
Unrestricted pure
call-by-value recursion

Johan Nordlander, Magnus Carlsson, Andy Gill
ML'08

1

Recursive bindings

Haskell (& friends):

e1 and e2 can be
any kind of expression

e1 and e2 can have
any type

SML (& friends):

e1 and e2 must be
syntactic values

e1 and e2 must only have
function type

let x1 = e1

 x2 = e2
in ...

Goal of this work: lift both restrictions for call-by-value!

2

Examples
Uncontroversial:
(a) f = \n . if n==0 then 1 else n * f (n-1)

Not of function type:
(b) f = 1 : 2 : 3 : f

Not a value:
(c) f = g f
 where g = \h. \n. if n==0 then 1 else n * h (n-1)

But note:
• (a) and (b) are basically the same memory initialization problem
• (c) could evaluate to (a) without caring what f is

3

Example

data RegExp = Lit Char
 | Seq RegExp RegExp
 | Star RegExp

data NFA = N [(Char,NFA)] [NFA]
 | Accept

toNFA (Lit c) n = N [(c,n)] []
toNFA (Seq r1 r2) n = toNFA r1 (toNFA r2 n)
toNFA (Star r) n = n'
 where n' = N [] [toNFA r n', n]

Converting regular expressions to NFAs:

4

Supporting unrestricted cbv
recursion

Our idea:

• "resolve addresses dynamically like a 2-pass assembler"

• "let address placeholders be valid function arguments"

Semantically: evaluate in the presence of free variables

Our contribution:

1. A simple reduction semantics

2. A lightweight implementation technique

Not addressed:

• Static detection of ill-founded recursion

• Static identification of non-inductive data

5

Language

e ::= λx.e | x | e e' | let b in e
b ::= x = e | b,b' | 0
v ::= λx.e
Γ ::= x = v | Γ, Γ' | 0
w ::= v | x

expressions
bindings

value bindings

weak values

 b,(b',b") ≡ (b,b'),b"
b,0 ≡ b ≡ 0,b

Always assume bound variables don't overlap
Evaluate in the presence of a Γ (the heap)

values

6

Evaluation

Γ ⊦ (λx.e) w → [w/x]eBeta Γ,x=v ⊦ x → vVar

E ::= [] e | (λx.e) [] | let Γ,x=[],b in e | let Γ in []

Γ+E ⊦ e → e'
Γ ⊦ E[e] → E[e']

Nest

Γ ⊦ E[let Γ' in w] → (E+Γ')[w]Merge

7

Nesting & merging

Γ + (let Γ',x=[],b in e) = Γ,Γ'
 Γ + (let Γ' in []) = Γ,Γ'

 Γ + ([] e) = Γ
 Γ + ((λx.e) []) = Γ

(let Γ,x=[],b in e) + Γ' = let Γ,Γ',x=[],b in e
(let Γ in []) + Γ' = let Γ,Γ' in []
 ([] e) + Γ' = let Γ' in [] e

 ((λx.e) []) + Γ' = let Γ' in (λx.e) []

Extending a heap with the local bindings of a context (rule Nest):

Extending a context with a local heap (rule Merge):

8

Evaluation examples

Γ,x=v ⊦ (λy.y) x → (λy.y) v → v
Var Beta

Γ,x=v ⊦ (λy.y) x → x → v
Beta Var

Γ ⊦ (λy.y) (let x=v in x) → let x=v in (λy.y) x
Merge

Γ,f=λx.f x ⊦ f w → (λx.f x) w → f w → ...
Var Beta

Γ,g=λh.λx.h x ⊦ #let f = g f in f w →
 let f = (λh.λx.h x) f in f w →
 let f = λx.f x in f w → ...

Var

Beta

9

Confluence
... up to referential equivalence

Define: Γ,x=v,Γ' ⊦ x = v
Lift to an equivalence relation on expressions

Theorem: If Γ ⊦ e → e1 and

 Γ ⊦ e → e2
 then Γ ⊦ e1 →* e1' and

 Γ ⊦ e2 →* e2' such that

 Γ ⊦ e1' = e2'

Theorem (referential transparency):
Reduction preserves referential equivalence

10

Extensions

Records: e ::= ... | { si = ei } | e.s
v ::= ... | { si = wi }
E ::= ... | { si = []i } | [].s

 Γ ⊦ { si = wi }.sj → wj

Algebraic datatypes and primitive types follow same pattern

Sel

11

Record examples
Γ,x={hd=7, tl=x} ⊦ x.tl.hd →
 {hd=7,tl=x}.tl.hd →
 x.hd → 7

Sel

Sel

Var

Γ,f=λy.λz.{hd=y, tl=z} ⊦ let x = f 7 x in e →
 let x = (λy.λz.{hd=y, tl=z}) 7 x in e →
 let x = {hd=7, tl=x} in e

Var

Beta

Γ ⊦ #let x={hd=7, tl=y}, y={hd=x.hd, tl=x} in e →
 let x={hd=7, tl=y}, y={hd=7, tl=x} in e

Sel

12

Mutually recursive data

x y

x = f ... y ...
y = g ... x ... x.s

Ill-defined (needs to destruct y before y exists)

y.s

13

Interesting workaround

x y z

x = f ... y ...
y = g ... x ... x.s
x = f ... y ... z
y = g ... x ... x.s
z = y.s

Delayed selection!

14

Implementation
Heap-bound variables are pointers

Pointer dereferencing implements rule Var

Strategy: only dereference when necessary (not in args)

Core challenge: how represent pointers that can't be
dereferenced (variables in scope, but absent in Γ)

Solution: use illegal but still distinct addresses

• Odd addresses, or

• addresses pointing outside allocated heap.

• Keep track of next unused illegal address using a
stack-like counter

15

Implementation

[let x1 = e1, ..., xn = en in en+1] =

 τ1 x1 = ξ1;
 ...
 τn xn = ξn;
 x1 = [e1] ; subst(θ1, x1);
 ...
 xn = [en] ; subst(θn, x1, ..., xn);
 return [en+1]

where ξ1, ... ξn are fresh illegal addresses
and θi = [x1/ξ1, ..., xi/ξi]

16

Function subst

 subst(θ, x1, ..., xk)
• destructively applies θ to each root x1, ..., xk

• requires garbage collection infrastructure
(scalar/pointer distinction, node layout)
but not tied to a particular GC

• one visited bit per node (not shared with GC)

• several optimizations possible...

Note dependency on pure evaluation:
if the RHS ei could have side effects, subst
would generally have to traverse the whole heap

17

Implementation performance
A trade-off between cyclic structure building cost
and cost for data access

Our choice: zero data access cost; c.f. C translation:

• [x.s] = x->s

• [case x of ...] = switch (x->tag) { ... }

• [x arg] = x->code(x, arg)

Cost for building cyclic data = cost of subst calls

With optimizations: just one subst traversal per
dependency graph cycle

Note: the longer a cyclic structure lives, the cheaper
any initial subst calls become

18

Related approaches
Hirschowitz, Leroy & Wells (PPDP'03)

• Allocate empty top nodes (must know size statically)

• Copy actual results to pre-allocated nodes

• Requires separate well-foundedness analysis

Boudol & Zimmer (FICS'02)

• Always access recursive values through an indirection

• Bind to exception initially, update final value in one step

Syme (Electronic Notes in Theoretical CS, 2006)

• delay RHS exprs, force LHS vars where they appear

• no direct cyclic data, but order independence

19

Conclusion

A reduction semantics and an implementation technique
for unrestricted (w.r.t. type & syntax) cbv recursion

Simple, referentially transparent, extensible semantics

Implementation uses illegal addresses & subst traversals,
takes all cost at data construction (zero access cost)

Moderate cost of subst depends on purity of RHS exprs

Future directions:

• Static detection of ill-definedness & non-termination

• Relaxed dynamics: delayed selection...

20

A bigger example
Combinator parsers using applicative functors:
 accept :: [Char] -> P Char accept one char from given set
 return :: a -> P a succeed without consuming input
 ($$) :: P (a->b) -> P a -> P b sequential parser composition
 ($+) :: P a -> P a -> P a alternative parser composition
Example of use:
 data Exp = EOp Var Op Exp | EVar
 data Var = V Char
 data Op = O Char
 pExp = return EOp $$ pVar $$ pOp $$ pExp
 $+ return EVar $$ pVar
 $+ parens pExp
 pVar = return V $$ accept ['a'..'z']
 pOp = return O $$ accept ['+','-','*','/']

21

Combinator implementation
Self-optimizing during "startup" (Swierstra & Duponchel):

 type P a = (Maybe a, [(Char, String -> (String, Maybe a))]

 return a = (Just a, [])
 accept cs = (Nothing, [(c,\s->(s,Just c)) | c <- cs])
 fp $$ ap = (empty, nonempty) where
 empty = case fst fp of
 Nothing -> Nothing
 Just f -> case fst ap of
 Nothing -> Nothing
 Just a -> Just (f a)
 nonempty = combineSeq fp ap
 p1 $+ p2 = ...

22

Another example

game gui = class
 (simStart, stick, p1, p2, p3, d1, d2, d3) = new simulation gui echoI thrustI
 (sysStart, echoI, thrustI) = new sensorSys p1 p2 p3 d1 d2 d3
 result (stick, action simStart; sysStart)

A lunar lander
simulator in

Timber

alti-
tude

fuel
level

thrust
status

altitude
display
widget

user

sensor
system

fuel
display
widget

thrust
display
widget

gui

lunar
lander
simulator

p1

p2

p3

p0
stick
widget

canvas

simulation

23

