
Hashconsing in an Incrementally Garbage-Collected
System

Pascal Cuoq (CEA LIST) Damien Doligez (INRIA)

September 21, 2008

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 1 / 22



Plan

1 Weak Pointers and Hashconsing

2 Naive Implementation

3 Problems

4 Solutions

5 Conclusion and Future Work

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 2 / 22



Pointers

let x = a :: t in
let y = x in
...

let x = a :: t in
let y = a :: t in
...

if x == y then printf "Hello world"

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 3 / 22



Pointers

let x = a :: t in
let y = x in
...

let x = a :: t in
let y = a :: t in
...

if x == y then printf "Hello world"

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 3 / 22



Weak Pointers

let x = a :: t in

let y = x in
Weak.set w 1 x

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 4 / 22



Weak Pointers

let x = a :: t in
let y = x in

Weak.set w 1 x

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 4 / 22



Weak Pointers

let x = a :: t in
let y = x in
Weak.set w 1 x

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 4 / 22



Hashconsing 1

let x = a :: t in

(* arbitrary code *)

let y = a :: t in
...

Beware of mutable values !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 5 / 22



Hashconsing 1

let x = a :: t in

(* arbitrary code *)

let y = a :: t in
...

Beware of mutable values !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 5 / 22



Hashconsing 1

let x = a :: t in
(* arbitrary code *)
let y = a :: t in
...

Beware of mutable values !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 5 / 22



Hashconsing 1

let x = a :: t in
(* arbitrary code *)
let y = a :: t in
...

Beware of mutable values !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 5 / 22



Hashconsing 2

let x = cons a t in

(* arbitrary code *)
let y = cons a t in
...

Problem : we don’t want to retain everything through the hashtable
Solution : use weak pointers !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 6 / 22



Hashconsing 2

let x = cons a t in
(* arbitrary code *)
let y = cons a t in
...

Problem : we don’t want to retain everything through the hashtable
Solution : use weak pointers !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 6 / 22



Hashconsing 2

let x = cons a t in
(* arbitrary code *)
let y = cons a t in
...

Problem : we don’t want to retain everything through the hashtable

Solution : use weak pointers !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 6 / 22



Hashconsing 2

let x = cons a t in
(* arbitrary code *)
let y = cons a t in
...

Problem : we don’t want to retain everything through the hashtable
Solution : use weak pointers !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 6 / 22



Plan

1 Weak Pointers and Hashconsing

2 Naive Implementation

3 Problems

4 Solutions

5 Conclusion and Future Work

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 7 / 22



Implementation of Weak Pointers

Implemented in C, inside the runtime system.
Garbage Collector :

1 collect normally

2 erase weak pointers as needed

Incremental garbage collection :

same thing, but erase weak pointers incrementally

Generational garbage collection :

requires a little care

Must be able to enumerate all weak pointers.

Overhead : 1 additional pointer in each weak array

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 8 / 22



Naive Implementation of Hashconsing

Implemented in ML, based on the Weak Pointers interface. type ’a t

create : int -> ’a t
set : ’a t -> int -> ’a option -> unit
get : ’a t -> int -> ’a option
check : ’a t -> int -> bool
... Implements hashed sets, where the key is the data. This allows us to

use a user-defined comparison function to retrieve values modulo some
arbitrary equivalence.
A hash table where each bucket is a weak array.

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 9 / 22



Plan

1 Weak Pointers and Hashconsing

2 Naive Implementation

3 Problems

4 Solutions

5 Conclusion and Future Work

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 10 / 22



Problems with Naive Hashconsing 1

Each time a weak pointer is read into a normal pointer, the data must
be marked reachable.

When we call the user-defined equality function, we must give it a
normal pointer.

Because of the incremental GC, things marked reachable are not
deallocated before the end of the GC cycle.

In the case of recursive datatypes (lists, terms, ...), the whole subtree
under a value is reachable as soon as that value is reachable.

When searching a bucket, we compare each element, thus ”refreshing” it.
This leads to very slow deallocation, and the table retains values (almost)
as if it was a strong hash table.

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 11 / 22



Problems with Naive Hashconsing 2

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 12 / 22



Problems with Naive Hashconsing 2

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 12 / 22



Problems with Naive Hashconsing 3

We use dynamic resizing of both the table and the buckets.

Problem : values disappear from the hash table without warning. We
increase the size of the table when inserting, but we don’t know when to
decrease it.

With a perfectly random hash function, buckets are guaranteed to grow
without bound !

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 13 / 22



Plan

1 Weak Pointers and Hashconsing

2 Naive Implementation

3 Problems

4 Solutions

5 Conclusion and Future Work

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 14 / 22



Solution 1

Short buckets within shared weak arrays, with FAT-like allocation. (buckx)

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 15 / 22



Solution 2

Keep the hash values and call the equality function only when the hash
values match.

Incremental resizing of the bucket and estimation of hash table occupancy.

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 16 / 22



Benchmarks

runtime tables time (s) size (MiB)

3.09.3 naive 101815 >2048
3.09.3 buckx 44714 991

3.10.2 3.10.2 37472 936
3.10.2 buckx 43896 836
3.10.2 buckx+ 40269 854

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 17 / 22



Plan

1 Weak Pointers and Hashconsing

2 Naive Implementation

3 Problems

4 Solutions

5 Conclusion and Future Work

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 18 / 22



Conclusion

Summary : hashconsing in Ocaml now works pretty well

No longer a bottleneck in static analyzer Frama-C :
one 300 000 LOC case is analyzed using 8Gb of memory

From the log files, it appears that this analysis allocates 5 millions
elements worth of hasconsing tables

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 19 / 22



Future Work

If there was a reason to keep working on the efficiency of hashconsing in
Frama-C, ...

1 get rid of the cache for hash values.

module type Hashable = sig
type t
val hash : t -> int
val hash in weak : t Weak.t -> int -> int
val equal : t -> t -> bool
val equal in weak : t -> t Weak.t -> int -> bool
end

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 20 / 22



Future Work

If there was a reason to keep working on the efficiency of hashconsing in
Frama-C, ...

2 move the hashconsing implementation into the runtime.

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 21 / 22



Thanks

Cuoq (CEA), Doligez (INRIA) Hashconsing 2008-09-21 22 / 22


	Weak Pointers and Hashconsing
	Naive Implementation
	Problems
	Solutions
	Conclusion and Future Work

