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Recursive bindings

Haskell (& friends):

e1 and e2 can be
any kind of expression

e1 and e2 can have
any type

SML (& friends):

e1 and e2 must be
syntactic values

e1 and e2 must only have
function type

let  x1 = e1

     x2 = e2   
in ...

Goal of this work: lift both restrictions for call-by-value!
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Examples
Uncontroversial:
(a) f  = \n . if n==0 then 1 else n * f (n-1)

Not of function type:
(b) f  =  1 : 2 : 3 : f

Not a value:
(c) f  =  g f
   where g = \h. \n. if n==0 then 1 else n * h (n-1)

But note:
• (a) and (b) are basically the same memory initialization problem
• (c) could evaluate to (a) without caring what f is
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Example

data  RegExp  =  Lit  Char
                       |  Seq  RegExp  RegExp
                       |  Star  RegExp

data  NFA    =  N  [(Char,NFA)]  [NFA]
                     |  Accept

toNFA  (Lit  c)  n         =  N  [(c,n)]  []
toNFA  (Seq  r1  r2)  n =  toNFA  r1  (toNFA  r2  n)
toNFA  (Star r)  n   =  n' 
         where  n'    =  N  []  [toNFA  r  n',  n] 

Converting regular expressions to NFAs:
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Supporting unrestricted cbv 
recursion

Our idea:

• "resolve addresses dynamically like a 2-pass assembler"

• "let address placeholders be valid function arguments"

Semantically: evaluate in the presence of free variables

Our contribution:

1. A simple reduction semantics

2. A lightweight implementation technique

Not addressed:

• Static detection of ill-founded recursion

• Static identification of non-inductive data
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Language

e  ::=  λx.e  |  x  |  e e'  |  let b in e
b  ::=  x = e  |  b,b'  |  0
v  ::=  λx.e
Γ  ::=  x = v  |  Γ, Γ'  |  0 
w  ::=  v  |  x

expressions
bindings

value bindings

weak values

   b,(b',b") ≡ (b,b'),b"
b,0 ≡ b ≡ 0,b

Always assume bound variables don't overlap
Evaluate in the presence of a Γ (the heap)

values
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Evaluation

Γ ⊦ (λx.e) w → [w/x]eBeta Γ,x=v ⊦ x → vVar

E  ::=  [] e  |  (λx.e) []  |  let Γ,x=[],b in e  |  let Γ in []

Γ+E ⊦ e → e'
Γ ⊦ E[e] → E[e']

Nest

Γ ⊦ E[let Γ' in w]  → (E+Γ')[w]Merge
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Nesting & merging

Γ + (let Γ',x=[],b in e)  =  Γ,Γ'
         Γ + (let Γ' in [])  =  Γ,Γ'

               Γ + ([] e)  =  Γ
        Γ + ((λx.e) [])  =  Γ

(let Γ,x=[],b in e) + Γ'  =  let Γ,Γ',x=[],b in e
(let Γ in []) + Γ'  =  let Γ,Γ' in []
         ([] e) + Γ'  =  let Γ' in [] e

         ((λx.e) []) + Γ'  =  let Γ' in (λx.e) []

Extending a heap with the local bindings of a context (rule Nest):

Extending a context with a local heap (rule Merge):
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Evaluation examples

Γ,x=v  ⊦  (λy.y) x → (λy.y) v → v
Var Beta

Γ,x=v  ⊦  (λy.y) x → x → v
Beta Var

Γ  ⊦  (λy.y) (let x=v in x) → let x=v in (λy.y) x
Merge

Γ,f=λx.f x  ⊦  f w → (λx.f x) w → f w → ...
Var Beta

Γ,g=λh.λx.h x  ⊦  #let f = g f in f w → 
       let f = (λh.λx.h x) f in f w →
       let f = λx.f x in f w → ...

Var

Beta
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Confluence
... up to referential equivalence

Define:    Γ,x=v,Γ'  ⊦  x = v
Lift to an equivalence relation on expressions

Theorem:  If  Γ ⊦ e → e1   and

     Γ ⊦ e → e2 
   then Γ ⊦ e1 →* e1'  and

     Γ ⊦ e2 →* e2' such that

     Γ ⊦ e1' = e2'

Theorem (referential transparency): 
Reduction preserves referential equivalence
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Extensions

Records: e  ::=   ...  |  { si = ei }  |  e.s 
v  ::=   ...  |  { si = wi }
E  ::=   ...  |  { si = []i }  |  [].s

         Γ ⊦ { si = wi }.sj → wj

Algebraic datatypes and primitive types follow same pattern

Sel
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Record examples
Γ,x={hd=7, tl=x}  ⊦  x.tl.hd →
        {hd=7,tl=x}.tl.hd →
        x.hd →  7

Sel

Sel

Var

Γ,f=λy.λz.{hd=y, tl=z}  ⊦  let x = f 7 x in e →
  let x = (λy.λz.{hd=y, tl=z}) 7 x in e →
        let x = {hd=7, tl=x} in e

Var

Beta

Γ  ⊦ #let x={hd=7, tl=y}, y={hd=x.hd, tl=x} in e →
 let x={hd=7, tl=y}, y={hd=7, tl=x} in e

Sel
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Mutually recursive data

x y

x = f ... y ...
y = g ... x ... x.s

Ill-defined (needs to destruct y before y exists)

y.s
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Interesting workaround

x y z

x = f ... y ...
y = g ... x ... x.s
x = f ... y ... z
y = g ... x ... x.s
z = y.s

Delayed selection!
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Implementation
Heap-bound variables are pointers

Pointer dereferencing implements rule Var

Strategy: only dereference when necessary (not in args)

Core challenge: how represent pointers that can't be 
dereferenced (variables in scope, but absent in Γ)

Solution: use illegal but still distinct addresses

• Odd addresses, or

• addresses pointing outside allocated heap.

• Keep track of next unused illegal address using a 
stack-like counter
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Implementation

[  let x1 = e1, ..., xn = en in en+1  ] =

 τ1 x1 = ξ1;
 ...
 τn xn = ξn;
 x1 = [ e1 ] ;  subst(θ1, x1);
 ...
 xn = [ en ] ;  subst(θn, x1, ..., xn);
 return [ en+1 ]

where ξ1, ... ξn are fresh illegal addresses
and θi = [ x1/ξ1, ..., xi/ξi ]
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Function subst

                  subst(θ, x1, ..., xk)
• destructively applies θ to each root x1, ..., xk

• requires garbage collection infrastructure 
(scalar/pointer distinction, node layout)
but not tied to a particular GC

• one visited bit per node (not shared with GC)

• several optimizations possible...

Note dependency on pure evaluation: 
if the RHS ei could have side effects, subst 
would generally have to traverse the whole heap
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Implementation performance
A trade-off between cyclic structure building cost 
and cost for data access

Our choice: zero data access cost; c.f. C translation:

• [  x.s  ]       =   x->s

• [  case x of ...  ]    =   switch (x->tag) { ... }

• [  x arg  ]       =   x->code(x, arg)

Cost for building cyclic data = cost of subst calls

With optimizations: just one subst traversal per 
dependency graph cycle

Note: the longer a cyclic structure lives, the cheaper 
any initial subst calls become
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Related approaches
Hirschowitz, Leroy & Wells (PPDP'03)

• Allocate empty top nodes (must know size statically)

• Copy actual results to pre-allocated nodes

• Requires separate well-foundedness analysis

Boudol & Zimmer (FICS'02)

• Always access recursive values through an indirection

• Bind to exception initially, update final value in one step

Syme (Electronic Notes in Theoretical CS, 2006)

• delay RHS exprs, force LHS vars where they appear

• no direct cyclic data, but order independence 
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Conclusion

A reduction semantics and an implementation technique 
for unrestricted (w.r.t. type & syntax) cbv recursion

Simple, referentially transparent, extensible semantics

Implementation uses illegal addresses & subst traversals, 
takes all cost at data construction (zero access cost)

Moderate cost of subst depends on purity of RHS exprs

Future directions:

• Static detection of ill-definedness & non-termination

• Relaxed dynamics: delayed selection...
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A bigger example
Combinator parsers using applicative functors:
    accept :: [Char] -> P Char  accept one char from given set
    return :: a -> P a     succeed without consuming input
    ($$) :: P (a->b) -> P a -> P b sequential parser composition
    ($+) :: P a -> P a -> P a   alternative parser composition
Example of use:
    data  Exp =  EOp  Var  Op  Exp   |    EVar
    data  Var =  V  Char
    data  Op  =  O  Char
    pExp  =     return EOp   $$  pVar  $$  pOp  $$  pExp
              $+  return EVar  $$  pVar
              $+                             parens pExp
    pVar  =     return V  $$  accept ['a'..'z']
    pOp   =     return O  $$  accept ['+','-','*','/']
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Combinator implementation
Self-optimizing during "startup" (Swierstra & Duponchel):

    type P a     = (Maybe a,  [(Char, String -> (String, Maybe a))]

    return a     = (Just a, [])
    accept cs   = (Nothing, [(c,\s->(s,Just c)) | c <- cs ])
    fp  $$  ap  =  (empty, nonempty) where
 empty  =  case fst fp of
      Nothing -> Nothing
      Just f -> case fst ap of
            Nothing -> Nothing
            Just a -> Just (f a)
 nonempty  =  combineSeq  fp  ap
    p1  $+  p2   =  ...
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Another example

game gui = class
        (simStart, stick, p1, p2, p3, d1, d2, d3) = new simulation gui echoI thrustI
        (sysStart, echoI, thrustI)                    = new sensorSys p1 p2 p3 d1 d2 d3
        result (stick, action simStart; sysStart)
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