under Γ .

For example, the well-known Volpano and Smith type inference algorithm [14]
when restricted to the language While can satisfy the above requirement for
vanilla secure information flow (i.e., the downgrading policy e is some constant)
by letting

∼Γ = {(M1, M2) |M1(x) = M2(x), x:τ ∈ Γ where τ is a low-security type}

Defining ∼Γ for Li and Zdancewic type system [9] (when adapted to the language
While in a natural way) is also not difficult:

∼Γ = {(M1, M2) | 〈M1, e〉 = 〈M2, e〉, Γ ⊢ e : τ where τ is a low-security type}

(Indeed, this definition, also works for the Volpano and Smith type system al-
though it is unnecessarily more elaborate than the one above. This fact is not
surprising since Li and Zdancewic system can be thought of as an extension to
the Volpano and Smith system.) Due to space constraints, we do not formally
describe any specific type inference algorithm in this paper and instead ask read-
ers to refer to the cited references. Our companion technical report discusses how
to adapt our approach to secure information flow type systems that do not quite
meet these requirements [13].

It is important to note that we do not need an algorithm that actually com-
putes the relation ∼Γ . Instead, merely the existence of such a relation is enough
since ∼Γ is only used explicitly when proving the correctness of the type-directed
transformation.

We now describe our type-directed transformation. Given a problem instance
(P, H, L, e) and Γ produced by the corresponding secure information flow type
inference, the type-directed transformation →Γ is defined by the rules shown
in Figure 8. In order to solve the given problem instance, we first apply this

while (n > 0) do

f1 := f1 + f2; f2 := f1 - f2; n := n - 1;
if (h) then x := 1 else skip;

if (¬h) then x := 1 else skip;

while (i < f1) do

l := l + x; i := i + 1

Figure 9: The variable h is high-security and the variable l is low-security. The
program is secure but cannot be verified by either a type-based approach or
self-composition.

while (n > 0) do

f1 := f1 + f2; f ′

1 := f1; f2 := f1 - f2; f ′

2 := f2;

n := n - 1; n′ := n;

if (h) then x := 1 else skip; if (h′) then x′ := 1 else skip;

if (¬h) then x := 1 else skip; if (¬h′) then x′ := 1 else skip;

while (i < f1) do

l := l + x; l′ := l′ + x′; i := i + 1; i′ := i

Figure 10: The program from Figure 9 after the type-directed transformation.

transformation to P to obtain a program P ∗, i.e., P →Γ P ∗. Then we ask a
safety analysis tool whether for any M1 and M2 such that dom(M1) = V (P),
dom(M2) = V (C(P)), M1|Hc = M2|C(Hc), and 〈M1, e〉 = 〈M2, C(e)〉, whether

〈M1 ∪M2, P
∗〉 6= ⊥ ⇒ C(〈M1 ∪M2, P

∗〉|L) = 〈M1 ∪M2, P
∗〉|C(L)

That is, we ask the same query as the self-compositional approach except that
we use P ∗ in place of P ; C(P).

As an example, consider the program shown in Figure 9. The program ex-
hibits interactions of features discussed in previous sections that made type-
based approaches and the self-composition approach fail (at least when using
BLAST as the underlying safety analysis). Therefore, it can be checked by
neither method. Applying the type-directed transformation using Volpano and
Smith type inference algorithm, we obtain the program P ∗ shown in Figure 10.
Note that both loop conditions remain unduplicated (though their bodies are
duplicated) since both conditions can be given low-security types. BLAST can
easily decide that l = l′ at the end of P ∗ provided that n = n′, f1 = f ′

1, f2 = f ′

2,
i = i′, and l = l′ at the beginning, i.e., it can prove that the program is secure.
In fact, BLAST is clever enough that it will not even bother to look carefully at
the first loop (which was the part that made BLAST fail in the self-composition
approach!) since it quickly notices simply by looking at the code following the
loop that it can prove l = l′ at the end of the program regardless of what values
are stored in f1, f ′

1, f ′

2, n, and n′ after the loop.
We now prove the correctness of the type-directed transformation approach.

The following lemma is the main technical result.

Lemma 1. Suppose P →Γ P ∗ where Γ is the output of a secure information
flow type system given (P, H, L, e) satisfying Definition 9. Then, for any M1 and
M2 such that M1 ∼Γ M2, if 〈M1, P 〉 6= ⊥ and 〈M2, P 〉 6= ⊥ then

〈M1, P 〉 = 〈M1 ∪ C(M2), P
∗〉|V (P) ∧C(〈M2, P 〉) = 〈M1 ∪C(M2), P

∗〉|V (C(P))

The proof appears in our companion technical report [13].

Theorem 4. For any M1 and M2 such that M1|Hc = M2|Hc , 〈M1, e〉 = 〈M2, e〉,
〈M1, P 〉 6= ⊥, and 〈M2, P 〉 6= ⊥

〈M1, P 〉|L = 〈M2, P 〉|C(L) ←→ C(〈M1∪C(M2), P
∗〉|L) = 〈M1∪C(M2), P

∗〉|C(L)

where P →Γ P ∗ and Γ is the output of a secure information flow type system
given (P, H, L, e) satisfying Definition 9.

Proof. Immediate from condition (1) in Definition 9 and Lemma 1.

Therefore the type-directed transformation approach is sound and complete up
to the soundness and completeness of the underlying safety analysis.

The type-directed transformation is inexpensive relative to the complexity
of the underlying type inference algorithm. It is easy to see that for P →Γ P ∗,
the size of P ∗ is at most two times the size of P . Computing P ∗ from P takes
time linear in P and the number of Γ ⊢ e : τ queries made to the type inference
algorithm. However, most secure information flow type systems actually compute
the principal types for each expression. In such a case, asking whether there is
a low-security type τ such that Γ ⊢ e : τ is a constant time operation once the
principal types have been computed for P .

It is clear that the type-directed transformation approach is better than a
type-based approach alone since it runs the type inference algorithm as a sub-
process, and therefore it may accept the program if the type inference successfully
assigned low-security types to the low-security variables.

Before we argue that the type-directed transformation approach is better
than the self-compositional approach, we point out that in their full generality,
the two approaches are equivalent since they are both a complete characteriza-
tion of the same secure information flow problem, i.e., they are no different to a
hypothetical safety analysis having infinite deduction power. Even restricted to
the class of safety analysis tools that are “fast” and sound (but not necessarily
complete), we cannot compare the two because, for example, this class includes
one that rejects all programs not of the form P ; C(P), i.e., the self-composition
approach is always better for such a safety analysis, and conversely, there is a
sound safety analysis that rejects all programs of the form P ; C(P).

Instead, we argue that type-directed-transformed programs tend to be more
digestible than self-composed programs for most automatic safety analysis tools
assuming that they are targeted toward the general class of “natural” safety
(i.e., naturally 1-safety) problems for imperative languages. Such tools typically
reason about a program by interpreting each program statement as an abstract

store update operation where an abstract store may be a set of abstract val-
ues stored in abstract memory cells, a set of predicates over program variables
where each predicate represents a possible store, or something similar. With self-
composition, the store space for the copies P and C(P) are completely disjoint.
However, the query is all about connecting these two stores, i.e., it is about
whether some portion of the two disjoint store spaces is equivalent after the pro-
gram terminates given that some portion of the two disjoint store spaces is equiv-
alent before the program. Therefore 1-safety analysis tools generally suffer from
not being able to relate the two stores within the abstract interpretation phase.
Our type-directed transformation directly makes relevant connections between
the two stores locally within the program. These connections help the safety
analysis significantly in some situations as seen in the example in this section
(Figure 9, 10) where the self-compositional approach would perform poorly.

4 Related Work

Darvas, Hähnle, and Sands [3] used a self-compositional approach to prove secure
information flow properties for Java CARD programs. They used an interactive
approach instead of an automatic approach. Barthe, D’Argenio, and Rezk coined
the term “self-composition” in their paper [4]. Their paper is mostly theoreti-
cal results on characterizing various secure information flow problems, including
non-deterministic and termination-sensitive cases, in a self-compositional frame-
work. We believe that our paper is the first one to examine applying an automatic
safety analysis in the self-compositional setting.

Barthe, D’Argenio, and Rezk in the same paper showed that their self-
compositional framework can handle delimited information release as originally
proposed by Sabelfeld and Myers [11]. We have shown that Li and Zdancewic’s
recently proposed relaxed non-interference [9] is equivalent to delimited informa-
tion release when strengthened with semantic equivalence. Relaxed non-interference
is arguably a more natural formulation of information downgrading than delim-
ited information release. Our paper suggests a promising practical approach
toward making complete use of properties definable as relaxed non-interference.

5 Conclusions and future work

We have shown that Li and Zdancewic’s relaxed non-interference can be in-
corporated into both self-composition and its generalization, the type-directed
transformation approach. We have presented the type-directed transformation
approach as a solution to a problem with applying self-composition in practice
with off-the-shelf automatic safety analysis tools. The type-directed transforma-
tion approach combines the best parts of traditional type-based approaches and
self-composition.

One possible improvement to our type-directed transformation is to make
it iterative, i.e., in the event that the safety analysis fails, instead of failing the
whole process completely it may report back to the type system with information

about which expressions are low-security at which program points. Then the type
system can “cast” these expressions to low-security types to obtain more low-
security expressions, and the process repeats. To make this work, we need a way
to obtain partial results from the safety analysis tool. Obtaining useful partial
results may be difficult for a demand-driven framework such as BLAST.

References

1. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J.
Selected Areas in Communications 21(1) (January 2003) 5–19

2. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: SP ’94: Proceedings of the 1994 IEEE Symposium on
Security and Privacy, Washington, DC, USA, IEEE Computer Society (1994) 79

3. Ádám Darvas, Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In Gorrieri, R., ed.: Workshop on Issues in the Theory of
Security, WITS, IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS (2003)

4. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: Computer Security Fundation Workshop (CSFW’17), IEEE Press (2004)

5. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: Proceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, Oregon (January 2002) 1–3

6. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon (January 2002) 58–70

7. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refine-
ment for software model checking. In Kaoen, J.P., Stevens, P., eds.: Proceedings
of TACAS02: Tools and Algorithms for the Construction and Analysis of Systems.
Volume 2280 of LNCS., Springer-Verlag (2002) 158–172

8. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. In: Proceedings of the 32nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Long Beach, California (January 2005)
132–144

9. Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. In: Pro-
ceedings of the 32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Long Beach, California (January 2005) 158–170

10. Zdancewic, S., Myers, A.C.: Robust declassification. In: CSFW ’01: Proceedings
of the 14th IEEE Workshop on Computer Security Foundations, IEEE Computer
Society (2001) 15–23

11. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Pro-
ceedings of the International Symposium on Software Security (ISSS’03). (2003)

12. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: Proceedings of the 31st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Venice,
Italy (January 2004) 186–197

13. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. Technical
report

14. Volpano, D., Smith, G.: A type-based approach to program security. In Bidoit,
M., Dauchet, M., eds.: Theory and Practice of Software Development, 7th Inter-
national Joint Conference. Volume 1214 of Lecture Notes in Computer Science.,
Lille, France, Springer-Verlag (April 1997) 607–621

