e

Unrestricted pure
call-by-value recursion

Johan Nordlander, Magnus Carlsson, Andy Gill
ML'08

' Recursive bindings

let x1=es
X2 = e
in ...

Haskell (& friends):

e1 and ez can be
any kind of expression

e1 and ez can have
any type

SML (& friends):

e1 and ez must be
syntactic values

e1 and ez must only have
function type

Goal of this work: lift both restrictions for call-by-value!

Examples

Uncontroversial:
(a) =\n.if n==0 then l else n * f (n-1)

Not of function type:
(b) f=1:2:3:f

Not a value:
() f=gf
where g = \h. \n. if n==0 then 1 else n * h (n-1)

But note:
* (a) and (b) are basically the same memory initialization problem
* (c) could evaluate to (a) without caring what f is

Example

Converting regular expressions to NFAs:

= Lit Char

| Seq RegExp RegExp
| Star RegExp

data RegExp

data NFA N [(Char,NFA)] [NFA]

| Accept

toNFA (Lit ¢) n N [(c,n)] []
toNFA (Seq rl r2) n toNFA rl (foNFA r2 n)
toNFA (Starr) n = n

where n' N [] [tfoNFA r n', n]

Supporting unrestricted cbv
recursion

) Our idea:

* "resolve addresses dynamically like a 2-pass assembler

* "let address placeholders be valid function arguments"

() Semantically: evaluate in the presence of free variables
©) Our contribution:

1. A simple reduction semantics

2. A lightweight implementation technique
©) Not addressed:

* Static detection of ill-founded recursion

e Static identification of non-inductive data

Language

expressions € = AXe | x | ee' | letbine
bindings b iz x=e | bb' | 0

values vV i AX.e

value bindings I = x=v | I',T" | O

weak values W = VvV | X

b(b'b") = (bb')b"
bO=b=0b

Always assume bound variables don't overlap
Evaluate in the presence of a I' (the heap)

Evaluation

Beta [| (Ax.e)w — [w/x]e Var [X=vF X = v

T[+Ele — e
'+ E[e] — E[e']

Nest

Merge [F E[Ie1‘ M in W] — (E+|")[w]

E = []Je | (A\xe)[] | letT x=[]bine | letTin[]

Nesting & merging

Extending a heap with the local bindings of a context (rule Nest):

F+(letT' ' x=[]lbine) = I,

F+(letT'in[]) = T,
F+([Je) =T
Fr+(Axe)[]) =T

Extending a context with a local heap (rule Merge):

(let ' x=[]lbine)+ T’
(letTin[])+ T
([1e)+ T

(Axe) [+ T

let ', x=[]bine
let I',l" in[]

let T in[]e

let " in (Ax.e) []

Evaluation examples

<
Var Beta

Fx=v F (Ayy) x = (Ay.y)v = v

Beta Var

Fx=v F (Ayy)x = x 2 v
Merge
I F (\yy) (let x=v in x) — let x=v in (Ay.y) X

Var Beta

Ff=AxfxF fw->AxfxX)w—->fw-— .

Var

Fg=AhAxhx F letf=lgflinfw— .

et f =|(Ah.Ax.h x) flinfw —
etf=Axfxinfw— ..

Confluence

... up to referential equivalence
Define: I x=v,[' F x=v
Lift fo an equivalence relation on expressions
Theorem: If [Fe — e; and
FFe e
then T F e 2*e;’ and
FFex—=*e2 suchthat

FFe =e;

Theorem (referential transparency):
Reduction preserves referential equivalence

10

Extensions

Records: e .= {sizei} | es
VERE {si=w}
E = {si=[}i} | [Is

sel F{si=wi}lsj—=w;

Algebraic datatypes and primitive types follow same pattern

11

Record examples

I x={hd=7, tl=x} F x.’rl.hdva—rv
{hd=7 tl=x}.tl.hd >

Sel

x.hd = 7

I f=AyAz{hd=y, tlI=z} F letx=f7 xine 5
let x = (A\y.Az.{hd=y, tI=2}) 7 x in e
let x = {hd=7, tl=x} ine
Sel

r F let x={hd=7, tl=y}, y={hd=x.hd, tl=x} ine —
let x={hd=7, tl=y}, y={hd=7, tl=x} in e

12

Mutually recursive data

X <

Tll-defined (needs to destruct y before y exists)

13

Interesting workaround

Delayed selection!

14

-

() Heap-bound variables are pointers

Implementation

C) Pointer dereferencing implements rule Var
() Strategy: only dereference when necessary (not in args)

) Core challenge: how represent pointers that can't be
dereferenced (variables in scope, but absent in ')

) Solution: use illegal but still distinct addresses
* Odd addresses, or
* addresses pointing outside allocated heap.

* Keep track of next unused illegal address using a
stack-like counter

15

Implementation

[letxi=eq, .., xn=eninemn]=
T1 X1 = C1;

Tn Xn = gn;
x1=[e1]; subst(B1, x1);

Xn = [€n], SUbST(en, X1, ..., Xn),
return [en.1]

where €1, ... £ are fresh illegal addresses
and 6; = [x1/¢1, ..., xi/&i]

16

'. Function subst

subst(0, xi, ..., Xk)
 destructively applies © to each root x, ..., xk

* requires garbage collection infrastructure
(scalar/pointer distinction, node layout)
but not tied to a particular GC

 one visited bit per node (not shared with GC)

 several optimizations possible...

Note dependency on pure evaluation:
if the RHS e; could have side effects, subst
would generally have to traverse the whole heap

17

-

Implementation performance

C) A trade-of f between cyclic structure building cost
and cost for data access

C) Our choice: zero data access cost; c.f. C translation:

* [xs] = X->S
* [casexof ...] = switch (x->tag){ ...}
* [xarg] = x->code(x, arg)

) Cost for building cyclic data = cost of subst calls

©) With optimizations: just one subst traversal per
dependency graph cycle

©) Note: the longer a cyclic structure lives, the cheaper
any initial subst calls become

18

-

C) Hirschowitz, Leroy & Wells (PPDP'03)

* Allocate empty top nodes (must know size statically)

Related approaches

* Copy actual results to pre-allocated nodes

* Requires separate well-foundedness analysis
©) Boudol & Zimmer (FICS'02)

* Always access recursive values through an indirection

* Bind to exception initially, update final value in one step
©) Syme (Electronic Notes in Theoretical €S, 2006)

* delay RHS exprs, force LHS vars where they appear

* no direct cyclic data, but order independence

19

. " Conclusion

C) A reduction semantics and an implementation technique
for unrestricted (w.r.t. type & syntax) cbv recursion

C) Simple, referentially transparent, extensible semantics

©) Implementation uses illegal addresses & subst traversals,
takes all cost at data construction (zero access cost)

©) Moderate cost of subst depends on purity of RHS exprs
©) Future directions:
e Static detection of ill-definedness & non-termination

* Relaxed dynamics: delayed selection...

20

A bigger example

ST
Combinator parsers using applicative functors:
accept :: [Char] -> P Char accept one char from given set

return::a->Pa succeed without consuming input
($%$) :: P (a->b) -> P a -> P b sequential parser composition
($+) :Pa->Pa->Pa alternative parser composition

Example of use:
data Exp= EOp Var Op Exp | EVar
data Var = V Char
data Op = O Char
pExp = returnEOp $$ pVar $$ pOp $$ pExp
$+ return EVar $$ pVar
$+ parens pExp

pVar = returnV $$ accept['a'..'z']
pOp = returnO $%$ accept['+','-','*",'/']

21

“Combinator implementation

Self-optimizing during "startup" (Swierstra & Duponchel):
type Pa = (Maybe a, [(Char, String -> (String, Maybe a))]

returna = (Justa, [])
accept cs = (Nothing, [(c,\s->(s,Just c)) | c<-cs])
fp $$ ap = (empty, nonempty) where
empty = case fst fp of
Nothing -> Nothing
Just f -> case fst ap of
Nothing -> Nothing
Just a -> Just (f a)
honempty = combineSeq fp ap
pl $+ p2 = ..

22

Another example

o . altitude
A lunar' |Gnder‘ : ® | canvas pl ko _ 31113;} _._<> diggla%/
. . : g . widge
sm_'\rulagor' in : > :
imber : lunar R X fuel
: V\§1t (llcglét —— p0 | lander p2 <>——-— 122/%11 — display
simulator x . widget
L — ——
\ thrust t_hrust
— p3 [O——— status =< display
T 4 widget
C — ——
) simulation sensor
game gui = class system
(simStart, stick, p1, p2, p3, d1, d2, d3) = new simulation gui echoI thrustI
(sysStart, echol, thrustT) = new sensorSys pl p2 p3 d1 d2 d3

result (stick, action simStart; sysStart)

