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Abstract

A bytecode verifier for the Java virtual machine language (JVML) checks before the code is
executed that bytecode does not cause any fatal error. However, the present verifier does not check
correctness of the usage of lock primitives. To solve this problem, we extend Stata and Abadi’s
type system for JVML by augmenting types with information about how each object is locked and
unlocked. The resulting type system guarantees that when a thread terminates it has released all
the locks it has acquired and that a thread releases a lock only if it has acquired the lock previously.

We have implemented a prototype Java bytecode verifier based on the type system. We have
tested the verifier for several classes in the Java run time library and confirmed that the verifier
runs efficiently and gives correct answers.

1 Introduction

A Java program [1] is usually compiled into a Java bytecode. Before it is interpreted by the Java Virtual
Machine (JVM) [13], a bytecode verifier checks properties of the bytecode and rejects it if it violates
certain safety requirements. According to the present definition [13], however, the bytecode verifier does
not check safe usage of concurrency primitives such as lock primitives.

For this problem, Bigliardi and Laneve [2] proposed a type system for checking that lock primitives
are safely used in the sense that each lock operation is followed by one unlock operation. This type
system is, however, very restrictive. It essentially checks that each occurrence of the lock primitive
(monitorenter) is syntactically followed by one occurrence of the unlock primitive (monitorexit), and
it bans intertwined critical sections, jumps into other critical sections, etc.

For example, consider the four pieces of bytecode in Figure 1. Code 1 locks the object stored in the
local variable x at address 1 and then unlocks the object at 5. Code 2 first locks the objects stored in
local variables x and y at addresses 1 and 3, respectively, and then unlocks them at addresses 9 and
6 respectively. Codes 1 and 2 are accepted by Bigliardi and Laneve’s type system [2] since each lock
instruction (monitorenter x and monitorenter y) is syntactically followed by a corresponding unlock
instruction (monitorexit x and monitorexit y).

On the contrary, codes 3 and 4 should be considered valid but they are rejected by their type system.
Code 3 first locks the object stored in x, loads the value stored in y, and then branches to either 4 or 6.
Since the object is unlocked in both branches, the code should be considered valid. However, the code
is rejected by their type system since there are syntactically two occurrences of the unlock primitive
in code 3 but only the one occurrence of the lock primitive. Similarly, code 4 is rejected by their type
system because the critical sections guarded by different locks are not properly nested.

Since the lock and unlock operations are coupled together in the Java source language, it is not
difficult to compile a Java program into bytecode that satisfies the requirement imposed by their type
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1 monitorenter x
2 · · ·
3 (critical section)
4 · · ·
5 monitorexit x
6 return

(code 1)

1 monitorenter x
2 · · ·
3 monitorenter y
4 · · ·
5 · · ·
6 monitorexit y
7 · · ·
8 · · ·
9 monitorexit x

10 return

(code 2)

1 monitorenter x
2 load y
3 if 6
4 monitorexit x
5 return

6 monitorexit x
7 return

(code 3)

1 monitorenter x
2 · · ·
3 monitorenter y
4 · · ·
5 · · ·
6 · · ·
7 monitorexit x
8 · · ·
9 monitorexit y

10 return

(code 4)

Figure 1: Programs that use lock primitives

system. However, bytecode may be edited by (possibly malicious) programmers, or produced by a
compiler of another language that provides lock and unlock primitives separately. It is important to
verify the safety at the bytecode level, since Java programs are often downloaded from untrusted cites
in the bytecode format. Although verification of low-level code has recently been a hot research topic of
programming languages[16, 15, 17], few studies have been done for verification of low-level code using
concurrency primitives. Problems may also arise when optimizations are applied to bytecode. For
example, a compiler optimizer may move the instruction monitorexit x in code 2 above the instruction
monitorexit y to minimize the synchronization overhead.

Recently, for such problems, Laneve have proposed a more flexible type system [12]. His type system
assigns to each address the set of the types of locked objects. The monitorenter instruction adds
the type of the locked object to that set, while the monitorexit instruction removes the type of the
unlocked object from the set. A method is valid when the set of object types is empty at the return
address. In order for the above method to work, object types must be singleton types, each of which
represents a unique object. To ensure that, his type system annotates the type of an object with the
address at which the object is first copied to the stack. Due to this mechanism, Laneve’s type system
does not suffer from the drawbacks of Bigliardi and Laneve’s type system [2]. However, because of the
restriction that object types must be singleton types, his type system cannot deal with the case where
different objects may flow into the same variable or the same stack position. Laneve informally discuss
a solution (introduction of subtyping) to partially overcome the drawback mentioned above, but it is
not completely satisfactory. We discuss these issues in Section 7.

In this paper, we take a different approach and propose a new type system for JVM lock primitives.
Our type system is more intuitive than the previous type systems [2, 12], and does not suffer form the
drawbacks mentioned above. We expect that the idea of our type system is applicable not only to Java
bytecode but also to high-level programming languages. Indeed, inspired by the present work, Igarashi
and Kobayashi have formalized a resource usage analysis for a functional language [9].

The main idea of our type system is to augment the type of an object with information (which we
call usage) about in which order the object is locked and unlocked. For example, we express by L.L̂.0
the usage of an object that is locked, unlocked, and neither locked nor unlocked afterwards, and by L&L̂
the usage of an object that is either locked or unlocked. Recall code 3 in Figure 1. The following type
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is assigned to the object stored in x at each address.

Address Type of x

1 σ/L.L̂.0
2 σ/L̂.0
3 σ/L̂.0
4 σ/L̂.0
5 σ/0
6 σ/L̂.0
7 σ/0

Here, types are of the form σ/U , where σ is an ordinary object type (i.e., a class name) and U is a usage.
The type σ/L.L̂.0 at address 1 indicates that the object stored in x at address 1 will be locked once and
then unlocked once in the method. So, we know that lock primitives are properly used. Based on this
extension of types with usages, we extend Stata and Abadi’s type system [18], so that lock primitives
are safely used if a program is well typed. Thus, the problem of verifying safe usage of lock primitives
is reduced to the type-checking problem in the extended type system.

The rest of this paper Section 2 introduces our target language. Section 3 defines our type system
and Section 4 shows the correctness of the type system. Section 5 describes the type inference algorithm
of our verifier and estimates the time complexity of the algorithm. Section 6 reports on experiments
with our prototype verifier. Section 7 discusses related work and Section 8 concludes.

2 The Target Language JVMLL

In this section, we introduce our target language JVMLL and define its operational semantics. This
JVMLL is a subset of the Java bytecode language JVML and is similar to the language JVMLC intro-
duced by Bigliardi and Laneve [2, 12]. For the sake of simplicity, the language JVMLL has only basic
instructions of JVML including lock operations and other main instructions.

2.1 The language JVMLL

In JVMLL, programs are represented by a set of class definitions:

Class σ {
super: Thread
field: FD
method run(D)

B ;E
}

where meta-variable σ denotes a class name and each class is defined by a subclass of Thread class that
has only one method run. Class fields FD is a series of a1 : d1, . . . , ak : dk and meta-variables a, d denote
field name and descriptor (see below about descriptor). A method is defined by a triple consisting of a
method descriptor D, a method body B and an exception table E. To define these formally, we write N ,
A, and V for the set of natural numbers, the set of program addresses, and the set of local variables,
respectively. A and V are subsets of N . We use a meta-variable l to denote an element of A and meta-
variables x, y, . . . to denote elements of V. We write Σ for the set of class names σ. We introduce super-
and sub-class relations on the Σ according to the syntax of JVML. When class σ1 is the super-class of
class σ2, namely class σ2 is a sub-class of class σ1, we write σ2 v σ1. Moreover, we introduce the class
Object (Object ∈ Σ) as the the top class on this relation. Formally, the super- and sub-class relations
are defined as follows:
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Definition 2.1 The binary relation v is the least preorder on Σ that is closed under the following rules:

σ v Object

class σ1 is a subclass of class σ2

σ1 v σ2

We also define the set of array class names by A ::= Int[ ] | σ[ ] | A[ ].
A method body B is a mapping from a finite subset of {1, 2, . . . , n} (n ∈ N ) of A to the set of

instructions Inst, where Inst is defined as follows:

Definition 2.2 (Instruction) The set Inst of JVMLL’s instructions is defined by:

I ::= inc | pop | push0 | load x | store x | if l
| putfield σ.a d | getfield σ.a d | aaload | aastore
| monitorenter x | monitorexit x
| new σ | start σ | athrow | return

These instructions have the same meanings as the corresponding instructions of JVML. Examples
of method bodies are shown in Figure 1.

A JVMLL program is executed by threads. Each thread has its own operand stack and local variables.
A thread manipulates its stack and local variables, create new threads, etc, by executing the instructions.
We describe each instruction briefly. Instruction inc increments the integer stored at the top of the
operand stack. Instruction pop pops a value from the operand stack and push0 pushes the integer 0
onto the operand stack. Instruction load x pushes the value stored in the local variable x onto the
operand stack, and store x removes the top value from the operand stack and stores the value into the
local variable x. Instruction if l pops the top value from the operand stack and jumps to the address l
if the value is not 0, and proceeds to the next address if the value is 0.

Instruction putfield σ.a d pops two values from the operand stack and stores the first value into
the field a of the second value. The first value must have type d and the second value must be a σ-class
object. Instruction getfield σ.a d pops an object from the operand stack and then pushes the value
stored in field a of the object onto the operand stack, where the object must be a σ-class object with
field a of descriptor d . Instruction aaload pops two values v1 and v2 from the operand stack, where v1

must be an integer and v2 must be an array object, and pushes the v1-th element of the array v2 onto
the stack. Instruction aastore pops three values v1, v2, and v3 from the operand stack, where the first
value v1 must be a value that is used as a component value of array v3 and the second value v2 must be
a integer, and replaces the v2-th element of array v3 with v1.

Instruction new σ allocates a new σ-class object and initializes it and then put a reference to the
object on top of the operand stack. If the allocation or initialization fail, then an exception raises.
Instruction start σ creates a new σ-class thread and invokes the run method of the thread. Arguments
of the method are taken from the top of the operand stack and stored in the local variables of the new
thread (where the number of arguments is determined by the class name σ). Instruction athrow raises
an exception and jumps to the address specified by the exception table (see below). Instruction return
returns from the current method.

Instructions monitorenter x and monitorexit x respectively locks and unlocks the object stored in
x. 1 As in JVML (and unlike the usual semantics of locks), a thread can lock the same object more than
once without unlocking it. An object has a lock counter to record how many times it has been locked.
The lock counter is incremented and decremented respectively when monitorenter and monitorexit
are executed, and the object becomes unlocked when the counter becomes 0.

We assume method body is well-formed, which says that if B(l) = if l′ then l′ ∈ dom(B) holds and
that if B(l) 6= athrow, return then l + 1 ∈ dom(B).

An exception table E is a total mapping from dom(B)(⊂ A) to A. If an exception is raised at address
l, the control jumps to address E(l). The program is terminated abruptly in the case of E(l) 6∈ dom(B).

1monitorenter x corresponds to the sequence of instructions load x and monitorenter in the actual JVML.
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In general, we model abrupt termination of the program with an exception by the case where l 6∈ dom(B)
holds.

A method descriptor D is a mapping from a set {0, . . . , n− 1}(⊆ V) to the set {Int} ∪Σ∪A, where
n is a natural number that denotes the number of arguments of a method. D(x) denotes the type of the
x-th argument of a method. For example, D(x) = Int means that the type of x-th argument is integer.
We consider an element of the set {Int} ∪ Σ ∪A as a descriptor and use the meta-variable d for it.

A program is defined formally by a mapping from a set of class names to a pair consisting of class
field FD and methods (B, E,D). we use meta-variable P to denote the program.

Notations: We use some notations. First, we use meta-variable σP to identify a class σ, which is
declared in a program P . Second, when a class σ is consisted of a class fields a1 : d1, . . . , ak : dk and
a method (B, E,D) in a program P , we write P [σ] = (a1 : d1, . . . , ak : dk, (B, E, D)) and define σP by
[a1 : d1, . . . , ak : dk]. This σP is a record which specifies σ-classes class fields in a program P and we write
σP .ai : di if the record σP has the field ai with descriptor di (namely, σP is the form [. . . , ai : di, . . .]).

Restriction on our class definition: As shown above, we assume that each class has only one
method run and it is invoked only by the instruction start . (So, a thread is terminated when it
executes the instruction return.) Note that this assumption does not limit the generality of our type
system because, according to the JVML specification [13], all locks acquired in a method must be
released in the same method. Therefore, method invocation does not affect the state of locks.

We also assume that only new σ and athrow may throw exceptions. The athrow instruction raises
the exception synchronously and instruction new σ may throw an exception asynchronously, for example,
when allocation or initialization fail. Note that a null pointer exception is not raised in our model because
all objects are initialized when the new σ instruction creates the object. For the sake of simplicity, we
also assume that there is only a single kind of exception. These assumptions also does not limit the
generality of our analysis. These reason are explained in section 6.

2.2 The operational semantics of JVMLL

We define an operational semantics of the language in a manner similar to [2, 18, 12].
To define the semantics formally, we define several notations. First, we define notations about

functions and stacks. we write dom(f) and codom(f) for the domain and the co-domain of function
f , respectively. Let f{x 7→ v} denotes the function such that dom(f{x 7→ v}) = dom(f) ∪ {x},
(f{x 7→ v})(y) = f(y) if y 6= x, and (f{x 7→ v})(x) = v. f \x denotes the function such that
dom(f \x) = dom(f) \{x} and (f \x)(y) = f(y) for each y ∈ dom(f \x). A stack is a partial mapping
from N to VAL whose domain is of the form {i ∈ N | 0 ≤ i < n} for some n ∈ N . If s is a stack, s(i)
denotes the value stored at the i-th position of the stack. If s is a stack and v is a value, we write v · s
for the stack defined by (v · s)(n + 1) = s(n) and (v · s)(0) = v. We write ε for the stack whose domain
is empty.

Next, we define values and object, array object. We write I for the set of integers. We assume
that there is a countably infinite set O of references (to objects or arrays) and that O contains a
special element null, denoting the null reference. A value is either an integer or a reference. We write
VAL for the set I ∪ O of values. An object is a record of the form [class = σ, flag = b, a1 = v1 :
d1, · · · , am = vm : dm], where σ denotes the class name of the object, and b is either 0, indicating
that the object is not locked, or 1, indicating that the object is locked. If ρ = [class = σ, flag =
b, a1 = v1 : d1, · · · , am = vm : dm], we write ρ.class , ρ.flag and ρ.ai for σ, b and vi respectively.
We also write ρ{a 7→ v} (ρ{flag 7→ b} reps) for the record given when we replace a value stored in
field a (or flag) of record ρ (i.e. ρ.a or ρ.flag ) to v (or b). An array is also a record of the form
[class : A, flag : b, 1 = v1 : d, · · · , m = vm : d], where A take the form of the d[ ] and denotes the array
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class name of the array object and m is the length of this array. We write RCD for the set of objects
and arrays and use meta-variable ρ to denote an element of the set.

As stated in section2.1, a JVMLL program is executed by threads. We represent a thread state by a
tuple

〈l, f, s, z, σ〉
where l(∈ A) denotes the current program counter, f maps each local variable to the value stored in
the variable, s is a stack, and z maps each heap address o to a natural number expressing how many
locks the thread holds for the object pointed to by o (in other words, how many locks of the object the
thread needs to release in future). σ is the class name of the thread.

We write T for the set of thread states. We extend a partial mapping z to a total mapping z# by:

z#(o) =
{

z(o) o ∈ dom(z)
0 o 6∈ dom(z)

Unless it is confusing, we write z for z#.
A machine state is a pair

〈Ψ,H〉
where Ψ is a partial mapping from the natural numbers to T, and H is a partial mapping from O\{null}
to the set RCD of objects. Ψ(i) represents the state of the thread whose identifier is i. H(o) denotes the
object pointed to by reference o. We assume that the execution of a program starts when the method of
class main is invoked, and that the method has no argument. So, the initial machine state is represented
by

〈{0 7→ 〈1, ø, ε, ø, mainP 〉}, ø〉.
where, address 1 denotes the first instruction of the method run of the main class defined in program
P .

We define the operational semantics of JV MLL using one-step reduction relation

P ` 〈Ψ,H〉 → 〈Ψ′,H ′〉

The relation P ` 〈Ψ,H〉 → 〈Ψ′, H ′〉 says that a machine state 〈Ψ, H〉 can change to 〈Ψ′,H ′〉 in
one-step execution of program P .

It is defined as the least relation closed under the rules in Figures 2 and 3. In the figures, P [σ](l)
denotes the instruction at address l of the method of σ-class thread in P i.e. if P (σ) = (B, E, D) then
P [σ](l) = B(l) and address 1σ′ denotes the first instruction of the method run of the σ class. We denote
by t̄ an element of the set T and if i 6∈ dom(Ψ) then Ψ]{i 7→ t̄} denotes a mapping defined by:

Ψ]{i 7→ t̄}(i′) =
{

t̄ i′ = i
Ψ(i′) i′ 6= i

Values vinit(d) are initial values of descriptor d(∈ {Int} ∪ Σ ∪ A) and are defined by vinit(Int)=0
and vinit(d) = null (d 6= Int).

Many rules are straightforward. We explain briefly several rules.

Rules (ment1), (ment2): These rule simulate the situation where a thread acquire a lock of an object.
The rule (ment1) states a thread can acquire a lock of an object if the object is not locked and the rule
(ment2) states a thread also can acquire a lock of an object if the object is locked by the same thread.

Rules (mext1), (mext2): These rule simulate the situation where a thread releases a lock of an object.
The rule (mext1) states that a thread can release a lock of an object if the thread have acquired the
lock one time before and that the object becomes unlocked in this case. The rule (mext2) states that a
thread can release a lock of an object if the thread have acquired the lock more than one time before.
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Rules (new), (newexc): These rules simulate a situation where a thread try to create a new object.
The execution of the New instruction nondeterministically either creates a new object or breaks down
with an asynchronous exception. The rule (new) describes the transition for the successful object
creation and the rule (newexc) describes the situation that object allocation fails and the asynchronous
exception raise.

In the operational semantics, a thread may get stuck in the following situations

• Type mismatch : The type of an operand does not math the type specified by the current instruction
(e.g. the rule (putfield)).

• Uncaught exceptions : An exception is raised by the current instruction, but, there is no handler.

• Lock error : The current instruction is return, but the thread has not released the lock and the
current instruction is monitorexit , but the thread has not acquired the lock.

Our type system in this paper guarantees that, during the execution of a well-typed program, no
thread gets stuck because of “type mismatch” or “lock error” and a thread may get stuck because of
“uncaught exceptions”, but at that time, the thread has released all the locks it acquired.

Restriction on our operational semantics: As stated above, in the operational semantics, the
program get stuck in the type mismatch situations For example, for the rule if , if the top element on
the stack is not integer. the program get stuck. While, in actual JVML, th type mismatches raise an
exception. This discrepancy is not important since such programs are rejected by original bytecode
verifier as well as by the type system we describe later.

3 Type system

In this section, we give a type system for checking that programs ues lock primitives safely.
As mentioned in Section 1, we extend an object type with a usage expression, which represents in

which order the object is locked and unlocked.
We first introduce usages and types in Section 3.1. In Section 3.2, we define relations on usages and

types. In Section 3.3 and 3.4, we construct typing rules for the extended types. It is an extension of
Stata and Abadi’s type system [18] for JVML.

3.1 Usages and types

As mentioned above, we augment the type of an object with a usage expression, which represents in
which order the object is locked and unlocked.

Definition 3.1 (usages) The set U of usage expressions (usages, in short) is defined by:

U ::= 0 | α | L.U | L̂.U | U1 ⊗U2 | U1&U2 | µα.U | ⊥rel

Usage 0 describes an object that cannot be locked or unlocked at all. α denotes a usage variable,
which is bound by a recursion operator µα. Usage L.U describes an object that is first locked and then
used according to U . Usage L̂.U describes an object that is first unlocked and then used according to
U . Usage U1 ⊗ U2 describes an object that is used according to U1 and U2 in an interleaved manner.
For example, L ⊗ L̂ describes an object that is either locked and then unlocked, or unlocked and then
locked. U1&U2 describes an object that is used according to either U1 or U2. Usage µα.U describes
an object that is recursively used according to [µα.U /α]U (where [U1/α]U2 denotes the usage obtained
by replacing every free occurrence of α with U1). For example, µα.(0&L.α) describes an object that
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P [σ](l) = inc c ∈ I

P ` 〈Ψ]{i 7→ 〈l, f, c · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, c + 1 · s, z, σ〉}, H〉 (inc)

P [σ](l) = push0

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, 0 · s, z, σ〉}, H〉 (push0)

P [σ](l) = pop

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H〉 (pop)

P [σ](l) = if l′ c ∈ I

P ` 〈Ψ]{i 7→ 〈l, f, 0 · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H〉 (ifproceed)

P [σ](l) = if l′ c ∈ I c 6= 0

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, s, z, σ〉}, H〉 (ifbranch)

P [σ](l) = load x

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, f(x) · s, z, σ〉}, H〉 (load)

P [σ](l) = store x

P ` 〈Ψ]{i 7→ 〈l, f, v · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f{x 7→ v}, s, z, σ〉}, H〉 (store)

P [σ](l) = new σ′ σ′P = [a1 : d1, . . . , am : dm]
o 6∈ dom(H) H ′ = H{o 7→ [class = σ′, flag = 0, a1 = vinit(d1) : d1, · · · , am = vinit(dm) : dm]}

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, o · s, z, σ〉}, H ′〉 (new)

P [σ](l) = new σ′ P [σ] = (FD , (B, D, E)) E(l) = l′

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, ε, z, σ〉}, H〉 (newexc)

P [σ](l) = start σ′ P (σ) = (FD , (B, D, E)) j 6∈ dom(Ψ) ∪ {i}
o ∈ dom(H) H(o).class = σ′ dom(D) = {0, . . . , n− 1} f ′ = ø{0 7→ v0, . . . , n− 1 7→ vn−1}

P ` 〈Ψ]{i 7→ 〈l, f, v0·, . . . , ·vn−1 · o · s, z, σ〉}, H〉 →
〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}]{j 7→ 〈1σ′ , f

′, ε, ø, σ′〉}, H〉
(start)

P [σ](l) = athrow P [σ] = (FD , (B, D, E)) E(l) = l′

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l′, f, ε, z, σ〉}, H〉 (throw)

P [σ](l) = return ∀o ∈ dom(H).z#(o) = 0

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ, H〉 (return)

Figure 2: Operational semantics
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P [σ](l) = monitorenter x f(x) ∈ dom(H) z#(f(x)) = 0
H(f(x)).f lag = 0 H ′ = H{f(x) 7→ ρ} ρ = H(o){flag 7→ 1}

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ 1}, σ〉}, H ′〉 (ment1)

P [σ](l) = monitorenter x f(x) ∈ dom(H) z#(f(x)) = n ≥ 0 H(f(x)).f lag = 1

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n + 1}, σ〉}, H〉 (ment2)

P [σ](l) = monitorexit x f(x) ∈ dom(H) z#(f(x)) = 1
H(f(x)).f lag = 1 H ′ = H{f(x) 7→ ρ} ρ = H(o){flag 7→ 0}

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z \ f(x), σ〉}, H ′〉 (mext1)

P [σ](l) = monitorexit x f(x) ∈ dom(H) z#(f(x)) = n ≥ 2 H(f(x)).f lag = 1

P ` 〈Ψ]{i 7→ 〈l, f, s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n− 1}, σ〉}, H〉 (mext2)

P [σ](l) = getfield σ′.a d o ∈ dom(H) H(o).class = σ′ H(o).a = v

P ` 〈Ψ]{i 7→ 〈l, f, o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, v · s, z, σ〉}, H〉 (getfld)

P [σ](l) = putfield σ′.a d o ∈ dom(H) H(o).class = σ′

H ′ = H{o 7→ ρ} ρ = H(o){a 7→ v}
P ` 〈Ψ]{i 7→ 〈l, f, v · o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H ′〉 (putfld)

P [σ](l) = aaload o ∈ dom(H) H(o).class = d [ ] H(o).c = v

P ` 〈Ψ]{i 7→ 〈l, f, c · o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, v · s, z, σ〉}, H〉 (aload)

P [σ](l) = aastore o ∈ dom(H) H(o).class = d [ ]
H ′ = H{o 7→ ρ} ρ = H(o){c 7→ v}

P ` 〈Ψ]{i 7→ 〈l, f, v · c · o · s, z, σ〉}, H〉 → 〈Ψ]{i 7→ 〈l + 1, f, s, z, σ〉}, H ′〉 (astore)

Figure 3: Operational semantics
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is locked an arbitrary number of times. Usage ⊥rel describes an object that is locked and unlocked
properly. We will assign ⊥rel to elements of arrays and object fields to ensure that after they are
extracted from objects or arrays, they are properly locked and unlocked. Although the usage expression
⊥rel is equal to µα.(0&(L.L̂⊗ α)), we introduce the usage expression for a technical reason.

We often write L and L̂ for L.0 and L̂.0 respectively. We give higher precedence to unary operators
L., L̂., and µα. than to binary operators, so that L.L̂&L.L̂ means (L.L̂)&(L.L̂) rather than L.(L̂&L.L̂).

A usage context is an expression obtained by replacing some sub-expressions of a usage with the hole
[ ]. We use a meta-variable C to denote a usage context. The expression C [U1, . . . ,Un] denotes the
usage obtained by substituting U1, . . . ,Un for the holes in the context C from left to right. For example,
if C = [ ] ⊗ [ ], then C[U1,U2] = U1 ⊗ U2. We assume that the free usage variables of U1, . . . ,Un are
different from the bound variables in C . So, if C = µα.[ ], then C[α] = µα′.α.

Definition 3.2 The binary relation ≡ on usages is the least congruence relation that satisfies the asso-
ciativity and commutativity laws on ⊗ and &, and the rules U ⊗ 0 ≡ U and µα.U ≡ [µα.U /α]U .

We define types as follows:

Definition 3.3 (Types) The set T of types is defined by:

(types) τ ::= Int | σ/U | ξ[ ]/U | Top

(element types) ξ ::= Int | σ | ξ[ ] | Top

Int is the type of integers. Top is the type that cannot be used at all. Type σ/U describes an
object of class σ that is locked and unlocked according to the usage U . Type ξ[ ]/U describes an array
that has elements of type ξ and is locked/unlocked according to U .

Example 3.4 Type Counter/L.L̂ describes an object of Counter class that is first locked and then
unlocked. Type Account/L.(L̂&0) describes an object of Account class that is first locked and then
either unlocked or no longer accessed. Type Counter[ ]/L.L̂ is the type of an array that is first locked
and then unlocked and have Counter class objects that are locked and unlocked properly as its elements.

3.2 Reliability of usages and relation on types

As is understood from Example 3.4, the usage of an object expresses whether the object is locked and
unlocked properly. The usage of the Counter object in the example expresses a proper usage. On the
other hand the usage of the Account object expresses an incorrect usage: The lock of the object may
not be released. We say that a usage U is reliable and write rel(U ) if it expresses safe usage of lock
primitives, in the sense that each lock operation is followed by an unlock operation and that each unlock
operation is preceded by a lock operation.

To formally define rel(U ), we consider reduction of pairs 〈U , n〉 consisting of a usage U and a natural
number n. A pair 〈U, n〉 represents the state of an object that has been locked n times by a thread so
far and will be used according to usage U by the thread from now.

Definition 3.5 The usage pair reduction →rel is the least binary relation on U × N closed under the
following rules.

〈L.U , n〉 →rel 〈U , n + 1〉 〈L̂.U , n〉 →rel 〈U , n− 1〉 〈⊥rel, n〉 →rel 〈0, n〉

〈U1, n〉 →rel 〈U ′
1, n

′〉
〈U1&U2, n〉 →rel 〈U ′

1, n
′〉

〈U2, n〉 →rel 〈U ′
2, n

′〉
〈U1&U2, n〉 →rel 〈U ′

2, n
′〉
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〈U1, n〉 →rel 〈U ′
1, n

′〉
〈U1 ⊗U2, n〉 →rel 〈U ′

1 ⊗U2, n′〉
U1 ≡ U ′

1 〈U ′
1, n〉 →rel 〈U ′

2, n
′〉 U ′

2 ≡ U2

〈U1, n〉 →rel 〈U2, n′〉

Let →∗
rel be the reflexive and transitive closure of →rel.

We can now define the reliability of usages as follows:

Definition 3.6 (Reliability of usages) rel(U , n) is defined to hold if the following all conditions hold
whenever 〈U, n〉 →∗

rel 〈U ′, n′〉:
1. if U ′ ≡ 0 or U ′ ≡ 0 &U1 for a usage U1, then n′ = 0

2. if U ′ ≡ (L̂.U1 ⊗U2) or U ′ ≡ (L̂.U1 ⊗U2)&U3 for some usages U1,U2, and U3, then n′ ≥ 1

A usage U is reliable, written rel(U ), if rel(U , 0) holds.

The condition 1 in the definition 3.6 states that if an object may not be accessed future by a thread
(i.e. if U ′ ≡ 0 or U ′ ≡ 0&U1), the object is not locked by the thread (i.e. n′ = 0). The condition 2 in
the definition states that when a lock on an object may be released by a thread (i.e. U ′ ≡ (L̂.U1 ⊗U2)
or U ′ ≡ (L̂.U1 ⊗ U2)&U3), the object has locked more than once time by the thread (i.e. n′ ≥ 1).
These conditions guarantees the proper use of lock primitives: (1) when a thread terminates normally
or abruptly, it has released all the locks it has acquired, (2) a thread releases a lock only if it has acquired
the lock previously.

Therefore, the definition of rel(U ) indicates that objects, which are not locked and will be accessed
according to reliable usage U by a thread, are properly locked and unlocked by the thread.

Example 3.7
L.L.(L̂⊗ L̂), (L.L̂)&(L.L̂), L.L̂.⊥rel and L.µα.((L̂.L.α)&L̂) are reliable. Neither L.(L⊗ L̂) nor

L.L̂.L̂ is reliable.

We extend the predicate rel to a predicate rel t on types. It is defined as the least unary relation
closed under the following rules:

rel t(Int) rel t(Top)
rel(U )

rel t(σ/U )
rel(U )

rel t(ξ[ ]/U )

Definition 3.8 The sub-usage relation ≤ is the least preorder on usages that includes the relation ≡
and is closed under the following rules:

U1&U2 ≤ U1
rel(U )
⊥rel ≤ U

Ui ≤ U ′
i

C[U1, . . . ,Un] ≤ C[U ′
1, . . . ,U ′

n]

Here, we define several relations and operations on types to simplify our type system. At first, we
extend the congruence relation on usages to type congruence relation τ1 ≡ τ2 on types.

Definition 3.9 The binary relation ≡ on types is the least equivalence relation that satisfies the follow-
ing rules:

U1 ≡ U2

σ/U1 ≡ σ/U2

ξ1 = ξ2 U1 ≡ U2

ξ1[ ]/U1 ≡ ξ2[ ]/U2

Similarly, we extend the sub-usage relation to a subtype relation τ1 ≤ τ2 on types. By τ1 ≤ τ2 we
denote that a value of type τ1 can be used as a value of type τ2.
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Definition 3.10 The subtype relation is the least preorder that includes the relation ≡ on types and is
closed under the following rules:

Int ≤ Top
U ≤ 0

σ/U ≤ Top
U1 ≤ U2 σ1 v σ2

σ1/U1 ≤ σ2/U2

U ≤ 0
ξ[ ]/U ≤ Top

ξ1 = ξ2 U1 ≤ U2

ξ1[ ]/U1 ≤ ξ2[ ]/U2

U1 ≤ U2

ξ[ ]/U1 ≤ Object/U2

Note that, the last rule follows from the fact that each array class is a direct subclass of the class
Object.

Next, we define several operations on types. To simplify these definitions, we use ∗ to represent a
binary operator ⊗ or & and use L̇. to represent a unary operator L. or L̂..

Definition 3.11 We define τ1 ∗ τ2, L̇.τ by:

Top ∗Top = Top
Int ∗ Int = Int
(σ/U1) ∗ (σ/U2) = σ/(U1 ∗U2)
(ξ[ ]/U1) ∗ (ξ[ ]/U2) = ξ[ ]/(U1 ∗U2)
L̇.(σ/U ) = σ/(L̇.U )
L̇.(ξ[ ]/U ) = ξ[ ]/(L̇.U )

(The operation is undefined for the arguments that do not match the above definition.)

Definition 3.12 We define τ1 ≤L̇ τ2 by:

τ1 ≤L̇ τ2 ⇔




(τ1 ≤ L̇.τ2)
∨ (τ2 = Top ∧ ∃σ.τ1 = σ/L̇.0)
∨ (τ2 = Top ∧ ∃ξ.τ1 = ξ[ ]/L̇.0)

These relation τ1 ≤L τ2 and τ1 ≤bL τ2 means that after values of type τ1 are locked or unlocked
respectively, these values will be used as values of type τ2. For example, Counter/L.L̂.0 ≤L Counter/L̂.0
and Counter/L̂.0 ≤bL Top and Counter[ ]/L̂.0 ≤bL Top hold.

We also define the function Use(τ) on types as follows:

Use(τ) =





U τ = σ/U
U τ = ξ[ ]/U
0 τ = Top
undefined otherwise

3.3 Type environments

A frame type, denoted by a meta-variable F , is a partial mapping from V to T . F (x) denotes the type
of a value stored in the local variable x.

A stack type, denoted by a meta-variable S, is a partial mapping form N to T . S(n) denotes the
type of a n-th value stored in the operand stack. We write ε for the type of the empty stack. A stack
type τ · S is defined by (τ · S)(n + 1) = S(n) and (τ · S)(0) = τ .

A frame type environment, denoted by a meta-variable F , is a mapping from A to the set of frame
types. F(l) describes the types of values stored in local variables just before the program address l is
executed. Similarly, a stack type environment, denoted by a meta-variable S, is a mapping form A to
the set of stack types. S(l) describes the types of values stored in the operand stack just before the
program address l is executed. For example, F(l)(x) = σ/L̂ means that σ-class object is stored in the
local variable x at program address l, and the lock on the object will be released afterwards.

We extend some operations and relations on types to ones on frame types or stack types.
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Definition 3.13 Suppose that dom(F1) = dom(F2). Then F1 ∗ F2 is defined by:

dom(F1 ∗ F2) = dom(F1)
∀x ∈ dom(F1).(F1 ∗ F2)(x) = (F1(x)) ∗ (F2(x))

Definition 3.14 A frame type F1 is a subtype of F2, written F1 ≤ F2, if:

dom(F1) = dom(F2)
∀x ∈ dom(F1).(F1(x) ≤ F2(x))

We also write F ≤ Top if F (x) ≤ Top holds for each x ∈ dom(F ).
The operations S1 ∗ S2 and the relations S1 ≤ S2 and S ≤ Top are defined in a similar manner.

3.4 Typing rules

We consider a judgment of the form 〈F ,S〉 `P (B,E, D). It means that the method (B,E, D) is well-
typed under the assumption that the values stored in local variables and the operand stack have the
types described by F and S and the values in object fields have the types indicated by class definitions
in program P .

To define the relation above, we introduce relations F ,S, l `P (B, E, D). Intuitively, it means that
the instruction at l can be safely executed on the assumption that the values stored in local variables
and the operand stack have the types described by F and S and the values in object fields have the
types indicated by class definitions in program P .

Definition 3.15 F ,S, l `P (B, E,D) is the least relation closed under the rules in Figure 4.

In Figure 4 and 5 , Fl and Sl are shorthand notations for F(l) and S(l) respectively.
We explain several rules below:

Rule (MENTR): The first line states that the instruction at address l is monitorenter. The second
line states that an instruction exists at the next address l + 1. Since the object stored in local variable
x is locked at this address and then used according to Fl+1(x), the object is accessed according to
L.Fl+1(x) in total. The fourth line expresses this condition. The third line also says that the types of
the values stored in the other local variables at address l are subtypes of those at address l + 1, since
those values are not accessed at l. Similarly, since the stack is not accessed, the stack type at l should
be a subtype the stack type at l + 1.

Rule (IF): The first line states that the instruction at address l is if l′. The second line states that
there are instructions at addresses l′ and l+1. Since the values stored in local variables are not accessed
at l, they are accessed according to either Fl+1 or Fl′ , depending on which branch is taken. The third
line expresses this condition. The fourth line expresses the condition that the stack top at address l
must be an integer and the condition that the other values stored in the stack are accessed according
to either Sl+1 or Sl′ .

Rule (ATHROW): The first line states that the instruction at address l is athrow. Since the control
jumps to E(l), it must be the case that E(l) ∈ dom(B), as specified in the second line. The values
stored in local variables are not accessed at l and they are accessed according to E(l). This condition
is expressed by the third line. The fourth line expresses the condition that all values stored in the stack
are not accessed afterwards, since the operand stack becomes empty when the exception is raised.

Rule (PUTFIELD): The first and second lines state that the instruction at address l is putfield σ.a d
and σ-classes definition in program P has field a of descriptor d (d 6= Int). This instruction pops two
values form the operand stack and stores the first value into field a of the second value. Here, the first
value must be a object or an array that will be locked and unlocked properly, because we assume that
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elements of objects and arrays are locked and unlocked properly after they are extracted from objects
or arrays. The fifth line expresses this conditions.

Rule (NEW): The third line states that the values stored in local variables are not accessed at l,
they are accessed according to either Fl+1 or FE(l), depending on whether an asynchronous exception is
raised or not. The condition rel(U ) in forth line states that an object created by the new σ instruction
have to locked and unlocked properly later. The condition S[l] ≤ Top states that the values stored in
the operand stack may be not accessed later. Actually, if an exception is raised, then all values in the
operand stack are popped, therefore, this condition is necessary.

Now we define the type judgment relation for methods.

Definition 3.16 (Type judgment for methods)
The relation 〈F ,S〉 `P (B,E, D) is defined by the following rule:

∀x ∈ dom(F(1)). relt(F(1)(x))

Raw(F(1)(x)) =
{

D(x) if x ∈ dom(D)
Top otherwise

S(1) = ε
∀l ∈ codom(E).(S(l) = ε)

∀l ∈ dom(B) ∪ codom(E). F ,S, l `P (B,E, D)
〈F ,S〉 `P (B, E,D)

Here, Raw(τ) is defined by:
Raw(Int) = Int
Raw(Top) = Top
Raw(σ/U ) = σ
Raw(ξ[ ]/U ) = ξ[ ]

In the rule above, the first premise enforces that all objects stored in local variables at the beginning
of the method are safely used in the sense that a lock that is acquired during execution of the method is
always released during the same method execution. The second premise states that the values stored in
local variables at the beginning of the method must have the types specified by the method descriptor.
The third and fourth premises states that the operand stack at the beginning of the method or at the
beginning of an exception handler is empty. The last line states that the method is well-typed at each
address.

Definition 3.17 (Well-typed program) A program P is well-typed if for each class name σ ∈
dom(P ), there exist F and S such that P (σ) = (FD , (B, D,E)) and 〈F ,S〉 `P (B,E,D) holds.

Example 3.18 Code 3 in the figure 1 is well-typed as shown in Figure 6.

Example 3.19 The method in Figure 7 is well-typed. The method first locks the A-class object given
as the first argument, creates a new B-class object, stores it into the b-field and then unlocks the A-class
object. In the code, Exc denotes the type of an exception.

The exception table in the method is interpreted as the following function E in our model.

E(l) =
{

7 l = 2, 3, 4, 5
12 otherwise

Note that we assume new B instruction may raise a exception. For this reason, we must assign type
A/L̂.0&L̂.0 to F3(0) according to typing rule (NEW) so that F3 ≤ F4&F7 hold.

Example 3.20 The method in Figure 8 is well-typed. In the code, the S-class object in local variable 1
is stored into the array in variable 0. Then an S-class object is retrieved from the array and is locked
and unlocked.
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(INC)
B(l) = inc

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl(0) ≤ Int Sl ≤ Sl+1

F ,S, l `P (B, E, D)

(PUSH)
B(l) = push0

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Int · Sl ≤ Sl+1

F ,S, l `P (B, E, D)

(POP)
B(l) = pop

l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ Top · Sl+1

F , S, l `P (B, E, D)

(IF)
B(l) = if l′

l′, l + 1 ∈ dom(B)
Fl ≤ Fl+1&Fl′

Sl ≤ Int · (Sl+1&Sl′)

F ,S, l `P (B, E, D)

(LOAD)
B(l) = load x
l + 1 ∈ dom(B)

Fl ≤ Fl+1{x 7→ Fl+1(x)⊗ Sl+1(0)}
Sl+1(0) · Sl ≤ Sl+1

F ,S, l `P (B, E, D)

(STORE)
B(l) = store x
l + 1 ∈ dom(B)

Fl ≤ Fl+1{x 7→ Top}
Sl ≤ Fl+1(x) · Sl+1

F ,S, l `P (B, E, D)

(NEW)
B(l) = new σ

l + 1 ∈ dom(B)
Fl ≤ Fl+1&FE(l)

(σ/U ) · Sl ≤ Sl+1 rel(U )
Sl ≤ Top

F ,S, l `P (B, E, D)

(START)
B(l) = start σ
l + 1 ∈ dom(B)
Fl ≤ Fl+1

∀ i ∈ dom(Dσ).Dσ(x) = τi

dom(Dσ) = {0, . . . , n− 1}
Sl ≤ τ0·, . . . , ·τn−1 · σ/0 · Sl+1

F ,S, l `P (B, E, D)

(RETURN)
B(l) = return

Fl ≤ Top
Sl ≤ Top

F ,S, l `P (B, E, D)

(MENTR)
B(l) = monitorenter x

l + 1 ∈ dom(B)
Fl \x ≤ Fl+1 \x
Fl(x) ≤L Fl+1(x)

Sl ≤ Sl+1

F ,S, l `P (B, E, D)

(MEXT)
B(l) = monitorexit x

l + 1 ∈ dom(B)
Fl \x ≤ Fl+1 \x
Fl(x) ≤bL Fl+1(x)

Sl ≤ Sl+1

F ,S, l `P (B, E, D)

(ATHROW)
B(l) = athrow

Fl ≤ FE(l)

Sl ≤ Top

F ,S, l `P (B, E, D)

(BREAK)
l 6∈ dom(B)

l ∈ codom(E)
Fl ≤ Top
Sl ≤ Top

F ,S, l `P (B, E, D)

Figure 4: Typing rules
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(PUTFLDInt)
B(l) = putfield σ.a Int

σP .a : Int
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ Int · (σ/0) · Sl+1

F ,S, l `P (B, E, D)

(PUTFLD)
B(l) = putfield σ.a d

d 6= Int σP .a : d
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ (d/⊥rel) · (σ/0) · Sl+1

F ,S, l `P (B, E, D)

(GETFLDInt)
B(l) = getfield σ.a Int

σP .a : Int
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ (σ/0) · S ′ Int · S ′ ≤ Sl+1

F ,S, l `P (B, E, D)

(GETFLD)
B(l) = getfield σ.a d

d 6= Int σP .a : d
l + 1 ∈ dom(B)
Fl ≤ Fl+1

Sl ≤ (σ/0) · S ′ (d/U ) · S ′ ≤ Sl+1

rel(U )

F ,S, l `P (B, E, D)

(ALOADInt)
B(l) = aaload

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ = Int or ξ = Top
Sl ≤ Int · (ξ[ ]/0) · S ′

ξ · S ′ ≤ Sl+1

F ,S, l `P (B, E, D)

(ALOAD)
B(l) = aaload

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ 6= Int and ξ 6= Top
Sl ≤ Int · (ξ[ ]/0) · S ′

(ξ/U ) · S ′ ≤ Sl+1 relU

F ,S, l `P (B, E, D)

(ASTOREInt)
B(l) = aastore

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ = Int or ξ = Top
ξ · Int · (ξ[ ]/0) · Sl ≤ Sl+1

F ,S, l `P (B, E, D)

(ASTORE)
B(l) = aastore

l + 1 ∈ dom(B)
Fl ≤ Fl+1

ξ 6= Int and ξ 6= Top
(ξ/⊥rel) · Int · (ξ[ ]/0) · Sl ≤ Sl+1

F ,S, l `P (B, E, D)

Figure 5: Typing rules for instructions related to the object/array field

l instruction Fl(0) Fl(1) S
1 monitorenter 0 S/L.(bL.0&bL.0) Int ε

2 load 1 S/bL.0&bL.0 Int ε

3 if 6 S/bL.0&bL.0 Int Int · ε
4 monitorexit 0 S/bL.0 Int ε
5 return S/0 Int ε

6 monitorexit 0 S/bL.0 Int ε
7 return S/0 Int ε

Figure 6: Typing for code 3 in the figure 1
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l instruction Fl(0) Fl(1) S
1 monitorenter 0 A/L.(bL.0&bL.0) Top ε

2 load 0 A/(bL.0&bL.0) Top ε

3 new B A/(bL.0&bL.0) Top A/0 · ε
4 putfield A.b B A/bL.0 Top B/⊥rel · A/0 · ε
5 monitorexit 0 A/bL.0 Top ε
6 return A/0 Top ε

7 store 1 A/bL.0 Top Exc/0 · ε
8 monitorexit 0 A/bL.0 Exc/0 ε
9 load 1 A/0 Exc/0 ε
10 athrow A/0 Exc/0 Exc/0 · ε
11 return A/0 Exc/0 ε

Exception table: E

from to target type

2 5 7 any

10 10 11 any

Figure 7: Typing for an example code

l instruction Fl(0) Fl(1) Fl(2) S
1 monitorenter 0 S[ ]/L.bL.0 S/⊥rel Int ε

2 load 0 S[ ]/bL.0 S/⊥rel Int ε

3 load 2 S[ ]/bL.0 S/⊥rel Int S[ ]/0 · ε
4 load 1 S[ ]/bL.0 S/⊥rel Int Int · S[ ]/0 · ε
5 aastore S[ ]/bL.0 S/0 Int S/⊥rel · Int · S[ ]/0 · ε
6 · · · S[ ]/bL.0 S/0 Int ε

7 load 0 S[ ]/bL.0 S/0 Int ε

8 load 2 S[ ]/bL.0 S/0 Int S[ ]/0 · ε
9 aaload S[ ]/bL.0 S/0 Int Int · S[ ]/0 · ε
10 store 1 S[ ]/bL.0 S/0 Int S/L.bL.0 · ε
11 monitorexit 0 S[ ]/bL.0 S/L.bL.0 Int ε

12 monitorenter 1 S[ ]/0 S/L.bL.0 Int ε

13 · · · S[ ]/0 S/bL.0 Int ε

14 monitorexit 1 S[ ]/0 S/bL.0 Int ε
15 return S[ ]/0 S/0 Int ε

Figure 8: Typing for an example code
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4 Soundness of the type system

We have proved that our type system is sound in the sense that if a well-typed program is executed, any
thread that has acquired a lock will eventually release the lock (provided that the thread terminates),
and any thread that tries to release a lock has previously acquired the lock.

The soundness of our type system is stated formally as follows:

Theorem 4.1 Suppose that a program P is well-typed, and that
P ` 〈{0 7→ 〈1, ø, ε, ø,mainP 〉}, ø〉 →∗ 〈Ψ,H〉.
For each i ∈ Ψ, if Ψ(i) = 〈l, f, s, z, σ〉, then the following properties hold:

1. If P (σ) = (FD , (B,D, E)) and B(l) = return, then z(o) = 0 for all o ∈ dom(H).

2. If P (σ) = (FD , (B,D, E)) and l 6∈ dom(B), then z(o) = 0 for all o ∈ dom(H).

3. If P (σ) = (FD , (B,D, E)) and B(l) = monitorexit x , then z(f(x)) ≥ 1.

In this theorem, the first and second properties state that when a thread terminates normally or
abruptly, it has released all the locks it acquired. The third property states that when a thread tries to
release a lock, it has acquired the lock before.

We give an outline of the proof of the theorem below.

First, we introduce a program type environment, denoted by Γ, as a mapping from a class name
to a pair 〈F ,S〉. We write Γ ` P if the run method of each σ-class in program P ( i.e. (B, D,E)
such that P (σ) = (FD , (B, D, E)) ) is well-typed under the type environment Γ(σ) (in the sense of
Definition 3.16).

We also define a type judgment relation (Γ, P ) ` 〈Ψ,H〉 for machine states. It means that the threads
Ψ and the heap H are consistent with the type assumption Γ and the class definition in program P .
(These relations are formally defined in appendix.)

We can prove that if a machine state is well typed, invalid usage of a lock does not occur immediately
(Lemma 4.1 below), and that the well-typedness of a machine state is preserved during execution of a
well-typed program (Lemma 4.2 below) . Theorem 4.1 follows immediately from these properties and
the fact that the initial machine state is well-typed (Lemma 4.3 below) .

Lemma 4.1 (Lack of immediate lock errors)
If (Γ, P ) ` 〈Ψ,H〉 and Ψ(i) = 〈l, f, s, z, σ〉, then the following properties hold:

1. If P (σ) = (FD , (B,D, E)) and B(l) = return, then z(o) = 0 for all o ∈ dom(H).

2. If P (σ) = (FD , (B,D, E)) and l 6∈ dom(B), then z(o) = 0 for all o ∈ dom(H).

3. If P (σ) = (FD , (B,D, E)) and B(l) = monitorexit x , then z(f(x)) ≥ 1.

Lemma 4.2 (Subject reduction)
Suppose that Γ ` P and (Γ, P ) ` 〈Ψ,H〉 hold. If P ` 〈Ψ,H〉 → 〈Ψ′,H ′〉, then (Γ, P ) ` 〈Ψ′,H ′〉

holds.

Lemma 4.3 (Well-typedness of initial state)
If Γ ` P , then (Γ, P ) ` {〈0 7→ 〈1, ø, ε, ø,mainP 〉}, ø〉 holds.
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Remark We do not discuss the usual type safety and focus on the usage of locks. The reason is that
if we drop usage expressions from our types system, the resulting type system is almost the same as
Stata and Abadi’s type system (except some difference of supported instructions), so, usual (no locking-
related) soundness of our type system follows immediately. Actually, we can show the following progress
theorem

Theorem 4.2 (Progress) If (Γ, P ) ` 〈Ψ, H〉, then one of the following conditions holds.

1 For all i ∈ dom(Ψ), if Ψ(i) = 〈l, f, s, z, σ〉 and P (σ) = (FD , (B,D, E)),

then either B(l) = return or l 6∈ dom(B) holds.

2 For a 〈Ψ′,H ′〉, P ` 〈Ψ,H〉 → 〈Ψ′,H ′〉 holds

In the theorem, the condition 1 means that all threads terminate normally or abruptly. the condition
2 says evaluation can make another step. We do not prove here the standard progress property which
says that evaluation of a well-typed program does not get stuck.

5 Type inference

5.1 Type inference algorithm

Because of the soundness of the type system, we can statically verify that a program properly uses lock
primitives by checking that the program is well-typed. To check whether a program P is well-typed, it
is sufficient to check, for each method (B, E,D) of the program, whether there exist F and S such that
〈F ,S〉 `P (B, E, D) by performing type inference. The type inference proceeds as follows.

1. Step 1: Based on the typing rules, generate constraints on usages and types.

2. Step 2: Reduce the constraints and check whether they are satisfiable.

We do not show details of the algorithm since it is fairly standard [14, 7] except for the last step.
We illustrate how type inference works using an example. Consider the third method body in Figure 1
with an empty exception table and the method descriptor {0 7→ σ, 1 7→ Int}. For simplicity, we assume
that type information except for usages has been already obtained (for example, by using and Stata
and Abadi’s type system [18]). The frame type environment F and the stack type environment S of the
method are given as:

F [l](0) = σ/αl for each l ∈ {1, . . . , 7}
F [l](1) = Int for each l ∈ {1, . . . , 7}
S[l] =

{
Int · ε if l = 3
ε otherwise

Here, each αl is a usage variable to denote unknown usages. It expresses how the object stored in local
variable 0 will be locked and unlocked at address l or later.

From the typing rule for the method (Definition 3.16), we obtain the following constraints:

rel(α1)
α1 ≤ L.α2

α2 ≤ α3

α3 ≤ α4&α6

α4 ≤ L̂.α5

α5 ≤ 0
α6 ≤ L̂.α7

α7 ≤ 0
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From the constraints except for the first one, we obtain a solution α1 = L.((L̂.0)&(L̂.0)). By substituting
it for the first constraint, we get the constraint

rel(L.((L̂.0)&(L̂.0))).

Since it is satisfied, we know that lock primitives are safely used.
On the other hand, suppose that the instruction at address 3 is if 7. Then the constraint α3 ≤ α4&α7

is generated instead of the constraint α3 ≤ α4&α6. In this case, we get the constraint rel(L.((L̂.0)&0)).
Since it does not hold, we know that lock primitives may be used incorrectly.

As in the above example, the type-checking problem is reduced to the problem of deciding whether
constraints of the form rel(U ) hold. As in type systems for deadlock-freedom [11], this problem can
be reduced to the reachability problem of Petri nets [4], and hence the problem is decidable. A more
efficient algorithm for judging the reliability is given in Appendix A.

5.2 Complexity of the inference algorithm

We discuss the complexity of our type inference algorithm. Suppose that the size of the method (i.e.
the number of instructions) is k. The size of local variables and stack frames is O(k). Therefore, the
number of constraints generated in Step 1 is O(k2), and the time complexity of this step is also O(k2).

In Step 2, we use the algorithm in Appendix A for checking the satisfiability of the constraints. It
takes O((l + 1) · N2) time as discussed in Appendix A , where l is the number of occurrence of the
usage constructor L. , namely monitorenter instruction in the method, and N is the size of constraints
generated in Step 1. Furthermore, l is O(k) and N is O(k2), therefore, the total time complexity is
O(k5).

However, if we assume that the number of local variables and the size of stack frames is bound by
a constant and that the number of instruction monitorenter in the method is also a constant, we can
expect that the time complexity is O(k2).

6 Implementation

Based on the type system in this paper, we have implemented a Java bytecode verifier for the full JVML
language using Objective Caml. The implementation is mostly based on the formal system described
so far. There are, however, some differences between the formal system and the implementation, that
is due to the difference between JV MLL and JVML. We first discuss the main difference between
JV MLL and JVML and explain how the type system has been extended for deal with the real JV ML.

Differences between our model and real JVM The language JVMLL is a restriction of JVML
and our operational model simulates real JV ML’s model to a large extent, but, there are some definite
differences between both models.

First, we assume that there is only a single kind of exception in our model unlike real JVML. This
assumptions does not limit the generality of our analysis, because it is sufficient for our analysis to
determine target program address to which the control jumps when an exception raised. In real JVM,
the target program is able to be decided statically by a type of the exception and an address at which
the exception is raised in the same way that usual bytecode verifier decide it. Therefore, if we want to
introduce many kinds of exceptions into our model, it is only necessary to model exception table E as
a total mapping from pairs consisting of an address l ∈ dom(B) and a type of exception to A.

Second, in our target language JVMLL, only new σ and athrow instructions raise an exception, but
in actual JVML, many other instructions may raise an exception. For example in the JVML, both
getfield σ.a d and putfield σ.a d instructions may raise a null pointer exception. Note that the
new σ instruction in actual JVML only allocates a new memory block to a new object and does not
initialized the memory block. Therefore a null pointer exception may be raised, for example, during the
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execution of getfield σ.a d instruction if an object on the top of the operand stack is not initialized.
To deal with real JVML’s instructions that may raise an exception, we have only to modify typing rules
for these instructions like the rule (NEW). For example, for the getfield σ.a d instruction, we modify
the rules (PUTFLDInt), (PUTFLD) as the following rules:

(GETFLDEXC
Int )

B(l) = getfield σ.a Int
σP .a : Int

l + 1 ∈ dom(B)
Fl ≤ Fl+1&FE(l)

Sl ≤ (σ/0) · S ′ Int · S ′ ≤ Sl+1

Sl ≤ Top
F ,S, l `P (B,E, D)

(GETFLDEXC)
B(l) = getfield σ.a d

d 6= Int σP .a : d
l + 1 ∈ dom(B)
Fl ≤ Fl+1&FE(l)

Sl ≤ (σ/0) · S ′ (d/U ) · S ′ ≤ Sl+1

Sl ≤ Top rel(U )
F ,S, l `P (B, E,D)

We change the condition Fl ≤ Fl+1 to the condition Fl ≤ Fl+1&FE(l) and add the condition
Sl ≤ Top. The changed condition states that values in local variables may be accessed according to
FE(l) ( or may be accessed according to Fl+1 ) and the additional condition states that values in the
operand stack may be not accessed later. In cases where an exception is raised during the execution of
getfield σ.a d instruction, the values in local variables and the operand stack are accessed according
to FE(l) and Top actually. The modification allow for the cases. In this way, we deal with instructions
that may raise an exception.

Our verifier Our verifier receives Java class files and checks that all methods in the class use lock
primitives safely base on the type system. Moreover, the verifier has two modes. In the first mode,
the verifier gives only a yes/no answer on whether each method is well-typed. In the second mode, the
verifier pretty-print inferred types.

For example, let us consider the deposit method written by Java language at Account.java in Figure 9.
The deposit method is compiled into code Dep in the figure.

Given the class file generated from Account.java in Figure 9 our prototype verifier displays the
following message:

Class name: Account
Class type: Account

Fileld types:
balance: int

Number: 0
Method name: <init>
Argument types:(Account/0 Int )
Return type: void
Lock Check : true

Number: 1
Method name: deposit
Argument types:(Account/L.UL.0, Int )
Return type: void
Lock Check : true

Here, Argument types: and Return type: indicate the types of arguments and the type of return
value. Lock Check : indicates whether verification succeeded or not.
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class Account {
int balance;

Account(int n) {
this.balance = n;

}

void deposit(int n) {
synchronized (this) {

this.balance
= this.balance + n;

}
}

}
(Account.java)

Method deposit:
1 load 0
2 store 2
3 monitorenter 2
4 load 0
5 load 0
6 getfield Account.balance int
7 load 1
8 add
9 putfield Account.balance int

10 monitorexit 2
11 goto 16
12 store 3
13 monitorexit 2
14 load 3
15 athrow
16 return

Exception table:
from to target type

4 10 12 any

(code Dep)

Figure 9: Java source code for an Account class and JVMLL code for the deposit method in the source
code: add instruction popes two integers from the operand stack, adds the two values and push the
integer sum onto the stack. The goto l instruction jumps to the program address l.

The message for the deposit method states that the first argument of the method is Account-class
object, which is locked (L.) and then unlocked(UL.) eventually in the method, the second argument of
the method is of type Int and that the method returns no values. The line “Lock Check : true”
indicates that all objects in method are properly locked and unlocked. So, the method is well typed
with both normal verifier and our (lock-checking) verifier.

If we remove the monitorexit 2 instruction at program address 13 in code Dep in Figure 9 our
verifier displays the following message:

Method name: deposit
Argument types:(Account/L.(UL.0 & 0), Int)
Return type: void
Lock Check : false

This states that the modified code has been rejected by the verifier. The type Account/L.(UL.0 &
0) of the first argument indicates that the argument is an Account-class object, which is first locked
(L.) and then may or may not be unlocked (UL.0 & 0).

We have checked several class files in Java run time class libraries. All the classes were verified
successfully. Figure 10 shows the time spent for the verification of each class. As stated above, our
verifier has two modes. In the first mode, the verifier gives only a yes/no answer on whether each
method is well-typed. In the second mode, the verifier pretty-print inferred types (as shown above).
Timev shows the execution time for the first mode and Timei shows one for the second mode.
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Class name Size
(bytes) NLM

Timev

(seconds)
Timei

(seconds)
java.lang.Throwable 1559 3 0.003 0.016
java.io.StringReader 1905 6 0.019 0.714
java.lang.ref.ReferenceQueue 2320 6 0.026 1.019
java.lang.Pakage 6490 2 0.009 0.224
java.lang.Thread 7095 1 0.007 0.139
java.net.InetAddress 7647 4 0.018 0.530
java.lang.ThreadGroup 7274 14 0.172 22.041
java.util.ResourceBundle 8655 4 0.053 35.932
java.net.URL 9012 4 0.075 22.138
java.lang.SecurityManager 9128 3 0.037 2.234
java.lang.ClassLoader 14233 6 0.119 24.728

Figure 10: Size is the byte size of each class and NLM indicates the number of methods including lock
or unlock instructions.

We show more details for each method that includes lock primitives in java.lang.ThreadGroup and
java.lang.ClassLoader classes in Figure 11.

7 Related Work

Our type system was obtained by extending Stata and Abadi’s type system for JVML [18] with usages.
Bigliardi and Laneve [2] have proposed a type system for checking usage of concurrency primitives
including lock primitives. As mentioned in Section 1, the type system is rather complex and it imposes
strong restrictions on usage of lock primitives.

Recently, Laneve proposed a more flexible type system [12]. The type system uses indexed object
types, which are singleton types obtained by annotating a normal object type (i.e. class name) with
a program address where each object is copied to the operand stack from a local variable. A multiset
of the indexed object types is used to express the set of locked objects at each program address. For
example, σl is a σ-class object that is copied to the operand stack at program address l and Zl = {σl′}
expresses that at address l a σ-class object that has been copied at address l′ is locked. The monitorenter
instruction adds the type of the locked object to that multiset and the monitorexit instruction removes
the type of the unlocked object from the multiset. The type system checks that the multiset of indexed
object types is empty at the return address For example the type system assigns types to the code 3 in
Figure 1 as shown in Figure 12.

However, since object types must be singleton types, the type system cannot deal with a case where
multiple objects flow to the same variable. For example, consider the code 5 in Figure 13. The code
is not well-typed in Laneve’s type system, since it is not statically known whether the object locked
at address 9 has type σ3 or σ6. To solve the problem, Laneve informally discusses introduction of a
subtype relation, without a formal proof. Moreover, even with that extension, subroutines cannot be
dealt with properly. On the other hand, the code 5 is well-typed in our type system as shown in Figure
14.

While, there are also some bytecode that can be typed in Laneve’s type system but not in our type
system.

First, our type system cannot deal with bytecodes that include load x instruction and monitorenter,
monitorexit instructions separately. Such kind of bytecodes are rearly generated except for the follow-
ing left code produced by Microsoft compilers:
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java.lang.ClassLoader

Method name Insts Maximal
frames NLP

Timev

(seconds)
Timei

(seconds)
getPackage 44 9 3 0.009 0.210
difinePackage 45 23 3 0.021 0.778
getDefaultDomain 50 9 3 0.004 0.197
findNative 50 16 3 0.010 0.154
getPackages 62 10 4 0.012 0.588
loadLibrary0 193 22 11 0.075 23.762

java.lang.ThreadGroup

Method name Insts Maximal
frames NLP

Timev

(seconds)
Timei

(seconds)
interrupt 58 11 3 0.008 0.271
resume 58 11 3 0.008 0.268
activeGroupCount 58 11 4 0.008 0.156
activeCount 59 12 4 0.008 0.175
setMaxPriority 60 9 3 0.009 0.402
add 63 10 3 0.011 0.572
add 63 10 3 0.011 0.569
remove 78 11 4 0.012 1.743
remove 78 11 4 0.012 1.871
destroy 80 10 3 0.013 1.052
list 83 15 3 0.017 1.109
stopOrSuspend 87 14 3 0.017 2.582
enumerate 92 14 3 0.019 3.368
enumerate 100 15 4 0.022 4.427

Figure 11: Insts indicates the number of instructions in each method, Maximal frames is the sum of
maximal local variables and maximal stack size used during execution of each method and NLP is the
number of lock primitives (i.e. monitorenter x and monitorexit x) in each methods.
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Address l Instruction Fl(x) Fl(y) Sl Zl

1 load x σ Int ε {}
2 monitorenter σ1 Int σ1 · ε {}
3 load y σ1 Int ε {σ1}
4 if 8 σ1 Int Int · ε {σ1}
5 load x σ1 Int ε {σ1}
6 monitorexit σ1 Int σ1 · ε {σ1}
7 return σ1 Int ε {}
8 load x σ1 Int ε {σ1}
9 monitorexit σ1 Int σ1 · ε {σ1}
10 return σ1 Int ε {}

Figure 12: Typing for Code 3 in Figure 1 in Laneve’s type system

load x
dup

store y
monitorenter

...
load y
monitorexit

return

load x
store y
monitorenter y
...
monitorexit y
return

where, the instruction dup makes an extra copy of the top item on the stack and adds it to the operand
stack.

For the above code, our verifier replaces the sequence of instructions dup, store y, monitorenter /
monitorexit with dup, store y, monitorenter y / monitorexit y (i.e. the left code is considered as
the above right code) and then performs type checking.

Second, our type system does not keep track of the order of accesses through different local variables
or stack locations, which causes some correct programs to be rejected. Consider code 7 in Figure 15. It
should be considered valid, but it is rejected by our type system. That is because our type system fails
to keep track of precise information about the order between accesses through different variables, and
assigns L⊗ L̂ to the usage of object S created at address 1. (On the other hand, our type system does
accept code 8: the usage L.L̂ is assigned to object S at address 1.) We think that this kind of code
rarely appears in practice. If it is necessary to analyze such code, we can extend the type system by
using an idea presented in the generic type system for the π-calculus [8].

Recently, various methods for statically analyzing usage of lock primitives have been proposed for
other languages [3, 5]. However, the semantics of lock primitives treated in those languages are different
from the one treated in this paper, and hence it is not clear whether those methods can be applied to our
target language. In those languages, each lock has only two states: the locked state and the unlocked
state. On the other hand, in our target language, a lock can have infinitely many states (since each lock
has a counter expressing how many times it has been acquired).

The idea of adding usages to types has its origin in type systems [11, 19] for the π-calculus. In those
type systems, usage expressions are used to express in which order communication channels are used
for input and output.

Recently, Igarashi and Kobayashi [9] developed a general type system for analyzing usage of various
resources such as files, memory, and locks. The problem treated in the present paper is an instance of
the general problem treated by them [9]. However, the target language of their analysis is a functional
language, while our target language is a more low-level language. We also gave a concrete algorithm for
checking the reliability of a usage, while the corresponding algorithm is left unspecified in Igarashi and
Kobayashi’s paper [9].
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1 load 2
2 if 6
3 load 0
4 store 3
5 goto 8
6 load 1
7 store 3
8 load 3
9 monitorenter

10 load 3
11 monitorexit
12 return

(code 5)

Figure 13: A program that Laneve’s type system does not accept successfully

Address l Instruction Fl(0) Fl(1) Fl(2) Fl(3) Sl

1 load 2 σ/(L.bL.0)&0 σ/(L.bL.0)&0 Int Top ε

2 if 6 σ/(L.bL.0)&0 σ/(L.bL.0)&0 Int Top Int · ε
3 load 0 σ/L.bL.0 σ/0 Int Top ε

4 store 3 σ/0 σ/0 Int Top σ/L.bL.0 · ε
5 goto 8 σ/0 σ/0 Int σ/L.bL.0 ε

6 load 1 σ/0 σ/L.bL.0 Int Top ε

7 store 3 σ/0 σ/0 Int Top σ/L.bL.0 · ε
8 monitorenter 3 σ/0 σ/0 Int σ/L.bL.0 ε

9 monitorexit 3 σ/0 σ/0 Int σ/bL.0 ε
10 return σ/0 σ/0 Int σ/0 ε

Figure 14: Typing for Code 5

1 new S
2 store x
3 load x
4 store y
5 monitorenter x
6 monitorexit y
7 return

(code 6)

1 new S
2 store x
3 monitorenter x
4 load x
5 store y
6 monitorexit y
7 return

(code 7)

Figure 15: Programs that lock and unlock an object through different variables

26



Higuchi and Ohori [6] have proposed a type system for Java bytecode that is based on a λ-calculi-like
typed term calculus. We consider that it is not difficult to introduce types with lock usage in our type
system into their framework.

8 Conclusion

We have proposed a type system for checking usage of lock primitives for a subset of JVML [13], which
extends types with information about in which order objects are locked/unlocked. We have proved its
correctness and implemented a prototype verifier for the full JVML language based on the type system.
Finally, we have confirmed that the verifier runs properly and efficiently by checking several classes in
Java run time library with the verifier.
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A Algorithm for checking whether usage constraints are satis-
fiable

In this section, we give an algorithm for checking whether constraints generated in Step 1 of type
inference (see 5.1) are satisfiable and estimate time-complexity of the algorithm.

Constraints ( on usages ) generated in Step 1 can be reduced to the following set of constraints

{α1 ≤ U1, . . . , αn ≤ Un} ∪ {rel(αr1), . . . , rel(αrh
)}

where {r1, . . . , rh} ⊆ {1, . . . , n} and α1, . . . , αn are differnt from each other.
We can first solve {α1 ≤ U1, . . . , αn ≤ Un} by repeatedly applying the following reduction rules to

({α1 ≤ U1, . . . , αn ≤ Un}, ∅):

({α ≤ U } ∪ C , S) → ([µα.U /α]C , {α = µα.U } ∪ [µα.U /α]S).

Here, the first element of the pair is the set of remaining subusage constraints and the second
element is the solution. When ({α1 ≤ U1, ..., αn < Un}, ∅) is reduced to (∅, S), S is the solution for
{α1 ≤ U1, . . . , αn ≤ Un}. So, the problem is reduced to that of checking whether the solution satisfies
rel(αr1), . . . , rel(αrh

).
To check whether rel(U ) holds for a usage U , we consider two numbers MinU and FinU for each

closed usage U . MinU is the least n such that (U , 0) →∗
rel (U ′, n), while FinU is the greatest n such

that (U , 0) →∗
rel (U ′, n) and U ′ ≤ 0 (if no such n exists, FinU = −∞).

Example A.1 Min(L̂.L) = −1, Min(L.L̂) = 0 and Fin(L̂.L) = Fin(L.L̂) =
0, F in(µα.(L&L.L̂.α)) = 1

By Definition 3.6, rel(U ) if and only if (1)MinU = 0 and (2)FinU ≤ 0.
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Using this idea, we can check whether rel(αri) (i = 1, 2, · · · , h) holds for the solution of {α1 ≤
U1, . . . , αn ≤ Un}.

First, we check whether Minαri
= 0 (i = 1, . . . , h) holds as follows: Let x1, . . . , xn be variables

denoting Minα1 , . . .Minαn . Let CMin be the set of equations

{xi = MinExp(Ui) | αi ≤ Ui is a constraint generated in Step 1}

where MinExp(V ) is an expression defined by:

MinExp(0) = 0
MinExp(⊥rel) = 0
MinExp(αi) = xi

MinExp(U1 ⊗U2) = MinExp(U1) + MinExp(U2)
MinExp(U1&U2) = min(MinExp(U1),MinExp(U2))
MinExp(L.U ) = min(0,MinExp(U ) + 1)
MinExp(L̂.U ) = MinExp(U )− 1.

CMin can be expressed in the form

{x1 = F1(x1, . . . , xn),
· · · ,
xn = Fn(x1, . . . , xn)}

where Fi is a monotonic function obtained by composing the operators +, constants 0, 1, −1 and min.
Here, min(x, y) denotes the minimum of x and y.

We write V ar(Fi)(⊆ {x1, . . . , xn}) for the set of variables that occur in Fi(x1, . . . , xn) and define
V ar(Fi)(⊂ {x1, . . . , xn}) as the least set that satisfies the following conditions.

V ar(Fi) ⊇ V ar(Fi) ∪ {x ∈ V ar(Fj) | xj ∈ V ar(Fi)} (i = 1, . . . , n).

Intuitively, V ar(Fi) is the set of variables that affect the value of Fi(x1, . . . , xn).
Because we are only interesting in the value of Minαri

(i = 1, . . . , h), we can remove xi =
Fi(x1, . . . , xn) such that xi 6∈ V ar(Fr1) ∪ · · · ∪ V ar(Frh

) from CMin . Therefore, in the rest of this
section, we assume without loss of generality

V ar(Fr1) ∪ · · · ∪ V ar(Frh
) = {x1, · · · , xn}.

Compute (u(j)
1 , . . . , u(j)

n ) (j = 0, 1, · · · ) by

u(0)
i = 0

u(j+1)
i = Fi(u

(j)
1 , . . . , u(j)

n )

until j = m such that (u(m+1)
1 , . . . , u(m+1)

n ) = (u(m)
1 , . . . , u(m)

n ) or u(m)
i < 0 for some i ∈ {r1, . . . , rh}.

(Note that such m always exists.) and check whether u(m)
i = 0 for all i ∈ {r1, . . . , rh}. If this is true ,

we have Minαr1
= 0, · · · ,Minαrh

= 0 and proceed to the check for Finαi . If there exists ri such that

u(m)
ri < 0, the constraints are not be satisfiable.

Whether Finαri
≤ 0 (i = 1, . . . , h) holds can be checked in a similar manner. Let y1, . . . , yn be

variables denoting Finα1 , . . . ,Finαn . Let CFin be the set of equations

{yi = FinExp(Ui) | αi ≤ Ui is a constraint generated in Step 1}
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Here, FinExp(U ) is the expression defined by:

FinExp(0) = 0
FinExp(αi) = yi

FinExp(⊥rel) = 0
FinExp(U1 ⊗U2) = FinExp(U1) + FinExp(U2)
FinExp(U1&U2) = max(FinExp(U1),FinExp(U2))
FinExp(L.U ) = FinExp(U ) + 1
FinExp(L̂.U ) = FinExp(U )− 1.

CFin can be expressed in the form

{y1 = G1(y1, . . . , yn),
· · · ,
yn = Gn(y1, . . . , yn)}.

As in the previous case, we assume

V ar(Gr1) ∪ · · · ∪ V ar(Grh
) = {y1, . . . , yn}.

We first find i such that the least solution of CFin satisfies yi = −∞ as follows:
Compute (z (j)

1 , . . . , z (j)
n ) by

z (0)
i = −∞

z (j+1)
i = to fin(Gi(z

(j)
1 , . . . , z (j)

n ))

until j = m′ such that (z (m′+1)
1 , . . . , z (m′+1)

n ) = (z (m′)
1 , . . . , z (m′)

n ) (Such m′ always exists.) , where
function to fin is defined as follows:

to fin(n) =
{ −∞ n = −∞

fin n = fin or n is an integer.

and operations on fin are defined by:

fin + 1 = fin fin − 1 = fin

max(fin,−∞) = max(−∞,fin) = max(fin,fin) = fin.

When the computation stops, if v (m′)
i = −∞ holds, the least solution of CFin satisfies yi = −∞. So,

assigning −∞ to such variable yi in G1, . . . , Gn we transform CFin to C ′Fin . To define this C ′Fin formally,

we define V arfin as {yi ∈ {y1, . . . , yn} | z (m′)
i = fin} and V arinf as {yi ∈ {y1, . . . , yn} | z (m′)

i = −∞}.
C ′Fin is defined by:

G′i = Gi[−∞/yf1 , . . . ,−∞/yfn′′ ] (i = 1, . . . , n)

where {yf1 , . . . , yfn′′ } = V arinf (⊆ {y1, . . . , yn}).
Without loss of generality, we can assume

{yr1 , . . . , yrh
} ⊆ V arfin

V ar(G′r1) ∪ · · · ∪ V ar(G′rh
) = {yi1 , · · · , yin′} (= V arfin).

So, C ′Fin can be expressed in the form:

{yi1 = G′i1(yi1 , . . . , yin′ ),
· · · ,
yin′ = G′in′ (yi1 , . . . , yin′ )}
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where {yi1 , . . . , yin′} = V arfin (⊆ {y1, . . . , yn}).
Using this C ′Fin , we compute the value of each yri

(i = 1, . . . , h).
Compute (v (j)

i1
, . . . , v (j)

in′
) by

v (0)
i = −∞

v (j+1)
i = Gi

′(v (j)
i1

, . . . , v (j)
in′

)

until j = m such that v (m)
i = v (m+1)

i for all i ∈ {i1, . . . , in′} or v (m)
i > 0 for some i ∈ {r1, . . . , rh}.

(Such m always exists.) and check whether v (m)
i ≤ 0 holds for all i ∈ {r1, . . . , rh}. If this holds, we

have FinUr1
≤ 0, · · · ,FinUrh

≤ 0 and constraints generated in Step 1 are satisfiable. Otherwise, the
constraints are not satisfiable.

Time complexity of the algorithm Time complexity of checking whether the above constrains are
satisfiable is O((l + 1) ·N2) where N is the size of constrains generated Step 1 and l is the number of
occurrences of L. in {U1, . . . ,Un} (This l may be 0). Moreover, n (This is the number of constraints) is
estimated to O(N). In the rest of this section, we discuss this time complexity.

First, we calculate time complexity of checking whether Minαri
= 0 (i = 1, . . . , h) holds. It takes

time O(N) to transform sub-usage constraints to the equation system CMin and time O(n · m) to
compute (Min(j)

U1
, . . . ,Min(j)

Un
) for j = 0 to j = m. Therefore, The total time complexity is O(N ·m).

To estimate the number m , we note that u(j)
i has the following property:

(1) We assume u(j)
1 ≤ 0, . . . , u(j)

n ≤ 0. If u(j)
i < −l and xi ∈ V ar(Frk

), u(j+n)
rk < 0 holds.

– To prove it, we note that if xi ∈ V ar(Fk) then u(j+1)
k ≤ u(j)

i + #L(Fk) holds, where #L(Fk)
is the number of occurrences of L. in Uk. (This can be proved by induction of the structure
on Uk.) Here, let assume u(j)

i < −l and xi ∈ V ar(Frk
). Since V ar(Fr1) ∪ · · · ∪ V ar(Frh

) =
{x1, · · · , xn}, we have a series of variables xi, xk1 , . . . , xkp (0 ≤ p ≤ n) such that kp = rk and
the following conditions hold:

xi ∈ V ar(Fk1)
xk1 ∈ V ar(Fk2)

· · ·
xkp−1 ∈ V ar(Fkp).

By the above property, we have

u(j+p)
rk

= u(j+p)
rp

≤ u(j)
i + #L(Fk1) + · · ·+ #L(Fkp) ≤ u(j)

i + l.

By u(j)
i < −l and 0 ≤ p ≤ n, we have u(j+n)

rk < 0.

So, u(j)
i (j = 0, . . . , m−n−1) can range over {−l+1, . . . ,−1, 0}. Since ~u(0)

i , ~u(1)
i , . . . , ~u(m)

i decreases
monotonically, m = O(n× l +n+1) = O(n(l +1)), where ~u(j)

i = (u(j)
1 , . . . , u(j)

n ) (note that l may be 0).
Next, we calculate time complexity of checking whether FinUri

≤ 0 (i = 1, . . . , h) holds. Obviously
the number m′ of iterations in the first step is O(n) and it takes O(N2) to transform CFin to C ′Fin .
Therefore, when m is the number of iterations of the second step, the time complexity is O(m′ · n) +
O(N2) + O(m · n) = O(N2 + m · n).

To estimate the number m, we define w (j)
i (i ∈ {1, . . . , n}, j = 0, 1, . . .) by

w (0)
i = −∞

w (j+1)
i = Gi(w

(j)
1 , . . . ,w (j)

n ).
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Note that v (j)
i′ = w (j)

i′ for all yi′ ∈ V ar(G′r1) ∪ · · · ∪ V ar(G′rh
).

We note that v (j)
i′ , w (j)

i have following the properties:

(2) For all yi′ ∈ V ar(G′r1) ∪ · · · ∪ V ar(G′rh
), if j > n then v (j)

i′ > −∞.

– This follows from the definition of v (j)
i′ and the fact that z (j)

i′ = fin holds for j > n.

(3) For any integer c, w (j)
i = c ( 6= −∞) ⇒ u(j)

i ≤ c

– This follows from the fact that

(w (j)
i = −∞ ∨ w (j)

i ≥ u(j)
i ) ∧ αi ∈ FV (Uk)

⇒
(w (j+1)

k = −∞ ∨ w (j+1)
k ≥ u(j+1)

k )

(The proof is by induction on the structure of Uk.)

(4) The following fact holds:

(w (j)
i = −∞ ∨ w (j)

i > u(j)
i ) ∧ αi ∈ FV (Uk)

⇒
(w (j+1)

k = −∞ ∨ w (j+1)
k > u(j+1)

k ).

– The proof is by induction on the strudture of Uk.

(5) We assume that we have checked Minαi = 0 (i = r1, . . . , rh) holds.
If yi′ ∈ V ar(G′rk

) and v (j)
i′ > 0 (j > n), v (j+n)

rk > 0 holds.

– Since yi′ ∈ V ar(G′rk
), we have a series of variables yi′ , yk1 , . . . , ykp (0 < p ≤ n) such that

kp = rk and the following conditions hold:

yi ∈ V ar(G′k1) ⊆ V ar(Gk1)
yk1 ∈ V ar(G′k2) ⊆ V ar(Gk2)

· · ·
ykp−1 ∈ V ar(G′kp) ⊆ V ar(Gkp).

We note v (j′)
i′ = w (j′)

i′ and v (j′)
i′ > −∞ (j′ > n) (This follows form (2).) for i′ ∈ V ar(G′r1) ∪

· · · ∪ V ar(G′rh
). From u(j)

i′ ≤ 0 and the assumption v (j)
i′ > 0, v (j)

i′ > u(j)
i′ follows. So,

By repeatedly applying (4), we have v (j+p)
rk > u(j+p)

rk . From the assumption MinUrk
= 0,

v (j+n)
rk ≥ v (j+p)

rk > u(j+p)
rk ≥ MinUrk

= 0 follows.

From (1),(3) and the assumption that Minαri
= 0 (i = 1, . . . , h) are checked, we have v (j)

i 6= −∞ ⇒
v (j)
i ≥ −l. So, from (5), v (j)

i can range over {−∞,−l, . . . ,−1, 0}. Since ~v (0)
i , ~v (1)

i , . . . , ~v (m)
i increases

monotonically, m = O(n×(l+1)+n) = O(N(l+1)) (note that l may be 0), where ~v (j)
i = (v (j)

1 , . . . , v (j)
n ).

Therefore, the time complexity of the algorithm for checking whether above usage constraints are
satisfiable is O((l + 1) ·N2) as stated at the first statement of this paragraph.
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B Proof of Theorem 4.1

We prove the soundness of our type system in this section.
First, we define the type judgment relation Γ ` P which states that program P is well-typed under

the program type environment Γ (see Section 4).

Definition B.1 The relation Γ ` P is defined by:

∀σ ∈ dom(P ).(P (σ) = (FD , (B, D,E)) ⇒ Γ(σ) `P (B, D,E))

Next, we define the type judgment relation (Γ, P ) ` 〈Ψ,H〉 for machine states.

We first define relations `H v : τ and P `H ρ well-typed record. the relation `H v : τ says that
a value v, that may be a reference to object stored in heap H, has type τ and the relation P `H

ρ well-typed record says that all values in record ρ stored in heap H have types specified by class
definitions in program P .

Definition B.2 (Typing rules for values) `H v : τ is the least relation closed under the following
rules:

v ∈ VAL
`H v : Top

c ∈ I
`H c : Int

o ∈ O H(o).class = σ

`H o : σ/U
o ∈ O H(o).class = A

`H o : A/U

Definition B.3 (Well-typed record) P `H ρ well-typed record is defined by:

ρ.class = σ
σP = a1 : d1, . . . , am : dm

`H ρ.a1 : τ1, . . . ,`H ρ.am : τm

Raw(τ1) = d1, . . . ,Raw(τm) = dm

P `H ρ well-typed record

ρ.class = A
A = d[ ]

`H ρ.1 : τ1, . . . ,`H ρ.m : τm

Raw(τ1) = d, . . . ,Raw(τm) = d

P `H ρ well-typed record

These are type judgment rules for objects and arrays in the heap. In the above definition, the left is the
type judgment rule for an object and the right is for an array object.

Next, we define a type judgment relation for thread states.

Definition B.4 The relation (Γ, P ) ` 〈〈l, f, s, z, σ〉,H〉 is defined by:

Γ(σ) = 〈F ,S〉
P (σ) = (FD , (B,D, E)) l ∈ dom(B) ∪ codom(E)

∀x ∈ dom(F(l)).(`H f(x) : F(l)(x)) ∀n ∈ dom(S(l)).(`H s(n) : S(l)(n))
∀o ∈ dom(H).(P `H ρ well-typed record)

∀o ∈ dom(H).relt(
⊗

({F(l)(x)|f(x) = o} ∪ {S(l)(n)|s(n) = o}), z(o))
(Γ, P ) ` 〈〈l, f, s, z, σ〉,H〉

Here,
⊗{τ1, . . . , τn} is defined by:

⊗
ø = Top

⊗
(ϕ ∪ {τ}) =

{ ⊗
ϕ if τ = Top

(
⊗

ϕ)⊗ τ otherwise

(Strictly speaking,
⊗

is not a function since the result of the second clause depends on the choice of
τ . Nevertheless, the result is unique up to the equivalence relation ≡ on usages in Definition 3.2, hence
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the choice of τ actually does not matter.) We use a shorthand form Θ[F ,S, f, s][l](o) for the expression⊗
({F(l)(x)|f(x) = o} ∪ {S(l)(n)|s(n) = o}.

The relation relt(U , n) is defined by:

rel t(Top, 0)
rel(U , n)

relt(σ/U , n)
rel(U , n)

relt(ξ[ ]/U , n)

The third line of the rule of Definition B.4 states that values in local variables and operand stack are
typed correctly. The fourth states that all values in fields are well-typed. The fifth states that all objects
will be locked and unlocked safely.

Now, the type judgment relation Γ ` 〈Ψ,H〉 is defined by:

Definition B.5 ((Γ, P ) ` 〈Ψ,H〉)
∀i ∈ dom(Ψ).((Γ, P ) ` 〈Ψ(i),H〉)

(Γ, P ) ` 〈Ψ,H〉

We can show that the following lemmas hold.

Lemma B.1 U1 ≤ U2 ∧ rel(U1, n) ⇒ rel(U2, n)

Proof Induction on derivation of U1 ≤ U2. ¤

Lemma B.2 τ1 ≤ τ2 ∧ `H v : τ1 ⇒ `H v : τ2

Proof This follows immediately from Definitions B.2 and 3.10. ¤

Lemma B.3 τ1 ≤ τ2 ∧ rel t(τ1, n) ⇒ rel t(τ2, n)

Proof This follows directly from Definition 3.10 and Lemma B.1. ¤

Now we prove Lemmas 4.1 and 4.2.

Proof of lemma 4.1 Suppose that Γ ` P , (Γ, P ) ` 〈Ψ,H〉 and Ψ(i) = 〈l, f, s, z, σ〉 hold.

• Suppose P (σ) = (FD , (B, D, E)) and B(l) = return.

Because Γ ` P holds, we obtain the following condition from rule (RETURN):

∀o ∈ dom(H).({F(l)(x)|f(x) = o} ≤ Top) (1)
∀o ∈ dom(H).({S(l)(n)|s(n) = o} ≤ Top) (2)

Moreover, (Γ, P ) ` 〈〈l, f, s, z, σ〉,H〉 follows from (Γ, P ) ` 〈Ψ,H〉. Therefore, the following condi-
tion holds:

∀o ∈ dom(H).relt(Θ[F ,S, f, s][l](o), z(o)) (3)

From (1),(2) and Difinition of Θ[F ,S, f, s][l](o), Θ[F ,S, f, s][l](o) ≤ Top follows.

Here, we write Uo for a usage Use(Θ[F ,S, f, s][l](o)). We obtain the next conditions from (3),
Θ[F ,S, f, s][l](o) ≤ Top, Difinition 3.10 and Difinition of rel t(τ):
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∀o ∈ dom(H).rel(Uo, z(o)) (4)
∀o ∈ dom(H).(Uo ≤ 0) (5)

From (4), (5)and Lemma B.1, we have the following conditions

∀o ∈ dom(H).rel(0, z(o)) (6)

Therefore, from (6) and the condition 1 in the definition 3.6. the required condition z(o) = 0
follows.

• Suppose P (σ) = (FD , (B, D, E)) and l 6∈ dom(B).

From (Γ, P ) ` 〈Ψ, H〉 and l 6∈ dom(B), the condition l ∈ codom(E) follows. Therefore, we obtain
the following condition from Γ ` P and rule (BREAK):

∀o ∈ dom(H).({F(l)(x)|f(x) = o} ≤ Top)
∀o ∈ dom(H).({S(l)(n)|s(n) = o} ≤ Top)

The rest of proof in this case is just as straightforward as the previous case.

• Suppose P (σ) = (FD , (B, D, E)) and B(l) = monitorexit x .

Because Γ ` P holds, we get the following conditions from rule (MEXT):

F [l](x) ≤bL F [l + 1](x)

From this, the following conditions hold for a class σ′ and usages Ux, U .

F [l](x) = σ′/Ux Ux ≤ L̂.U

Let τ be the type: ⊗ ( {F(l)(x′)|f(x′) = f(x) ∧ x′ 6= x}
∪ {S(l)(n′)|s(n′) = f(x)})

)

and let U(x,i) be the usage Use(τ). Since (Γ, P ) ` 〈Ψ,H〉 holds, we have:

rel t(Θ[F ,S, f, s][l](f(x)), z(f(x)))

from which
rel(Ux ⊗U(x,i), z(f(x)))

follows.

By Ux ≤ L̂.U and Lemma B.1, the following condition holds:

rel(L̂.U ⊗U(x,i), z(f(x)))

So, we obtain z(f(x)) ≥ 1 from the condition 2 in Definition 3.6. ¤
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Proof of lemma 4.2 We show this by induction on derivation of P ` 〈Ψ,H〉 → 〈Ψ′,H ′〉 with case
analysis on the last rule used. We suppose Γ ` P and (Γ, P ) ` 〈Ψ, H〉.

We show only main cases: The other cases are similar.
Case rule (inc) : It must be the case that

Ψ = Ψ1 ] {i 7→ 〈l, f, c · s, z, σ〉}
Ψ′ = Ψ1 ] {i 7→ 〈l + 1, f, c + 1 · s, z, σ〉}
P (σ)(l) = inc

Because, Γ ` P holds, F ,S, l `P (B, E,D) holds for F ,S, B, E and D such that Γ(σ) = 〈F ,S〉,
P (σ) = (FD , (B, E, D)). From this, P [σ](l) = B(l) = inc, and rule (INC), we obtain the following
conditions:

Fl ≤ Fl+1

Sl(0) ≤ Int
Sl ≤ Sl+1

(7)

Moreover, (Γ, P ) ` 〈〈l, f, c · s, z, σ〉},H〉 follows from the condition (Γ, P ) ` (〈Ψ,H〉. Therefore the
following conditions follow from Definition B.4.

∀x ∈ dom(f).(`H f(x) : F(l)(x))
∀n ∈ dom(c · s).(`H (c · s)(n) : S(l)(n))
∀o ∈ dom(H).relt(Θ[F ,S, f, c · s][l](o), z(o))

(8)

By (7),(8), the following condition holds:

∀o ∈ dom(H).
(Θ[F ,S, f, c · s][l](o) ≤ Θ[F ,S, f, c + 1 · s][l + 1](o)) (9)

Here, ∀x ∈ dom(f).(`H f(x) : F [l + 1](x)) and ∀n ∈ dom(s).(`H (c + 1 · s)(n) : S[l + 1](n)) follow from
(7),(8) and Lemmas B.2.

Moreover, ∀o ∈ dom(H).rel t(Θ[F ,S, f, c + 1 · s][l + 1](o), z(o)) follows from (9) and Lemma B.3.
Therefore, (Γ, P ) ` 〈{〈l + 1, f, c + 1 · s, z, σ〉},H〉 holds. From this and (Γ, P ) ` 〈Ψ1,H〉, the relation
(Γ, P ) ` 〈Ψ1]{i 7→ 〈l + 1, f, c + 1 · s, z, σ〉},H〉 follows as required.

Case rule (ment2) : It must be the case that

Ψ = Ψ1 ] {i 7→ 〈l, f, s, z, σ〉
Ψ′ = Ψ1 ] {i 7→ 〈l + 1, f, s, z′, σ〉}
z′ = z{f(x) 7→ n + 1}
f(x) ∈ dom(H) z#(f(x)) = n ≥ 2 H(f(x)).f lag = 1
P (σ)(l) = monitorenter x

By the assumption Γ ` P , the following conditions hold:

y ∈ dom(Fl) \ {x}.(Fl(y) ≤ Fl+1(y))
Fl(x) ≤L Fl+1(x)

Sl ≤ Sl+1

(10)

where Γ(σ) = 〈F ,S〉. Moreover, by the condition (Γ, P ) ` 〈Ψ,H〉, the following conditions also hold:

∀x ∈ dom(f).(`H f(x) : F(l)(x))
∀n ∈ dom(s).(`H s(n) : S(l)(n))
∀o ∈ dom(H).relt(Θ[F ,S, f, s][l](o), z(o))

(11)
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By (10),(11) and f(x) ∈ dom(H), the following conditions hold for some σ′ U , and U ′.

σ′/(U ⊗U ′) ≤ Θ[F ,S, f, s][l + 1](f(x)) (12)
Θ[F ,S, f, s][l](f(x)) ≤ σ′/(L.U ⊗U ′) (13)

Because rel t(Θ[F ,S, f, s][l](f(x)), z(f(x))) and (13) hold, the following condition follows from
Lemma B.3 and z#(f(x)) = z(f(x)) = n:

rel t(σ′/(L.U ⊗U ′), n) (14)

From Definition 3.6 it follows that:

rel t(σ′/(U ⊗U ′), n + 1) (15)

By (13),(14), and (15), we have rel t(Θ[F ,S, f, s][l + 1](f(x)), z′(f(x)).
Moreover, ∀x′ ∈ dom(f).(`H f(x′) : F(l + 1)(x′)) and ∀n ∈ dom(s).(`H s(n) : S(l + 1)(n)) follow

from (11) and (12). Therefore, (Γ, P ) ` 〈Ψ1]{i 7→ 〈l + 1, f, s, z{f(x) 7→ n + 1}, σ〉},H〉 holds.

Case rule (getfiled) : It must be the case that

Ψ = Ψ1 ] {i 7→ 〈l, f, o · s, z, σ〉
Ψ′ = Ψ1 ] {i 7→ 〈l + 1, f, v · s, z, σ〉
o ∈ dom(H) H(o).class = σ′ H(o).a = v
P (σ)(l) = getfield σ′.a d

Here we assume d 6= Int. The proof for the case of d = Int is similar. By the assumption Γ ` P and
rule (GETFLD), the following conditions hold:

σ′P .a : d
Fl ≤ Fl+1

Sl ≤ (σ/0) · S ′
(d/U ) · S ′ ≤ Sl+1

rel(U )

(16)

where Γ(σ) = 〈F ,S〉. Moreover, by the condition (Γ, P ) ` 〈Ψ,H〉, the following conditions also hold:

∀x ∈ dom(f).(`H f(x) : F(l)(x))
∀n ∈ dom(o · s).(`H (o · s)(n) : S(l)(n))
∀o ∈ dom(H).(P `H H(o) well-typed record)
∀o ∈ dom(H).relt(Θ[F ,S, f, o · s][l](o), z(o))

(17)

By (16) and (17), the following condition hold:

∀n ≥ 1 ∈ dom(v · s).(`H (v · s)(n) : ((d/U ) · S ′(l))(n)),

and by σ′P .a : d, H(o).class = σ′, H(o).a = v and P `H H(o) well-typed record in (17), we have
`H v : d/U .

Therefore, by Lemma B.2, the following condition hold:

∀n ∈ dom((v · s)).(`H (v · s)(n) : S(l + 1)(n)). (18)

By Sl ≤ (σ/0) · S ′, (d/U ) · S ′ ≤ Sl+1 in (16) and (17), (18),

Θ[F ,S, f, o · s][l](o)⊗ (d/U ) ≤ Θ[F ,S, f, v · s][l + 1](o) (19)
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hold. By rel(U) in (16), (19), Lemma B.3 and definition of reliability of usages in Section 3.2, we have
relt(Θ[F ,S, f, v · s][l + 1](o), z(o)).

From this and (16), (17), (18), it follows ∀o ∈ dom(H).relt(Θ[F ,S, f, v · s][l + 1](o), z(o)).
Moreover, ∀x ∈ dom(f).(`H f(x) : F(l + 1)(x)) follows from (16), (17). Therefore, (Γ, P ) `
〈Ψ1]{i 7→ 〈l + 1, f, v · s, z, σ〉},H〉 holds. ¤

Lemma 4.3 states that the initial machine state of a well-typed program is also well-typed.

Proof of lemma 4.3 This lemma follows immediately from Definitions 3.16 and B.4. ¤

We can now prove the soundness of our type system.

Proof of lemma 4.1 Suppose that P is well-typed and that
P ` 〈0 7→ 〈1, ø, ε, mainP 〉, ø〉 →∗ 〈Ψ, H〉 and Ψ(i) = 〈l, f, s, z, σ〉 hold.

Since P is well-typed. Therefore, there is a type environment Γ that satisfies P ` Γ. From this and
Lemma 4.3, (Γ, P ) ` 〈0 7→ 〈1, ø, ε, mainP 〉, ø〉 holds. Moreover, from Lemma 4.2, (Γ, P ) ` 〈Ψ,H〉 holds.
Therefore, properties 1,2 and 3 of this lemma follow immediately from the relation (Γ, P ) ` 〈Ψ,H〉 and
Lemma 4.1. ¤
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