
A New Type System for JVM Lock Primitives

Futoshi Iwama
University of Tokyo

Tokyo, Japan

iwama@kb.cs.titech.ac.jp

Naoki Kobayashi
Tokyo Institute of Technology

Tokyo, Japan

kobayasi@cs.titech.ac.jp

ABSTRACT
A bytecode verifier for the Java virtual machine language
(JVML) checks that bytecode does not cause any fatal error
before the code is executed. However, the present verifier
does not check correctness of the usage of lock primitives.
To solve this problem, we extend Stata and Abadi’s type
system for JVML by augmenting types with information
about how each object is locked and unlocked. The resulting
type system can guarantee that when a thread terminates it
has released all the locks it has acquired and that a thread
releases a lock only if it has acquired the lock previously.

Categories and Subject Descriptors
D.2.3 [Programing Languages]: Language Constructs
and Features—Concurrent programming structures; D.2.4
[Software Engineering]: Program Verifivation—Reliabil-
ity, Correctness proofs

General Terms
Verification, Reliability

Keywords
Java, Bytecode Verifier, Type System, Lock

1. INTRODUCTION
A Java program [1] is usually compiled into a Java byte-

code. Before it is interpreted by the Java Virtual Machine
(JVM) [9], a bytecode verifier checks properties of the byte-
code and rejects it if it violates certain safety policies. Ac-
cording to the present definition [9], however, the bytecode
verifier does not check safe usage of concurrency primitives
such as lock primitives.

For this problem, Bigliardi and Laneve [2] proposed a type
system for checking that lock primitives are safely used in
the sense that each lock operation is followed by one unlock
operation. This type system is, however, very restrictive. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA-PEPM’02 September 12-14, 2002,Aizu, Japan.
Copyright 2002 ACM 1-58113-458-4/02/0009 ...$5.00.

essentially checks that each occurrence of the lock primitive
(monitorenter) is syntactically followed by one occurrence
of the unlock primitive (monitorexit), and it bans inter-
twined critical sections, jumps into other critical sections,
etc.

For example, consider the four pieces of bytecode in Fig-
ure 1. Code 1 locks the object stored in local variable x at
address 1 and then unlocks the object at 5. Code 2 first locks
the objects stored in local variables x and y at addresses 1
and 3 respectively, and then unlocks them at addresses 9
and 7 respectively. Codes 1 and 2 are accepted by Bigliardi
and Laneve’s type system [2] since each lock instruction
(monitorenter x and monitorenter y) is syntactically fol-
lowed by a corresponding unlock instruction (monitorexit x
and monitorexit y).

On the other hand, codes 3 and 4 should be considered
valid but they are rejected by their type system. Code 3 first
locks the object stored in x, loads the value stored in y, and
then branches to either 4 or 6. Since the object is unlocked
in both branches, the code should be considered valid. How-
ever, the code is rejected by their type system since there are
syntactically two occurrences of the unlock primitive in code
3 as to the one occurrence of the lock primitive. Similarly,
code 4 is rejected by their type system because the critical
sections guarded by different locks are not properly nested.

Since the lock and unlock operations are coupled together
in the Java source language, it is not difficult to compile
a Java program into bytecode that satisfies the requirement
imposed by their type system. Problems may, however, arise
when the bytecode is produced from a program in other lan-
guages that provide lock and unlock primitives separately.
Problems may also arise when optimizations are applied to
bytecode. For example, a compiler optimizer may move the
instruction monitorexit x in code 2 above the instruction
monitorexit y to minimize the synchronization overhead.

To solve the above problem, we propose a new type sys-
tem for verifying that a thread that has acquired a lock in
a method will release the lock during the same method ex-
ecution, and that when a thread tries to unlock an object
in a method, the thread has previously locked the object in
the same execution of the method. Our type system is more
concise and expressive than Bigliardi and Laneve’s type sys-
tem: Unlike their type system, our type system can accept
jumps between critical sections (as in code 3 of Figure 1),
and intertwined critical sections (as in code 4 of Figure 1).

The main idea of our type system is to augment the type
of an object with information (which we call usage) about in
which order the object is locked and unlocked. For example,

1 monitorenter x
2 · · ·
3 (critical section)
4 · · ·
5 monitorexit x
6 return

(code 1)

1 monitorenter x
2 · · ·
3 monitorenter y
4 · · ·
5 · · ·
6 monitorexit y
7 · · ·
8 · · ·
9 monitorexit x

10 return

(code 2)

1 monitorenter x
2 load y
3 if 6
4 monitorexit x
5 return

6 monitorexit x
7 return

(code 3)

1 monitorenter x
2 · · ·
3 monitorenter y
4 · · ·
5 · · ·
6 · · ·
7 monitorexit x
8 · · ·
9 monitorexit y

10 return

(code 4)

Figure 1: Programs that use lock primitives

we express by L.L̂.0 the usage of an object that is locked,
unlocked, and neither locked nor unlocked afterwards, and

by L&L̂ the usage of an object that is either locked or un-
locked. Recall code 3 in Figure 1. The following type is
assigned to the object stored in x at each address.

Address Type of x

1 σ/L.L̂.0

2 σ/L̂.0

3 σ/L̂.0

4 σ/L̂.0
5 σ/0

6 σ/L̂.0
7 σ/0

Here, types are of the form σ/U , where σ is an ordinary
object type (i.e., a class name) and U is a usage. The type

σ/L.L̂.0 at address 1 indicates that the object stored in x at
address 1 will be locked once and then unlocked once in the
method. So, we know that lock primitives are properly used.
Based on this extension of types with usages, we extend
Stata and Abadi’s type system [11], so that lock primitives
are safely used if a program is well typed. Thus, the problem
of verifying safe usage of lock primitives is reduced to the
type-checking problem in the extended type system.

The rest of this paper. Section 2 introduces our target
language. Section 3 defines our type system and shows the
correctness of the type system. Section 4 discusses related
work and Section 5 concludes.

2. TARGET LANGUAGE JVMLT

In this section, we introduce our target language JVMLT .
It is a subset of Java bytecode language JVML and similar
to the language JVMLC introduced by Bigliardi and Lan-
eve [2].

2.1 The syntax of JVMLT

A program in JVMLT is executed by threads. Each thread
has its own operand stack and local variables. A thread ma-
nipulates its stack and local variables, creates a new thread,
etc. We write N , A, and V for the set of natural numbers,
the set of program addresses, and the set of local variables
respectively. A and V are subsets of N . We use a meta-
variable l to denote an element of A and meta-variables

x, y, . . . to denote elements of V. We write Σ for the set
of class names, and use a meta-variable σ to denote a class
name.

Definition 2.1 (Instruction). The set Inst of in-
structions is defined by:

I ::= inc | pop | push0 | load x | store x
| if l | new σ | start σ
| monitorenter x | monitorexit x
| athrow | return

Instruction inc increments the integer stored at the top
of the operand stack. Instruction pop pops a value from
the operand stack and push0 pushes the integer 0 onto the
operand stack. Instruction load x pushes the value stored
in local variable x onto the operand stack, and store x re-
moves the top value form the operand stack and stores the
value into local variable x. Instruction if l pops the top
value from the operand stack and jumps to the address l if
the value is not 0, and proceeds to the next address if the
value is 0. Instruction new σ creates a new σ-class object and
pushes a reference to the object onto the operand stack. In-
struction start σ creates a new σ-class thread and invokes
the run method of the thread. Arguments of the method
are taken from the top of the operand stack and stored in
the local variables of the new thread (where the number of
arguments is determined by the class name σ). Instructions
monitorenter x and monitorexit x respectively locks and
unlocks the object pointed to by the reference stored at the
top of the operand stack.1 As in JVML (and unlike the
usual semantics of locks), a thread can lock the same ob-
ject more than once without unlocking it. An object has a
lock counter to record how many times it has been locked.
The lock counter is incremented and decremented respec-
tively when monitorenter and monitorexit are executed,
and the object becomes unlocked when the counter becomes
0. Instruction athrow raises an exception and jumps to the
address specified by the exception table (see below). In-
struction return returns from the current method.

For the sake of simplicity, we assume that each class has
only one method run and it is invoked only by the instruc-
tion start . (So, a thread is terminated when it executes the
instruction return.) We have also omitted instructions to

1
monitorenter x corresponds to the sequence of instructions
load x and monitorenter in the actual JVML.

access state variables of objects. We assume that only new σ
and athrow may throw exceptions. Instruction new σ may
throw an exception, for example, when initialization fails.
For the sake of simplicity, we assume that there is only a
single kind of exception. We think that it is not difficult to
extend our type system to deal with omitted features.

A method body is a mapping from a finite subset of A to
Inst and represented by the meta-variable B. Examples of
method bodies are shown in Figure 1. An exception table is
a mapping from a finite subset of A to A, and denoted by a
meta-variable E. If an exception is raised at address l, the
control jumps to address E(l). A method descriptor, denoted
by a meta-variable D, is a mapping from a set {0, . . . , n −
1}(⊆ V) to the set Int∪Σ, where n is a nutural number that
denotes the number of arguments of a method. D(x) denotes
the type of the x-th argument of a method. For example,
D(x) = Int means that the the type of x-th argument is
integer.

A method is a triple consisting of a method body, a de-
scriptor and an exception table. A program is a mapping
from a set of class names to methods and is denoted by a
meta-variable P .

2.2 The operational semantics of JVMLT

We define an operational semantics of the language in a
manner similar to [11, 2].

We write dom(f) and codom(f) for the domain and the
co-domain of function f respectively. f{x 7→ v} denotes the
function such that dom(f{x 7→ v}) = dom(f)∪{x}, (f{x 7→
v})(y) = f(y) if y 6= x, and (f{x 7→ v})(x) = v. f \x
denotes the function such that dom(f \x) = dom(f) \ {x}
and (f \x)(y) = f(y) for each y ∈ dom(f \x).

We write I for the set of integers. We assume that there is
a countably infinite set O of references (to objects). A value
is either an integer or a reference. We write VAL for the set
I ∪O of values. An object is a record [class : σ, flag : d],
where σ denotes the class name of the object, and d is either
0, indicating that the object is not locked, or 1, indicating
that the object is locked. If ρ = [class : σ, flag : d], we
write ρ.class and ρ.flag for σ and d respectively. We write
RCD for the set of objects.

A stack is a partial mapping from N to VAL whose do-
main is of the form {i ∈ N | 0 ≤ i < n}. If s is a stack, s(i)
denotes the value stored at the i-th position of the stack.
If s is a stack and v is a value, we write v · s for the stack
defined by (v · s)(n + 1) = s(n) and (v · s)(0) = v. We write
ε for the stack whose domain is empty.

A thread state is a tuple 〈l, f, s, z, σ〉 where l(∈ A) denotes
the current program counter, f maps each local variable to
the value stored in the variable, s is a stack, and z maps
each heap address to a natural number expressing how many
locks the thread holds for the object pointed to by o (in
other words, how many locks of the object the thread needs
to release in future). σ is the class name of the thread. We
write T for the set of thread states. We extend a partial
mapping z to a total mapping z# by:

z#(o) =

{
z(o) o ∈ dom(z)
0 o 6∈ dom(z)

Unless it is confusing, we write z for z#.
A machine state is a pair 〈Ψ, H〉, where Ψ is a partial

mapping form natural numbers to T, and H is a partial
mapping from O to the set RCD of objects. Ψ(i) represents

the state of the thread whose identifier is i. H(o) denotes
the object stored at o.

We define the operational semantics of JV MLT using
a one-step reduction relation P ` 〈Ψ, H〉 → 〈Ψ′, H ′〉. It
says that a machine state 〈Ψ, H〉 can change to 〈Ψ′, H ′〉
in one-step execution of program P . It is defined as the
least relation closed under the rules in Figures 2 and 3. In
the figures, P [σ](l) denotes the instruction at address l of
the method of σ-class thread in P : if P (σ) = (B,E, D)
then P [σ](l) = B(l). t̄ denotes an element of set T and if
i 6∈ dom(Ψ) then Ψ]{i 7→ t̄} denotes a mapping defined by:

Ψ]{i 7→ t̄}(i′) =

{
t̄ i′ = i
Ψ(i′) i′ 6= i

We assume that the execution of a program starts when
the method of class main is invoked, and that the method
has no argument. So, the initial machine state is represented
by: 〈0 7→ 〈1, ø, ε, ø, main〉, ø〉.

3. TYPE SYSTEM
In this section, we give a type system for checking safe

usage of lock primitives.
As mentioned in Section 1, we extend an object type with

a usage expression, which represents in which order the ob-
ject is locked and unlocked.

We first introduce usages and types in Section 3.1, In Sec-
tion 3.2, we define usages which express proper usage of
lock primitives. In Section 3.3 and 3.4, we construct typing
rules for the extended types. It is an extension of Stata and
Abadi’s type system [11] for JVML. In Section 3.5, we show
the soundness of our type system. Finally, in Section 3.6,
we explain a type inference algorithm briefly.

3.1 Usages and types
As mentioned above, we augment the type of an object

with a usage expression, which represents in which order the
object is locked and unlocked.

Definition 3.1 (usages). The set U of usage expres-
sions (usages, in short) is defined by:

U ::= 0 | α | L.U | L̂.U | U1 ⊗U2 | U1&U2 | µα.U

Usage 0 describes an object that cannot be locked or un-
locked at all. α denotes a usage variable, which is bound by
a recursion operator µα. Usage L.U describes an object that

is first locked and then used according to U . L̂.U describes
an object that is first unlocked and then used according to
U . Usage U1 ⊗ U2 describes an object that is used accord-
ing to U1 and U2 in an interleaved manner. For example,

L ⊗ L̂ describes an object that is either locked and then
unlocked, or unlocked and then locked. U1&U2 describes
an object that is used according to either U1 or U2. Usage
µα.U describes an object that is recursively used according
to [µα.U /α]U (where [U1/α]U2 denotes the usage obtained
by replacing every free occurrence of α with U1). For ex-
ample, µα.(0&L.α) describes an object that is locked an
arbitrary number of times.

We often write L and L̂ for L.0 and L̂.0 respectively.

We give higher precedence to unary operators L., L̂., and

µα. than to binary operators, so that L.L̂&L.L̂ means

(L.L̂)&(L.L̂) rather than L.(L̂&L.L̂).

P [σ](l) = inc

P ` 〈Ψ]{i 7→ 〈l, f, c · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, c + 1 · s, z, σ〉}, H〉
(inc)

P [σ](l) = push0

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, 0 · s, z, σ〉}, H〉
(push0)

P [σ](l) = pop

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H〉
(pop)

P [σ](l) = if l′

P ` 〈Ψ]{i 7→ 〈l, f, 0 · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H〉
(ifproceed)

P [σ](l) = if l′ v 6= 0

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, s, z, σ〉}, H〉
(ifbranch)

P [σ](l) = load x

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, f(x) · s, z, σ〉}, H〉
(load)

P [σ](l) = store x

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f{x 7→ v}, s, z, σ〉}, H〉
(store)

P [σ](l) = new σ′ o 6∈ dom(H) H ′ = H{o 7→ [class : σ′, flag : 0]} ρ.flag = 0

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, o · s, z, σ〉}, H′〉
(new)

P [σ](l) = new σ′ P [σ] = (B, D, E) E(l) = l′

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, ε, z, σ〉}, H〉
(newexception)

P [σ](l) = start σ′ j 6∈ dom(Ψ) ∪ {i}

o ∈ dom(H) H(o).class = σ′ dom(Dσ′

) = {0, . . . , n− 1} f ′ = ø{0 7→ v0, . . . , n− 1 7→ vn−1}

P `
〈Ψ]{i 7→ 〈l, f, v0·, . . . , ·vn−1 · o · s, z, σ〉}, H〉 →

〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}]{j 7→ 〈1, f ′, ε, ø, σ′〉}, H〉

(start)

P [σ](l) = monitorenter x f(x) ∈ dom(H) z#(f(x)) = 0
H(f(x)).f lag = 0 H ′ = H{f(x) 7→ ρ} ρ.class = H(f(x)).class ρ.flag = 1

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ 1}, σ〉}, H ′〉
(ment1)

P [σ](l) = monitorenter x f(x) ∈ dom(H) z#(f(x)) = n ≥ 0 H(f(x)).f lag = 1

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n + 1}, σ〉}, H〉
(ment2)

Figure 2: operational semantics

P [σ](l) = monitorexit x f(x) ∈ dom(H) z#(f(x)) = 1
H(f(x)).f lag = 1 H ′ = H{f(x) 7→ ρ} ρ.class = H(f(x)).class ρ.flag = 0

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z \ f(x), σ〉}, H ′〉
(mext1)

P [σ](l) = monitorexit x f(x) ∈ dom(H) z#(f(x)) = n ≥ 2 H(f(x)).f lag = 1

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n− 1}, σ〉}, H〉
(mext2)

P [σ](l) = athrow P [σ] = (B, D, E) E(l) = l′

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, ε, z, σ〉}, H〉
(throw)

P [σ](l) = return

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ, H〉
(return)

Figure 3: operational semantics

A usage context is an expression obtained by replacing
some sub-expressions of a usage with the hole []. We use a
meta-variable C to denote a usage context. The expression
C [U1, . . . , Un] denotes the usage obtained by substituting
U1, . . . , Un for the holes in the context C from left to right.
For example, if C = [] ⊗ [], then C[U1,U2] = U1 ⊗ U2.
We assume that the free usage variables of U1, . . . ,Un are
different from the bound variables in C . So, if C = µα.[],
then C[α] = µα′.α.

We define two binary relations ≡ and ≤ on usages below.

Definition 3.2. The binary relation ≡ on usages is the
least congruence relation that satisfies the associativity and
commutativity laws on ⊗ and &, and the rules U ⊗ 0 ≡ U
and µα.U ≡ [µα.U /α]U.

Definition 3.3. The sub-usage relation ≤ is the least
preorder on usages that includes the relation ≡ and is closed
under the following rules:

U1&U2 ≤ U1
Ui ≤ U ′

i

C[U1, . . . ,Un] ≤ C[U ′

1, . . . ,U
′

n]

Definition 3.4 (Types). The set T of types is defined
by:

τ ::= Int | Top | σ/U

Int is the type of integers. Top is the type of values that
cannot be used at all. Type σ/U describes an object of class
σ that is locked and unlocked according to the usage U .

Example 3.5. Type Counter/L.L̂ describes an object of
Counter class that is first locked and then unlocked. Type

Account/L.(L̂&0) describes an object of Account class that
is first locked and then either unlocked or no longer accessed.

We extend the sub-usage relation to a subtype relation
τ1 ≤ τ2 on types. τ1 ≤ τ2 means that a value of type τ1 can
be used as a value of type τ2.

Definition 3.6. The subtype relation is the least pre-
order closed under the following rules:

Int ≤ Top
U ≤ 0

σ/U ≤ Top

U1 ≤ U2

σ/U1 ≤ σ/U2

3.2 Reliability of usages
As is understood from Example 3.5, the usage of an ob-

ject expresses whether the object is locked and unlocked
properly. The usage of the Counter object in the example
expresses a proper usage. On the other hand the usage of
the Account object expresses an incorrect usage: The lock
of the object may not be released. We say that a usage U
is reliable and write rel(U) if it expresses safe usage of lock
primitives, in the sense that each lock operation is followed
by an unlock operation and that each unlock operation is
preceded by a lock operation.

To formally define rel(U), we consider reduction of pairs
〈U , n〉 consisting of a usage U and a natural number n. A
pair 〈U, n〉 represents the state of an object that has been
locked n times so far and will be used according to usage U
from now.

Definition 3.7. The usage pair reduction →rel is the
least binary relation on U × N closed under the following
rules.

〈L.U , n〉 →rel 〈U , n + 1〉 〈L̂.U , n〉 →rel 〈U , n− 1〉

〈U1, n〉 →rel 〈U
′

1, n
′〉

〈U1&U2, n〉 →rel 〈U ′

1, n
′〉

〈U2, n〉 →rel 〈U
′

2, n
′〉

〈U1&U2, n〉 →rel 〈U ′

2, n
′〉

〈U1, n〉 →rel 〈U
′

1, n
′〉

〈U1 ⊗U2, n〉 →rel 〈U ′

1 ⊗U2, n′〉

U1 ≡ U ′

1 〈U ′

1, n〉 →rel 〈U
′

2, n
′〉 U ′

2 ≡ U2

〈U1, n〉 →rel 〈U2, n′〉

→∗

rel is the reflexive and transitive closure of →rel.

We can now define the reliability of usages as follows:

Definition 3.8 (Reliability of usages). rel(U , n)
is defined to hold if the following conditions hold whenever
〈U, n〉 →∗

rel 〈U
′, n′〉:

1. if U ′ ≤ 0 then n′ = 0

2. If U ′ ≤ L̂.U1 ⊗U2 then n′ ≥ 1

A usage U is reliable, written rel(U), if rel(U , 0) holds.

Example 3.9.

L.L.(L̂ ⊗ L̂), (L.L̂)&(L.L̂) and L.µα.((L̂.L.α)&L̂) are re-

liable. Neither L.(L ⊗ L̂) nor L.L̂.L̂ is reliable.

We extend the predicate rel to a predicate rel t on types.
It is defined as the least unary relation closed under the
following rules:

rel t(Int) rel t(Top)

rel(U)

rel t(σ/U)

3.3 Type environments
A frame type, denoted by a meta-variable F , is a partial

mapping from V to T . F (x) denotes the type of a value
stored in the local variable x.

A stack type, denoted by a meta-variable S, is a partial
mapping form N to T . S(n) denotes the type of a n-th value
stored in the operand stack. We write ε for the type of the
empty stack. A stack type τ ·S is defined by (τ ·S)(n+1) =
S(n) and (τ · S)(0) = τ .

A frame type environment, denoted by a meta-variable F ,
is a mapping fromA to the set of frame types. F(l) describes
the types of values stored in local variables just before the
program address l is executed. Similarly, a stack type envi-
ronment, denoted by a meta-variable S, is a mapping form
A to the set of stack types. S(l) describes the types of values
stored in the operand stack just before the program address

l is executed. For example, F(l)(x) = σ/L̂ means that σ-
class object is stored in the local variable x at address l, and
the lock on the object will be released afterwards.

We define several operations and relations on types, frame
types, and stack types. We use ∗ to represent a binary
operator ⊗ or & and use L̇. to represent a unary operator

L. or L̂.

Definition 3.10. We define τ1 ∗ τ2, L̇.τ by:

Top ∗Top = Top

Int ∗ Int = Int

(σ/U1) ∗ (σ/U2) = σ/(U1 ∗ U2)

L̇.(σ/U) = σ/(L̇.U)

(The operation is undefined for the arguments that do not
match the above definition.)

Definition 3.11. Suppose that dom(F1) = dom(F2).
F1 ∗ F2 is defined by:

dom(F1 ∗ F2) = dom(F1)

∀x ∈ dom(F1).(F1 ∗ F2)(x) = (F1(x)) ∗ (F2(x))

Definition 3.12. A frame type F1 is a subtype of F2,
written F1 ≤ F2, if:

dom(F1) = dom(F2)

∀x ∈ dom(F1).(F1(x) ≤ F2(x))

We also write F ≤ Top if F (x) ≤ Top holds for each x ∈
dom(F).

Definition 3.13. We define τ1 ≤L̇ τ2 by:

τ1 ≤L̇ τ2 ⇔ (τ1 ≤ L̇.τ2) ∨ (τ2 = Top ∧ ∃σ.τ1 = σ/L̇.0)

The operations S1 ∗ S2 and the relations S1 ≤ S2 and
S ≤ Top are defined in a similar manner.

We also define the function Use(τ) on types as follows:

Use(τ) =

U τ = σ/U
0 τ = Top

undefined otherwise

3.4 Typing rules
We consider a judgment of the form 〈F ,S〉 ` (B, E, D).

It means that the method (B, E, D) is well-typed under the
assumption that the values stored in local variables and the
operand stack have the types described by F and S.

To define the relation above, we introduce a relation
F , S, l ` (B,E, D). Intuitively, it means that the instruc-
tion at l can be safely executed on the assumption that the
values stored in local variables and the operand stack have
the types described by F and S.

Definition 3.14. F ,S, l ` (B, E, D) is the least relation
closed under the rules in Figure 4.

In Figure 4, Fl and Sl are shorthand notations for F(l)
and S(l) respectively. Dσ denotes the method descriptor of
class σ.

We explain several rules below:

Rule (MENTR): The first line states that the instruction
at address l is monitorenter. The second line states that
an instruction exists at the next address l + 1. Since the
object stored in local variable x is locked at this address
and then used according to Fl+1(x), the object is accessed
according to L.Fl+1(x) in total. The third line expresses
this condition. The third line also says that the types of
the values stored in the other local variables at address l are
subtypes of those at address l+1, since those values are not
accessed at l. Similarly, since the stack is not accessed, the
stack type at l should be a subtype the stack type at l + 1.

Rule (IF): The first line states that the instruction at ad-
dress l is if . The second line states that there are instruc-
tions at addresses l′ and l + 1. Since the values stored in
local variables are not accessed at l, they are accessed ac-
cording to either Fl+1 or Fl′ , depending on which branch is
taken. The third line expresses this condition. The fourth
line expresses the condition that the stack top at address l
must be an integer and the condition that the other values
stored in the stack are accessed according to either Sl+1 or
Sl′ .

Rule (ATHROW): The first line states that the instruction
at address l is Athrow. Since the control jumps to E(l), it
must be the case that E(l) ∈ dom(B), as specified in the
second line. The values stored in local variables are not
accessed at l and they are accessed according to E(l). This
condition is expressed by the third line. The fourth line
expresses the condition that all values stored in the stack are
not accessed afterwards, since the operand stack becomes
empty when the exception is raised.

Now we define the type judgment relation for methods.

Definition 3.15 (Type judgment for methods).
The relation 〈F ,S〉 ` (B, E, D) is defined by the following

rule:

∀x ∈ dom(F(1)). relt(F(1)(x))

Raw(F(1)(x)) =

{
D(x) if x ∈ dom(D)
Top otherwise

S(1) = ε
∀l ∈ codom(E).(S(l) = ε)

∀l ∈ dom(B). F , S, l ` (B, E, D)

〈F , S〉 ` (B,E, D)

Here, Raw (τ) is defined by:

Raw(Int) = Int

Raw(Top) = Top

Raw(σ/U) = σ

In the rule above, the first premise enforces that all objects
stored in local variables at the beginning of the method are
safely used in the sense that a lock that is acquired during
execution of the method is always released during the same
method execution. The second premise states that the val-
ues stored in local variables at the beginning of the method
must have the types specified by the method descriptor. The
third and fourth premises states that the operand stack at
the beginning of the method or at the beginning of an excep-
tion handler is empty. The last line states that the method
is well-typed at each address.

Definition 3.16 (Well-typed program). A pro-
gram P is well-typed if for each method (B, E, D), there
exist F and S such that 〈F , S〉 ` (B, E, D) holds.

3.5 Soundness of the type system
We have proved that our type system is sound in the sense

that if a well-typed program is executed, any thread that has
acquired a lock will eventually release the lock (provided
that the thread terminates), and any thread that tries to re-
lease a lock has previously acquired the lock. The soundness
of our type system is stated as follow:

Theorem 3.1. Suppose that a program P is well-typed,
and that P ` 〈0 7→ 〈1, ø, ε, ø, main〉, ø〉 →∗ 〈Ψ, H〉. If Ψ(i) =
〈l, f, s, z, σ〉, then the following properties hold:

1. If P [σ](l) = return, then z(o) = 0 for all o ∈ dom(H).

2. If P [σ](l) = monitorexit x , then z(f(x)) ≥ 1.

Here, P [σ](l) denotes the instruction at address l of the
run method of the σ-class. The first property states that
when a thread terminates, it has released all the locks it
acquired. The second property states that when a thread
tries to release a lock, it has acquired the lock before.

We give an outline of the proof of the theorem below.
First, we introduce a program type environment, denoted

by Γ, as a mapping from a class name to a pair 〈F , S〉. We
first define the relation Γ ` P , which means that the run
method of each σ-class in program P is well-typed under the
type environment Γ(σ):

Definition 3.17. The relation Γ ` P is defined by:

Γ ` P ⇔ ∀σ ∈ dom(P).(Γ(σ) ` P (σ))

Next, we define a type judgment relation Γ ` 〈Ψ, H〉. It
means that the threads Ψ and the heap H is consistent with
the type assumption Γ.

To define the relation, we introduce type judgment rela-
tions `H v : τ and Γ ` 〈〈l, f, s, z, σ〉, H〉.

Definition 3.18 (Typing rules for values).
`H v : τ is the least relation closed under the following

rules:

v ∈ VAL

`H v : Top

c ∈ I

`H c : Int

o ∈ O H(o).class = σ

`H o : σ/U

This judgment `H v : τ means that value v has type by τ
in the heap H.

Definition 3.19. The relation Γ ` 〈〈l, f, s, z, σ〉, H〉 is
defined by:

Γ(σ) = 〈F , S〉
∀x ∈ dom(F(l)).(`H f(x) : F(l)(x))
∀n ∈ dom(S(l)).(`H s(n) : S(l)(n))

∀o ∈ dom(H).relt(Θ[F ,S, f, s][l](o), z(o))

Γ ` 〈〈l, f, s, z, σ〉, H〉

Here, Θ[F ,S, f, s][l](o) is a shorthand form for the expres-
sion

⊗
({F(l)(x)|f(x) = o} ∪ {S(l)(n)|s(n) = o} where⊗

{τ1, . . . , τn} is defined by:
⊗

ø = Top
⊗

(ϕ ∪ {τ}) =

{ ⊗
ϕ if τ = Top

(
⊗

ϕ) ⊗ τ otherwise

(Strictly speaking,
⊗

is not a function since the result of the
second clause depends on the choice of τ . Nevertheless, the
result is unique up to the equivalence relation ≡ on usages
in Definition 3.2, hence the choice of τ actually does not
matter.)

The relation relt(τ, n) is defined by:

rel t(Int, 0) relt(Top, 0)
rel(U , n)

relt(σ/U , n)

This judgment Γ ` 〈〈l, f, s, z, σ〉, H〉 means that a thread
〈l, f, s, z, σ〉 and the heap H is consistent with the type as-
sumption Γ. The second and third lines of the rule of Defi-
nition 3.19 states that values in local variables and operand
stack are typed correctly. The fourth states that all objects
will be locked and unlocked safely.

Now, we define the type judgment relation Γ ` 〈Ψ, H〉.

Definition 3.20. The relation Γ ` 〈Ψ, H〉 is defined by:

∀i ∈ dom(Ψ).(Γ ` 〈Ψ(i), H〉)

Γ ` 〈Ψ, H〉

We can prove that if a machine state is well typed, invalid
usage of a lock does not occur immediately (Lemma 3.1 be-
low), and that the well-typedness of a machine state is pre-
served during execution of a well-typed program (Lemma 3.2
below). Outline of the proofs of these lemmas is given in Ap-
pendix B. We can also prove that the initial machine state
of a well-typed program is also well-typed immediately from
Definitions 3.15 and 3.19. Theorem 3.1 follows immediately
from these properties.

Lemma 3.1 (lack of immediate lock errors).
If Γ ` 〈Ψ, H〉 and Ψ(i) = 〈l, f, s, z, σ〉, then the following

properties hold:

1. If P [σ](l) = return, then z(o) = 0 for all o ∈ dom(H).

2. If P [σ](l) = monitorexit x , then z(f(x)) ≥ 1.

Lemma 3.2 (subject reduction).
Suppose that Γ ` P and Γ ` 〈Ψ, H〉 hold. If P ` 〈Ψ,H〉 →

〈Ψ′, H ′〉, then Γ ` 〈Ψ′, H ′〉 holds.

Lemma 3.3 (well-typedness of initial state).
If Γ ` P , then Γ ` 〈0 7→ 〈1, ø, ε, ø, main〉, ø〉 holds.

Proof of Theorem 3.1. Suppose that Γ ` P and that
Ψ(i) = 〈l, f, s, z, σ〉 and P ` 〈0 7→ 〈1, ø, ε, main〉, ø〉 →∗

〈Ψ, H〉 hold. By Lemma 3.3, Γ ` 〈0 7→ 〈1, ø, ε, main〉, ø〉
holds. Moreover, by Lemma 3.2, Γ ` 〈Ψ, H〉 holds. There-
fore, properties 1 and 2 of this theorem follow immediately
from Lemma 3.1.

3.6 Type inference algorithm
Because of the soundness of the type system, we can stat-

ically verify safe usage of lock primitives in a program by
checking that the program is well-typed. To check whether
a program is well-typed, it is sufficient to check, for each
method (B, E, D) of the program, whether there exist F
and S such that 〈F , S〉 ` (B,E, D) by performing type in-
ference. The type inference proceeds as follows.

1. Step 1: Based on the typing rules, generate constraints
on usages and types.

2. Step 2: Reduce the constraints and check whether they
are satisfiable.

We do not show details of the algorithm since it is fairly
standard [10, 7]. We illustrate how type inference works us-
ing an example. Consider the third method body in Figure 1
with an empty exception table and the method descriptor
{0 7→ σ, 1 7→ Int}. For simplicity, we assume that type in-
formation except for usages has been already obtained (for
example, by using and Stata and Abadi’s type system [11]).
The frame type environment F and the stack type environ-
ment S of the method are given as:

F [l](0) = σ/αl for each l ∈ {1, . . . , 7}
F [l](1) = Int for each l ∈ {1, . . . , 7}

S[l] =

{
Int · ε if l = 3
ε otherwise

Here, each αl is a usage variable to denote unknown usages.
It expresses how the object stored in local variable 0 will be
locked and unlocked at address l or later.

From the typing rule for the method (Definition 3.15), we
obtain the following constraints:

rel(α1)
α1 ≤ L.α2

α2 ≤ α3

α3 ≤ α4&α6

α4 ≤ L̂.α5

α5 ≤ 0

α6 ≤ L̂.α7

α7 ≤ 0

From the constraints except for the first one, we obtain a

solution α1 = L.((L̂.0)&(L̂.0)). By substituting it for the
first constraint, we get the constraint

rel(L.((L̂.0)&(L̂.0))).

Since it is satisfied, we know that lock primitives are safely
used.

On the other hand, suppose that the instruction at ad-
dress 3 is if 7. Then the constraint α3 ≤ α4&α7 is gener-
ated instead of the constraint α3 ≤ α4&α6. In this case, we

get the constraint rel(L.((L̂.0)&0)). Since it does not hold,
we know that lock primitives may be used incorrectly.

As in the above example, the type-checking problem is
reduced to the problem of deciding whether constraints of
the form rel(U) hold. As in type systems for deadlock-
freedom [8], this problem can be reduced to the reachability
problem of Petri nets [4], and hence the problem is decidable.
A more efficient algorithm for judging the reliability is given
in Appendix A.

Complexity of the algorithm. We discuss the complexity
of our type inference algorithm briefly. Suppose that the size
of the method (i.e., the number of instructions) is k. The
size of local variables and stack frames is O(k). Therefore,
the number of constraints generated in Step 1 is O(k2), and
the time complexity of this step is also O(k2). Each con-
straint is reduced to a constraint on usages in constant time
in Step 2. So, both the time complexity of Step 2 and the
size of constraints produced in this step are also O(k2). Un-
fortunately, the algorithm in Appendix A for checking the
satisfiability of the constraints may cost exponential time in
the worst case. The worst case behavior is, however, unlikely
to appear in real programs.

We believe that our algorithm works well in practice, since
the well-typedness of each method can be separately checked
and the size of each method would not be so large (even if
the whole program is large).

4. RELATED WORK
Our type system was obtained by extending Stata and

Abadi’s type system for JVML [11] with usages. Their
type system deals with subroutines. We think that it is
not difficult to extend our type system to deal with subrou-
tines. Bigliardi and Laneve [2] have proposed a type system
for checking usage of concurrency primitives including lock
primitives. As mentioned in Section 1, the type system is
rather complex and it imposes strong restrictions on usage
of lock primitives.

Recently, various methods for statically analyzing usage of
lock primitives have been proposed for other languages [3,
5]. However, the semantics of lock primitives treated in
those languages are different from the one treated in this
paper, and hence it is not clear whether those methods can
be applied to our target language. In those languages, each
lock has only two states: the locked state and the unlocked
state. On the other hand, in our target language, a lock can
have infinitely many states (since each lock has a counter
expressing how many times it has been acquired).

The idea of adding usages to types has its origin in type
systems [8, 12] for the π-calculus. In those type systems,
usage expressions are used to express in which order com-
munication channels are used for input and output.

Recently, Igarashi and Kobayashi [7] developed a general
type system for analyzing usage of various resources such
as files, memory, and locks. The problem treated in the
present paper is an instance of the general problem treated
by them [7]. However, the target language of their analy-
sis is a functional language, while our target language is a
more low-level language. We also gave a concrete algorithm

(INC)
B(l) = inc

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl(0) ≤ Int Sl ≤ Sl+1

F ,S, l ` (B, E, D)

(PUSH)
B(l) = push0

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Int · Sl ≤ Sl+1

F , S, l ` (B, E, D)

(POP)
B(l) = pop

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ Top · Sl+1

F , S, l ` (B, E, D)

(IF)
B(l) = if l′

l′, l + 1 ∈ dom(B)
Fl ≤ Fl+1&Fl′

Sl ≤ Int · (Sl+1&Sl′)

F , S, l ` (B,E, D)

(LOAD)
B(l) = load x
l + 1 ∈ dom(B)

Fl ≤ Fl+1{x 7→ Fl+1(x)⊗ Sl+1(0)}
Sl+1(0) · Sl ≤ Sl+1

F , S, l ` (B,E, D)

(STORE)
B(l) = store x
l + 1 ∈ dom(B)

Fl ≤ Fl+1{x 7→ Top}
Sl ≤ Fl+1(x) · Sl+1

F , S, l ` (B,E, D)

(NEW)
B(l) = new σ

E(l), l + 1 ∈ dom(B)
Fl ≤ Fl+1&FE(l)

(σ/U) · Sl ≤ Sl+1 rel(U)
Sl ≤ Top

F ,S, l ` (B, E,D)

(START)
B(l) = start σ
l + 1 ∈ dom(B)
Fl ≤ Fl+1

∀ x ∈ dom(Dσ).Dσ(x) = τx

dom(Dσ) = {0, . . . , n− 1}
Sl ≤ τ0·, . . . , ·τn−1 · σ/0 · Sl+1

F , S, l ` (B,E, D)

(RETURN)
B(l) = return

Fl ≤ Top

Sl ≤ Top

F , S, l ` (B, E, D)

(MENTR)
B(l) = monitorenter x

l + 1 ∈ dom(B)
Fl \ x ≤ Fl+1 \x
Fl(x) ≤L Fl+1(x)

Sl ≤ Sl+1

F ,S, l ` (B, E, D)

(MEXT)
B(l) = monitorexit x

l + 1 ∈ dom(B)
Fl \x ≤ Fl+1 \x
Fl(x) ≤

L̂
Fl+1(x)

Sl ≤ Sl+1

F , S, l ` (B, E, D)

(ATHROW)
B(l) = athrow

E(l) ∈ dom(B)
Fl ≤ FE(l)

Sl ≤ Top

F ,S, l ` (B, E, D)

Figure 4: typing rules

1 new S
2 store x
3 load x
4 store x
5 monitorenter x
6 monitorexit y
7 return

(code 5)

1 new S
2 store x
3 monitorenter x
4 load x
5 store y
6 monitorexit y
7 return

(code 6)

Figure 5: Programs that lock and unlock an object

through different variables

for checking the reliability of a usage, while the correspond-
ing algorithm is left unspecified in Igarashi and Kobayashi’s
paper [7].

5. CONCLUSION
We have proposed a new type system for checking usage

of lock primitives for a subset of JVML [9], and proved its
correctness.

Based on the type system, we have implemented a proto-
type verifier for the language JVMLT . Work is under way to
implement a verifier for the full JVML. For this purpose, we
need to extend our type system to deal with object fields,
method invocations, and other concurrency primitives.

Future work includes improvement of the accuracy of the
analysis. Currently, our type system does not keep track
of the order of accesses through different local variables or
stack locations, which cause some correct programs to be
rejected. Consider code 5 in Figure 5. It should be consid-
ered valid, but it is rejected by our type system. That is
because our type system fails to keep track of precise infor-
mation about the order between accesses through different

variables, and assigns L ⊗ L̂ to the usage of object S cre-
ated at address 1. (On the other hand, our type system

does accept code 6: the usage L.L̂ is assigned to object S at
address 1.) We think that this kind of code rarely appears
in practice. If it is necessary to analize such code, we can
extend the type system by using an idea used in the generic
type system for the π-calculus [6].

6. REFERENCES
[1] K. Arnold and J. Gosling. The Java Programming

Language. Addison Wesley, 1996.

[2] Gaetano Bigliardi and Cosimo Laneve. A type system
for JVM threads. In Proceedings of 3rd ACM
SIGPLAN Workshop on Types in Compilation
(TIC2000), Montreal, Canada, 2000.

[3] Robert DeLine and Manuel Fähndrich. Enforcing
high-level protocols in low-level software. In
Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 59–69, 2001.

[4] J. Esparza and M. Nielsen. Decidability issues for
Petri nets - a survey. Journal of Information
Processing and Cybernetics, 30(3):143–160, 1994.

[5] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken.
Flow-sensitive type qualifiers. In Proceedings of ACM

SIGPLAN Conference on Programming Language
Design and Implementation, 2002.

[6] Atsushi Igarashi and Naoki Kobayashi. A generic type
system for the pi-calculus. In Proceedings of ACM
SIGPLAN/SIGACT Symposium on Principles of
Programming Languages, pages 128–141, January
2001.

[7] Atsushi Igarashi and Naoki Kobayashi. Resource
usage analysis. In Proceedings of ACM
SIGPLAN/SIGACT Symposium on Principles of
Programming Languages, pages 331–342, 2002.

[8] Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An
implicitly-typed deadlock-free process calculus. In
Proceedings of CONCUR2000, volume 1877 of Lecture
Notes in Computer Science, pages 489–503.
Springer-Verlag, August 2000. The full version is
available as technical report TR00-01, Dept. Info. Sci.,
Univ. Tokyo.

[9] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification (2nd edition). Addison Wesley,
1999.

[10] Torben Mogensen. Types for 0, 1 or many uses. In
Implementation of Functional Languages, volume 1467
of Lecture Notes in Computer Science, pages 112–122,
1998.

[11] Raymie Stata and Mart́ın Abadi. A type system for
java bytecode subroutines. ACM Transactions on
Programming Languages and Systems, 21(1):90–137,
1999.

[12] Eijiro Sumii and Naoki Kobayashi. A generalized
deadlock-free process calculus. In Proc. of Workshop
on High-Level Concurrent Language (HLCL’98),
volume 16(3) of ENTCS, pages 55–77, 1998.

APPENDIX

A. ALGORITHM FOR CHECKING rel(U)

In this section, we give an algorithm for checking rel(U)
for a closed (i.e., not containing free usage variables) usage
U .

To check whether rel(U) holds, we consider two numbers
MinU and FinU for each closed usage U . MinU is the least
n such that (U , 0) →∗

rel (U ′, 0), while FinU is the greatest
n such that (U , 0) →∗

rel (U ′, n) and U ′ ≤ 0 (if no such n
exists, FinU = −∞).

Example A.1. Min(L̂.L) = −1, Min(L.L̂) = 0 and

Fin(L̂.L) = Fin(L.L̂) = 0, F in(µα.(L&L.L̂.α)) = 1

By Definition 3.8, rel(U) if and only if (1)MinU = 0 and
(2)FinU ≤ 0.

We need some definitions to present an algorithm to check
the above conditions.

We say that a usage U is recursive if it is of the form
µα.U . Let U be a closed usage. We define the set Rec(U)
as the least set satisfying the following rules:

Rec(U1 ⊗U2) ⊇ {U1} ∪ {U2}
Rec(U1&U2) ⊇ {U1} ∪ {U2}
Rec(L.U) ⊇ Rec(U)

Rec(L̂.U) ⊇ Rec(U)
Rec(µα.U) ⊇ {µα.U } ∪ Rec([µα.U /α]U)

Intuitively, Rec(U) is the set of recursive usages that may
appear when U is reduced. Note that it is a finite set.

Suppose that U is a closed, recursive usage. Let CMinU

be the set of equations

{Minµα.V = MinExp([µα.V/α]V) | µα.V ∈ Rec(U)},

where MinExp(V) is an expression defined by:

MinExp(0) = 0
MinExp(U1 ⊗U2) = MinExp(U1) + MinExp(U2)
MinExp(U1&U2) = min(MinExp(U1),MinExp(U2))
MinExp(L.U) = min(0,MinExp(U) + 1)

MinExp(L̂.U) = MinExp(U)− 1
MinExp(µα.U) = Minµα.U

CMinU
can be expressed in the form

{MinU1
= F1(MinU1

, . . . , MinUn
),

· · · ,
MinUn

= Fn(MinU1
, . . . ,MinUn

)}

where Fi is a monotonic function obtained by composing the
operators + and min. Here, min(x, y) denotes the minimum
of x and y.

Suppose that U is closed. We can check whether MinU =
0 as follows. (Here, we can assume without loss of generality
that U is recursive, since otherwise we can replace U with

µα.U .) Compute (Min
(j)
U1

, . . . , Min
(j)
Un

) by

Min
(0)
Ui

= 0

Min
(j+1)
Ui

= Fi(Min
(j)
U1

, . . . ,Min
(j)
Un

)

from j = 0 to m such that (Min
(m+1)
U1

, . . . ,Min
(m+1)
Un

) =

(Min
(m)
U1

, . . . ,Min
(m)
Un

) or Min
(m)
U

< 0. (Note that such m

always exists.) Then, MinU = 0 if and only if Min
(m)
U

= 0.
Whether FinU ≤ 0 holds can be checked in a similar man-

ner. Let CFinU
be the set of equations:

{Finµα.V = FinExp([µα.V/α]V) | µα.V ∈ Rec(U)}

Here, FinExp(V) is an expression defined by:

FinExp(0) = 0
FinExp(U1 ⊗U2) = FinExp(U1) + FinExp(U2)
FinExp(U1&U2) = max(FinExp(U1),FinExp(U2))
FinExp(L.U) = FinExp(U) + 1

FinExp(L̂.U) = FinExp(U)− 1
FinExp(µα.U) = Finµα.U

Suppose that U is closed and recursive, and that MinU = 0
holds. Let CFinU

be the set:

{FinU1
= G1(FinU1

, . . . ,FinUn
),

· · · ,
FinUn

= Gn(FinU1
, . . . , FinUn

)}.

Compute (Fin
(j)
U1

, . . . ,Fin
(j)
Un

) by

Fin
(0)
Ui

= −∞

Fin
(j+1)
Ui

= Gi(Fin
(j)
U1

, . . . ,Fin
(j)
Un

)

from j = 0 to m such that (Fin
(m+1)
U1

, . . . ,Fin
(m+1)
Un

) =

(Fin
(m)
U1

, . . . ,Fin
(m)
Un

) or Fin
(m)
U

> 0. (Such m always ex-

ists.) Then, FinU ≤ 0 holds if and only if Fin
(m)
U

≤ 0.

Example A.2. Let U be µα.(0&(L.L̂ ⊗ α)). Then,

MinExp([U /α](0&(L.L̂ ⊗ α)))

= min(MinExp(0),MinExp(L.L̂ ⊗U))

= min(0, MinExp(L.L̂) + MinExp(U))

= min(0, 0 + MinU)

Therefore, CMinU
= {MinU = min(0,MinU)}. Since

Min
(1)
U

= Min
(0)
U

= 0, we know MinU = 0. Similarly, CFinU

is the set {FinU = max(0,FinU)}. Since Fin
(1)
U

= Fin
(0)
U

=
0, we know that FinU = 0.

Example A.3. Let U be µα.(0&(L̂.L⊗ α)). Then,

CMinU
= {MinU = min(0, MinU − 1)}. Since Min

(1)
U

= −1,
we know MinU = 0 does not hold.

Example A.4. Let U be µα.(L&(L.L̂ ⊗ α)). Then,

CMinU
= {MinU = min(1,MinU)}. Since Min

(1)
U

=

Min
(0)
U

= 0, we know MinU = 0. Similarly, CFinU
is the

set {FinU = max(1,FinU)}. Since Fin
(1)
U

= 1, we know
that FinU = 0 does not hold.

B. PROOF OF LEMMAS 3.1 AND 3.2
We can show that the following lemmas hold.

Lemma B.1. U1 ≤ U2 ∧ rel(U1, n) ⇒ rel(U2, n)

Proof. Induction on derivation of U1 ≤ U2.

Lemma B.2. τ1 ≤ τ2 ∧ `H v : τ1 ⇒ `H v : τ2

Proof. This follows immediately from Definitions 3.18
and 3.6.

Lemma B.3. τ1 ≤ τ2 ∧ rel t(τ1, n) ⇒ rel t(τ2, n)

Proof. This follows directly from Definition 3.6 and
Lemma B.1.

Now we prove Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. Suppose that Γ ` P , Γ ` 〈Ψ, H〉
and Ψ(i) = 〈l, f, s, z, σ〉 hold.

• Suppose P [σ](l) = return.

Because Γ ` P holds, we obtain the following condition
from rule (RETURN):

∀o ∈ dom(H).(Θ[F ,S, f, s][l](o) ≤ Top)

Moreover, Γ ` 〈〈l, f, s, z, σ〉, H〉 follows from Γ `
〈Ψ, H〉. Therefore, the following condition holds:

∀o ∈ dom(H).
relt(

⊗
({F(l)(x)|f(x) = o} ∪ {S(l)(n)|s(n) = o}), z(o))

From these conditions and Definition 3.8, the required
condition z(o)=0 follows.

• Suppose P [σ](l) = monitorexit x .

Because Γ ` P holds, we get the following conditions
from rule (MEXT):

F [l](x) ≤
L̂
F [l + 1](x)

From this, the following conditions hold for a class σ′

and usages Ux, U .

F [l](x) = σ′/Ux Ux ≤ L̂.U

Let τ be the type:

⊗ (
{F(l)(x′)|f(x′) = f(x) ∧ x′ 6= x}
∪ {S(l)(n′)|s(n′) = f(x)})

)

and let U(x,i) be the usage Use(τ). Since Γ ` 〈Ψ, H〉
holds, we have:

rel t(Θ[F ,S, f, s][l](f(x)), z(f(x)))

from which

rel(Ux ⊗U(x,i), z(f(x)))

follows.

By Ux ≤ L̂.U and Lemma B.1, the following condition
holds:

rel(L̂.U ⊗U(x,i), z(f(x)))

So, we obtain z(f(x)) ≥ 1 from Definition 3.8.

Proof of Lemma 3.2. We show this by induction on
derivation of P ` 〈Ψ, H〉 → 〈Ψ′, H ′〉 with case analysis on
the last rule used. We suppose Γ ` P and Γ ` 〈Ψ, H〉.

We show only main cases: The other cases are similar.
Case rule (inc) : It must be the case that

Ψ = Ψ1] {i 7→ 〈l, f, c · s, z, σ〉
Ψ′ = Ψ1] {i 7→ 〈l + 1, f, c + 1 · s, z, σ〉
P (σ)(l) = inc

Because, Γ ` P holds, F ,S, l ` (B, E, D) holds for
F , S, B, E and D such that Γ(σ) = 〈F ,S〉, P (σ) =
(B, E, D). From this, P [σ](l) = B(l) = inc, and rule (INC),
we obtain the following conditions:

Fl ≤ Fl+1

Sl(0) ≤ Int

Sl ≤ Sl+1

(1)

Moreover, Γ ` (〈〈l, f, c · s, z, σ〉}, H〉 follows from the condi-
tion Γ ` (〈Ψ, H〉 . Therefore the following conditions follow
from Definition 3.19.

∀x ∈ dom(f).(`H f(x) : F(l)(x))
∀n ∈ dom(s).(`H (c · s)(n) : S(l)(n))
∀o ∈ dom(H).relt(Θ[F ,S, f, c · s][l](o), z(o))

(2)

By (1),(2) and Lemma B.3, the following condition holds:

∀o ∈ dom(H).
(Θ[F ,S, f, c · s][l](o) ≤ Θ[F , S, f, c + 1 · s][l + 1](o))

(3)

Here, ∀x ∈ dom(f).(`H f(x) : F [l + 1](x)) and ∀n ∈
dom(s).(`H (c + 1 · s)(n) : S[l + 1](n)) follow from (1),(2)
and Lemmas B.2.

Moreover, ∀o ∈ dom(H).rel t(Θ[F ,S, f, c + 1 · s][l +
1](o), z(o)) follows from (3) and Lemma B.3.

Therefore, Γ ` 〈{〈l + 1, f, c + 1 · s, z, σ〉}, H〉 holds.
From this and Γ ` 〈Ψ1, H〉,

the relation Γ ` 〈Ψ1]{i 7→ 〈l + 1, f, c + 1 · s, z, σ〉}, H〉 fol-
lows as required.

Case rule (ment2) : It must be the case that

Ψ = Ψ1] {i 7→ 〈l, f, s, z, σ〉
Ψ′ = Ψ1] {i 7→ 〈l + 1, f, s, z′, σ〉}
z′ = z{f(x) 7→ n + 1}
f(x) ∈ dom(H) z#(f(x)) = n H(f(x)).f lag = 1
P (σ)(l) = monitorenter x

By the assumption Γ ` P , the following conditions hold:

y ∈ dom(Fl) \ {x}.(Fl(y) ≤ Fl+1(y))
Fl(x) ≤L Fl+1(x)

Sl ≤ Sl+1

(4)

where Γ(σ) = 〈F ,S〉. Moreover, by the condition Γ `
〈Ψ, H〉, the following conditions also hold:

∀x ∈ dom(f).(`H f(x) : F(l)(x))
∀n ∈ dom(s).(`H s(n) : S(l)(n))
∀o ∈ dom(H).relt(Θ[F , S, f, s][l](o), z(o))

(5)

By (4),(5) and f(x) ∈ dom(H), the following conditions
hold for some σ′ U , and U ′.

σ′/(U ⊗U ′) ≤ Θ[F ,S, f, s][l + 1](f(x)) (6)

Θ[F , S, f, s][l](f(x)) ≤ σ′/(L.U ⊗U ′) (7)

Because relt(Θ[F ,S, f, s][l](f(x)), z(f(x))) and (7) hold, the
following conditions follow from Lemma B.3 and z#(f(x)) =
z(f(x)) = n:

rel t(σ
′/(L.U ⊗U ′), n) (8)

From Definition 3.8 it follows that:

rel t(σ
′/(U ⊗U ′), n + 1) (9)

By (7),(8), and (9), we have rel t(Θ[F , S, f, s][l +
1](f(x)), z′(f(x)).

Moreover, ∀x′ ∈ dom(f).(`H f(x′) : F(l + 1)(x′)) and
∀n ∈ dom(s).(`H s(n) : S(l + 1)(n)) follow from (5) and
(6). Therefore,
Γ ` 〈Ψ1]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n + 1}, σ〉}, H〉
holds.

