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Abstract. While distributed systems with transfer of processes have become per-
vasive, methods for reasoning about their behaviour are underdeveloped. In this
paper we propose a bisimulation technique for proving behavioural equivalence
of such systems modelled in the higher-order π-calculus with passivation (and
restriction). Previous research for this calculus is limited to context bisimulations
and normal bisimulations which are either impractical or unsound. In contrast,
we provide a sound and useful definition of environmental bisimulations, with
several non-trivial examples. Technically, a central point in our bisimulations is
the clause for parallel composition, which must account for passivation of the
spawned processes in the middle of their execution.

1 Introduction

1.1 Background

Higher-order distributed systems are ubiquitous in today’s computing environment. To
name but a few examples, companies like Dell and Hewlett-Packard sell products using
virtual machine live migration [14, 3], and Gmail users execute remote JavaScript code
on local browsers. In this paper we call higher-order the ability to transfer processes,
and distribution the possibility of location-dependent system behaviour. In spite of the
de facto importance of such systems, they are hard to analyse because of their inherent
complexity.

The π-calculus [8] and its dialects prevail as models of concurrency, and several
variations of these calculi have been designed for distribution. First-order variations
include the ambient calculus [1] and Dπ [2], while higher-order include more recent
Homer [4] and Kell [15] calculi. In this paper, we focus on the higher-order π-calculus
with passivation [7], a simple high-level construct to express distribution. It is an exten-
sion of the higher-order π-calculus [9] (with which the reader is assumed to be familiar)

with located processes a[P ] and two additional transition rules: a[P ]
a〈P 〉−−−→ 0 (PASSIV),

and a[P ] α−→ a[P ′] if P
α−→ P ′ (TRANSP).
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The new syntax a[P ] reads as “process P located at a” where a is a name. Rule
TRANSP specifies the transparency of locations, i.e. that a location has no impact on
the transitions of the located process. Rule PASSIV indicates that a located process can
be passivated, that is, be output to a channel of the same name as the location. Using
passivation, various characteristics of distributed systems are expressible. For instance,
failure of process P located at a can be modelled like a[P ] | a(X).fail −→ 0 | fail , and
migration of process Q from location b to c like b[P ] | b(X).c[X]−→ 0 | c[P ].

One way to analyse the behaviour of systems is to compare implementations and
specifications. Such comparison calls for satisfying notions of behavioural equivalence,
such as reduction-closed barbed equivalence (and congruence) [5], written ≈ (and ≈c

respectively) in this paper.
Unfortunately, these equivalences have succinct definitions that are not very practi-

cal as a proof technique, for they both include a condition that quantifies over arbitrary
processes, like: if P ≈ Q then ∀R. P | R ≈ Q | R. Therefore, more convenient defi-
nitions like bisimulations, for which membership implies behavioural equivalence, and
which come with a co-inductive proof method, are sought after.

Still, the combination of both higher order and distribution has long been considered
difficult. Recent research on higher-order process calculi led to defining sound context
bisimulations [10] (often at the cost of appealing to Howe’s method [6] for proving
congruence) but those bisimulations suffer from their heavy use of universal quantifica-
tion: suppose that νc̃.a〈M〉.P X νd̃.a〈N〉.Q, where X is a context bisimulation; then
it is roughly required that for any process R, we have νc̃.(P | R{M/X}) X νd̃.(Q |
R{N/X}). Not only must we consider the outputs M and N , but we must also handle
interactions of arbitrary R with the continuation processes P and Q. Alas, this almost
comes down to showing reduction-closed barbed equivalence! In the higher-order π-
calculus, by means of encoding into a first-order calculus, normal bisimulations [10]
coincide with (and are a practical alternative to) context bisimulations. Unfortunately,
normal bisimulations have proved to be unsound in the presence of passivation (and
restriction) [7]. While this result cast a doubt on whether sound normal bisimulations
exist for higher-order distributed calculi, it did not affect the potential of environmental
bisimulations [16, 17, 12, 13] as a useful proof technique for behavioural equivalence in
those calculi.

1.2 Our contribution

To the best of our knowledge, there are not yet any useful sound bisimulations for
higher-order distributed process calculi. In this paper we develop environmental (weak)
bisimulations for the higher-order π-calculus with passivation, which (1) are sound with
respect to reduction-closed barbed equivalence, (2) can actually be used to prove be-
havioural equivalence of non-trivial processes (with restrictions), and (3) can also be
used to prove reduction-closed barbed congruence of processes (see Corollary 1). To
prove reduction-closed barbed equivalence (and congruence), we find a new clause to
guarantee preservation of bisimilarity by parallel composition of arbitrary processes.
Unlike the corresponding clause in previous research [7, 13], it can also handle the
later removal (i.e. passivation) of these processes while keeping the bisimulation proofs



tractable. Several examples are given, thereby supporting our claim of the first useful
bisimulations for a higher-order distributed process calculus. Moreover, we define an
up-to context variant of the environmental bisimulations that significantly lightens the
burden of equivalence proofs, as utilised in the examples.

Overview of the bisimulation We now outline the definition of our environmental bisim-
ulations. (Generalities on environmental bisimulations can be found in [12].) We define
an environmental bisimulation X as a set of quadruples (r, E , P, Q) where r is a set
of names (i.e. channels and locations), E is a binary relation (called the environment)
on terms, and P , Q are processes. The bisimulation is a game where the processes P
and Q are compared to each other by an attacker (or observer) who knows and can use
the terms in the environment E and the names in r. For readability, the membership
(r, E , P, Q) ∈ X is often written P XE;r Q, and should be understood as “processes P
and Q are bisimilar, under the environment E and the known names r.”

The environmental bisimilarity is co-inductively defined by several conditions con-
cerning the tested processes and the knowledge. As usual with weak bisimulations, we
require that an internal transition by one of the processes is matched by zero or more
internal transitions by the other, and that the remnants are still bisimilar.

As usual with (more recent and less common) environmental bisimulations, we re-
quire that whenever a term M is output to a known channel, the other tested process
can output another term N to the same channel, and that the residues are bisimilar un-
der the environment extended with the pair (M,N). The extension of the environment
stands for the growth of knowledge of the attacker of the bisimulation game who ob-
served the outputs (M,N), although he cannot analyse them. This spells out like: for

any P XE;r Q and a ∈ r, if P
νec.a〈M〉−−−−−→ P ′ for fresh c̃, then Q

ν ed.a〈N〉
=====⇒ Q′ for fresh d̃

and P ′ XE∪{(M,N)};r Q′.
Unsurprisingly, input must be doable on the same known channel by each process,

and the continuations must still be bisimilar under the same environment since nothing
is learnt by the context. However, we require that the input terms are generated from the
context closure of the environment. Intuitively, this closure represents all the processes
an attacker can build by combining what he has learnt from previous outputs. Roughly,
we define it as:

(E ; r)? = {(C[M̃ ], C[Ñ ]) | C context , fn(C) ⊆ r, M̃ E Ñ}
where M̃ denotes a sequence M0, . . . ,Mn, and M̃EÑ means that for all 0 ≤ i ≤ n,
MiENi. Therefore, the input clause looks like: for any P XE;r Q, a ∈ r and (M,N) ∈

(E ; r)?, if P
a(M)−−−→ P ′, then Q

a(N)
===⇒Q′ and P ′ XE;r Q′.

The set r of known names can be extended at will by the observer, provided that the
new names are fresh: for any P XE;r Q and n fresh, we have P XE;r∪{n} Q.

Parallel composition The last clause is crucial to the soundness and usefulness of en-
vironmental bisimulations for languages with passivation, and not as straightforward as
the other clauses. The idea at its base is that not only may an observer run arbitrary pro-
cesses R in parallel to the tested ones (as in reduction-closed barbed equivalence), but
he may also run arbitrary processes M,N he assembled from previous observations. It



is critical to ensure that bisimilarity (and hopefully equivalence) is preserved by such
parallel composition, and that this property can be easily proved. As (E ; r)? is this set of
processes that can be assembled from previous observations, we would naively expect
the appropriate clause to look like:

For any P XE;r Q and (M,N) ∈ (E ; r)?, we have P |M XE;r Q |N
but this subsumes the already impractical clause of reduction-closed barbed equivalence
which we want to get round. Previous research [7, 13] uses a weaker condition:

For any P XE;r Q and (M,N) ∈ E , we have P |M XE;r Q |N
arguing that (E ; r)? can informally do no more observations than E , but this clause is
unsound in the presence of passivation. The reason behind the unsoundness is that, in
our settings, not only can a context spawn new processes M , N , but it can also remove
running processes it created by passivating them later on. For example, consider the
following processes P = a〈R〉.!R and Q = a〈0〉.!R. Under the above weak condition,
it would be easy to construct an environmental bisimulation that relates P and Q. How-
ever, a process a(X).m[X] may distinguish them. Indeed, it may receive processes R
and start running it in location m, or may receive process 0 and run a copy of R from
!R. If R is a process doing several sequential actions (for example if R = lock .unlock )
and is passivated in the middle of its execution, then the remaining processes after pas-
sivation would not be equivalent any more.

To account for this new situation, we decide to modify the condition on the prove-
nance of process that can be spawned, drawing them from {(a[M ], a[N ]) | a ∈ r, (M,N) ∈
E}, thus giving the clause:

For any P XE;r Q, a ∈ r and (M,N) ∈ E , we have P | a[M ] XE;r Q | a[N ].
The new condition allows for any running process that has been previously created by
the observer to be passivated, that is, removed from the current test. This clause is much
more tractable than the first one using (E ; r)? and, unlike the second one using only E ,
leads to sound environmental bisimulations (albeit with a limitation; see Remark 1).

Example With our environmental bisimulations, non-trivial equivalence of higher-order
distributed processes can be shown, such as P0 = !a[e | e] and Q0 = !a[e] | !a[e],
where e abbreviates e(X).0 and e is e〈0〉.0. We explain here informally how we build
a bisimulation X relating those processes.

X = {(r, E , P, Q) | r ⊇ {a, e}, E = {0, e, e, e | e} × {0, e, e},
P ≡ P0 |

∏n
i=1 li[Mi], Q ≡ Q0 |

∏n
i=1 li[Ni], n ≥ 0,

l̃ ∈ r, (M̃, Ñ) ∈ E}

Since we want P0 XE;r Q0, the spawning clause of the bisimulation requires that for
any (M1, N1) ∈ E and l1 ∈ r, we have P0 | l1[M1] XE;r Q0 | l1[N1]. Then, by repeat-
edly applying this clause, we obtain (P0 |

∏n
i=1 li[Mi]) XE;r (Q0 |

∏n
i=1 li[Ni]). Since

the observer can add fresh names at will, we require r to be a superset of the free names
{a, e} of P0 and Q0. Also, we have the intuition that the only possible outputs from P
and Q are processes e | e, e, e, and 0. Thus, we set ahead E as the Cartesian product of
{0, e, e, e | e} with {0, e, e}, that is, the combination of expectable outputs. We empha-
size that it is indeed reasonable to relate e, e and e | e to 0, e and e in E for the observer



P0 | a[γ] |
Qn

i=1 li[Mi] (i)

= P0 |
Qn+1

i=1 li[Mi] for ln+1 = a, Mn+1 = γ

P0 |
Qn

i=1 li[Mi] P0 |
Qn−1

i=1 li[Mi] (ii)

P0 |
Qn−1

i=1 li[Mi] | ln[M ′
n] (iii)

≡ P0 | a[e | e] |
Qn−1

i=1 li[Mi] | ln[M ′
n]

= P0 |
Qn+1

i=1 li[M
′
i ]

for M ′
i = Mi (0 ≤ i ≤ n− 1), Mn

α−→M ′
n,

ln+1 = a, Mn+1 = e | e.

Q0 | a[0] |
Qn

i=1 li[Ni] (i)

= Q0 |
Qn+1

i=1 li[Ni] for ln+1 = a, Nn+1 = 0

Q0 |
Qn

i=1 li[Ni] Q0 |
Qn−1

i=1 li[Ni] (ii)

Q0 | a[0] |
Qn

i=1 li[Ni] (iii)

= Q0 |
Qn+1

i=1 li[Ni] for ln+1 = a, Nn+1 = 0

γ ∈
{e, e

}

ln〈Mn〉

α ∈ {e, e}

γ

ln〈Nn〉

α

Fig. 1. Simulation of observable transitions

cannot analyse the pairs: he can only use them along the tested processes P and Q
which, by the design of environmental bisimulations, will make up for the differences.

Let us now observe the possible transitions from P and their corresponding transi-
tions from Q by glossing over two pairs of trees, where related branches represent the
correspondences. (Simulation in the other direction is similar and omitted for brevity.)
First, let us consider the input and output actions as shown in Figure 1. (i) When P0

does an input action e or an output action e, it leaves behind a process a[e] or a[e],
respectively. Q0 can also do the same action, leaving a[0]. Since both (e, 0) and (e, 0)
are in E , we can add the leftover processes to the respective products

∏
; (ii) output by

passivation is trivial to match (without loss of generality, we only show the case i = n),
and (iii) observable actions α of an Mn, leaving a residue M ′

n, are matched by one of
Q0’s a[α], leaving a[0]. To pair with this a[0], we replicate an a[e |e] from P0, and then,
as in (i), they add up to the products

∏
.

In a similar way, we explain how τ transitions of P are matched by Q, with another
pair of transitions trees described in Figure 2.

(1) When an a[e | e] from P0 turns into a[0], Q does not have to do any action,
for we work with weak bisimulations. By replication, Q can produce a copy a[e] (or
alternatively a[e]) from Q0, and since (0, e) is in E , we can add the a[0] and the copy
a[e] to the products

∏
; (2) P can also make a reaction between two copies of a[e | e]

in P0, leaving behind a[e] and a[e]. As in (1), Q can draw two copies of a[e] from Q0,
and each product can be enlarged by two elements; (3) it is also possible for Mn = e | e
to do a τ transition, becoming M ′

n = 0. It stands that (M ′
n, Nn) ∈ E and we are done;

(4) very similarly, two processes Mn and Mn−1 may react, becoming M ′
n and M ′

n−1.
It stands also that (M ′

n−1, Nn−1) and (M ′
n, Nn) are in E , so the resulting processes are

still related; (5) it is possible for Mn to follow the transition Mn
α−→M ′

n and react with



P0 | a[0] |
Qn

i=1 li[Mi] (1)

= P0 |
Qn+1

i=1 li[Mi] for ln+1 = a, Mn+1 = 0

P0 | a[e] | a[e] |
Qn

i=1 li[Mi] (2)

= P0 |
Qn+2

i=1 li[Mi] for ln+1 = ln+2 = a, Mn+1 = e, Mn+2 = e

P0 |
Qn

i=1 li[M
′
i ] (3)

for Mi = M ′
i (0 ≤ i ≤ n− 1), Mn

τ−→M ′
n

P0 |
Qn

i=1 li[Mi] P0 |
Qn

i=1 li[M
′
i ] (4)

for Mi = M ′
i (0 ≤ i ≤ n− 2), Mn−1

e−→M ′
n−1, Mn

e−→M ′
n

P0 | a[α] |
Qn

i=1 li[M
′
i ] = P0 |

Qn+1
i=1 li[M

′
i ] (5)

for M ′
i = Mi (0 ≤ i ≤ n− 1), Mn

α−→M ′
n,

α ∈ {e, e}, ln+1 = a, Mn+1 = α

P0 | a[e] |
Qn−1

i=1 li[Mi] = P0 |
Qn

i=1 l′i[M
′
i ] (6)

for l′i = li, M ′
i = Mi (0 ≤ i ≤ n− 1), l′n = a, M ′

n = e

P0 |
Qn−2

i=1 li[Mi] | ln−1[M
′
n−1] (7)

≡ P0 | a[e | e] |
Qn−2

i=1 li[Mi] | ln−1[M
′
n−1] = P0 |

Qn
i=1 l′i[M

′
i ]

for M ′
i = Mi (0 ≤ i ≤ n− 2), Mn−1

e−→M ′
n−1,

l′i = li (0 ≤ i ≤ n− 1), l′n = a, M ′
n = e | e

Q0 |
Qn

i=1 li[Ni] ≡ Q0 | a[e] |
Qn

i=1 li[Ni] (1)

= Q0 |
Qn+1

i=1 li[Ni] for ln+1 = a, Nn+1 = e

Q0 |
Qn

i=1 li[Ni] ≡ Q0 | a[e] | a[e] |
Qn

i=1 li[Ni] (2)

= Q0 |
Qn+2

i=1 li[Ni] for ln+1 = ln+2 = a, Nn+1 = Nn+2 = e

Q0 |
Qn

i=1 li[Ni] (3)

Q0 |
Qn

i=1 li[Ni] Q0 |
Qn

i=1 li[Ni] (4)

Q0 |
Qn

i=1 li[Ni] ≡ Q0 | a[e] |
Qn

i=1 li[Ni] (5)

= Q0 |
Qn+1

i=1 li[Ni] for ln+1 = a, Nn+1 = e

Q0 | a[0] |
Qn−1

i=1 li[Ni] = Q0 |
Qn

i=1 l′i[N
′
i ] (6)

for l′i = li, N ′
i = Ni (0 ≤ i ≤ n− 1), l′n = a, N ′

n = 0

Q0 | a[0] |
Qn−1

i=1 li[Ni] = Q0 |
Qn

i=1 l′i[N
′
i ] (7)

for l′i = li, N ′
i = Ni (0 ≤ i ≤ n− 1), l′n = a, N ′

n = 0

Fig. 2. Simulation of internal transitions (dotted lines mean zero transitions)



a copy from P0 which leaves behind a[α] (since α has been consumed to conclude the
reaction). Again, it stands that M ′

n and Nn are related by E , and that we can draw an
a[e] from Q0 to pair it with the residue M ′

n in the products
∏

; (6) also, a copy a[e | e]
from P0 may passivate an li[Mi], provided li = e, and leave a residue a[e]. Q can do
the same passivation using Q0’s a[e], and leave a[0]. As it happens that (e, 0) is in E ,
the residues can be added to the products too; (7) finally, the process ln[Mn], if ln = e,
may be passivated by Mn−1, reducing the size of P ’s product. Q can passivate ln[Nn]
too, using a copy a[e] from P0, which becomes a[0] after the reaction. Q’s product too
is shorter, but we need to add the a[0] to it. To do so, we draw a copy a[e | e] from P0,
and since (e | e, 0) is in E , a[e | e] and a[0] are merged into their respective product.

This ends the sketch of the proof thatX is an environmental bisimulation, and there-
fore that !a[e | e] and !a[e] | a[e] are behaviourally equivalent.

1.3 Overview of the paper

The rest of this paper is structured as follows. In Section 2 we describe the higher-order
π-calculus with passivation. In Section 3 we formalize our environmental bisimulations.
In Section 4 we give some examples of bisimilar processes. In Section 5, we bring up
some future work to conclude our paper.

2 Higher-order π-calculus with passivation

We introduce a slight variation of the higher-order π-calculus with passivation [7]—
HOπP for short—through its syntax and a labelled transitions system.

2.1 Syntax

The syntax of our HOπP processes P , Q is given by the following grammar, very
similar to that of Lenglet et al. [7] (the higher-order π-calculus extended with located
processes and their passivation):

P,Q ::= 0 | a(X).P | a〈M〉.P | (P | P ) | a[P ] | νa.P | !P | run(M)
M,N ::= X | ‘P

X ranges over the set of variables, and a over the set of names which can be used for
both locations and channels. a[P ] denotes the process P running in location a. To define
a general up-to context technique (Definition 2, see also Section 5), we distinguish terms
M , N from processes P , Q and adopt explicit syntax for processes as terms ‘P and their
execution run(M).

2.2 Labelled transitions system

We define n , fn , bn and fv to be the functions that return respectively the set of names,
free names, bound names and free variables of a process or an action. We abbreviate a
(possibly empty) sequence x0, x1, . . . , xn as x̃ for any meta-variable x. The transition
semantics of HOπP is given by the following labelled transition system, which is based
on that of the higher-order π-calculus (omitting symmetric rules PAR-R and REACT-R):



a(X).P
a(M)−−−→ P{M/X}

HO-IN
a〈M〉.P a〈M〉−−−→ P

HO-OUT

P1
α−→ P ′

1 bn(α) ∩ fn(P2) = ∅
P1 | P2

α−→ P ′
1 | P2

PAR-L
!P | P α−→ P ′

!P
α−→ P ′ REP

P1
(νeb).a〈M〉−−−−−−→ P ′

1 P2
a(M)−−−→ P ′

2 {eb} ∩ fn(P2) = ∅
P1 | P2

τ−→ νeb.(P ′
1 | P ′

2)
REACT-L

P
α−→ P ′ a 6∈ n(α)

νa.P
α−→ νa.P ′ GUARD

P
(νeb).a〈M〉−−−−−−→ P ′ c 6= a c ∈ fn(M) \ {eb}

νc.P
ν(eb,c).a〈M〉−−−−−−−→ P ′

EXTR

extended with the following three rules:

P
α−→ P ′

a[P ]
α−→ a[P ′]

TRANSP
a[P ]

a〈‘P 〉−−−→ 0
PASSIV

run(‘P )
τ−→ P

RUN

Assuming again knowledge of the standard higher-order π-calculus [9, 11], we only
explain below the three added rules that are not part of it. The Transp rule expresses
the transparency of locations, the fact that transitions can happen below a location and
be observed outside its boundary. The Passiv rule illustrates that, at any time, a pro-
cess running under a location can be passivated (stopped and turned into a term) and
sent along the channel corresponding to the location’s name. Quotation of the process
output reminds us that higher-order communications transport terms. Finally, the Run
rule shows how, at the cost of an internal transition, a process term be instantiated. As
usual with small-steps semantics, transition does not progress for undefined cases (such
as run(X)) or when the assumptions are not satisfied.

Henceforth, we shall write a.P to mean a〈‘0〉.P and a.P for a(X).P if X 6∈ fv(P).
We shall also write ≡ for the structural congruence, whose definition is standard (see
the appendix, Definition A.1).

3 Environmental bisimulations of HOπP

Given the higher-order nature of the language, and in order to get round the universal
quantification issue of context bisimulations, we would like observations (terms) to
be stored and reusable for further testing. To this end, let us define an environmental
relation X as a set of elements (r, E , P, Q) where r is a finite set of names, E is a binary
relation (with finitely many free names) on variable-closed terms (i.e. terms with no
free variables), and P and Q are variable-closed processes.

We generally write x⊕S to express the set union {x} ∪ S. We also use graphically
convenient notation P XE;r Q to mean (r, E , P, Q) ∈ X and define the term context
closure (E ; r)? = E ∪ {(‘P, ‘Q) | (P,Q) ∈ (E ; r)◦} with the process context closure
(E ; r)◦ = {(C[M̃ ], C[Ñ ]) | M̃EÑ , C context, bn(C) ∩ fn(E , r) = ∅, fn(C) ⊆ r},
where a context is a process with zero or more holes for terms. Note the distinction of



terms ‘P , ‘Q from processes P , Q. We point out that (∅; r)? is the identity on terms
with free names in r, that (E ; r)? includes E by definition, and that the context closure
operations are monotonic on E (and r). Therefore, for any E and r, the set (E ; r)?

includes the identity (∅; r)? too. Also, we use the notations S.1 and S.2 to denote the
first and second projections of a relation (i.e. set of pairs) S. Finally, we define weak
transitions =⇒ as the reflexive, transitive closure of τ−→, and α=⇒ as =⇒ α−→ =⇒ for α 6= τ
(and define τ=⇒ as =⇒).

We can now define environmental bisimulations formally:

Definition 1. An environmental relationX is an environmental bisimulation if P XE;r Q
implies:

1. if P
τ−→ P ′, then ∃Q′. Q =⇒Q′ and P ′ XE;r Q′,

2. if P
a(M)−−−→ P ′ with a ∈ r, and if (M,N) ∈ (E ; r)?, then ∃Q′. Q

a(N)
===⇒ Q′ and

P ′ XE;r Q′,

3. if P
νeb.a〈M〉−−−−−→ P ′ with a ∈ r and b̃ 6∈ fn(r, E .1), then ∃Q′, N. Q

νec.a〈N〉
=====⇒ Q′ with

c̃ 6∈ fn(r, E .2) and P ′ X(M,N)⊕E;r Q′,
4. for any (‘P1, ‘Q1) ∈ E and a ∈ r, we have P | a[P1] XE;r Q | a[Q1],
5. for any n 6∈ fn(E , P, Q), we have P XE;n⊕r Q, and
6. the converse of 1, 2 and 3 on Q’s transitions.

Modulo the symmetry resulting from clause 6, clause 1 is usual; clause 2 enforces
bisimilarity to be preserved by any input that can be built from the knowledge, hence
the use of the context closure; clause 3 enlarges the knowledge of the observer with the
leaked out terms. Clause 4 allows the observer to spawn (and immediately run) terms
concurrently to the tested processes, while clause 5 shows that he can also create fresh
names at will.

A few points related to the handling of free names are worth mentioning: as the set
of free names in E is finite, clause 5 can always be applied; therefore, the attacker can
add arbitrary fresh names to the set r of known names so as to use them in terms M and
N in clause 2. Fresh b̃ and c̃ in clause 3 also exist thanks to the finiteness of free names
in E and r.

We define environmental bisimilarity ∼ as the union of all environmental bisimula-
tions, and it holds that it is itself an environmental bisimulation (all the conditions above
are monotone on X ). Therefore, P ∼E;r Q if and only if P XE;r Q for some environ-
mental bisimulation X . We do particularly care about the situation where E = ∅ and
r = fn(P,Q). It corresponds to the equivalence of two processes when the observer
knows all of their free names (and thus can do all observations), but has not yet learnt
any output pair.

For improving the practicality of our bisimulation proof method, let us devise an up-
to context technique [11, p. 86]: for an environmental relation X , we write P X ?

E;r Q

if P ≡ νc̃.(P0 | P1), Q ≡ νd̃.(Q0 | Q1), P0 XE′;r′ Q0, (P1, Q1) ∈ (E ′; r′)◦, E ⊆
(E ′; r′)?, r ⊆ r′, and {c̃} ∩ fn(r, E .1) = {d̃} ∩ fn(r, E .2) = ∅. As a matter of fact,
this is actually an up-to context and up-to environment and up-to restriction and up-to
structural congruence technique, but because of the clumsiness of this appellation we



will restrain ourselves to “up-to context” to preserve clarity. To roughly explain the
convenience behind this notation and its (long) name: (1) “up-to context” states that we
can take any (P1, Q1) from the (process) context closure (E ′; r′)◦ of the environment E ′
(with free names in r′) and execute them in parallel with processes P0 and Q0 related
by XE′;r′ ; similarly, we allow environments E with terms that are not in E ′ itself but
are in the (term) context closure (E ′; r′)?; (2) “up-to environment” states that, when
proving the bisimulation clauses, we please ourselves with environments E ′ that are
larger than the E requested by Definition 1; (3) “up-to restriction” states that we also
content ourselves with tested processes P , Q with extra restrictions νc̃ and νd̃ (i.e. less
observable names); (4) finally, “up-to structural congruence” states that we identify all
processes that are structurally congruent to νc̃.(P0 | P1) and νd̃.(Q0 |Q1).

Using this notation, we define environmental bisimulations up-to context as follows:

Definition 2. An environmental relation X is an environmental bisimulation up-to con-
text if P XE;r Q implies:

1. if P
τ−→ P ′, then ∃Q′. Q =⇒Q′ and P ′ X ?

E;r Q′,

2. if P
a(M)−−−→ P ′ with a ∈ r, and if (M,N) ∈ (E ; r)?, then ∃Q′. Q

a(N)
===⇒ Q′ and

P ′ X ?
E;r Q′,

3. if P
νeb.a〈M〉−−−−−→ P ′ with a ∈ r and b̃ 6∈ fn(r, E .1), then ∃Q′, N. Q

νec.a〈N〉
=====⇒ Q′ with

c̃ 6∈ fn(r, E .2) and P ′ X ?
(M,N)⊕E;r Q′,

4. for any (‘P1, ‘Q1) ∈ E and a ∈ r, we have P | a[P1] X ?
E;r Q | a[Q1],

5. for any n 6∈ fn(E , P, Q), we have P XE;n⊕r Q, and
6. the converse of 1, 2 and 3 on Q’s transitions.

The conditions on each clause (except 5, which is unchanged for the sake of tech-
nical convenience) are weaker than that of the standard environmental bisimulations,
as we require in the positive instances bisimilarity modulo a context, not just bisim-
ilarity itself. It is important to remark that, unlike in [12] but as in [13], we do not
need a specific context to avoid stating a tautology in clause 4; indeed, we spawn terms
(‘P1, ‘Q1) ∈ E immediately as processes P1 and Q1, while the context closure can only
use the terms under an explicit run operator.

We prove the soundness (under some condition; see Remark 1) of environmen-
tal bisimulations as follows. Full proofs are found in the appendix, Section B but are
nonetheless sketched below.

Lemma 1 (Input lemma). If (P1, Q1) ∈ (E ; r)◦ and P1
a(M)−−−→ P ′

1 then ∀N.∃Q′
1.

Q1
a(N)−−−→Q′

1 and (P ′
1, Q

′
1) ∈ ((M,N)⊕E ; r)◦.

Lemma 2 (Output lemma). If (P1, Q1) ∈ (E ; r)◦, {b̃}∩fn(E , r) = ∅ and P1
νeb.a〈M〉−−−−−→

P ′
1 then ∃Q′

1, N. Q1
νeb.a〈N〉−−−−−→Q′

1, (P ′
1, Q

′
1) ∈ (E ; b̃⊕r)◦ and (M,N) ∈ (E ; b̃⊕r)?.

Definition 3 (Run-erasure). We write P ≤ Q if P can be obtained by (possibly repeat-
edly) replacing zero or more subprocesses run(‘R) of Q with R, and write P Y−

E;r Q
for P ≤ Y?

≤E≥;r ≥ Q.



Definition 4 (Simple environment). A process is called simple if none of its subpro-
cesses has the form νa.P or a(X).P with X ∈ fv(P ). An environment is called simple
if all the processes in it are simple. An environmental relation is called simple if all of
its environments are simple (note that the tested processes may still be non-simple).

Lemma 3 (Reaction lemma). For any simple environmental bisimulation up-to con-
text Y , if P Y−

E;r Q and P
τ−→ P ′, then there is a Q′ such that Q

τ=⇒Q′ and P ′ Y−
E;r Q′.

Proof sketch. Lemma 1 (resp. 2) is proven by straightforward induction on the transition

derivation of P1
a(M)−−−→P ′

1 (resp. P1
νeb.a〈M〉−−−−−→P ′

1). Lemma 3 is proven last, as it uses the
other two lemmas (for the internal communication case).

Lemma 4 (Soundness of up-to context). Simple bisimilarity up-to context is included
in bisimilarity.

Proof sketch. By checking that {(r, E , P, Q) | P Y−
E;r Q} is included in ∼, where Y

is the simple environmental bisimilarity up-to context. In particular, we use Lemma 1
for clause 2, Lemma 2 for clause 3, and Lemma 3 for clause 1 of the environmental
bisimulation.

Our definitions of reduction-closed barbed equivalence ≈ and congruence ≈c are
standard and omitted for brevity; see the appendix, Definition B.2 and B.3

Theorem 1 (Barbed equivalence from environmental bisimulation).
If P Y−

∅;fn(P,Q) Q for a simple environmental bisimulation up-to contextY , then P ≈ Q.

Proof sketch. By verifying that each clause of the definition of ≈ is implied by mem-
bership of Y−, using Lemma 4 for the parallel composition clause.

Corollary 1 (Barbed congruence from environmental bisimulation).
If a〈‘P 〉 Y−

∅;a⊕fn(P,Q) a〈‘Q〉 for a simple environmental bisimulation up-to context Y ,
then P ≈c Q.

We recall that, in context bisimulations, showing the equivalence of a〈‘P 〉 and a〈‘Q〉
almost amounts to testing the equivalence of P and Q in every context. However, with
environmental bisimulations, only the location context in clause 4 of the bisimulation
has to be considered.

Remark 1. The extra condition “simple” is needed because of a technical difficulty in
the proof of Lemma 3: when an input process a(X).P is spawned under location b
in parallel with an output context νc.a〈M〉.Q (with c ∈ fn(M)), they can make the
transition b[a(X).P | νc.a〈M〉.Q] τ−→ b[νc.(P{M/X} | Q)], where the restriction op-
erator νc appears inside the location b (and therefore can be passivated together with
the processes); however, our spawning clause only gives us b[a(X).P ] | νc.a〈M〉.Q τ−→
νc.(b[P{M/X}] | Q) and does not cover the above case. Further investigation is re-
quired to overcome this difficulty (although we have not yet found a concrete coun-
terexample of soundness, we conjecture some modification to the bisimulation clauses
would be necessary). Note that, even if the environments are simple, the tested processes
do not always have to be simple, as in Example 4 and 5. Moreover, thanks to up-to con-
text, even the output terms (including passivated processes) can be non-simple.



4 Examples

Here, we give some examples of HOπP processes whose behavioural equivalence is
proven with the help of our environmental bisimulations. In each example, we prove the
equivalence by exhibiting a relation X containing the two processes we consider, and
by showing that it is indeed a bisimulation up-to context (and environment, restriction
and structural congruence). We write P | . . . | P for a finite, possibly null, product of
the process P .

Example 1. e | !a[e] | !a[0] ≈ !a[e] | !a[0]. (This example comes from [7].)

Proof. Take X = {(r, ∅, e | P, P ) | r ⊇ {a, e}} ∪ {(r, ∅, P, P ) | r ⊇ {a, e}} where
P = !a[e] | !a[0]. It is immediate to verify that whenever P

α−→ P ′, we have P ′ ≡ P ,
and therefore that transition e | P α−→ e | P ′ ≡ e | P can be matched by P

α−→ P ′ ≡ P

and conversely. Also, for e | P e−→ P , we have that P
e−→ !a[e] | a[0] | !a[0] ≡ P and we

are done since (r, ∅, P, P ) ∈ X . Moreover, the set r must contain the free names of P ,
and to satisfy clause 5 about adding fresh names, bigger r’s must be allowed too. The
passivations of a[e] and a[0] can be matched by syntactically equal actions with the pairs
of output terms (‘e, ‘e) and (‘0, ‘0) included in the identity, which in turn is included in
the context closure (∅; r)?. Finally clause 4 of the bisimulation is vacuously satisfied
because the environment is empty. We therefore have e | !a[e] | !a[0] ≈ !a[e] | !a[0] from
the soundness of environmental bisimulation up-to context.

Example 2. !a | !e ≈ !a[e].

Proof sketch. Take X = {(r, E , P, Q) | r ⊇ {a, e, l1, . . . , ln} | E = {(‘0, ‘e)}, n ≥ 0,
P = !a | !e |

∏n
i=1 li[0], Q = !a[e] |

∏n
i=1 li[e] | a[0] | . . . | a[0]}. See the appendix,

Example C.1 for the rest of the proof.

Example 3. !a[e] | !b[e] ≈ !a[b[e |e]]. This example shows the equivalence proof of more
complicated processes with nested locations.

Proof sketch. Take:

X = {(r, E , P, Q) | r ⊇ {a, e, b, l1, . . . , ln},
P0 = !a[e] | !b[e], Q0 = !a[b[e | e]],
P = P0 |

∏n
i=1 li[Pi] | b[0] | . . . | b[0],

Q = Q0 |
∏n

i=1 li[Qi],
(‘P̃ , ‘Q̃) ∈ E , n ≥ 0},

E = {(‘x, ‘y) | x ∈ {0, e, e}, y ≡∈ {0, e, e, (e | e), b[0], b[e], b[e], b[e | e]}} .

See the appendix, Example C.2 for the rest of the proof.

Example 4. c(X).run(X) ≈ νf.(f [c(X).run(X)] | !f(Y ).f [run(Y )]). The latter pro-
cess models a system where a process c(X).run(X) runs in location f , and executes
any process P it has received. In parallel is a process f(Y ).f [run(Y )] which can passi-
vate f [P ] and respawn the process P under the same location f . Informally, this models
a system which can restart a computer and resume its computation after a failure.



Proof. Take X = X1 ∪ X2 where:

X1 = {(r, ∅, c(X).run(X), νf.(f [c(X).run(X)] | !f(Y ).f [run(Y )])) | r ⊇ {c}},
X2 = {(r, ∅, P, Q) | r ⊇ c⊕fn(R), S = run(‘run(. . . ‘run(‘R) . . . )),

P ∈ {run(‘R), R}, Q = νf̃ .(f [S] | !f(Y ).[run(Y )])}.

As usual, we require that r contains at least the free name c of the tested processes. All
outputs belong to (∅; r)? since they come from a process R drawn from (∅; r)?, and
therefore, we content ourselves with an empty environment ∅. Also, by the emptiness
of the environment, clause 4 of environmental bisimulations is vacuously satisfied.

Verification of transitions of elements of X1, i.e. inputs of some ‘R (with (‘R, ‘R) ∈
(∅; r)?) from c, is immediate and leads to checking elements of X2. For elements of
X2, we observe that P = run(‘R) can do one τ transition to become R, while Q
can do an internal transition passivating the process run(‘R) running in f and place
it inside f [run(‘ )], again and again. Q can also do τ transitions that consume all the
run(‘ )’s until it becomes R. Whenever P (resp. Q) makes an observable transition, Q
(resp. P ) can consume the run(‘ )’s and weakly do the same action as they exhibit
the same process. We observe that all transitions preserve membership in X2 (thus
in X ), and therefore we have that X is an environmental bisimulation up-to context,
which proves the behavioural equivalence of the original processes c(X).run(X) and
c(X).νf.(f [c(X).run(X)] | !f(Y ).f [run(Y )]).

Example 5. c(X).run(X) ≈ c(X).νa.(a〈X〉 | !νf.(f [a(X).run(X)] | f(Y ).a〈Y 〉)).
This example is a variation of Example 4 modelling a system where computation is
resumed on another computer after a failure.

Proof. Take X = X1 ∪ X2 ∪ X3 where:

X1 = {(r, ∅, c(X).run(X), c(X).νa.(a〈X〉 | F )) | r ⊇ {c}},
X2 = {(r, ∅, P1, νa.(F |R1 |R2 | a〈‘P2〉)) |

r ⊇ {c}⊕fn(P ), P1, P2 ∈ {run(‘P ), P}, R1 = a〈N1〉 | . . . | a〈Nn〉,
R2 = νl1.(l1[Q1] | l1(Y ).a〈Y 〉) | . . . | νlm.(lm[Qm] | lm(Y ).a〈Y 〉),
N1, . . . , Nn, ‘Q1, . . . , ‘Qm = ‘run(‘run(. . . ‘run(‘a(X).run(X)) . . . )), n ≥ 0},

X3 = {(r, ∅, P1, νa.(F |R1 |R2 | νl.(l[P2] | l(Y ).a〈Y 〉))) |
r ⊇ {c}⊕fn(P ), P1, P2 ∈ {run(‘P ), P}, R1 = a〈N1〉 | . . . | a〈Nn〉,
R2 = νl1.(l1[Q1] | l1(Y ).a〈Y 〉) | . . . | νlm.(lm[Qm] | lm(Y ).a〈Y 〉),
N1, . . . , Nn, ‘Q1, . . . , ‘Qm = ‘run(‘run(. . . ‘run(‘a(X).run(X)) . . . )), n ≥ 0},

F = !νf.(f [a(X).run(X)] | f(Y ).a〈Y 〉).

The set of names r and the environment share the same fate as those of Example 4
for identical reasons. For ease, we write lhs and rhs to conveniently denote each of the
tested processes.

Verification of the bisimulation clauses of X1 is immediate and leads to a member
(r, ∅, run(‘P ), νa.(a〈‘P 〉 | F )) of X2 for some ‘P with (‘P, ‘P ) ∈ (∅; r)?. For X2, lhs
can do an internal action (consuming its outer run(‘ )) that rhs does not have to follow
since we work with weak bisimulations, and the results is still inX2; conversely, internal
actions of rhs do not have to be matched. Some of those transitions that rhs can do are



reactions between replications from F . All those transitions creates elements of either
R1 or R2 that can do nothing but internal actions and can be ignored further in the proof
thanks to the weakness of our bisimulations.

Whenever lhs does an observable action α, that is, when P1 = P
α−→P ′, rhs must do

a reaction between a〈‘P2〉 and F , giving νl.(l[P2] | l(Y ).a〈Y 〉) α=⇒νl.(l[P ′] | l(Y ).a〈Y 〉)
which satisfies X3’s definition. Moreover, all transitions of P1 or P2 in X3 can be
matched by the other, hence preserving the membership in X3. Finally, a subprocess
νl.(l[P2] | l(Y ).a〈Y 〉) of rhs of X3 can do a τ transition to a〈‘P2〉 and the residues
belong back to X2.

This concludes the proof of behavioural equivalence of the original processes c(X).run(X)
and c(X).νa.(a〈X〉.!νf.(f [a(X).run(X)] | f(Y ).f [run(Y )])).

5 Discussion and future work

In the original higher-order π-calculus with passivation described by Lenglet et al. [7],
terms are identified with processes: its syntax is just P ::= 0 | X | a(X).P | a〈P 〉.P |
(P |P ) | a[P ] | νa.P | !P . We conjecture that it is also possible to develop sound envi-
ronmental bisimulations (and up-to context, etc.) for this version of HOπP, as we [12]
did for the standard higher-order π-calculus. However we chose not to cover directly the
original higher-order π-calculus with passivation, for two reasons: (1) the proof method
of [12] which relies on guarded processes and a factorisation trick using the spawn-
ing clause of the bisimulation is inadequate in the presence of locations; (2) there is a
very strong constraint in clause 4 of up-to context in [12, Definition E.1 (Appendix)]
(the context has no hole for terms from E). By distinguishing processes from terms, not
only is our up-to context method much more general, but our proofs are also direct and
technically simple. Although one might argue that the presence of the run operator is a
burden, by using Definition 3, one could devise an “up-to run” technique and abstract
run(. . . ‘run(‘P )) as P , making equivalence proofs easier to write and understand.

As described in Remark 1, removing the limitation on the environments is left for
future work. We also plan to apply environmental bisimulations to (a substantial subset
of) the Kell calculus so that we can provide a practical alternative to context bisimula-
tions in a more expressive higher-order distributed process calculus. In the Kell calculus,
locations are not transparent: one discriminates messages on the grounds of their ori-
gins (i.e. from a location above, below, or from the same level). For example, consider
the (simplified) Kell processes P = a〈M〉.!b[a] and Q = a〈N〉.!b[a] where M = a
and N = 0. They seem bisimilar assuming environmental bisimulations naively like
those in this paper: intuitively, both P and Q can output (respectively M and N ) to
channel a, and their continuations are identical; passivation of spawned l[M ] and l[N ]
for known location l would be immediately matched; finally, the output to channel a
under l, turning P ’s spawned l[M ] into l[0], could be matched by an output to a under b
by Q’s replicated b[a]. However, M and N behave differently when observed from the
same level (or below), for example as in l[M | a(Y ).ok] and l[N | a(Y ).ok] even under
the presence of !b[a]. More concretely, the context [·]1 | a(X).c[X | a(Y ).ok] distin-
guishes P and Q, showing the unsoundness of such naive definition. This suggests that,
to define sound environmental bisimulations in Kell-like calculi with non-transparent



locations, we should require a stronger condition such as bisimilarity of M and N in
the output clause. Developments on this idea are in progress.
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A Higher-order π-calculus with passivation

1 Syntax

The syntax of HOπP processes P , Q is given by the following grammar:

P,Q ::= 0 | a(X).P | a〈M〉.P | (P | P ) | a[P ] | νa.P | !P | run(M)
M,N, V, W ::= X | ‘P

We define the functions that returns the free names and free variables respectively as:

fn(0) = ∅ fv(0) = ∅
fn(a(X).P ) = {a} ∪ fn(P ) fv(a(X).P ) = fv(P ) \ {X}
fn(a〈M〉.P ) = {a} ∪ fn(M) ∪ fn(P ) fv(a〈M〉.P ) = fv(M) ∪ fv(P )
fn(P1 | P2) = fn(P1) ∪ fn(P2) fv(P1 | P2) = fv(P1) ∪ fv(P2)
fn(a[P ]) = {a} ∪ fn(P ) fv(a[P ]) = fv(P )
fn(νa.P ) = fn(P ) \ {a} fv(νa.P ) = fv(P )
fn(!P ) = fn(P ) fv(!P ) = fv(P )
fn(run(M)) = fn(M) fv(run(M)) = fv(M)
fn(X) = ∅ fv(X) = {X}
fn(‘P ) = fn(P ) fv(‘P ) = fv(P )

We conveniently write fn(X, Y, . . . , Z) (resp. fv(X, Y, . . . , Z)) to denote
⋃

S∈{X,Y,...,Z} fn(S)
(resp.

⋃
S∈{X,Y,...,Z} fv(S)).

2 Labelled transitions system

The transitions semantics of HOπP is given by the following labelled transitions system:

a(X).P
a(M)−−−→ P{M/X}

HO-IN

a〈M〉.P a〈M〉−−−→ P
HO-OUT

P1
α−→ P ′

1 bn(α) ∩ fn(P2) = ∅
P1 | P2

α−→ P ′
1 | P2

PAR-L
P2

α−→ P ′
2 bn(α) ∩ fn(P1) = ∅

P1 | P2
α−→ P1 | P ′

2

PAR-R

P1
(νeb).a〈M〉−−−−−−→ P ′

1 P2
a(M)−−−→ P ′

2 {b̃} ∩ fn(P2) = ∅
P1 | P2

τ−→ νb̃.(P ′
1 | P ′

2)
REACT-L



P1
a(M)−−−→ P ′

1 P2
(νeb).a〈M〉−−−−−−→ P ′

2 {b̃} ∩ fn(P1) = ∅
P1 | P2

τ−→ νb̃.(P ′
1 | P ′

2)
REACT-R

P
α−→ P ′ a 6∈ n(α)

νa.P
α−→ νa.P ′ GUARD

!P | P α−→ P ′

!P α−→ P ′ REP

P
(νeb).a〈M〉−−−−−−→ P ′ c 6= a c ∈ fn(M) \ {b̃}

νc.P
ν(eb,c).a〈M〉−−−−−−−→ P ′

EXTR

P
α−→ P ′

a[P ] α−→ a[P ′]
TRANSP

a[P ]
a〈‘P 〉−−−→ 0

PASSIV

run(‘P ) τ−→ P
RUN

with the following functions on labels

n(α) =


∅ if α = τ

{a} ∪ fn(V ) if α = a(V )
{a, b̃} ∪ fn(V ) if α = νb̃.a〈V 〉

bn(α) =

{
∅ if α = τ or α = a(V )
{b̃} if α = νb̃.a〈V 〉

and the notation x̃ to denote the sequence x1, x2, . . . xn.

Definition A.1. Structural congruence ≡ is the smallest relation on processes such
that:

Q ≡ P

P ≡ Q
S-SYM

P ≡ P
S-REFL

P ≡ R R ≡ Q

P ≡ Q
S-TRANS

P ≡ P | 0
S-EMPTY

P1 | (P2 | P3) ≡ (P1 | P2) | P3

S-ASSOC
P1 | P2 ≡ P2 | P1

S-COMMUT

νa.0 ≡ 0
S-NULL

νa.νb.P ≡ νb.νa.P
S-SWAP

a 6∈ fn(P1)
P1 | (νa.P2) ≡ νa.(P1 | P2)

S-SCOPE

P ≡ Q

νa.P ≡ νa.Q
S-GUARD

P ≡ Q

a(X).P ≡ a(X).Q
S-IN

P1 ≡ Q1 P2 ≡ Q2

a〈‘P1〉.P2 ≡ a〈‘Q1〉.Q2

S-OUT

!P ≡ !P | P
S-REP

P ≡ Q

!P ≡ !Q
S-BANG

P1 ≡ Q1 P2 ≡ Q2

P1 | P2 ≡ Q1 |Q2

S-COMP

P ≡ Q

a[P ] ≡ a[Q]
S-LOC

P ≡ Q

run(‘P ) ≡ run(‘Q)
S-RUN

Definition A.2. Structural congruence on labels ≡ is defined by:

τ ≡ τ
L-TAU

M ≡ N

a(M) ≡ a(N)
L-IN

M ≡ N

νc̃.a〈M〉 ≡ νc̃.a〈N〉
L-OUT

Lemma A.3. [Reduction preserves structural congruence]
If P ≡ Q then



(a) for all α, P ′, if P
α−→ P ′ then either

i. there are c̃, a, M such that if α ≡ νc̃.a〈M〉 or α ≡ τ , then there are β, Q′

such that Q
β−→Q′, α ≡ β and P ′ ≡ Q′, or

ii. there are a, M such that if α ≡ a(M), then for all β such that α ≡ β, there is

Q′ such that Q
β−→Q′ and P ′ ≡ Q′, and

(b) for all α, Q′, if Q
α−→Q′ then either

i. there are c̃, a, M such that if α ≡ νc̃.a〈M〉 or α ≡ τ , then there are β, P ′

such that P
β−→ P ′, α ≡ β and P ′ ≡ Q′, or

ii. there are a, M such that if α ≡ a(M), then for all β such that α ≡ β, there is

P ′ such that P
β−→ P ′ and P ′ ≡ Q′.

Proof. By induction on the derivations of P ≡ Q.

B Environmental bisimulations of HOπP

1 Notations

Definition B.1. [Contexts]
We define contexts for terms C (contexts that have holes for terms) and contexts for
processes Cp (contexts that have holes for processes) as

Dp ::= X | ‘Cp

Cp ::= [·]i | 0 | a(X).Cp | a〈Dp〉.Cp | (Cp | Cp) | a[Cp] | νa.Cp | !Cp | run(Dp)

D ::= [·]i | X | ‘C
C ::= 0 | a(X).C | a〈D〉.C | (C | C) | a[C] | νa.C | !C | run(D)

Unless explicitly specified otherwise, the word “context” will denote a context for terms.

Definition B.2. [Reduction-closed barbed equivalence]
Reduction-closed barbed equivalence ≈ is the largest binary relation on variable-

closed processes such that when P ≈ Q,

– P
τ−→ P ′ implies ∃Q′. Q =⇒Q′ and P ′ ≈ Q′,

– P ↓µ implies Q ⇓µ,
– the converse of the above two on Q, and
– ∀R. P |R ≈ Q |R.

Definition B.3. [Reduction-closed barbed congruence]
Reduction-closed barbed congruence ≈c is the largest binary relation on variable-

closed processes such that when P ≈c Q,

– P
τ−→ P ′ implies ∃Q′. Q =⇒Q′ and P ′ ≈c Q′,

– P ↓µ implies Q ⇓µ,
– the converse of the above two on Q, and
– for all C context with holes for processes, C[P ] ≈c C[Q].



2 Soundness of environmental bisimulations

Lemma B.4. [Originally Lemma 1 “Input lemma”]

If (P1, Q1) ∈ (E ; r)◦ and P1
a(M)−−−→ P ′

1 then ∀N.∃Q′
1. Q1

a(N)−−−→ Q′
1 ∧ (P ′

1, Q
′
1) ∈

((M,N)⊕E ; r)◦.

Proof. By induction on the transition derivation P1
a(M)−−−→ P ′

1. There are six cases to
check.

1. Case IN: C = a(X).C1

We have that P1 = a(X).C1[M̃ ]
a(M)−−−→C1[M̃ ]{M/X} and that Q1 = a(X).C1[Ñ ]

a(N)−−−→
C1[Ñ ]{N/X}. We are done since we replace term X by terms M and N , hence
C1[M̃ ]{M/X}((M,N)⊕E ; r)◦C1[Ñ ]{N/X}.

2. Case PAR-L: C = C1 | C2

We have that P1 = C1[M̃ ] |C2[M̃ ]
a(M)−−−→P ′ |C2[M̃ ], i.e. C1[M̃ ]

a(M)−−−→P ′. By the

induction hypothesis C1[Ñ ]
a(N)−−−→ Q′ and P ′((M,N)⊕E ; r)◦Q′, from which we

derive (P ′ | C2[M̃ ])((M,N)⊕E ; r)◦(Q′ | C2[Ñ ]) as well as C1[Ñ ] | C2[Ñ ]
a(N)−−−→

Q′ | C2[Ñ ].
3. Case PAR-R: C = C1 | C2

Similar.
4. Case TRANSP: C = l[C1]

We have that P1 = l[C1[M̃ ]]
a(M)−−−→ l[P ′], that is C1[M̃ ]

a(M)−−−→P ′. By the induction

hypothesis, we have that C1[Ñ ]
a(N)−−−→ Q′ and P ′((M,N)⊕E ; r)◦Q′, from which

we derive l[P ′]((M,N)⊕E ; r)◦l[Q′] as well as l[C1[Ñ ]]
a(N)−−−→ l[Q′].

5. Case GUARD: C = νb.C1

We have that P1 = νb.C1[M̃ ]
a(M)−−−→ νb.P ′, i.e. C1[M̃ ]

a(M)−−−→P ′, b 6∈ n(a,M) and

C1[M̃ ](E ; b⊕r)◦C1[Ñ ]. By the induction hypothesis, we have C1[Ñ ]
a(N)−−−→Q′ and

P ′((M,N)⊕E ; b⊕r)◦Q′, hence νb.P ′((M,N)⊕E ; r)◦νb.Q′. Finally, νb.C1[Ñ ]
a(N)−−−→

Q′.
6. Case REP: C = !C1

We have that P1 = !C1[M̃ ]
a(M)−−−→P ′, i.e. !C1[M̃ ]|C1[M̃ ]

a(M)−−−→P ′. By the induction

hypothesis, we have that !C1[Ñ ] |C1[Ñ ]
a(N)−−−→Q′ and P ′((M,N)⊕E ; r)◦Q′. Thus

!C1[Ñ ]
a(N)−−−→Q′ and still P ′((M,N)⊕E ; r)◦Q′.

Lemma B.5. [Originally Lemma 2, “Output lemma”]

If P1 (E ; r)◦Q1, {b̃}∩ fn(E , r) = ∅ and P1
νeb.a〈M〉−−−−−→P ′

1 then ∃Q′
1, N. Q1

νeb.a〈N〉−−−−−→Q′
1,

P ′
1(E ; b̃⊕r)◦Q′

1 and M (E ; b̃⊕r)? N .

Proof. By induction on the transition derivation P1
νeb.a〈M〉−−−−−→ P ′

1. There are eight cases
to check.



1. Case OUTPUT: C = a〈‘C1〉.C2

We have that P1 = a〈‘C1[M̃ ]〉.C2[M̃ ]
a〈‘C1[fM ]〉−−−−−−→ C2[M̃ ] and that

Q1 = a〈‘C1[Ñ ]〉.C2[Ñ ]
a〈‘C1[ eN ]〉−−−−−−→C2[Ñ ]. It is immediate to confirm that ‘C1[M̃ ](E ; r)?

‘C1[Ñ ] and C2[M̃ ] (E ; r)◦ C2[Ñ ] hold.
2. Case PAR-L: C = C1 | C2

We have that P1 = C1[M̃ ] |C2[M̃ ]
νeb.a〈M〉−−−−−→P ′ |C2[M̃ ], i.e. C1[M̃ ]

νeb.a〈M〉−−−−−→P ′ and

{b̃} ∩ fn(C2[M̃ ]) = ∅. By the induction hypothesis, we have that C1[Ñ ]
νeb.a〈N〉−−−−−→

Q′ and P ′(E ; (̃b⊕r))◦Q′ and M (E ; (̃b⊕r))? N . Since b̃ 6∈ fn(C2[M̃ ])–i.e. b̃ 6∈

fn(C2)–and b̃ 6∈ E , we have that C1[Ñ ] | C2[Ñ ]
νeb.a〈N〉−−−−−→ Q′ | C2[Ñ ], and

(P ′ | C2[M̃ ])(E ; (̃b⊕r))◦(Q′ | C2[Ñ ]).
3. Case PAR-R: C = C1 | C2

Similar.
4. Case TRANSP: C = l[C1]

We have that P1 = l[C1[M̃ ]]
νeb.a〈M〉−−−−−→ l[P ′], i.e. C1[M̃ ]

νeb.a〈M〉−−−−−→P ′. By the induc-

tion hypothesis, we have C1[Ñ ]
νeb.a〈N〉−−−−−→Q′, P ′(E ; (̃b⊕r))◦Q′ and M (E ; (̃b⊕r))?

N . From this we derive l[C1[Ñ ]]
νeb.a〈N〉−−−−−→ l[Q′] and l[P ′](E ; (̃b⊕r))◦l[Q′] and we

are done.
5. Case PASSIV: C = l[C1]

We have that P1 = l[C1[M̃ ]]
l〈‘C1[fM ]〉−−−−−−→0. Immediately, we have Q1 = l[C1[Ñ ]]

l〈‘C1[ eN ]〉−−−−−−→
0 with ‘C1[M̃ ] (E ; r)? ‘C1[Ñ ] and 0 (E ; r)◦ 0.

6. Case GUARD: C = νc.C1

By the definition of process context closure, it holds that C1[M̃ ](E ; c⊕r)◦C1[Ñ ].

We also have that P1 = νc.C1[M̃ ]
νeb.a〈M〉−−−−−→ νc.P ′, i.e. C1[M̃ ]

νeb.a〈M〉−−−−−→P ′ and c 6∈

{b̃, a}∪fn(M). By the induction hypothesis, we have C1[Ñ ]
νeb.a〈N〉−−−−−→Q′, C0[M̃ ] =

M(E ; (̃b⊕c⊕r))?N = C0[Ñ ] and P ′(E ; (̃b⊕c⊕r))◦Q′, hence νc.P ′(E ; (̃b⊕r))◦νc.Q′.
Moreover, since c 6∈ fn(M), we have c 6∈ fn(C0), and since c 6∈ fn(E) it also holds

that c 6∈ fn(C0[Ñ ]), hence νc.C1[Ñ ]
νeb.a〈N〉−−−−−→ νc.Q′ and M (E ; (̃b⊕r))? N .

7. Case REP: C = !C1

We have that P1 = !C1[M̃ ]
νeb.a〈M〉−−−−−→ P ′, i.e. !C1[M̃ ] | C1[M̃ ]

νeb.a〈M〉−−−−−→ P ′. By the

induction hypothesis, we have !C1[Ñ ] | C1[Ñ ]
νeb.a〈N〉−−−−−→Q′, M (E ; (̃b⊕r))? N and

P ′(E ; (̃b⊕r))◦Q′, hence !C1[Ñ ]
νeb.a〈N〉−−−−−→Q′ and we are done.

8. Case EXTR: C = νc.C1

We have that P1 = νc.C1[M̃ ]
νeb,c.a〈M〉−−−−−−→ P ′, i.e. C1[M̃ ]

νeb.a〈M〉−−−−−→ P ′ with
C1[M̃ ](E ; c⊕r)◦C1[Ñ ] a 6= c, c ∈ fn(M) \ {b̃}. By the induction hypothesis, we

have C1[Ñ ]
νeb.a〈N〉−−−−−→Q′ and M (E ; (̃b⊕c⊕r))? N and P ′(E ; (̃b⊕c⊕r))◦Q′. Since

c ∈ fn(M) \ {b̃}, we have c ∈ fn(C0[M̃ ]) \ {b̃}. Since c 6∈ fn(r, E), by the defi-



nition of context closure necessarily c ∈ fn(C0) \ {b̃}, hence c ∈ fn(C0[Ñ ]) \ {b̃}

i.e. c ∈ fn(N) \ {b̃}. We are then done since νc.C1[Ñ ]
νeb,c.a〈N〉−−−−−−→Q′.

Lemma B.6. [Input and output preserve environmental bisimulation up-to context]
LetY be an environmental bisimulation up-to context andX = {(r, E , P, Q) | P Y?

E;r Q}.
Then, for all P XE;r Q,

1. if P
a(V )−−−→ P ′ with a in r, then for all (V,W ) ∈ (E ; r)? there is a Q′ such that

Q
a(W )
===⇒Q′ and P ′ XE;r Q′,

2. if P
νec1.a〈V 〉−−−−−−→ P ′ with a in r and c̃1 6∈ fn(E .1, r) , then there is a Q′ such that

Q
ν ed1.a〈W 〉
======⇒Q′ with d̃1 6∈ fn(E .2, r) and P ′ X(V,W )⊕E;r Q′, and

3. the converse of the above two hold for Q’s transitions too.

Proof. Suppose P Y?
E;r Q, therefore for some P0, P1, Q0, Q1, E ′, r′, c̃, d̃, we have

P ≡ νc̃.(P0 |P1), Q ≡ νd̃.(Q0 |Q1), r ⊆ r′, {c̃}∩ fn(r, E .1) = {d̃}∩ fn(r, E .2) = ∅,
E ⊆ (E ′; r′)?, P0 YE′;r′ Q0 and P1 (E ′; r′)◦ Q1.

We are going to analyse all the possible input/output transitions.

1. Case: Input
There are two cases for this transition:
(a) Subcase: P0

a(V )−−−→ P ′
0 {c̃} ∩ n(a(V )) = ∅

By P0 YE′;r′ Q0, we have Q0
a(W )
===⇒ Q′

0 and P ′
0 Y?

E′;r′ Q′
0. It then holds that

νc̃.(P0 | P1)
a(V )−−−→ ≡ νc̃, c̃1.(P ′

00 | P ′
01 | P1) ≡ P ′. Also, since V (E ; r)? W ,

we have that fn(W ) ⊆ fn(r, E .2), and since d̃ ∩ fn(r, E .2) = ∅, we have that

νd̃.(Q0 |Q1)
a(W )
===⇒ ≡ νd̃, d̃1.(Q′

00 |Q′
01 |Q1) ≡ Q′. P ′ Y?

E;r Q′ follows, hence
P ′ XE;r Q′.

(b) Subcase: P1
a(V )−−−→ P ′

1 {c̃} ∩ n(a(V )) = ∅
By Lemma B.4, we have that Q1

a(W )−−−→Q′
1 and P ′

1 ((V,W )⊕E ′; r′)◦Q′
1. Since

(E ; r)? ⊆ (E ′; r′)?, we actually have P ′
1 (E ′; r′)◦ Q′

1. Then, we have νc̃.(P0 |
P1)

a(V )−−−→ νc̃.(P0 |P ′
1) ≡ P ′ and νd̃.(Q0 |Q1)

a(W )−−−→ νd̃.(Q0 |Q′
1) ≡ Q′ since

d̃ 6∈ fn(r, E .2). Therefore, P ′ Y?
E;r Q′, that is, P ′ XE;r Q′.

2. Case: Output
There are two cases for this transition:
(a) Subcase: P0

νei.a〈V 〉−−−−−→ P ′
0

We have {̃i} = {c̃1}\{c̃}, that is {̃i} 6∈ fn(r, E .1). In order to apply clause 3 of
the bisimulation, we may need to substitute a fresh variable not in fn(r′, E ′) for
ĩ in P ′

0 and V below, and we will assume that it has been done to release some
burden from the proof. Let P ′ = νc̃r.(P ′

0 |P1) and ĩ, c̃o = c̃1. By P0 YE′;r′ Q0,

we have Q0
νej.a〈W 〉
=====⇒ Q′

0, j̃ 6∈ fn(r′, E ′.2) and P ′
0 Y?

(V,W )⊕E′;r′ Q′
0. Also, we

have that νd̃.(Q0 | Q1)
νej, edo.a〈W 〉
=======⇒ νd̃r.(Q′

0 | Q1) with {d̃o} ⊆ {d̃} and d̃o ∈
fn(W ) \ {j̃}, and we then define d̃1 = j̃, d̃o. By P ′

0 Y?
(V,W )⊕E′;r′ Q′

0, we have



– P ′
0 = νc̃2.(P00 | P01), Q′

0 = νd̃2.(Q00 |Q01),
– c̃2 6∈ fn(E ′.1, r′), d̃2 6∈ fn(E ′.2, r′),
– P00 YE′′;r′′ Q00, P01 (E ′′; r′′)◦ Q01,
– (V,W )⊕E ′ ⊆ (E ′′; r′′)?, r′ ⊆ r′′.

Since P1 (E ′; r′)◦ Q1, we have (P1 | P01) (E ′′; r′′)◦ (Q1 | Q01). Since E ⊆
(E ′; r′)?, we have (V,W )⊕E ⊆ ((V,W )⊕E ′; r′)? ⊆ (E ′′; r′′)?. Finally, c̃r, c̃2 6∈
fn(E .1, r) and d̃r, d̃2 6∈ fn(E .2, r), P ′ ≡ νc̃r, c̃2.(P00 | P01 | P1) and Q′ ≡
νd̃r, d̃2.(Q00 | Q01 | Q1), from where we conclude that P Y?

(V,W )⊕E;r Q, that
is, after undoing the potential substitution, P X(V,W )⊕E;r Q.

(b) Subcase: P1
νei.a〈V 〉−−−−−→ P ′

1

We have {̃i} ⊆ {c̃1}, that is, ĩ 6∈ fn(r, E .1) and νc̃.(P0 |P ′
1)

νec1.a〈V 〉−−−−−−→νc̃r.(P0 |
P ′

1) = P ′ with {̃cr} = {c̃} \ {c̃1}. In order to apply Lemma B.5, we may need
to substitute a fresh variable not in fn(r′, E ′) for ĩ in P ′

1, Q′
1, V and W below,

and we will assume that it has been done to release some burden from the proof.

By Lemma B.5, we have that Q1
νei.a〈W 〉−−−−−→ Q′

1 and V (E ′; ĩ⊕r′)? W as well
as P ′

1 (E ′; ĩ⊕r′)◦ Q′
1. Then, since we can assume {̃i} ∩ fn(Q0) = ∅, we have

Q0 |Q1
νei.a〈W 〉−−−−−→Q0 |Q′

1, and therefore νd̃.(Q0 |Q1)
νei, edo−−−→νd̃r.(Q0 |Q′

1) ≡ Q′,
with d̃1 = ĩ, d̃o and {d̃1} ∩ fn(r, E .2) = ∅. So far, we have

– P0 YE′;r′ Q0, that is P0 YE′;ei⊕r′
Q0 since {̃i} ∩ fn(E ′, r′) = ∅,

– P ′
1 (E ′; ĩ⊕r′)◦ Q′

1,
– E ⊆ (E ′; r′)? ⊆ (E ′; ĩ⊕r′)?,
– r ⊆ r′ ⊆ ĩ⊕r′.
– {c̃r} ∩ fn(r, E .1) = {d̃r} ∩ fn(r, E .2) = ∅

hence P ′ Y?
E;r Q′ and therefore, after undoing the potential substitution, P ′ XE;r Q′.

3. Case: The converse of the above two cases on Q’s transitions.
Similar to clauses 1 and 2.

Definition B.7. [run-erasure and run-expansion]
For all processes A, B, we write A < B and B > A if there are Cp and R̃ such that
A = Cp[R̃] and B = Cp[run‘(R̃)]. We write P0 ≤ Pn if P0 < · · · < Pn for some
n ≥ 0. We naturally write A ≥ B whenever B ≤ A. We naturally extend ≤ and ≥’s
definitions to terms and labels.

We use the metavariables P+ and P− along with P when we mean that P ≤ P+

and that P− ≤ P . (The notations (·)+ and (·)− therefore do not represent operators.)
Similarly, we use the metavariables M+ and M− to represent run-expansions and run-
erasures of term M .

Lemma B.8. [Input, output and reduction preserve < and > ]
Let X = {(r, E , P, Q) | P < Q, E ⊆ < }. If P XE;r Q, then

– if P
τ−→P ′ then there is a Q′ such that P ′ XE;r Q′ and either Q

τ−→Q′ or Q
run−−→ τ−→Q′,

– if P
a(M)−−−→P ′ then for all (M,N) ∈ (E ; r)? there is a Q′ such that P ′ XE;r Q′ and

either Q
a(N)−−−→Q′ or Q

run−−→ a(N)−−−→Q′,



– if P
νec.a〈M〉−−−−−→P ′ then there are Q′, M < N such that P ′ X(M,N)⊕,E;r Q′ and either

Q
νec.a〈N〉−−−−−→Q′ or Q

run−−→ νec.a〈N〉−−−−−→Q′, and
– the converse on Q’s transitions.

Similarly for > .

Proof. By induction on the derivation transition of Cp[R̃] (or Cp[run(‘R̃)]). We only
show the HO-IN derivation case of the input preservation, the others being straightfor-
ward or similar.

– Case P ’s input:
There are two subcases: the context inputs, or some Ri.

• P = Cp[R̃]
a(M)−−−→C ′

p[R̃,M ] by an input from the context, and thus for (M,N) =

(C ′′
p [Ã], C ′′

p [run‘Ã]) ∈ < , Q = Cp[run‘R̃]
a(N)−−−→C ′

p[run‘R̃, run‘C ′′
p [run‘Ã]] τ−→

C ′
p[run‘R̃, C ′′

p [run‘Ã]] = C ′′′
p [run‘R̃, run‘Ã]. We are done as C ′

p[R̃,M ] =
C ′

p[R̃, C ′′
p [‘Ã]] = C ′′′

p [R̃, Ã] < C ′′′
p [run‘R̃, run‘Ã].

• P = Cp[R̃, R]
a(M)−−−→ Cp[R̃, R′] by an input from R, and thus for (M,N) =

(C ′′
p [Ã], C ′′

p [run‘Ã]) ∈ < , we have Q = Cp[run‘R̃, run‘R] τ−→Cp[run‘R̃, R]
a(N)−−−→

Cp[run‘R̃, R′′]. Since (R′, R′′) = (C ′′′
p [Ã], C ′′′

p [run‘Ã]), we have R′ < R′′ and
therefore Cp[R̃, R′] < Cp[run‘R̃, R′′] and we are done.

– Case Q’s input:
There is only one subcase, as no Ri can input for they are all guarded.

• Q = Cp[run‘R̃]
a(N)−−−→C ′

p[run‘R̃,N ] by an input from the context, and thus for

(M,N) = (C ′′
p [Ã], C ′′

p [run‘Ã]) ∈ < , P = Cp[‘R̃]
a(M)−−−→ C ′

p[R̃, C ′′
p [Ã]] =

C ′′′
p [R̃, Ã]. We are done as C ′

p[run‘R̃,N ] = C ′
p[run‘R̃, C ′′

p [run‘Ã]]
= C ′′′

p [run‘R̃, run‘Ã] > C ′′′
p [R̃, Ã].

Corollary B.9. [Input, output and reduction preserve ≤ and ≥ ]
For all r, for any closed P , Q, the sets X1 = {(r, E , P0, Pm) | E ⊆ ≤, P0 ≤ Pm},

and X2 = {(r, E , P0, Pm) | E ⊆ ≥, P0 ≥ Pm} are both preserved by input, output
and reduction.

Proof. By induction on the number n of < (in ≤) (resp. on the number of > (in ≥)).
We explicitly treat only the set X1, the set X2 being treated similarly.

– Case n = 0
Trivial.

– Case n > 0
We have P0

α−→ P ′
0, hence by Lemma B.8 either

• P1
β−→ P ′

1 with α < β and P ′
0 < P ′

1. By P1 ≤ Pn (which has n − 1 “<”),
applying the induction hypothesis we have Pn

γ
=⇒P ′

n with β ≤ γ, hence α ≤ γ,
and P ′

0 ≤ P ′
n, or



• P1
τ−→ P ′′

1
β−→ P ′

1 with α < β and P ′
0 < P ′

1. By P1 ≤ Pn (which has n − 1
“<”), applying the induction hypothesis with P1

τ−→P ′′
1 , we have Pn

τ=⇒P ′′
n and

P ′′
1 ≤ P ′′

n . Then we apply again the induction hypothesis to P ′′
1 ≤ P ′′

n and

P ′′
1

β−→ P ′
1, and we obtain P ′′

n
γ
=⇒ P ′′

n and P ′
1 ≤ P ′

n with β ≤ γ, hence P ′
0 ≤ P ′

n

and α ≤ γ.

Definition B.10. [run-transition]
We write P

run−−→P ′ when P
τ−→P ′ is derived using the rule RUN. Then, we write P0

runn

==⇒
Pn to mean that P0

run−−→ . . .
run−−→ Pn.

Definition B.11. [Minimal transition of run-expanded processes]

Suppose that A ≤ B, A
α−→ A′, B

runn

==⇒ β−→B′ with α ≤ β and that A′ ≤ B′. We say

that B
runn

==⇒ β−→B′ is minimal with respect to A
α−→A′ if and only if for all B

runm

==⇒ γ−→B′′

with A′ ≤ B′′ and α ≤ γ, we have n ≤ m.

Lemma B.12. [Minimality and run-transition]

Suppose that B
run−−→ B′′ runn−1

====⇒ β−→B′ with n > 0 is minimal with respect to A
α−→ A′.

We have that B′′ runn−1

====⇒ β−→B′ too is minimal with respect to A
α−→A′.

Proof. By reductio ad absurdum. Suppose that B′′ runn−1

====⇒ β−→B′ is not minimal with
respect to A

α−→A′. There must be a minimal transition B′′ runm

==⇒ γ−→B′′′ with A′ ≤ B′′′,
α ≤ γ, and m < n − 1. Then we have a derivation B

run−−→ B′′ runm

==⇒ γ−→B′′′ of length

m+1 < n with A′ ≤ B′′′, which contradicts the assumption that B run−−→B′′ runn−1

====⇒ β−→B′

is minimal.

Lemma B.13. [Minimality and contexts]

For all Q
runn

==⇒ β−→Q′ minimal with respect to P
α−→ P ′,

– for all R1 ≥ R2, Q |R1
runn

==⇒ β−→Q′ |R1 is minimal with respect to P |R2
α−→P ′ |R2,

– for l, l[Q] runn

==⇒ β−→l[Q′] is minimal with respect to l[P ] α−→ l[P ′], and
– if Q = Q0 | Q1, Q′ = Q′

0 | Q′
1, and P = P0 | P1 with P0 ≤ Q0, P1 ≤ Q1,

then for all l and m, l[Q0] |m[Q1]
runn

==⇒ β−→l[Q′
0] |m[Q′

1] is minimal with respect to
l[P0] |m[P1]

α−→ l[P ′
0] |m[P ′

1].

– for all c̃, νc̃.Q
runn

==⇒ β′−→νc̃′.Q′′ is minimal with respect to P
α′−→ P ′′.

Proof. Immediate, as none of the above operations can reduce the number of run’s that
have to be deleted, and as they all preserve membership to ≤.

Definition B.14. [run-erased context closure]
We define the run-erased context closure (E ; r)− of environment E with names r as
≤ (E ; r)? ≥ , that is {(M,N) | M ≤ A, N ≤ B, (A,B) ∈ (E ; r)?}. Notice that

(E ; r)− may erase run’s inside elements related by E too.
We also write P Y−

E;r Q if P ≤ Y?
≤E≥;r ≥ Q (which implies Y? ⊆ Y−). In other

words P Y−
E;r Q if P ≡ νc̃.(P0|P1), Q ≡ νd̃.(Q0|Q1), P0 ≤ YE′;r′ ≥ Q0, (‘P1, ‘Q1) ∈

(E ; r)−, E ⊆ (E ′; r′)−, r ⊆ r′, and {c̃} ∩ fn(E .1, r) = {d̃} ∩ fn(E .2, r) = ∅.



Corollary B.15. [run-erasure preserves run-erased context closure of environmental
bisimulation up-to context]
If P Y−

E;r Q, P− ≤ P , Q− ≤ Q and E− ≤ E then P− Y−
E−;r Q−.

Proof. From transitivity of ≤ and ≥ given by Definition B.7.

Lemma B.16. [Addition of fresh names preserves environmental bisimulation up-to
context and its run-erased context closure]
LetY be an environmental bisimulation up-to context. If P Y?

E;r Q and l 6∈ fn(P,Q, E),
then P Y?

E;l⊕r Q. Similarly, if P Y−
E;r Q and l 6∈ fn(P,Q, E), then P Y−

E;l⊕r Q.

Proof. By simple set arithmetic and use of definitions.

– Case Y?

Given P = νc̃.(P0 | P1), Q = νd̃.(Q0 | Q1) such that P0 YE′;r′ Q0, (P1, Q1) ∈
(E ′; r′)◦, {c̃} ∩ fn(E .1, r) = {d̃} ∩ fn(E .2, r) = ∅, and E ⊆ (E ′; r′)?, it holds that
• P0 YE′;l⊕r′ Q0 by clause 5 of environmental bisimulation up-to context,
• (P1, Q1) ∈ (E ′; r′)◦ ⊆ (E ′; l⊕r′)◦,
• E ⊆ (E ′; r′)? ⊆ (E ′; l⊕r′)?

• l⊕r ⊆ l⊕r′,
• we can use renaming of c̃ and d̃ so that they do not clash with l.

Therefore, P Y?
E;l⊕r Q holds.

– Case Y−

We have some P+ ≥ P , Q+ ≥ Q, E+ ≥ E such that P+ Y?
E+;r Q+. Therefore,

according to the above case, we have P+ Y?
E+;n⊕r Q+, hence P Y−

E;n⊕r Q by Def-
inition B.14.

Lemma B.17. [Spawning preserves context closure of environmental bisimulation up-
to context]
Let Y be an environmental bisimulation up-to context. For all P Y?

E;r Q, l ∈ r and
(‘P2, ‘Q2) ∈ E , we have P | l[P2] Y?

E;r Q | l[Q2].

Proof. We have P ≡ νc̃.(P0 |P1) and Q ≡ νd̃.(Q0 |Q1), with P0 YE′;r′ Q0, (P1, Q1) ∈
(E ′; r′)◦, E ⊆ (E ′; r′)?, r ⊆ r′ and νc̃ 6∈ fn(E .1, r), νd̃ 6∈ fn(E .2, r). By (‘P2, ‘Q2) ∈
E , we have either (‘P2, ‘Q2) ∈ E ′ or (P2, Q2) ∈ (E ′; r′)◦. In the former case, it
holds that P0 | l[P2] Y?

E′;r′ Q0 | l[Q2] by clause 4 of environmental bisimulation up-to
context, hence νc̃.(P0 | l[P2] | P1) Y?

E;r νd̃.(Q0 | l[Q2] |Q1) up-to environment, con-
text and restriction. In the latter case, we immediately have (P1 | l[P2], Q1 | l[Q2]) ∈
(E ′; r′)◦, hence P | l[P2] Y?

E;r Q | l[Q2].

Lemma B.18. [run-transitions of (E ; r)◦]
Suppose that (P1, Q1) = (C[M̃ ], C[Ñ ]) ∈ (E ; r)◦ and that P1

run−−→ P ′
1. Then there

is a Q′
1 such that Q1

run−−→ Q′
1 and either (P ′

1, Q
′
1) = (C ′[M̃ ], C ′[Ñ ]) ∈ (E ; r)◦ or

(P ′
1, Q

′
1) = (Cp[run(M̃ ′), A], Cp[run(Ñ ′), B]) ∈ (E ; r)−\(E ; r)◦ with (A,B) in redex

position (i.e. not under a run, an a(·) or an a〈·〉) and (M̃ ′, ‘A) = M̃ , (Ñ ′, ‘B) = Ñ .



Proof. By induction on the transition derivation of P1
run−−→ P1′. The only case of in-

terest is the RUN one, developed below. The others (PAR-L, PAR-R, GUARD, REP and
TRANSP) are straightforward.

1. Case RUN: C = run(C1)
There are two subcases
(a) C1 = ‘C2

We have P1 = run(‘C2[M̃ ]) run−−→ C2[M̃ ] and Q1 = run(‘C2[Ñ ]) run−−→ C2[Ñ ]
with (C2[M̃ ], C2[Ñ ]) ∈ (E ; r)◦.

(b) C1 = [·]
We have P1 = run(‘A) run−−→A, Q1

run−−→B with (‘A, ‘B) ∈ E (we can assume that
(A,B) 6∈ (E ; r)◦, otherwise we could have handled this situation in the above
subcase), and (P ′

1, Q
′
1) = (Cp[A], Cp[B]) ∈ (E ; r)− \ (E ; r)◦ with Cp = [·]1,

and (A,B) in redex position.

Lemma B.19. [Non-run τ -transitions of (E ; r)◦]
Suppose that (P1, Q1) ∈ (E ; r)◦ and that P1

τ−→ P ′
1 is not a run-transition. Then there

is a Q′
1 such that Q1

τ−→Q′
1 and (P ′

1, Q
′
1) = (E ; r)◦.

Proof. By induction on the transition derivation P1
τ−→ P ′

1. The only interesting cases
are REACT-R and REACT-L. The others (PAR-R, PAR-L, GUARD, TRANSP and REP
are straightforward.)

1. Case REACT-L: C = C1 | C2

We have P1 = C1[M̃ ] | C2[M̃ ] τ−→ νc̃.(P11 | P12) with C1[M̃ ]
νec.a〈V 〉−−−−−→ P11 and

C2[M̃ ]
a(V )−−−→ P12, {c̃} ∩ fn(C2[M̃ ]) = ∅. We can assume {c̃} ∩ fn(r, E) = ∅. By

Lemma B.5, we know that C1[Ñ ]
νec.〈W 〉−−−−→ Q11, that P11(E ; (c̃⊕r))◦Q11, and that

V (E ; (c̃⊕r))? W . By Lemma B.4, we have that C2[Ñ ]
a(W )−−−→ Q12 with

P12((V,W )⊕E ; r)◦Q12. Also, since {c̃} ∩ fn(C2[Ñ ]) = ∅ (as c̃ 6∈ fn(r, E)), we
have that C1[Ñ ] |C2[Ñ ] τ−→ νc̃.(Q11 |Q12). Moreover, by P11(E ; (c̃⊕r))◦Q11 and
P12((V,W )⊕E ; r)◦Q12, we can infer that (νc̃.(P11|Q11), νc̃.(P12|Q12)) ∈ (E ; r)◦

and we are done.
2. Case REACT-R: C = C1 | C2

Similar.

Lemma B.20. [Reduction and environmental bisimulation up-to context]
Let Y be an environmental bisimulation up-to context. If P Y?

E;r Q and P −→ P ′ then
there is a Q′ such that Q =⇒Q′ and P ′ Y−

E;r Q′.

Proof. Suppose P Y?
E;r Q, therefore for some P0, P1, Q0, Q1, E ′, r′, c̃, d̃ we have

P ≡ νc̃.(P0 |P1), Q ≡ νd̃.(Q0 |Q1), r ⊆ r′, {c̃}∩ fn(r, E .1) = {d̃}∩ fn(r, E .2) = ∅,
E ⊆ (E ′; r′)?, P0 YE′;r′ Q0 and P1 (E ′; r′)◦ Q1.

We are going to analyse all the possible reduction transitions.

1. Case: P
τ−→ P ′. We have four cases for the transitions of νc̃.(P0 | P1):



(a) Subcase P0
τ−→ P ′

0

By P0 YE′;r′ Q0, we have that Q0 =⇒Q′
0 and P ′

0 Y?
E′;r′ Q′

0. Therefore, νc̃.(P0 |
P1)

τ−→ νc̃.(P ′
0 | P1) ≡ νc̃, c̃i.(P ′

00 | P ′
01 | P1) ≡ P ′ since c̃i does not appear in

P1. Also, νd̃.(Q0 |Q1) =⇒ νd̃.(Q′
0 |Q1) ≡ νd̃, d̃i.(Q′

00 |Q′
01 |Q1) = Q′ since

d̃i does not appear in Q1. We have c̃j , d̃j , P00, Q00, P01, Q01, r′′ and E ′′ such
that

– P ′
0 ≡ νc̃i.(P00 | P01), Q′

0 ≡ νd̃i.(Q00 |Q01),
– c̃i 6∈ fn(r′, E ′.1), d̃i 6∈ fn(r′, E ′.2),
– P00 YE′′;r′′ Q00, P01 (E ′′; r′′)◦ Q01,
– E ′ ⊆ (E ′′; r′′)?, r′ ⊆ r′′,

It then holds that E ⊆ (E ′′; r′′)?, r ⊆ r′′ and that c̃, c̃i 6∈ fn(r, E .1), d̃, d̃i 6∈
fn(r, E .2). Also, P ′

1 (E ′′; r′′)◦Q′
1 hence (P01 |P ′

1) (E ′′; r′′)◦ (Q01 |Q′
1). There-

fore P ′ Y?
E;r Q′, hence P ′ Y−

E;r Q′.
(b) Subcase P1

τ−→ P ′
1

Since (P1, Q1) ∈ (E ′; r′)◦, then necessarily P1
τ−→ P ′

1 implies that the con-
text reduces, and Q1 can do the same derivation. Therefore, by Lemmas B.18
and B.19 either (P1, Q1) = (C[M̃ ], C[Ñ ]) ∈ (E ′; r′)◦ and (P ′

1, Q
′
1)

= (C ′[M̃ ], C ′[Ñ ]) ∈ (E ′; r′)◦ or (P1, Q1) = (C2[‘Ã, ‘A], C2[‘B̃, ‘B]) =
(Cp[run‘Ã, run‘A], Cp[run‘B̃, run‘B]) and (P ′

1, Q
′
1) = (Cp[run‘Ã, A], Cp[run‘B̃, B])

with (‘A, ‘B) ∈ E ′ and (A,B) 6∈ (E ′; r′)◦. In both cases, we have P ′ Y−
E;r Q′

and we are done.
(c) Subcase P0

νec1.a〈V 〉−−−−−−→ P ′
0 P1

a(V )−−−→ P ′
1 {c̃1} ∩ fn(r′, E ′.1) = ∅

By P0 YE′;r′ Q0, we have Q0
ν ed1.a〈W 〉
======⇒Q′

0 and P ′
0 Y?

(V,W )⊕E′;r′ Q′
0 with d̃1 6∈

fn(E ′.2, r′) free in W . Also, since P1
a(V )−−−→ P ′

1 we have by Lemma B.4 that

Q1
a(W )−−−→ Q′

1 and P ′
1 (E ′ ∪ {(V,W )}; r′)◦ Q′

1. Therefore νc̃.(P0 | P1)
τ−→≡

νc̃, c̃1.(P ′
0 | P ′

1) ≡ P ′ and νd̃.(Q0 | Q1) =⇒≡ νd̃, d̃1.(Q′
0 | Q′

1) = Q′. By
P ′

0 Y?
(V,W )⊕E′;r′ Q′

0 we have that

– P ′′
0 = νc̃2.(P00 | P01), Q′′

0 = νd̃2.(Q00 |Q01),
– c̃2 6∈ fn(E ′.1, r′), d̃2 6∈ fn(E ′.2, r′),
– P00 YE′′;r′′ P00, P01 (E ′′; r′′)◦ Q01,
– (V,W )⊕E ′ ⊆ (E ′′; r′′)?, r′ ⊆ r′′.

We have νc̃, c̃1.(P ′′
0 | P ′

1) ≡ νc̃, c̃1, c̃2.(P00 | P01 | P ′
1), νd̃, d̃1.(Q′′

0 | Q′
1) ≡

νd̃, d̃1, d̃2.(Q00 |Q01 |Q′
1), E ⊆ (E ′′; r′′)?, r ⊆ r′′, hence (P01 |P ′

1) (E ′′; r′′)◦
(Q01 | Q′

1), as well as c̃, c̃1, c̃2 6∈ fn(E .1, r), d̃, d̃1, d̃2 6∈ fn(E .2, r). We thus
conclude that P Y−

E;r Q.

(d) Subcase P0
a(V )−−−→ P ′

0 P1
νes.a〈V 〉−−−−−→ P ′

1

By Lemma B.5, we have for s̃ 6∈ fn(r′, E ′) that Q1
νes.a〈W 〉−−−−−→Q′

1 and V (E ′; s̃⊕r′)?

W , as well as P ′
1 (E ′; s̃⊕r′)◦ Q′

1. Using freshness of s̃, we have by clause 5 of
the bisimulation up-to context P0 YE′;es⊕r′ Q0, hence P ′

0 Y?
E′;es⊕r′ Q′

0 for some

Q0
a(W )
===⇒Q′

0, i.e.
– P ′

0 = νc̃1.(P00 | P01), Q′
0 = νd̃1.(Q00 |Q01),



– c̃1 6∈ fn(E ′.1, s̃⊕r′), d̃1 6∈ fn(E ′.2, s̃⊕r′),
– P00 YE′′;r′′ Q00, P01 (E ′′; r′′)◦ Q01,
– E ′ ⊆ (E ′′; r′′)?, s̃⊕r′ ⊆ r′′.

Then, c̃, s̃, c̃1 6∈ fn(E .1, r) and d̃, s̃, d̃1 6∈ fn(E .2, r), νc̃.(P0 |P1)
τ−→ νc̃, s̃.(P ′

0 |
P ′

1) ≡ νc̃, s̃, c̃1.(P00 | P01 | P ′
1) = P ′, and νd̃.(Q0 |Q1) =⇒ νd̃, s̃.(Q′

0 |Q′
1) ≡

νd̃, s̃, d̃1.(Q00 | Q01 | Q′
1) = Q′. Also r ⊆ r′′ and E ⊆ (E ′′; r′′)?, hence

(P01 | P ′
1) (E ′′; r′′)◦ (Q01 |Q′

1). As a result, P ′ Y−
E;r Q′.

2. Case: Q reduces.
Conversely.

Lemma B.21. [run-expanded output with spawning]
Suppose that νc̃.(P0 | l[P1]) Y?

E;r νd̃.(Q0 | l[Q1]) for an environmental bisimulation

up-to context Y with l ∈ r and that P1
runn

==⇒ νec1.a〈M〉−−−−−−→P ′
1 is minimal with respect to

P−
1

νec1.a〈M−〉−−−−−−−→ P ′−
1 , (so νc̃.(P0 | l[P1])

runn

==⇒ νec0.a〈M〉−−−−−−→νc̃′.(P0 | l[P ′
1]) is minimal with

respect to νc̃.(P−
0 |l[P−

1 ])
νec0.a〈M−〉−−−−−−−→νc̃′.(P−

0 |l[P ′−
1 ])). Then νd̃.(Q0 | l[Q1])

ν ed0.a〈N〉
=====⇒

νd̃′.(Q′
0 | l[Q′

1]), and νc̃r.P0 Y−
(M,N)⊕(‘P ′

1,‘Q′
1)⊕E;r νd̃r.Q

′
0 with {c̃′} = {c̃} \ fn(M),

{c̃r} = {c̃′} \ fn(P ′
1), {d̃r} = {d̃′} \ fn(Q′

1), and {c̃′, c̃0} ∩ fn(E .1, r) = {d̃′, d̃0} ∩
fn(E .2, r) = {d0} ∩ {d̃′} = {c0} ∩ {c̃′} = ∅.

Proof. By induction on n.

– Case n = 0
Immediate by Lemma B.6 and the fact that Y? ⊆ Y−.

– Case n > 0
By Lemma B.20 and Lemma B.12, we have two possible subcases preserving mini-

mality after the first run-transition of νc̃.(P0 | l[P1])
runn

==⇒ νec0.a〈M〉−−−−−−→νc̃′.(P0 | l[P ′
1]).

• Subcase νc̃.(P0 | l[P1])
run−−→νc̃.(P0 | l[P ′′

1 ]), νd̃.(Q0 | l[Q1])=⇒νd̃′′.(Q′′
0 | l[Q′′

1 ])
and νc̃.(P0 | l[P ′′

1 ]) Y?
E;r νd̃′′.(Q′′

0 | l[Q′′
1 ]).

As νc̃.(P0 | l[P ′′
1 ]) runn−1

====⇒ νec0.a〈M〉−−−−−−→νc̃′.(P0 | l[P ′
1]) is still minimal with respect

to νc̃.(P−
0 | l[P−

1 ])
νec0.a〈M−〉−−−−−−−→ νc̃′.(P−

0 | l[P ′−
1 ]), we can apply the induction

hypothesis and get the desired results.
• Subcase νc̃.(P0 | l[P1])

run−−→νc̃.(P0 | l[P ′′
1 ]), νd̃.(Q0 | l[Q1])=⇒νd̃′′.(Q′′

0 | l[Q′′
1 ])

and νc̃.(P0 | l[P ′′
1 ]) Y−

E;r νd̃′′.(Q′′
0 | l[Q′′

1 ]), with

(P1, Q1) = (Cp[run(M̃), run‘A], Cp[run(Ñ), run‘B]) and
(P ′′

1 , Q′′
1) = (Cp[run(M̃), A], Cp[run(Ñ), B]) with (A,B) in redex position

(i.e. (‘A, ‘B) ∈ E ′ and (A,B) 6∈ (E ′; r′)◦ for some E ′, r′ such that E ⊆
(E ′; r′)?, νc̃.(P0 | l[P1]) ≡ νx̃.(PA | PB), νd̃.(Q0 | l[Q1]) ≡ νỹ.(QA | QB),
PA YE′;r′ QA, (PB , QB) ∈ (r′; E ′)◦, r ⊆ r′, x̃∩fn(E .1, r) = ỹ∩fn(E .2, r) =
∅.

By νc̃.(P−
0 | l[P−

1 ])
νec0.a〈M−〉−−−−−−−→ νc̃′.(P−

0 | l[P ′−
1 ]), P1 = Cp[run(M̃), run‘A],

P ′′
1 = Cp[run(M̃), A] and P−

1 ≤ P ′
1, we know that there is a run-erasure



A− ≤ A such that A− is in redex position in P1 and that A
νec1.a〈M〉−−−−−−→ A′

is minimal with respect to A− νec1.a〈M−〉−−−−−−−→ A′−. Using Lemma B.16 (to add
a fresh name l), Lemma B.17 and up-to context (to work with P0 and Q0

instead of PA and QA) and environment (to work with E and r instead of
E ′, r′) techniques, we have P0 | l[A] Y?

E;l⊕r Q0 | l[B] and, by Lemma B.13,

P0 | l[A] runn−1

====⇒ νec1.a〈M〉−−−−−−→P0 | l[A′] minimal with respect to P−
0 |l[A−]

νec1.a〈M−〉−−−−−−−→

P−
0 | l[A′−]. Applying the induction hypothesis, we get Q′′

0 | l[B]
ν ed1.a〈N〉
=====⇒

νd̃n.(Q′
0 | l[B′]), and P0 Y−

(M,N)⊕(‘A′,‘B′)⊕E;l⊕r νd̃r1.Q
′
0 with {d̃r1} = {d̃n}\

fn(B), and {d̃n}∩fn(E .2, l, r) = {d̃1}∩{d̃n} = ∅. Therefore, Q′′
0 | l[Q′′

1 ]
ν ed1.a〈N〉
=====⇒

νd̃n.(Q′
0 | l[Q′

1]) for Q′
1 = Cp[run(M̃), B′] since the context Cp cannot bind

names free in E ′, r′, hence in E , B, nor in N . Then νd̃.(Q0 | l[Q1])
ν ed0.a〈N〉
=====⇒

νd̃′.(Q′
0 | l[Q′

1]) with {d̃′} = {d̃n} ∪ {{d̃} \ {{d̃0} \ {d̃1}}}. And also,
P0 Y−

(M,N)⊕(‘A′,‘B′)⊕E;l⊕r νd̃r1.Q
′
0 implies P0 Y−

(M,N)⊕(‘P ′
1,‘Q′

1)⊕E;r νd̃r1.Q
′
0

up-to environment to remove l and build P ′
1 and Q′

1, and
νc̃r.P0 Y−

(M,N)⊕(‘P ′
1,‘Q′

1)⊕E;r νd̃r.Q
′
0 up-to restriction for {c̃r} = {c̃′}\fn(P ′

1)

and {d̃r} = {d̃′} \ fn(Q′
1).

Corollary B.22. [run-expanded output]
Suppose that νc̃.(P0 | P1) Y?

E;r νd̃.(Q0 |Q1) for an environmental bisimulation up-to

contextY with P0 YE′;r′ Q0, (P1, Q1) ∈ (E ′; r′)◦, {c̃}∩fn(E .1, r) = {d̃}∩fn(E .2, r) =

∅, and that νc̃.(P0 | P1)
runn

==⇒ νec0.a〈M〉−−−−−−→νc̃′.(P ′
0 | P ′

1) is minimal with respect to

νc̃.(P−
0 | P−

1 )
νec0.a〈M−〉−−−−−−−→νc̃′.(P ′−

0 | P ′−
1 ). Then νd̃.(Q0 |Q1)

ν ed0.a〈N〉
=====⇒νd̃′.(Q′

0 |Q′
1),

and νc̃′.(P ′
0 | P ′

1) Y−
(M,N)⊕E;r νd̃′.(Q′

0 |Q′
1) with {d̃′}∩fn(E .2, r,N) = {d0}∩{d̃′} =

∅.

Proof. By induction on n.

– Case n = 0
Immediate by Lemma B.6 and the fact that Y? ⊆ Y−.

– Case n > 0
By Lemma B.20 and Lemma B.12, we have two possible subcases preserving min-

imality after the first run-transition of νc̃.(P0 | P1)
runn

==⇒ νec0.a〈M〉−−−−−−→νc̃′.(P ′
0 | P ′

1).
• Subcase P0

run−−→ P ′′
0

We have that Q0
τ=⇒Q′′

0 and P ′′
0 Y?

E′;r′ Q′′
0 , and also that P ′′

0
runn−1

====⇒ νec1.a〈M〉−−−−−−→P ′
0

is minimal with respect to P−
0

νec1.a〈M−〉−−−−−−−→ P ′−
0 . Thus, we can apply the induc-

tion hypothesis and get Q′′
0

ν ed1.a〈N〉
=====⇒Q′

0 as well as P ′
0 Y−

(M,N)⊕E′;r′ Q′
0. There-

fore, Q0 |Q1
ν ed1.a〈N〉
=====⇒Q′

0 |Q1, hence νd̃.(Q0 |Q1)
ν ed0.a〈N〉
=====⇒ νd̃′.(Q′

0 |Q1).
Also, P ′

0 | P1 Y−
(M,N)⊕E;r Q′

0 |Q1 up-to environment for using E and r instead



of E ′ and r′ and context for spawning P1 and Q1, and finally
νc̃′.(P ′

0 | P1) Y−
(M,N)⊕E;r νd̃′′′.(Q′

0 |Q1) up-to restriction for {c̃′} = {c̃} \
fn(M), {d̃′′′} ⊇ {d̃} \ fn(N), {d̃′} 6∈ fn(E .2, N, r), and d′ = d′′′.

• Subcase P1
run−−→ P ′

1

Using Lemma B.16 to add a fresh name l and the fact that (P1, Q1) ∈ (E ′; r′)◦,

we have νc̃.(P0 | l[P1]) Y?
E;l⊕r Q0 | l[Q1]. As νc̃.(P0 | l[P1])

runn

==⇒ νec0.a〈M〉−−−−−−→

νc̃.(P0 | l[P ′
1]) is minimal with respect to νc̃.(P−

0 | l[P−
1 ])

νec0.a〈M−〉−−−−−−−→

νc̃′.(P−
0 | l[P ′−

1 ]), we can use Lemma B.21 and have νd̃.(Q0 | l[Q1])
ν ed0.a〈N〉
=====⇒

νd̃′.(Q′
0 | l[Q′

1]), hence νd̃.(Q0 | Q1)
ν ed0.a〈N〉
=====⇒ νd̃′.(Q′

0 | Q′
1) and also

νc̃r.P0 Y−
(M,N)⊕(‘P ′

1,‘Q′
1)⊕E;l⊕r νd̃r.Q

′
0 with {c̃r} = {c̃′} \ fn(M), {d̃r} ⊆

{d̃′} \ fn(N), {d̃′} ∩ fn(E .2, N, r) = ∅. Therefore,
νc̃′.(P0 | P ′

1) Y−
(M,N)⊕E;r νd̃′.(Q′

0 |Q′
1) up-to context, environment and restric-

tion.

Corollary B.23. [Output preserves run-erased environmental bisimulation up-to con-
text]

For any environmental bisimulation up-to context Y , if P Y−
E;r Q and P

νec.a〈M〉−−−−−→ P ′

with a ∈ r and c̃ 6∈ fn(E .1, r), then there is a Q′ such that Q
ν ed.a〈N〉
=====⇒ Q′ with

d̃ 6∈ fn(E .2, r) and P ′ Y−
(M,N)⊕E;r Q′. The converse on Q’s transition holds too.

Proof. By Y−’s definition, we know there are P+, Q+ and E+ such that P+ Y?
E+;r Q+.

Since P
νec.a〈M〉−−−−−→ P ′, there is a minimal output transition P+ runn

==⇒ νec.a〈M+〉−−−−−−→P ′+. By

Lemma B.22, we have Q+ νec.a〈N+〉
======⇒Q′+ and P ′+ Y−

(M+,N+)⊕E+;r Q′+ which implies

by Corollary B.9 that Q can also weakly do an output transition Q
νec.a〈N〉
=====⇒ Q′, such

that Q′ ≤ Q′+ and N ≤ N+. By Corollary B.15, as P ′ ≤ P ′+, Q′ ≤ Q′+ and
(M,N)⊕E ≤ (M+, N+)⊕E+, we have P ′ Y−

(M,N)⊕E;r Q′ as desired. Visually, the
following diagram holds.



Y−
E;r

P ≤ P ′+ Y?
E+;r Q+ ≥ Q

runn�
wwwwwww

P ′

νc̃.a〈M〉

?
≤ P ′+

νc̃.a〈M+〉

?
Y−

(M+,N+)⊕E+;r Q′+

νd̃.a〈N+〉

�

wwwwwwwwwwwwwww
≥ Q′

νd̃.a〈N〉

�

wwwwwwwwwwwwwww

Y−
(M,N)⊕E;r

The converse on Q’s transitions is shown similarly.

Lemma B.24. [run-expanded input]
Suppose that P Y?

E;r Q for an environmental bisimulation up-to context Y and that

P
runn

==⇒ a(M)−−−→P ′ is minimal with respect to P− a(M−)−−−−→ P ′−. Then for all N such that

(M,N) ∈ (E ; r)?, Q
a(N)
===⇒Q′, and P ′ Y−

E;r Q′.

Proof. By induction on n.

– Case n = 0
Immediate by Lemma B.6 and the fact that Y? ⊆ Y−.

– Case n > 0
By Lemma B.20 and Lemma B.12, we have two possible subcases preserving min-

imality after the first run-transition of P
runn

==⇒ a(M)−−−→P ′.
• Subcase P

run−−→ P ′′, Q
τ=⇒Q′′, P ′′ Y?

E;r Q′′

We have that P ′′ runn−1

====⇒ a(M)−−−→P ′ is still minimal, hence we can apply the
induction hypothesis, and we are done.

• Subcase P
run−−→ P ′′, Q

τ=⇒Q′′, P ′′ Y−
E;r Q′′ with P ′′ = νc̃.(P0 | P1) and Q′′ =

νd̃.(Q0 | Q1), P0 YE′;r′ Q0, (P1, Q1) = (Cp[run(M̃), A], Cp[run(Ñ), B]) ∈
(E ′; r′)− \ (E ′; r′)◦, ((M̃ ; ‘A), (Ñ ; ‘B)) ∈ E ′, {c̃} ∩ fn(E .1, r) = {d̃} ∩
fn(E .2, r) = ∅.
Using Lemma B.16 (to add a fresh l to r) and clause 4 of environmental bisim-
ulations up-to context, we have P0 | l[A] Y?

E′;l⊕r′ Q0 | l[B]. Using an argument
similar to the one in Lemma B.21, case 2, subcase 2, we know that we can apply



the induction hypothesis to minimal transition P0 | l[A] runn−1

====⇒ a(M)−−−→P0 | l[A′].

We obtain Q0 | l[B]
a(N)
===⇒νd̃n(Q′

0|l[B′]) and P0 | l[A′] Y−
E′;l⊕r′ νd̃n.(Q′

0 | l[B′]).

By Corollary B.23, we have, after an output to channel l, P0 Y−
(A′,B′)⊕E′;l⊕r′ νd̃r.Q

′
0,

hence P0 | Cp[run(M̃), A′] Y−
E;r νd̃r.Q

′
0 | Cp[run(Ñ), B′] up-to environment

and context, and νc̃.(P0 | Cp[run(M̃), A′]) Y−
E;r νd̃′.(Q′

0 | Cp[run(Ñ), B′]), up-

to structural congruence and restriction. And of course, we do have Q
a(N)
===⇒

νd̃′.(Q′
0 | Cp[run(Ñ), B′])) since the constraint on d̃′ and on names bound by

the context could not hinder the input.

Corollary B.25. [Input preserves run-erased environmental bisimulation up-to con-
text]

For any environmental bisimulation up-to context Y , if P Y−
E;r Q and P

a(M)−−−→P ′ with

a ∈ r, then there is a Q′ such that for all (M,N) ∈ (E ; r)?, Q
a(N)
===⇒Q′ and P ′ Y−

E;r Q′.
The converse on Q’s transitions holds too.

Proof. By Y−’s definition, we know there are P+, Q+ and E+ such that P+ Y?
E+;r Q+.

Since P
a(M)−−−→P ′, there is a minimal input transition P+ runn

==⇒ a(M+)−−−−→P ′+. By Lemma B.24,

we have Q+ a(N+)
====⇒Q′+ for any (M+, N+) ∈ (E+; r)? and P ′+ Y−

E+;r Q′+ which im-

plies by Corollary B.9 that Q can also weakly do an input transition Q
a(N)
===⇒ Q′ such

that Q′ ≤ Q′+ for any N ≤ N+, i.e. for any (M,N) ∈ (E ; r)−. By Corollary B.15,
as P ′ ≤ P ′+, Q′ ≤ Q′+ and E ≤ E+, we have P ′ Y−

E;r Q′ as desired. Visually, the
following diagram holds.

Y−
E;r

P ≤ P+ Y?
E+;r Q+ ≥ Q

runn�
wwwwwww

P ′

a(M)

?
≤ P ′+

a(M+)

?
Y−
E+;r Q′+

a(N+)

�

wwwwwwwwwwwwwww
≥ Q′

a(N)

�

wwwwwwwwwwwwwww

Y−
E;r

The converse on Q’s transitions is shown similarly.



Definition B.26. [Simple process]
We define the syntax of simple processes, a subset of processes, as

Pr ::= 0 | a.Pr | a〈‘Pr〉.Pr | (Pr | Pr) | a[Pr] | !Pr | run(‘Pr)

Definition B.27. [simple environmental bisimulation up-to context]
An environmental bisimulation up-to context Y is said to be simple if all of its environ-
ments contain only simple processes.

Lemma B.28. [run-expanded reduction for simple environmental bisimulation up-to
context]
Suppose that P Y?

E;r Q for a simple environmental bisimulation up-to context Y , and

that P
runn

==⇒ τ−→P ′ is minimal with respect to P− τ−→P ′−, then Q
τ=⇒Q′, and P ′ Y−

E;r Q′.

Proof. By induction on n.

– Case n = 0
Immediate by Lemma B.20.

– Case n > 0
By Lemma B.20 and Lemma B.12, we have two possible subcases preserving min-
imality after the first run-transition of P

runn

==⇒ τ−→P ′.
• Subcase P

run−−→ P ′′, Q
τ=⇒Q′′, P ′′ Y?

E;r Q′′

We have that P ′′ runn−1

====⇒ τ−→P ′ is still minimal with respect to P− τ−→ P ′−, so
we can apply the induction hypothesis, and we are done.

• Subcase P
run−−→P ′′, Q τ=⇒Q′′, P ′′ Y−

E;r Q′′ hold, and we have P ′′ = νc̃.(P0 |P1)

and Q′′ = νd̃.(Q0 | Q1) with P0 YE′;r′ Q0, (P1, Q1) = (Cp[run(M̃), A],
Cp[run(Ñ), B]) ∈ (E ′; r′)−\(E ′; r′)◦, ((M̃ ; ‘A), (Ñ , ‘B)) ∈ E ′, {c̃}∩fn(E .1, r) =

{d̃}∩ fn(E .2, r) = ∅. Since we know P− τ−→P ′− and that P
runn

==⇒ τ−→P ′ is mini-
mal with respect to it, we can infer how P weakly reduces to P ′. Let us analyse
each possibility.
∗ Subsubcase A reacts with P0

Using clause 5 to add a new name l to r and clause 4 to spawn A, we have
P0 | l[A] Y?

E′;l⊕r′ Q0 | l[B]. Using an argument similar to the one in Lemma B.21,
case 2, subcase 2, we know that we can apply the induction hypothe-

sis to minimal transition P0 | l[A] runn−1

====⇒ τ−→νc̃0.(P ′
0 | l[A′]). We obtain

Q0 | l[B] τ=⇒ νd̃0.(Q′
0 | l[B′]) and

νc̃0.(P ′
0 | l[A′]) Y−

E′;l⊕r′ νd̃0.(Q′
0 | l[B′]). Therefore, not only do we have

Q′′ τ=⇒ νd̃′.(Q′
0 | Cp[ N,B′]) with {d̃′} = {d̃}∪ {d̃0} since the context Cp

could not bind names used in the reaction, but also by
νc̃0.(P ′

0 | l[A′]) Y−
E′;l⊕r′ νd̃0.(Q′

0 | l[B′]) do we have

νc̃r.P
′
0 Y−

(‘A′,B′)⊕E′;l⊕r′ νd̃r.Q
′
0 by Corollary B.23, hence

νc̃r.P
′
0 | Cp[run(M̃), A′] Y−

(‘A′,B′)⊕E′;l⊕r′ νd̃r.Q
′
0 | Cp[run(Ñ), B′] up-to

context,
νc̃r.P

′
0 | Cp[run(M̃), A′] Y−

E;r νd̃r.Q
′
0 | Cp[run(Ñ), B′] up-to environment,



νc̃0.(P ′
0 | Cp[run(M̃), A′]) Y−

E;r νd̃0.(Q′
0 | Cp[run(Ñ), B′]) up-to restric-

tion and structural congruence, and finally
νc̃′.(P ′

0 | Cp[run(M̃), A′]) Y−
E;r νd̃′.(Q′

0 | Cp[run(Ñ), B′]) up-to restriction.
∗ Subsubcase A reduces alone

Similarly, but with c̃′ = c̃ and P ′
0 = P0.

∗ Subsubcase A reacts with an Ai from ‘Ã = M̃ (or a run-erasure of it)
Let G = C[‘Ai, M̃

′] (resp. H = C[‘Bi, Ñ
′]) be the process of P1 (resp.

Q1) in redex position that contains Ai (resp. Bi) and reacts with the pro-
cess containing A according to rule REACT-R or REACT-L. Then there is
a process context C ′

p such that Cp[A, run(M̃)] = C ′
p[A

′, G, run(M̃ ′′)]. By
clause 5 of environmental bisimulation to add a new name l and clause 4,
we have P0 | l[A] Y?

E′;l⊕r′ Q0 | l[B]. By Lemma B.16 to add a new name
m to r and by up-to context, we have
P0 | l[A] |m[G] Y?

E′;m⊕l⊕r′ Q0 | l[B] |m[H].
By the conditions on E ′, we know we have
P0 | l[A] |m[G] run=⇒ τ−→P0 | l[A′] |m[G′] with no name extruded.
For the same reasons, when applying the induction hypothesis, we obtain
Q0 | l[B] |m[H] τ=⇒ νd̃0.(Q′

0 | l[B′] |m[H ′]) such that there is no bound
name whose scope is only B′ and H ′, as well as
P0 | l[A′] |m[G′] Y−

E′;m⊕l⊕r′ νd̃0.(Q′
0 | l[B′] |m[H ′]).

We can now passivate the contents of l[ ] and m[ ] to replace them up-to
context, restriction and structural equivalence to get
P0 | C ′

p[A
′, G′, run(M̃ ′′)] Y−

E′;m⊕l⊕r′ νd̃0.(Q′
0 | C ′

p[B
′,H ′, run(Ñ ′′)])

and finally use up-to environment and restriction to obtain
νc̃.(P0 | C ′

p[A
′, G′, run(M̃ ′′)]) Y−

E;r νd̃′.(Q′
0 | C ′

p[B
′,H ′, run(Ñ ′′)]).

∗ Subsubcase A outputs and reacts with the context
Let C[M̃ ′] (resp. C[Ñ ′]) be the process of P1 (resp. Q1) in redex position
that reacts with the process containing A according to rule REACT-R or
REACT-L. Then there is another context C ′

p such that Cp[A, run(M̃)] =
C ′

p[A
′, C[M̃ ′], run(M̃ ′′)]. Using clause 5 to add a new name l to r and

clause 4 to spawn A, we have
P0 | l[A] Y?

E′;l⊕r′ Q0 | l[B].
We can now apply Lemma B.22 to simulate A’s output after run-transitions,

P0 | l[A] runn−1

====⇒ a〈M〉−−−→P0 | l[A′], and we obtain

Q0 | l[B]
ν ed1a〈N〉
=====⇒ νd̃0.(Q′

0 | l[B′]), with d̃1’s scope encompassing Q0, and
P0 | l[A′] Y−

(M,N)⊕E′;l⊕r′ νd̃0.(Q′
0 | l[B′]) such that (M,N) belong (mod-

ulo run-erasure) to some E ′′ with no bound names or to its context closure
(E ′′; r′′)?. We passivate the contents of l[ ] and have
P0 Y−

(‘A′,‘B′)⊕(M,N)⊕E′;l⊕r′ νd̃r.Q
′
0. By the restrictions on E ′, we also

know (‘A′, ‘B′) belong (modulo run-erasure) to E ′′ or to its context clo-

sure. By Lemma B.4, we have that C[M̃ ]
a(M)−−−→G and C[Ñ ]

a(N)−−−→H with
(G, H) ∈ ((M,N)⊕E ′; r′)◦. Up-to context, we build



P0 | C ′
p[A

′, G, run(M̃ ′′)] Y−
(‘A′,‘B′)⊕(M,N)⊕E′;l⊕r′ νd̃r.Q

′
0 | C ′

p[B
′,H, run(Ñ ′′)]

and then up-to environment and restriction
νc̃.(P0 | C ′

p[A
′, G, run(M̃)]) Y−

E;r νd̃′.(Q′
0 | Cp[B′,H, run(Ñ)]).

∗ Subsubcase A inputs and reacts with the context
Suppose the context outputs a process M (resp. N ) and extrudes names x̃

by means of a process Co[M̃ ′] (resp. Co[Ñ ′]) such that Co[M̃ ′]
νex.a〈M〉−−−−−→

C ′
o[M̃

′] (resp. Co[Ñ ′]
νex.a〈N〉−−−−−→ C ′

o[Ñ
′] by Lemma B.5). Using clause 5

several times to add a new names l and x̃ to r and clause 4 to spawn A, we
have P0 | l[A] Y?

E′;l⊕ex⊕r′ Q0 | l[B].
We can now apply Lemma B.24 to trigger A’s input of M (resp. B’s input
of N ) where x̃ is free, after some run-transitions and we obtain
P0 | l[A′] Y−

E′;l⊕ex⊕r′ νd̃0.(Q′
0 | l[B′]).

We passivate the content of l[ ], obtaining
P0 Y−

(‘A′,‘B′)⊕E′;l⊕ex⊕r′ νd̃r.Q
′
0.

Because of the constraints on input from elements of E ′, we know that x̃
is not free in A′ nor B′. We remove l and x̃ up-to environment from the
known names and then replace A′ and B′ up-to context, giving
P0 | C ′

p[A
′, run(M̃)] Y−

E′;r′ νd̃r.Q
′
0 | C ′

p[B
′, run(Ñ)].

Notice that, since x̃ does not appear in A′, B′, r′ nor E ′ but could still be
free in C ′

o[M̃
′], we have the context C ′

p bind it properly around A′ and
C ′

o[M̃
′] (resp. B′ and C ′

o[Ñ
′]) as required by the reaction transition. Fi-

nally, up-to environment and restriction, we have
νc̃.(P0 | C ′

p[A
′, run(M̃)]) Y−

E;r νd̃′.(Q′
0 | Cp[B′, run(Ñ)]) and we are done.

Corollary B.29. [Reduction preserves run-erased simple environmental bisimulation
up-to context]
For any simple environmental bisimulation up-to context Y , if P Y−

E;r Q and P
τ−→ P ′,

then there is a Q′ such that Q
τ=⇒ Q′ and P ′ Y−

E;r Q′. The converse on Q’s transitions
holds too.

Proof. By Y−’s definition, we know there are P+, Q+ and E+ such that P+ Y?
E+;r Q+.

Since P
τ−→P ′, there is a minimal reduction transition P+ runn

==⇒ τ−→P ′+. By Lemma B.28,
we have Q+ τ=⇒ Q′+ and P ′+ Y−

E+;r Q′+ which implies by Corollary B.9 that Q can
also weakly reduce to some Q′ such that Q′ ≤ Q′+. By Corollary B.15, as P ′ ≤ P ′+,
Q′ ≤ Q′+ and E ≤ E+, we have P ′ Y−

E;r Q′ as desired. Visually, the following diagram
holds.



Y−
E;r

P ≤ P+ Y?
E+;r Q+ ≥ Q

runn�
wwwwwww

P ′
?

≤ P ′+
?

Y−
E+;r Q′+

�

wwwwwwwwwwwwwww
≥ Q′

�

wwwwwwwwwwwwwww

Y−
E;r

The converse on Q’s transitions is shown similarly.

Theorem B.30. [Soundness of simple environmental bisimulation up-to context]
If Y is a simple environmental bisimulation up-to context, then Y− is included in bisim-
ilarity.

Proof. Let X = {(r, E , P, Q) | P Y−
E;r Q} and let us prove that X verifies each clause

of environmental bisimulation.

1. By Corollary B.29, whenever P
τ−→ P ′, we have a Q′ such that Q

τ=⇒ Q′ and
P ′ Y−

E;r Q′, i.e. P ′ XE;r Q′.

2. By Corollary B.23, whenever P
νeb.a〈M〉−−−−−→ P ′ with fresh b̃ and a ∈ r, we have a Q′

such that Q
νec.a〈N〉
=====⇒Q′ with fresh c̃ and P ′ Y−

(M,N)⊕E;r Q′, i.e. P ′ X(M,N)⊕E;r Q′.

3. By Corollary B.25, whenever P
a(M)−−−→ P ′ with a ∈ r, we have for all (M,N) ∈

(E ; r)? a Q′ such that Q
a(N)
===⇒Q′ with P ′ Y−

E;r Q′, i.e. P ′ XE;r Q′.
4. By Lemma B.17, we have P+ | l[P+

1 ] Y?
E+;r Q+ | l[Q+

1 ] for some P+ Y?
E+;r Q+

with P ≤ P+, Q ≤ Q+, E ⊆ ≤ E+ ≥, and (‘P1, ‘Q1) ≤ (‘P+
1 , ‘Q+

1 ) ∈ ≤ E+ ≥,
whose existence is guaranteed by definition of Y−. Then, by run-erasure, we have
P | l[P1] Y−

E;r Q | l[Q1].
5. By Lemma B.16, we have for any n not in fn(E , P, Q), P Y−

E;n⊕r Q, i.e. P XE;n⊕r Q.
6. Similarly, the converse of the first three clauses holds too.

Theorem B.31. [Originally Theorem 1, “Barbed equivalence from environmental bisim-
ulation”]
If P Y−

∅;fn(P,Q) Q for a simple environmental bisimulation up-to context Y , then P ≈
Q.



Proof. We know by Theorem B.30 that Y− is an environmental bisimulation. We let
Z = {(P,Q) | P Y−

∅;fn(P,Q) Q} and prove that Z is included in ≈.

1. Clause P
τ−→ P

As Y− is an environmental bisimulation, by clause 1 of the bisimulation, there is
Q′ such that Q =⇒Q′ and P ′ Y−

∅;r Q′. Therefore, for r′ = fn(P ′, Q′) ⊆ r, we have
P ′ Y−

∅;r′ Q′, hence (P ′, Q′) ∈ Z .
2. Clause P ↓µ

There are two cases depending on µ:
– Case P ↓a

We have that P
a(V )−−−→ P ′ for some (V,W ) ∈ (∅; r)? and P ′. Since a ∈ r,

by Y− being an environmental bisimulation and clause 2 of the bisimulation,

there is also Q′ such that Q
a(W )
===⇒Q′, that is, Q ⇓a.

– Case P ↓a

We have that P
νec.a〈V 〉−−−−−→ P ′ for some fresh c̃, V , and P ′. Since a ∈ r, by Y−

being an environmental bisimulation and clause 3 of the bisimulation, there are

also W , Q′ and fresh d̃ such that Q
ν ed.a〈W 〉
=====⇒Q′, that is, Q ⇓a.

3. Clause Converse of 1, 2 on Q
Similar to 1, 2.

4. Clause R a process
Let r′ = fn(R); by appealing to the clause 5 of the bisimulation, since the names
in r′ are either fresh or already in r, we have that P Y−

∅;r∪r′ Q. Also, R (∅; r ∪ r′)◦

R and thus, using the up-to context technique, P |R Y−
∅;r∪r′ Q |R since Y− is

preserved by parallel composition of processes from (∅; r ∪ r′)◦. Therefore, (P |
R,Q |R) ∈ Z .

3 Reduction-closed barbed congruence from environmental bisimulations

Definition B.32. [Size of a simple process]
We define inductively the size size(P ) of a simple process P as

size(P ) =



0 if P = 0
1 + size(Q) if P = a.Q

1 + size(Q) + size(R) if P = a〈Q〉.R
max(size(Q), size(R)) if P = Q|R
1 + size(Q) if P = l[Q]
size(Q) if P = !Q
size(Q) if P = run‘Q

Notice that the size is impervious to the run constructor, and that therefore size(P ) =
size(P+) for all P ≤ P+. Also, size(P ) = 0 if and only if fn(P ) = ∅.

Lemma B.33. [Size and transitions]
For all simple process P , for all P ′, α, if P

α−→ P ′ then



– fn(P ) ⊇ fn(P ′).
– size(P ) ≥ size(P ′). Moreover, if α = a〈‘P ′′〉, size(P ) > size(P ′′) holds too.

Proof. By induction on the transition derivations of P
α−→ P ′.

Lemma B.34. [Names and context closure]
If for any (M,N) ∈ E , fn(M) = fn(N) then for any r and any (Mc, Nc) ∈ (E ; r)?,
fn(Mc) = fn(Nc).

Proof. By structural induction on Mc’s context.

Lemma B.35. [Free names and simple environmental bisimulation up-to context]
Let Y be a simple environmental bisimulation up-to context. If 0 YE;fn(E) 0, then for all
(‘P, ‘Q) ∈ E , fn(P ) = fn(Q).

Proof. We show by induction on the size of P the contraposition: for all P , Q, E and
r = fn(E), if (P,Q) ∈ E , then it holds that fn(P ) 6= fn(Q) implies (r, E , 0, 0) 6∈ Y .

– Case size(P ) = 0
We know by its size that P has no free name. However, by fn(P ) 6= fn(Q), there is
a name a ∈ fn(Q) such that there is a weak transition Q

run=⇒ α−→Q′ with a ∈ fn(α).
Thus, if (r, E , 0, 0) ∈ Y holds, we have run(‘P ) Y?

E;r run(‘Q) by up-to context, and
by Q

run=⇒ α−→ (hence run(‘Q) run=⇒ α−→) and Lemma B.22 or Lemma B.24 we should
have run(‘P ) α=⇒. However, by Lemma B.33, P will never weakly exhibit α and we
thus reached a contradiction, hence (r, E , 0, 0) 6∈ Y .

– Case size(P ) > 0
Assuming fn(P ) > fn(Q), we know there is a name a ∈ fn(P ) \ fn(Q) such that
one of the two following cases holds.
1. P

α1−→ . . .
αn−−→ o〈M〉−−−→ with a ∈ fn(M).

Suppose 0 YE;r 0, we have l[P ] Y?
E;l⊕r l[Q] for some l not in r by clauses 5

and 4 of environmental bisimulation up-to context. Then, we have l[P ] α1−→
. . .

αn−−→ o〈M〉−−−→l[P ′], hence l[Q] α1=⇒ . . .
αn=⇒ o〈N〉

===⇒l[Q′], with a 6∈ fn(N) by
Lemma B.35 and l[P ′] Y−

(M,N)⊕...⊕E;l⊕r l[Q′]. By Lemma B.33 we know that
size(M) < size(P). By Corollary B.23, we have 0 Y−

(‘P ′,‘Q′)⊕(M,N)⊕...⊕E;r 0.
Therefore, we also have an E ′ such that (‘P ′+, ‘Q′+)⊕(M+, N+)⊕ . . .⊕E ⊆
(E ′; r)? with (M,N) ≤ (M+, N+). There is therefore a pair of terms (‘Pm, ‘Qm) ∈
E ′ such that (M+, N+) = (C[‘Ã, ‘Pm], C[‘B̃, ‘Qn]) and fn(Pm) 6= fn(Qm).
Naturally, by size(M+) = size(M) < size(P ), we have size(Pm) < size(P ).
We thus apply the induction hypothesis to Pm and E ′, and obtain that (r, E ′, 0, 0) 6∈
Y . Therefore, (r, (‘P ′+, ‘Q′+)⊕(M+, N+)⊕ . . .⊕E , 0, 0) 6∈ Y?, hence
(r, (‘P ′, ‘Q′)⊕(M,N)⊕ . . .⊕E , 0, 0) 6∈ Y−. However, (r, (‘P ′, ‘Q′)⊕(M,N)⊕
. . .⊕E , 0, 0) ∈ Y− was a requirement from (r, E , 0, 0) ∈ Y which therefore
does not hold.

2. Either P
α1−→ . . .

αn−−→ a〈·〉−−→ or P
α1−→ . . .

αn−−→ a−→.
Assuming 0 YE;r 0, we have l[P ] Y?

E;r l[Q] and P
α1−→ . . .

αn−−→ P ′ α−→ with α =
a〈·〉 or α = a, hence Q

α1=⇒ . . .
αn=⇒ Q′, but, by Lemma B.33, we do not have

Q′ α=⇒, which contradicts 0 YE;r 0.



The situation fn(P ) < fn(Q) is handled similarly.

Lemma B.36. [Barbed congruence from run-erasure and simple environmental bisim-
ulation up-to context]
Let Y be the simple environmental bisimilarity up-to context, and S = {(P,Q) | P ≤
C[P̃+], Q ≤ C[Q̃+], ∃E .(P̃+, Q̃+) ∈ E , 0 Y

E;fn( eP+, eQ+)
0}, for contexts C for pro-

cesses. We show that for all closed (P,Q) ∈ S, if P ↓µ then Q ⇓µ, and that if P −→ P ′

then Q =⇒Q′ for some Q′ with (P ′, Q′) ∈ S, and conversely.

Proof. By induction on the transition derivation of P
α−→ P ′ with (P,Q) ∈ S. We

prove the two properties separately. In both situations, there is a case analysis on who
does the transition: the context’s erasure or some Pi. By symmetricity, we do not show
the converse proofs on Q’s transition; they are similar. We write run∗‘(P ) to mean
run‘(. . . (run‘(P )) . . . ), and C−

p , C−
q for two possibly different erasures of the same C.

Barbs: the cases necessary to check for barbs are HO-IN, HO-OUT, PAR-R, PAR-L,
REP, EXTR, GUARD, TRANSP, and PASSIV.

– HO-IN

• Subcase C−
p [P̃ ] = a(X).C−

1p[P̃ ]

If C−
p [P̃ ] ↓a, we have a(X).C−

1p[P̃ ]
a(M)−−−→·. Thus C−

q [Q̃] = run∗‘(a(X).C−
1q[Q̃])

run=⇒ a(X).C−
1q[Q̃])

a(N)−−−→ ·, i.e. C−
q [Q̃] ⇓a

• Subcase [ ]i
By (r, E , 0, 0) ∈ Y , we have Pi Y−

E;r Qi, hence Qi ⇓a if Pi ↓a, hence run∗‘Qi ⇓a,
that is C−

p [Q̃] ⇓a.
– HO-OUT

• Subcase C−
p [P̃ ] = a〈D−

p [P̃ ]〉.C−
1p[P̃ ]

If C−
p [P̃ ] ↓a, we have a〈‘D−

p [P̃ ]〉.C−
1p[P̃ ]

a〈‘D−
p [ eP ]〉

−−−−−−→ ·. Thus, C−
q [Q̃] =

run∗‘(a〈‘D−
p [Q̃]〉.C−

1q[Q̃]) run=⇒ a〈‘D−
p [Q̃]〉.C−

1q[Q̃])
a〈‘D−

p [ eQ]〉
−−−−−−→ · i.e. C−

q [Q̃] ⇓a

• Subcase [ ]i
By (r, E , 0, 0) ∈ Y , we have Pi Y−

E;r Qi, hence Qi ⇓a if Pi ↓a, hence run∗‘Qi ⇓a,
that is C−

p [Q̃] ⇓a.
In all the other cases, this subcase is similar, and we will thus not write it any-
more.

– PASSIV
C−

p [P̃ ] = a[C−
1p[P̃ ]] ↓a. Trivially a[C−

1q[Q̃]] ↓a, hence C−
q [Q̃] = run∗‘(a[C−

1q[Q̃]]) ⇓a.
– PAR-L

C−
p [P̃ ] = C−

1p[P̃ ] | C−
2p[P̃ ] ↓µ hence C−

1p[P̃ ] ↓µ. By the induction hypothesis,
C−

1q[Q̃] ⇓µ hence C−
q [Q̃] = run∗‘(C−

1q[Q̃] | C−
2q[Q̃]) ⇓µ.

– PAR-R
Similarly.

– REP
C−

p [P̃ ] = !C−
1p[P̃ ] ↓µ, hence !C−

1p[P̃ ] | C−
1p[P̃ ] ↓µ. By the induction hypothesis,

!C−
1q[Q̃] | C−

1q[Q̃] ⇓µ, hence C−
q [Q̃] = run∗‘(!C−

1q[Q̃]) ⇓µ.



– EXTR
C−

p [P̃ ] = νx.C−
1p[P̃ ] ↓µ, hence C−

1p[P̃ ] ↓µ. By the induction hypothesis, C−
1q[Q̃] ⇓µ,

hence νx.C−
1q[Q̃] ⇓µ since the same barb µ 6= x, x is used, hence C−

q [Q̃] =
run∗‘(νx.C−

1q[Q̃]) ⇓µ.
– GUARD

Similarly.
– TRANSP

C−
p [P̃ ] = a[C−

1p[P̃ ]] ↓µ, hence C−
1p[P̃ ] ↓µ. By the induction hypothesis, C−

1q[Q̃] ⇓µ,
hence a[C−

1q[Q̃]] ⇓µ, hence C−
q [Q̃] = run∗‘(a[C−

1q[Q̃]]) ⇓µ.

Reductions: the cases necessary to check for reduction closure are RUN, TRANSP,
PAR-L, PAR-R, REP, GUARD, REACT-L, and REACT-R.

– RUN

• run(‘C−
1p[P̃ ])−→ C−

1p[P̃ ]
We have run(‘C−

1p[P̃ ])−→C−
1p[P̃ ] and C−

1p[P̃ ] ≤ C[P̃+]. We still have C−
q [Q̃] ≤

C[Q̃+], so (P ′, Q) ∈ S and we are done.
• [ ]i

We have a[Pi] Y−
E;r a[Qi] and a[Pi]−→a[P ′

i ]
a〈‘P ′

i 〉−−−−→0, so a[Qi]=⇒a[Q′
i]

a〈‘Qi〉====⇒0,
and 0 Y−

(‘P ′
i ,‘Q′

i)⊕E;r 0, hence (P ′
i , Q

′
i) ∈ S. Also, run∗(‘Qi) =⇒ Qi =⇒ Q′

i and
we are done.

– TRANSP

• a[C−
1p[P̃ ]]−→ a[R]

We have C−
1p[P̃ ]−→R, so, by the induction hypothesis C−

1q[Q̃]=⇒S and (R,S) ∈
S. Therefore a[C−

1q[Q̃]] =⇒ a[S], and (a[R], a[S]) ∈ S
• [ ]i

We have a[Pi] Y−
E;r a[Qi] a[Pi]−→ a[P ′

i ]
a〈‘P ′

i 〉−−−−→ 0. So, a[Qi] =⇒ a[Q′
i]

a〈‘Q′
i〉====⇒ 0,

and 0 Y−
(‘P ′

i ,‘Q′
i)⊕E;r 0, hence (a[P ′

i ], a[Q′
i]) ∈ S. Also, run∗(‘Qi) =⇒Qi =⇒Q′

i

and we are done. Again, this subcase always holds similarly, and thus it is not
repeated below.

– PAR-L
C−

p [P̃ ] = C−
1p[P̃ ] | C−

2p[P̃ ] −→ R | C−
2p[P̃ ], i.e. C−

1p[P̃ ] −→ R. So, by the induction
hypothesis, C−

1q[Q̃]=⇒S and (R,S) ∈ S, hence C−
q [Q̃] = run∗‘(C−

1q[Q̃]|C−
2q[Q̃])=⇒

S | C−
2q[Q̃] and (R | C−

2p[P̃ ], S | C−
2q[Q̃]) ∈ S.

– PAR-R
Similarly

– REP
C−

p [P̃ ] = !C−
1p[P̃ ] −→ R, hence !C−

1p[P̃ ] | C−
1p[P̃ ] −→ R. By the induction hypoth-

esis, !C−
1q[Q̃] | C−

1q[Q̃] =⇒ S with (R,S) ∈ S, hence, !C−
1q[Q̃] =⇒ S, C−

q [Q̃] =
run∗‘(!C−

1q[Q̃]) =⇒ S, and still (R,S) ∈ S.
– GUARD

C−
p [P̃ ] = νx.C−

1p[P̃ ] −→ νx.R, i.e. C−
1p[P̃ ] −→ R. So, by the induction hypothesis,



C−
1q[Q̃]=⇒S and (R,S) ∈ S hence vx.C−

1q[Q̃]=⇒vx.S, C−
q [Q̃] = run∗‘(νx.C−

1q[Q̃])=⇒
νx.S and (νx.R, νx.S) ∈ S.

– REACT-L
There are several subcases.

• The two contexts react
C−

p [P̃ ] = C−
1p[P̃0, P̃1] | C−

2p[P̃2] −→ νx̃.(C ′−
1p [P̃0] | C ′−

2p [P̃2, P̃1]). Of course,
C−

1qcan (weakly) do the same reaction, and since fn(P̃1) = fn(Q̃1) by Lemma B.35,
the same names x̃ are extruded, giving C−

q [Q̃] =⇒ νx̃.(C ′−
1q [Q̃0] |C ′−

2q [Q̃2, Q̃1])
and as expected (νx̃.(C ′−

1p [P̃0] |C ′−
2p [P̃2, P̃1]), νx̃.(C ′−

1q [Q̃0] |C ′−
2q [Q̃2, Q̃1])) ∈

S.
• C−

1p[P̃1] sends, Pi in C−
2p[P̃2, Pi] receives.

C−
p [P̃ ] = C−

1p[P̃1] | C−
2p[P̃2, Pi]−→ νx̃.(C ′−

1p [P̃1] | C ′−
2p [P̃2, P

′
i ]). We know that

C−
1q[Q̃] can weakly do the same output transition, that it will extrude the same

names. Also, we have a[Pi] Y−
E;r a[Qi] and a[Pi]

o−→ a[P ′
i ]

a〈‘P ′
i 〉−−−−→ 0 for some

channel o ∈ r. So, a[Qi]
o=⇒a[Q′

i]
a〈‘Q′

i〉−−−−→0 with (r, (‘P ′
i , ‘Q

′
i)⊕E , 0, 0) ∈ Y−, so

C−
q [Q̃]=⇒νx̃.(C ′−

1q [Q̃1]|C ′−
2q [Q̃2, Q

′
i]), and (νx̃.(C ′−

1p [P̃1]|C ′−
2p [P̃2, P

′
i ]), νx̃.(C ′−

1q [Q̃1]|
C ′−

2q [Q̃2, Q
′
i])) ∈ S.

• C−
2p[P̃2] receives, Pi in C−

1p[P̃1, Pi] sends
C−

p [P̃ ] = C−
1p[P̃1, Pi]|C−

2p[P̃2]−→νx̃.(C ′−
1p [P̃1, P

′
i ]|C

−
2p[P̃2, Pj ]). We know that

C−
2q[Q̃2] can weakly do the same input transition. Also, we have a[Pi] Y−

E;r a[Qi]

and a[Pi]
o〈‘Pj〉−−−−→ a[P ′

i ]
a〈‘P ′

i 〉−−−−→ 0, so, a[Qi]
o〈‘Qj〉====⇒ a[Q′

i]
a〈‘Q′

i〉−−−−→ 0 with
(r, (‘Pj , ‘Qj)⊕(‘P ′

i , ‘Q
′
i)⊕E , 0, 0) ∈ Y− and the same names in (Pj , Qj) by

Lemma B.35, so C−
q [Q̃]=⇒νx̃.(C ′−

1q [Q̃1, Q
′
i]|C

′−
2q [Q̃2, Qj ]), and (νx̃.(C ′−

1p [P̃1, P
′
i ]|

C ′−
2p [P̃2, Pj ]), νx̃.(C ′−

1q [Q̃1, Q
′
i] | C

′−
2q [Q̃2, Qj ])) ∈ S.

• Pi in C−
1p[P̃1, Pi] and Pj in C−

2p[P̃2, Pj ] react
C−

p [P̃ ] = C−
1p[P̃1, Pi] |C−

2p[P̃2, Pj ]−→νx̃.(C ′−
1p [P̃1, P

′
i ] |C

−
2p[P̃2, P

′
j ]). We have

a[Pi] | b[Pj ] Y−
E;r a[Qi] | b[Qj ] and a[Pi] |b[Pj ]−→a[P ′

i ] |b[P ′
j ]

a〈‘P ′
i 〉−−−−→

b〈‘P ′
j〉−−−−→0,

so a[Qi]|b[Qj ]=⇒a[Q′
i]|b[Q′

j ]
a〈‘Q′

i〉−−−−→
b〈‘Q′

j〉−−−−→0 with (r, (‘P ′
j , ‘Q

′
j)⊕(‘P ′

i , ‘Q
′
i)⊕E , 0, 0) ∈

Y− and the same names communicated from Pi, Qi to Pj , Qj by Lemma B.35,
so C−

q [Q̃]=⇒νx̃.(C ′−
1q [Q̃1, Q

′
i]|C

′−
2q [Q̃2, Q

′
j ]), and (νx̃.(C ′−

1p [P̃1, P
′
i ]|C

′−
2p [P̃2, P

′
j ]),

νx̃.(C ′−
1q [Q̃1, Q

′
i] | C

′−
2q [Q̃2, Q

′
j ])) ∈ S

– REACT-R
Similarly

Corollary B.37. [Originally Corollary 1, “Barbed congruence from environmental
bisimulation”]
If a〈‘P 〉 Y−

∅;a⊕fn(P,Q) a〈‘Q〉 for a simple environmental bisimulation up-to context Y ,
then P ≈c Q.



Proof. By a〈‘P 〉 Y∅;a⊕fn(P,Q) a〈‘Q〉, we have 0 Y?
(‘P,‘Q);a⊕fn(P,Q) 0, hence 0 YE;r 0

for an environment E and names r such that (‘P, ‘Q) ∈ (E ; r)? and a⊕fn(‘P, ‘Q) ⊆ r.
By Lemma B.36, we have (P,Q) ∈ S, for some S included in ≈c.

C Examples

We write P | . . . | P for a finite, possibly null, product of the process P .

Example C.1. [Originally Example 2]
!a | !e ≈ !a[e].

Proof. Take X = {(r, E , P, Q) | r ⊇ {a, e, l1, . . . , ln} | E = {(‘0, ‘e)}, n ≥ 0,
P = !a | !e |

∏n
i=1 li[0], Q = !a[e] |

∏n
i=1 li[e] | a[0] | . . . | a[0]}. As expected, the

definition ofX relates the original processes !a|!e and !a[e]. Clause 4 of the bisimulation
requires that for any (‘P1, ‘Q1) ∈ E and l ∈ r, we have P0 | l[P1] XE;r Q0 | l[Q1].
Repeatedly applying this clause explains the presence of the products

∏n
i=1 li[·] in both

P and Q. All outputs that P and Q can do are respectively {‘0} and {‘0, ‘e}. However,
since (‘0, ‘0) ∈ ({(‘0, ‘e)}; ∅)?, we can work up-to context with smaller environment
E = {(‘0, ‘e)}. Finally, at least the free names a, e, l1, . . . , ln of P and Q and maybe
more fresh names are in r, so to satisfy clause 5 of the bisimulation and to guarantee
behavioural equivalence.

Let us now check the output clause of the bisimulation, starting with passivation of
li[·] which is trivial to verify since all output terms are already related by E . Otherwise,

P can only output by doing P
a〈‘0〉−−−→≡P , and Q can follow with Q

a〈‘e〉−−−→≡Q with still
(r, E , P, Q) ∈ X . Conversely, when Q outputs to a either ‘0 or ‘e, P follows with an
action a〈‘0〉 from a replication of a, and we are done.

As far as inputs are concerned, whenever P
e−→≡P , Q can consume the e in a copy of

a[e] to become a process Q|a[0] (hence the list a[0]|. . .|a[0]), which is still related byX
to P under r and E . The converse transition is treated similarly. Q can also input in li[e]
with a transition li[e]

e−→ li[0], in which case P can input on a replication from !e, doing
P

e−→≡P . We can remove up-to context the ln[0] of Q’s transition and P ’s original ln[0],
and we are done since (r, E , !a | !e |

∏n−1
i=1 li[0], !a[e] |

∏n−1
i=1 li[e] | a[0] | . . . | a[0]) ∈ X .

Without loss of generality, internal transitions involve passivation of ln[·] (necessar-
ily with ln = e), and are easily matched: (i) when P = !a | !e |

∏n
i=1 li[0] τ−→≡ !a | !e |∏n−1

i=1 li[0], Q can do !a[e] |
∏n

i=1 li[e] |a[0] | . . . |a[0] τ−→≡ !a[e] |
∏n−1

i=1 li[e] |a[0] |a[0] |
. . . | a[0] (which increases the count of a[0]’s); (ii) the converse of (i) by Q is similar,
and (iii) when Q = !a[e] |

∏n−2
i=1 li[e] | ln−1[e] | ln[e] τ−→≡ !a[e] |

∏n−2
i=1 li[e] | ln−1[0], P

can passivate ln[0] using a replication from !e. The resulting processes are still related
by X with r and E , and we can even remove the ln−1[0]’s up-to context.

We therefore have !a | !e ≈ !a[e] from the soundness of environmental bisimulation
up-to context.

Example C.2. [Originally Example 3]
!a[e]|!b[e] ≈ !a[b[e|e]]. This example shows the equivalence proof of more complicated
processes with nested locations.



Proof. Take:

X = {(r, E , P, Q) | r ⊇ {a, e, b, l1, . . . , ln},
P0 = !a[e] | !b[e], Q0 = !a[b[e | e]],
P = P0 |

∏n
i=1 li[Pi] | b[0] | . . . | b[0],

Q = Q0 |
∏n

i=1 li[Qi],
(P̃ , Q̃) ∈ E , n ≥ 0},

E = {(‘x, ‘y) | x ∈ {0, e, e}, y ≡∈ {0, e, e, (e | e), b[0], b[e], b[e], b[e | e]}} .

X relates considered processes P0 and Q0 together with a set r containing at least
the free names of P and Q, and an environment E defined as the Cartesian product of
all terms that we expect P and Q to output. As in Examples 1 and C.1, we could omit
pairs of the form (‘x, ‘x) from E , but this would only complicate the definition. As in
Example C.1, we have the products

∏n
i=1 li[·] by clause 4 of the bisimulation. Process

P may also contain a list of subprocesses b[0] | . . . |b[0] whose presence will be clarified
below.

Let us now check the input transitions. When P inputs on e, it either uses a copy of
a[e], leaving behind a[0], or uses Pn which becomes P ′

n. Q0 too can input on e, leaving
a process a[b[e]]. Then, in the former case, a[0] and a[b[e]] can be merged with the
products

∏
since (‘0, ‘b[e]) ∈ E . Else, in the latter case, it holds that (‘P ′

n, ‘Qn) ∈ E ;
we can then draw a copy a[e] from P0 and, since (‘e, ‘b[e]) ∈ E too, we can merge Q’s
residue a[b[e]] and the copy a[e] with their corresponding products

∏
. Finally, inputs

by Q are matched similarly. From now on, we shall refer as pairing to the drawing from
P0 or Q0 of a process to pair with a residue so to enlarge the products

∏
.

Outputs transitions are conceptually matched similarly: when P0
e−→P0 |b[0], process

Q can follow with Q0
e−→≡Q0 | a[b[e]] (and conversely), but b[0] and a[b[e]] cannot be

added together to the products
∏

, for locations a and b differ. Yet, we can use pairing to
handle a[b[e]], and leave the residue b[0] as is, therefore enlarging the list b[0]|. . .|b[0] in
P . Outputs by Pn (resp. Qn) are matched in a similar manner: output with a copy from
Q0 (resp. P0) leaving a residue a[·], and pairing to handle this residue. Passivations of
li[·] and a[·] are trivial to simulate, since (‘Pi, ‘Qi) and (‘e, ‘b[e|e]) are in E . Passivations
of P ’s b[e] and b[0] are matched by the passivation of b[e |e] in a replication drawn from
Q0, leaving a residue a[0] paired as usual. Passivation of Q0’s b[e|e] is handled similarly.

Finally, when Qn
b〈‘R〉−−−→Q′

n = 0 for R ∈ {0, e, e, (e | e)}, we can just passivate a copy
of b[e] from P0 and we are done since (‘e, ‘R) and (‘Pn, ‘0) are both in the environment
E .

We now check the τ transitions clause. If P0 reduces to P0 | a[0] | b[0], or reacts
with Pi leaving residues a[0] or b[0], we use pairing for the a[0]’s, and add the b[0]’s
to b[0] | . . . | b[0]. Conversely, Q0 can reduce to Q0 | a[b[0]] or Q0 | a[b[e]] | a[b[e]],
or may react with Qi, leaving residues a[b[e]] or a[b[e]]. All residues can be paired up
with one or two copies of a[e] from P0, and in all the above reactions, integrity of
the products is preserved (i.e. (‘P̃ , ‘Q̃) ∈ E still holds). Also, ln[·] can be passivated
(necessarily with ln = e) in P by either a[e] or Pn−1. Therefore P becomes either
P0 | a[0] |

∏n−1
i=1 li[Pi] | b[0] | . . . | b[0] or P0 |

∏n−2
i=1 li[Pi] | ln−1[P ′

n−1] | b[0] | . . . | b[0].
In both cases, Q follows with Q

τ−→≡ Q0 | a[b[e]] |
∏n−1

i=1 li[Qi], and either a[0] and



a[b[e]] join the products
∏

, or pairing is used to assure membership in X . The converse
for Q of those reactions with a passivation is similarly checked. Finally, for reactions
involving only Pi’s (resp. Qi’s), Q (resp. P ) needs not do anything, for the integrity of
the products

∏
is preserved.

This concludes our proof that the original processes !a[e] | !b[e] and !a[b[e | e]] are
behaviourally equivalent.


