functional pearl

A Functional Implementation of the Garsia–Wachs Algorithm

Jean-Christophe Filliâtre (CNRS)

ML Workshop '08

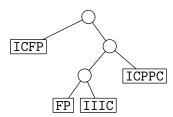
Save Endo

Ropes

an opportunity to (re)discover ropes, a data structure for long strings

Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass *Ropes: An alternative to strings*

Software - Practice and Experience, 25(12):1315-1330, 1995



Balancing Ropes

access time to character i now proportional to the depth of its leaf \Rightarrow when height increases, access becomes costly

as binary search trees, ropes can be balanced an on-demand rebalancing algorithm is proposed in the original paper

question: can we rebalance ropes in an **optimal** way, *i.e.* with minimal mean time access to characters?

The Abstract Problem

given values X_0, \ldots, X_n together with nonnegative weights w_0, \ldots, w_n , build a binary tree which **minimizes**

$$\sum_{i=0}^n w_i \times \operatorname{depth}(X_i)$$

and which has leaves X_0, \ldots, X_n in inorder

One Solution: The Garsia-Wachs Algorithm

Adriano M. Garsia and Michelle L. Wachs A new algorithm for minimum cost binary trees SIAM Journal on Computing, 6(4):622–642, 1977

not widely known

described in

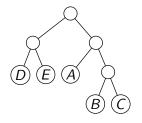
Donald E. Knuth
The Art of Computer Programming
Optimum binary search trees (Vol. 3, Sec. 6.2.2)

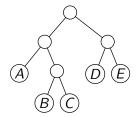
The Algorithm

three steps

- build a binary tree of optimum cost, but with leaf nodes in disorder
- traverse it to compute the depth of each leaf X_i
- **3** build a new binary tree where leaves have these depths and are in inorder X_0, \ldots, X_n

example : A, 3; B, 2; C, 1; D, 4; E, 5





similar to Huffman's algorithm: works on a list of weighted trees, started with $X_0, w_0, \ldots, X_n, w_n$, and group trees two by two, until only one is left

- determine the smallest i such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t at largest j < i such that $weight(t_{i-1}) \ge w$

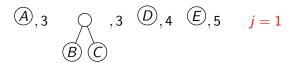
(A), 3 (B), 2 (C), 1 (D), 4 (E), 5 (C)

- determine the smallest i such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t at largest j < i such that $weight(t_{i-1}) \ge w$

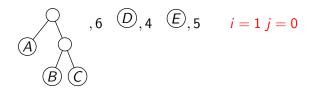
$$\bigcirc$$
,3 \bigcirc ,4 \bigcirc ,5

$$t = \bigcirc w = 3$$

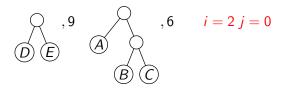
- determine the smallest i such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t at largest j < i such that $weight(t_{i-1}) \ge w$



- determine the smallest i such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t at largest j < i such that $weight(t_{j-1}) \ge w$

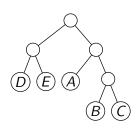


- determine the smallest i such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t at largest j < i such that $weight(t_{j-1}) \ge w$



similar to Huffman's algorithm: works on a list of weighted trees, started with $X_0, w_0, \ldots, X_n, w_n$, and group trees two by two, until only one is left

- determine the smallest i such that $weight(t_{i-1}) \leq weight(t_{i+1})$
- link t_{i-1} and t_i , with weight $w = weight(t_{i-1}) + weight(t_i)$
- insert t at largest j < i such that $weight(t_{j-1}) \ge w$



i = 1, j = 0

Steps 2 and 3

we now have to build a binary tree with leaf nodes in inorder

with depths (in that order)

soundness of the algorithm ensures that such a tree exists

a nice programming exercise!

ML Implementation

```
\begin{array}{l} \text{type } \alpha \text{ tree} = \\ \mid \text{Leaf of } \alpha \\ \mid \text{Node of } \alpha \text{ tree} \times \alpha \text{ tree} \\ \\ \text{val garsia\_wachs} : \left(\alpha \times \text{int}\right) \text{ list } \rightarrow \alpha \text{ tree} \\ \end{array}
```

ML Implementation (step 1)

```
val phase1 : (\alpha tree \times int) list \rightarrow \alpha tree
we navigate in the list of weighted tree using a zipper
a zipper for a list is a pair of lists: the elements before the position (in
reverse order) and the elements after
let phase1 l =
  let rec extract before after = ...
  and insert after t before = \dots in
  extract [] I
```

ML Implementation (step 1)

```
let rec extract before = function
  | [] \rightarrow
        assert false
  \mid [t,_] \rightarrow
  | [t1,w1; t2,w2] \rightarrow
        insert [] (Node (t1, t2), w1 + w2) before
  | (t1, w1) :: (t2, w2) :: ((\_, w3) :: \_ as after) when w1 \le w3 \rightarrow
        insert after (Node (t1, t2), w1 + w2) before
   \mid e1 :: r \rightarrow
        extract (e1 :: before) r
```

ML Implementation (step 1)

```
and insert after ((_-,wt) as t) = function
  | [] \rightarrow
        extract [] (t :: after)
  |( \_, wj_1)  as tj_1 :: before when <math>wj_1 \ge wt \rightarrow wt
         begin match before with
           | | | \rightarrow
                extract [] (tj_1 :: t :: after)
            |t_{i-2}::before \rightarrow
                extract before (tj_2 :: tj_1 :: t :: after)
         end
   | ti :: before \rightarrow
         insert (tj :: after) t before
```

ML Implementation (step 2)

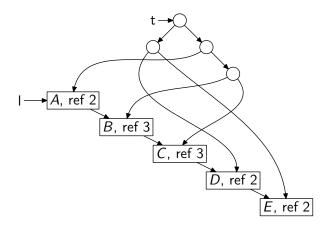
to retrieve depths easily, we associate a reference to each leaf

```
let garsia_wachs I =  let I =  List.map (fun (x, wx) \rightarrow  Leaf (x, ref 0), wx) I =  let I =  phase1 I =  in ...
```

then it is easy to set the depths after step 1, using

```
 \begin{array}{l} \text{let rec mark d} = \text{function} \\ \mid \text{Leaf (\_, dx)} \rightarrow \text{dx} := \text{d} \\ \mid \text{Node (I, r)} \rightarrow \text{mark (d + 1) I; mark (d + 1) r} \end{array}
```

Shared References



ML Implementation (step 3)

we build the tree from the list of its leaf nodes together with their depths

elegant solution due to R. Tarjan

```
let rec build d = function

| (Leaf (x, dx), _) :: r when !dx = d \rightarrow

Leaf x, r

| I \rightarrow

let left,I = build (d+1) I in

let right,I = build (d+1) I in

Node (left, right), I
```

Putting All Together

```
let garsia_wachs I = let I = List.map (fun (x, wx) \rightarrow Leaf (x, ref 0), wx) I in let t = phase1 I in mark 0 t; let t, [] = build 0 I in t
```

Comparison with a C Implementation

the presentation of the Garsia–Wachs algorithm in TAOCP has a companion C code

this C code

- has time complexity $O(n^2)$, as our code
- ullet uses statically allocated arrays and has space complexity O(n)
- is longer and more complex than our code

Benchmarks

for a fair comparison, the \boldsymbol{C} program has been translated to Ocaml timings for 500 runs on randomly selected weights

"C"	Ocaml
0.61	0.59
0.68	0.68
0.72	0.82
0.77	0.91
0.83	1.03
	0.61 0.68 0.72 0.77

note: in the ICFP 2007 contest, the average size of ropes is 97 nodes (over millions of ropes)

Conclusion

the Garsia–Wachs algorithm deserves a wider place in literature and has a nice application to ropes rebalancing

from the point of view of functional programming

- no harm in being slightly impure from time to time
- especially when side-effects are purely local