
Resource Usage Analysis for
a Functional Language with Exceptions

Futoshi Iwama
Tohoku University

iwama@kb.ecei.tohoku.ac.jp

Atsushi Igarashi
Kyoto University

igarashi@kuis.kyoto-u.ac.jp

Naoki Kobayashi
Tohoku University

koba@ecei.tohoku.ac.jp

Abstract
Igarashi and Kobayashi have proposed a general type system for
checking whether resources such as files and memory are accessed
in a valid manner. Their type system is, however, for call-by-
valueλ-calculus with resource primitives, and does not deal with
non-functional primitives such as exceptions and pointers. We ex-
tend their type system to deal with exception primitives and prove
soundness of the type system. Dealing with exception primitives is
especially important in practice, since many resource access prim-
itives may raise exceptions. The extension is non-trivial: While
Igarashi and Kobayashi’s type system is based on linear types, our
new type system is a combination of linear types and effect sys-
tems. We also report on a prototype analyzer based on the new type
system.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language Classifications—Applicative (functional)
languages; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Specification tech-
niques; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program Analysis; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs—Type
structure

General Terms Languages, Verification.

Keywords Effect System, Exception, Resource Usage Analysis,
Type Inference, Type System.

1. Introduction
Background There has recently been growing interest in methods
for verifying that resources (such as files, memories or network
channels) used in a program are accessed in a valid manner [1, 3, 8,
10, 22, 24]. For example, Tofte et al.’s type system [22] can ensure
that certain memories are not accessed after their deallocation and
Freund and Mitchell’s type system [8] can ensure that objects
are used only after their initialization is finished. Igarashi and
Kobayashi [10] have coined the term “resource usage analysis”
for such general verification problems and proposed a type-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM ’06 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-196-1/06/0001. . . $5.00.

method for resource usage analysis for call-by-valueλ-calculus
with resource primitives.

The idea of their type system is to augment types of resources
with information about in which order resources are accessed. For
example, the type of read-only files is given by(File, R∗; C)
and the type of read-write files is given by(File, (R + W)∗; C),
where the order of operations on files is represented by regular
expressions (the concatenation is given by ‘;’) with R, W andC
as labels for read, write and close operations, respectively (in their
type system, actually, a more expressive language calledusage
expressionsis used to represent the access order).

Typing rules are designed by taking the evaluation order into
account. For example, the usual typing rule forlet expressions:

Γ ` M : σ1 Γ, x : σ1 ` N : σ2

Γ ` let x = M in N : σ2

is replaced by:

Γ ` M : σ1 ∆, x : σ1 ` N : σ2

Γ;∆ ` let x = M in N : σ2

Here,Γ;∆ denotes the type environment obtained by composing
the usage expression ofΓ and ∆ by ‘;’. For example, ifΓ =
x : (File, R∗), which intuitively means the resourcex is read
several times during the evaluation ofM , and if∆ = x : (File, C),
which meansx is closed (once) during the evaluation ofN , then
Γ;∆ = x : (File, R∗; C), which meansx is read several times
and thenclosed. The new typing rule reflects the fact thatM is
evaluated first and thenN is in let x = M in N .

In this way, Igarashi and Kobayashi’s type system can keep
track of the order of accesses to resources. However, the target lan-
guage is pure call-by-valueλ-calculus only with resource primi-
tives. So, it is not clear that the method can be extended to practi-
cal programming languages, which are usually equipped with non-
functional primitives such as exceptions and references.

Our Contributions In this paper, we extend Igarashi and Kobayashi’s
type system to deal with exception primitives. This extension is
very important in practice because access primitives in practical
programming languages may raise exceptions such asEnd of File.
Our technical contributions are summarized as follows:

• Design and formalization of a type system for resource usage
analysis for a functional language with an exception handling
mechanism;

• Proof of soundness of the type system;

• Development of a type reconstruction algorithm; and

• Implementation of a prototype resource usage analyzer.

Although the exception mechanism here is much simpler than that
of ML or Java (there is only one exception constructor, which does
not carry values), the extension is already non-trivial. While the
type system of Igarashi and Kobayashi [10] is based on linear types,
our new type system is based on a combination of linear type and
effect systems [21]. In fact, even for the problem of just checking
that certain values are used only once (which can be considered an
instance of the resource usage analysis problem), previous linear
type systems [10, 13, 16, 23] are insufficient; For example, they
cannot judge thatx is used once in the following program (suppose
thatuse is a function that uses its argument just once):

let f () = use x
in try (if b then f() else raise E)

with E -> use x

Key Ideas in the Type SystemFirst, we keep track of information
on exceptions, as well as that on access sequences, by usage expres-
sions. For this purpose, we extend usage expressions by introducing
the special labelE and the constructor;E . E means that a resource
is not accessed any more because an exception is raised; for ex-
ample, the usageR;E means a resource is first read and then an
exception is raised. The usageU1;E U2, which corresponds to ex-
ception handling, means that a resource is used according toU1 and
if an exception is raised, then it is used according toU2. Thus, for
example, the usage(R;E);E C is equivalent toR; C. Now, for ex-
ample,try (read(x);raise) with E -> close(x) is typed
as follows:

x : (File, (R; E);E C) ` try read(x);raise
with E -> close(x)

: bool.

Notice that;E corresponds to the use oftry. The type judgment
above tells us that, during the evaluation ofM , the filex is first read
and then closed. (Here, we assume access primitives themselves do
not raise exceptions; we can model access primitives that may raise
exceptions by combining them with conditional expressions.)

Unfortunately, adding the above usage constructors is not suffi-
cient to obtain the accuracy required for practical programs using
exceptions. For example, consider the following programM :

let f = λx.raise E in try read(x); f() with E → close(x)

If we naively extend Igarashi and Kobayashi’s type system with
the new usage constructors above, we would obtain the following
judgment:

x : (File, 3E; (R;E C)) ` M : bool

Here,3E means that an exception may be raised once atanytime;
so the judgment does not tell us that an exception is raised inside
the body of the try-expression. To solve this problem, we exploit
the idea of effect systems [21] to keep track of more accurate
information onwhen exceptions are raised. As a result, a type
judgment becomes of the form:

Γ ‖ ϕ ` M : σ,

which means that, during the evaluation of termM , each resource
is accessed according to (usages in)Γ and exceptions are raised
according to effectϕ.

Rest of This Paper In Section 2, we introduce our target language
formally. In Section 3, we present our type system for resource us-
age analysis. Section 4 shows the correctness of the type system.
Section 5 describes a type inference algorithm. Section 6 reports on
implementation and experiments. We discuss other possible meth-
ods for dealing with the exception mechanism in Section 7. After
discussing related work in Section 8, we conclude in Section 9.

2. Target LanguageλR
E

This section introduces the target languageλR
E

of our analysis.λR
E

is a call-by-valueλ-calculus extended with resources and excep-
tions.

We assume a finite setA of access-labels, ranged over bya.
An access label denotes the kind of access to a resource; We shall
use access labelsI, R, W andC for initialization, read, write, and
close operations respectively.

A trace is a sequence consisting of access labels and the special
label↓. Formally, the setA∗,↓ of traces is defined by:

A∗,↓ = A∗ ∪ {s ↓ |s ∈ A∗}
Here,A∗ is the set of finite sequences of elements ofA. The addi-
tional symbol↓ expresses that the evaluation terminates normally
or abruptly with an exception.

A trace expresses how a resource has been accessed at a cer-
tain point of the execution of a program. A tracea1a2 . . . ak

means that the resource is accessed by each operationai in the
order a1, a2, . . . , ak. A trace a1a2 . . . ak ↓ means that the eval-
uation has terminated after the resource is accessed in the order
a1, a2, . . . , ak. For example, a traceRRC ↓ means that the re-
source has been read twice, closed, and then the evaluation has
terminated.

A trace setis a set of traces that is closed under the prefix
operation. We writeS# for the set of prefixes of elements ofS.
A set S of traces is called atrace setif S# = S. We use the
metavariableΦ for a trace set.

Consider a regular expression(RW ↓), then (RW ↓)# =
{ε, R, RW, RW ↓} is a trace set. We can consider a trace setΦ
as a specification of each resource, which requires the resource is
accessed only according to a trace in the setΦ.

Example 2.1.Let us consider the trace setΦ = (IR∗C ↓)# and
program: init(x); read(x); close(x). The program initializes,
reads and closes the resourcex. This program satisfies the spec-
ification Φ. On the other hand, neitherread(x); close(x) nor
init(x); read(x) satisfiesΦ, since the resourcex can be accessed
according toRC ↓ or IR ↓ but neither trace is contained inΦ. The
meaning of↓ is a little tricky; Let us consider the program:
init(x); read(x); loop infinitely . It initializes and reads the re-
sourcex, and then goes into an infinite loop. This programdoes
satisfy the specificationΦ. Actually, the resourcex is accessed ac-
cording to a trace in the set{IR}# ⊂ Φ. 2

DEFINITION 2.1 (Terms, Values).

M (terms) ::= v |M1M2 | let x = M1 in M2

| if M1 then M2 else M3

| newΦ() | acca(M) |M{x}

| try M1 with M2 | raise
v (values) ::= true | false | x | fun(f, x, M)

The first two lines show standard constructs for theλ-calculus.
fun(f, x, M) is a recursive function (which is often defined by
f(x) = M). We writeλx.M whenf is not free inM . The primi-
tives for resources are the same as those ofλR [10]. newΦ() is the
primitive for creating a resource. The trace setΦ specifies how the
resource should be accessed afterwards. In this paper, we often use
a regular expression to specify a trace set.acca(M) is the prim-
itive for accessing the resourceM with an operation specified by
a. We often writeinit(M), read(M),write(M) andclose(M)
for accI(M),accR(M),accW (M) andaccC(M), respectively.
For the sake of simplicity, we assume that the resource access prim-
itive returns a boolean in a non-deterministic manner.

M{x} is the same asM , except that the evaluation gets stuck if
the resource bound tox escapes fromM . The escape information

is used to refine the accuracy of the analysis. A separate escape
analysis is assumed, which checks thatx does not escape fromM
in M{x}. The termtry M1 with M2 first evaluatesM1. If an
exception is raised, thenM2 is evaluated; Otherwise, the value of
M1 is returned. The termraise raises an exception. For the sake of
simplicity, we consider a single kind of exception, soraise takes
no argument. We writeM1; M2 for let x = M1 in M2 if variable
x is not free inM2.

Example 2.2.Consider the following terms:

M1
M
= if init(x){x} then (write(x){x}; close(x){x})

else raise

M2
M
= try M1 with close(x){x}

M
M
= let x = new(I(W)∗C↓)#() in M2

M1 first initializesx. If the initialization returnstrue, then it writes
and closesx; otherwise an exception is raised. The termM2 closes
x when an exception is raised byM1. Therefore, the resourcex
is closed no matter whetherinit(x) returnstrue or false. The
term M creates a resourcex and evaluatesM2. The trace set
(I(W)∗C ↓)# specifies thatx should be first initialized, that it
can be written an arbitrary number of times after that, and that it
must be closed once before the program terminates. The termM2

obeys that specification, so thatM should be accepted as a good
program.2

Example 2.3.The following is a fragment of a typical OCaml
program accessing files.

try while (true)
do write char(y,read char(x)) done

with End of File -> close(x);close(y)

It copies a character fromx to y until the end-of-file exception
is raised, when the exception handler is executed andx andy are
closed.

The above program can be modeled in our language as the
following termM .

M
M
= try fun(f, z, M1)true with (close(x); close(y))

M1
M
= (if read(x) then true else raise);write(y); f true

Note that the library function callread char(x), which may raise
an exception, has been modeled byif read(x) then true else raise.
The value returned by the functionread_char is ignored in the
translation, since we are only concerned with the order of resource
accesses.2

2.1 Operational semantics ofλR
E

An operational semantics ofλR
E

is given by reduction of pairs of a
term and aheap, used to record the states of resources. The state
of a resource only captures what access sequence is allowed for the
resource; Resource-specific values such as the contents of a file are
not modeled.

DEFINITION 2.2 (Heap).A heapH is a finite mapping from vari-
ables to trace sets.

We write {x1 7→ Φ1, . . . , xn 7→ Φn} (n ≥ 0) for the heap
H such thatdom(H) = {x1, . . . , xn} and H(xi) = Φi. It
expresses that each variablexi refers to a resource that should
be used according to one of the traces ofΦi. Whendom(H1) ∩
dom(H2) = ∅, we write H1] H2 for the heapH such that
dom(H) = dom(H1) ∪ dom(H2) and H(x) = Hi(x) for x
in dom(Hi).

DEFINITION 2.3 (Evaluation Contexts). Evaluation contexts, ranged
over byE , and evaluation contexts withouttry , ranged over by
Etry, are defined by the following syntax:

E ::= [] | if E then M1 else M2 | E M | v E
| let x = E in M | E{x} | acca(E) | try E with M

Etry ::= [] | if Etry then M1 else M2 | Etry M | v Etry

| let x = Etry in M | Etry{x} | acca(Etry)

E is an ordinary call-by-value evaluation context;Etry is one
without exception handlers and used to identify an innermost ex-
ception handler. We writeE [M] andEtry[M] for the expressions
obtained by replacing[] in E andEtry respectively withM .

We write[M1/x1, . . . , Mn/xn] for the capture-avoiding simul-
taneous substitution ofMi for xi and Φ−a for {s | as ∈ Φ}.
FV(M) denotes the set of free variables inM .

DEFINITION 2.4 (Reduction Relation).The relation(H, M) ;

P , whereP is either a pair(H ′, M ′) or Error , is the least relation
closed under the rules in Figure 1. We write;∗ for the reflexive
and transitive closure of;.

The rule R-NEW is for fresh resource allocation. The rules
R-ACC andR-ACCERR express an access to a resource. The rule
R-ACC is for successful resource access: the trace setΦ−a after
the access is obtained by removing the labela at the head of a
trace (if the trace begins witha; the traces not beginning witha
are discarded). If no trace begins witha (i.e., Φ−a = ∅), then
the resource access results in anError . We do not care about the
result of resource access here, it is left unspecified which boolean
values are returned inR-ACC, so reduction; is nondeterministic.
The ruleR-TRYRAI is for exception handling. A term of the form
try Etry[raise] with M represents the execution state in which
an exception is being raised and the innermost handler isM , and
so reduces toM .

Note that by representing the resource states using a heap, we
can correctly model the case where resources are aliased (i.e., the
case where the same resource is referred to by multiple variables
and functions). For example, the termM (whereΦ = (R∗C ↓)]):

let x = newΦ() in let y = x in read(y); close(x)

is reduced as follows.

(∅, M)
; ({z 7→ Φ}, let x = z in let y = x in read(y); close(x))
; ({z 7→ Φ}, let y = z in read(y); close(z))
; ({z 7→ Φ}, read(z); close(z))
; ({z 7→ Φ}, close(z))
; ({z 7→ {ε, ↓}}, true)

3. Type System
In this section, we present a type system to guarantee that all
accesses to resources in a well-typed term obey the specifica-
tion (given by the trace setΦ attached to each resource creation
newΦ()).

3.1 Usages

Usage expressions (in short, usages) describe in which order and
by which operations a resource can be accessed. As mentioned
above, we express information about exceptions also with usages.
We therefore add new constructorsE andU1 ;E U2 to the usages
given in [10].

z fresh

(H, E [newΦ()]) ; (H] {z 7→ Φ}, E [z])
(R-NEW)

b = true or false Φ−a 6= ∅
(H] {x 7→ Φ}, E [acca(x)]) ; (H] {x 7→ Φ−a}, E [b])

(R-ACC)

Φ−a = ∅
(H] {x 7→ Φ}, E [acca(x)]) ; Error

(R-ACCERR)

(H, E [fun(f, x, M) v]) ; (H, E [[fun(f, x, M)/f, v/x]M])
(R-APP)

(H, E [let x = v in M]) ; (H, E [[v/x]M]) (R-LET)

(H, E [if true then M1 else M2]) ; (H, E [M1]) (R-IFT)

(H, E [if false then M1 else M2]) ; (H, E [M2]) (R-IFF)

x 6∈ FV(v)

(H, E [v{x}]) ; (H, E [v])
(R-ECHECK)

(H, E [try v with M]) ; (H, E [v]) (R-TRY)

(H, E [try Etry[raise] with M]) ; (H, E [M]) (R-TRYRAI)

Figure 1. Operational semantics ofλR
E

Syntax of Usages.

Let the setL of labels, ranged over byl, beA ∪ {1, τ,E}. The
label 1 is a special label used to count the number of function
applications; the labelsτ denotes exception handling (which is
an unobservable, internal action, henceτ) andE denotes a raised
exception respectively.

DEFINITION 3.1 (Usages).The setU of usages, ranged over by
U , is defined by:

U ::= 0 | l | α | U1; U2 | U1 ⊗ U2 | U1&U2 | 3U | �U
| µα.U | U1;E U2

We assume that the unary usage constructors3 and� bind tighter
than the binary constructors (&, ;,⊗ and;E).

We briefly explain informal meaning of usage constructors;
see also Igarashi and Kobayashi [10]. The usage0 means that a
resource cannot be accessed at all. The usagel ∈ L means that
a resource is accessed by an access primitive labeled withl (if
l ∈ A), or that an event corresponding tol occurs: especially,
E ∈ L means that a resource is not accessed later due to a raise of
an exception.α is the usage variable, bound in the form ofµα.U ,
which denotes a recursive usage that satisfiesα = U . U1; U2 means
that a resource is first accessed according toU1 and then according
to U2. U1 ⊗ U2 means that a resource is accessed according to a
sequence obtained by interleavingU1 andU2. U1&U2 means that a
resource is accessed according to eitherU1 or U2. U1;E U2 means
a resource is accessed according toU1 and, if an exception is raised
during the execution, then the resource is accessed according toU2.
For example,((R&E); W);E C is equivalent to(R; W)&C. 3U
means that some of the resource access expressed byU may be

30 ≡ 0 �0 ≡ 0
0⊗ U ≡ U 0; U ≡ U U ;0 ≡ U 0;E U ≡ 0

U1 ⊗ U2 ≡ U2 ⊗ U1 U1&U2 ≡ U2&U1

3U1 ⊗3U2 ≡ 3(U1 ⊗ U2) 3U1;E U2 ¹ 3(U1;E U2)
3U1; U2 ≡ 3U1 ⊗ U2

U1&U2 ¹ U1 µα.U ≡ [µα.U/α]U

Figure 2. Structural pre-congruence on usages

l
l−→ 0

U
l−→ U ′

3U
l−→ 3U ′

U
l−→ U ′

�U
l−→ �U ′

U1
l−→ U ′1

U1 ⊗ U2
l−→ U ′1 ⊗ U2

U1
l−→ U ′1

U1; U2
l−→ U ′1; U2

U1
l−→ U ′1 l 6= E

U1;E U2
l−→ U ′1;E U2

U1
E−→ U ′

U1;E U2
τ−→ U2

U1 ¹ U ′1 U ′1
l−→ U ′2 U ′2 ¹ U2

U1
l−→ U2

Figure 3. Usage transition rules

delayed. For example,(3l1); l2 expresses access order eitherl1; l2
or l2; l1. �U , which cancels3, means that the access represented
by U must occurnow. So,(�3U1); U2 is equivalent toU1; U2.

Example 3.1.The accesses tox in M2 of Example 2.2 is ex-
pressed by the usageI; ((W ; C)&E);E C. Similarly, the ac-
cesses tox in M of Example 2.3 is expressed by the usage
µα.(R; (0&E); α);E C. 2

In what follows, we writeU\E for U ;E 0, which cancels ex-
ceptions inU . For example,((l1; l2)⊗ E)\E is equivalent to
0&l1&(l1; l2).

Semantics of Usages and Subusage Relation.

We give the formal semantics of usages via a labeled transition
system. Then, we define the subusage relationU1 ≤ U2, which
means that the access orderU1 is more general thanU2.

We define the transition relation of the formU
l−→ U ′, which

means that a resource of usageU can be first accessed byl and then
accessed according toU ′.

DEFINITION 3.2. The binary relationU ¹ U ′ on usages are the
least pre-congruence that satisfies the rules in Figure 2, where
U ≡ U ′ meansU ¹ U ′ andU ′ ¹ U .

For example,(3U1&U2); U3 ¹ 3U1 ⊗ U3 holds.
Now, we give the transition rules on usages.

DEFINITION 3.3 (Transition Relation on Usages).The transition

relation U
l−→ U ′ on usages is the least relation closed under

the rules in Figure 3. The multi-step transition relationU
t−→ U ′,

wheret ∈ (A ∪ {1, τ})∗, is defined inductively as follows.

t−→def
=

(
¹ if t = ε

l−→ t′−→ if t = lt′

Example 3.2.UsageR; (C&E);E C has the following transition
sequences:

(R; (C&E));E C
R−→ (C&E);E C

C−→ 0

(R; (C&E));E C
R−→ (C&E);E C

τ−→ C
C−→ 0

2

By using the labeled transition system, we define the trace set
expressed by a usage.

DEFINITION 3.4. Let U be a usage. The trace set[[U]] is defined
by

[[U]] = {t̂ | ∃U ′.(U t−→ U ′)}
∪{t̂ ↓ | U t−→ 0} ∪ {t̂ ↓ | ∃U ′.(U t−→ E−→ U ′)}

Here, t̂ ∈ A∗ is the label sequence obtained by removing all the
occurrences ofτ from t.

Example 3.3. [[µα.α]] = {ε}, [[0]] = {ε, ↓},
[[3l1; l2]] = {l1l2 ↓, l2l1 ↓}#, [[�3l1; l2]] = {l1l2 ↓}#, [[(R&E); C]] =
{RC ↓}# and[[((R&E); C);E C]] = {RC ↓, C ↓}#. 2

We write U1 =⇒ U2 whenU1
τ ···τ−−−→ U2 (whereτ · · · τ is a

possibly empty sequence ofτ). We also write
l

=⇒ for =⇒ l−→=⇒.
The subusage relationU1 ≤ U2 is defined as a weak simulation

relation closed under usage contexts. Ausage context, writtenC, is
an expression obtained from a usage by replacing one occurrence
of a free usage variable with[]. Suppose that the set of free usage
variables inU are disjoint from the set of bound usage variables in
C. We writeC[U] for the usage obtained by replacing[] with U .
For example, ifC = µα.([] ; α), thenC[U] = µα.(U ; α).

DEFINITION 3.5 (Subusage relation).U1 ≤ U2 is the largest
relation that satisfies the following conditions:

(1) C[U1] ≤ C[U2] for any usage contextC,

(2) If U2
l−→ U ′2 andl ∈ A ∪ {1}, thenU1

l
=⇒ U ′1 andU ′1 ≤ U ′2

for someU ′1,
(3) If U2

τ−→ U ′2, thenU1 =⇒ U ′1 andU ′1 ≤ U ′2
for someU ′1,

(4) If U2
ε−→ 0, thenU1 =⇒ 0;

(5) If U2
E−→ U ′2, thenU1

E
=⇒ U ′1 for someU ′1.

We writeU1
∼= U2 if U1 ≤ U2 andU2 ≤ U1.

Example 3.4.E ;E C ∼= C and(C&E)\E ∼= C&0 hold.2

Note that, ifU1 ≤ U2, then[[C[U1]]] ⊇ [[C[U2]]] for anyC—in
particular,[[U1]] ⊇ [[U2]]. Moreover,U ≤ µα.α and3U ≤ U hold
for any usageU . U1 ¹ U2 impliesU1 ≤ U2 andU1 ≡ U2 implies
U1

∼= U2.

3.2 Effects and Types

We proceed to the definitions of effects and types.
An effectexpresses the termination behavior of an evaluation.

Intuitively, the effect0 means that evaluation can terminate nor-
mally; E that evaluation can abort with an exception;E ? that eval-
uation can terminate normally or abort; and, finally,> that evalua-
tion cannot terminate.

DEFINITION 3.6 (Effects and Subeffect Relation).The set ofef-
fects, ranged over byϕ, is {E ?,0,E ,>}. The subeffect relation
v is the partial order given byE ? v 0 v > andE ? v E v >.

Note that non-termination is denoted by>, which is the greatest
element of the orderv, as opposed to the common practice in

denotational semantics, where non-termination denotes the least
element. Viewing effects as the set oftermination capabilitiesthat
a program can exercise, we define the order so that lower elements
have more capabilities, similarly to the subusage relation.

Effects can be considered usages that do not include access
labels. We write(ϕ)use for the usage corresponding toϕ, defined
by:

(E ?)use = 0&E (0)use = 0 (E)use = E (>)use = µα.α.

We define some operations on effects, which correspond to
usage constructors of the same symbols.

DEFINITION 3.7 (Operations on effects).The operations on ef-
fectsϕ1opϕ2 are defined(whereop is either;, &,⊗ or ;E) by the
following tables(the leftmost columns correspond toϕ1 and the
topmost rowsϕ2) :

; E? 0 E >
E? E? E? E E
0 E? 0 E >
E E E E E
> > > > >

& E? 0 E >
E? E? E? E? E?

0 E? 0 E? 0
E E? E? E E
> E? 0 E >

⊗ E? 0 E >
E? E? E? E E
0 E? 0 E >
E E E E E
> E > E >

;E E? 0 E >
E? E? 0 E? 0
0 0 0 0 0
E E? 0 E >
> > > > >

Example 3.5.E ;0 = E andE&0 = E ? andE ?;E 0 = 0. 2

DEFINITION 3.8 (Types).The set oftypes, ranged over byσ, is
given by the following syntax:

σ ::= bool | (δ1
ϕ−→ δ2, U) | (R, U)

δ ::= bool | (δ1
ϕ−→ δ2, U0) | (R, U0)

Here,U0 ranges over the set of usages that satisfyU0
∼= U0\E .

bool is the type of boolean values.(δ1
ϕ−→ δ2, U) is the type of

functions that take a value of typeδ1 as an argument and return a
value of typeδ2 and that, during the execution of the body, may
raise an exception according toϕ. U describes how a function
is accessed (i.e., called).(R, U) is the type of resources that are
accessed according toU .

For example, a function of the type((R, (R&0); C)
E?

−−→ bool,
1; 1) takes a resource as an argument, closes the resource after a
possible read, and may raise an exception during the function call.
Moreover, the usage1; 1 states that the function is called twice.

We write the (outermost) usage ofσ under effectϕ by:

Useϕ(bool) = (ϕ)use, Useϕ((σ1
ϕ′−→ σ2, U)) = U and

Useϕ((R, U)) = U .
The subusage relation defined in Section 3.1 is extended to the

subtype relationσ1 ≤ σ2 below. It means that a value of typeσ1

may be used as a value of typeσ2.

DEFINITION 3.9 (Subtype relation).σ1 ≤ σ2 is the least relation
closed under the following rules:

bool ≤ bool
U ≤ U ′ ϕ′ v ϕ

(σ1
ϕ−→ σ2, U) ≤ (σ1

ϕ′−−→ σ2, U ′)

U ≤ U ′

(R, U) ≤ (R, U ′)

3.3 Type Judgment

A type judgment is of the formΓ ‖ ϕ ` M : δ, read “termM
is given typeδ under type environmentΓ and effectϕ” whereΓ is
a finite mapping from variables to types. The intended meaning
of Γ ‖ ϕ ` M : δ is that (1) the termM is evaluated to a

value of typeδ, if the evaluation terminates, and (2) during the
evaluation, each free variablex in M are used according to type
Γ(x) and an exception may be raised according to effectϕ. The
meaning of the judgment is tricky when3 appears inΓ [10]: If
a usage inΓ(x) is guarded by3, the access represented by the
usage may be postponed until the value ofM is used; otherwise
the access cannot be postponed. For example,x : (R, R; C) ‖
0 ` read(x); close(x) : bool and x : (R, R; 3C) ‖ 0 `
read(x); x : (R, C) are valid judgments, whilex : (R, R; C) ‖
0 ` read(x); x : (R, C) is invalid. (Precisely speaking,read(x)
andclose(x) must be annotated with·{x} in our type system.)

We write ∅ for the empty type environment, and whenx 6∈
dom(Γ), we writeΓ, x : σ for the type environment∆ such that
dom(∆) = dom(Γ) ∪ {x}, ∆(x) = σ and∆(y) = Γ(y) for
y ∈ dom(Γ).

The type judgment relation will be defined by using typing
rules. We first give a few auxiliary definitions used in the typing
rules.

DEFINITION 3.10. Let C be a usage context. Suppose the set of
free usage variables inσ or Γ is disjoint from the set of bound
usage variables inC. We defineC[σ] andC[Γ] by:

C[bool] = bool C[(R, U)] = (R, C[U])

C[(σ1
ϕ−→ σ2, U)] = (σ1

ϕ−→ σ2, C[U])

dom(C[Γ]) = dom(Γ) C[Γ](x) = C[Γ(x)]

DEFINITION 3.11. Letop be a binary usage constructor ‘;’ , ‘ &’
or ‘ ;E ’. σ1opσ2 is defined as follows:

bool op bool = bool

(σ1
ϕ−→ σ2, U1) op (σ1

ϕ−→ σ2, U2) = (σ1
ϕ−→ σ2, U1opU2)

(R, U1) op (R, U2) = (R, U1opU2)

Let Γ1 and Γ2 be type environments with the same domain
(dom(Γ1) = dom(Γ2)). Then,Γ1opΓ2 is defined as follows:

dom(Γ1opΓ2) = dom(Γ1)(= dom(Γ2))
(Γ1opΓ2)(x) = Γ1(x)opΓ2(x)

For example, the type environmentΓ1; Γ2 states that the value
stored in each variablex ∈ dom(Γ1)(= dom(Γ2)) should be
first used according toΓ1(x) and then should be used according
to Γ2(x).

We also define the type environment�xΓ as follows:

�xΓ =

�
Γ if x 6∈ dom(Γ)
Γ′, x : (R,�U) if Γ = Γ′, x : (R, U).

Note that, ifΓ(x) = bool or Γ(x) = (σ1
ϕ−→ σ2, U), then�xΓ is

not defined.

DEFINITION 3.12 (Type Judgment).The type judgment relation
Γ ‖ ϕ ` M : δ is the least relation closed under the rules in
Figure 4.

Note that whenΓ1; Γ2 or Γ1;E Γ2 appears in the conclusion
of a rule, the rule can be applied only when the operation is
well-defined; In particular, it must be the case thatdom(Γ1) =
dom(Γ2).

Now we explain the key typing rules ofT-RAISE, T-TRY,
T-FUN, T-APP, and T-WEAK below. The others are essentially
the same as those in the original type system [10] (except for the
effect part in type judgments).

RuleT-RAISE is the easiest: Since the termraise immediately
raises an exception without accessing any resources, it is typed
under the empty type environment with effectE .

RuleT-TRY is explained as follows. Usages inΓ1 andΓ2 record
how each resource is accessed before and after, respectively, an

exception is raised. So, the total usage fortry M1 with M2 is
expressed byΓ1;E Γ2, obtained by applying;E to usages in those
type environments.

Rule T-FUN is defined according to the following intuitions.
First, the premise says:Each timethe functionfun(f, x, M) is
called, its bodyM causes effectϕ, accessing the function’s free
variables according toΓ. In addition,M recursively callsf ac-
cording to usageU1. M also uses the argumentx according to type
σ1 and yields a value of typeδ2. Therefore, the function is given a
type(δ1

ϕ−→ δ2, U), whereδ1 ≤ σ1\E . Here,E is removed by\E
from σ1 since any possible exception that may be raised inM is al-
ready considered in the latent effectϕ. The type environment for
the function is obtained bymultiplying3(Γ\E) (which expresses
how the function’s free variables are accessedeach timethe func-
tion is called) according toU (which expresses how often the func-
tion is called from the outside) andU1\E (which expresses how
often the function is called recursively). We safely approximate
this multiplication by considering only the following three simple
cases: the function is never called, it is called exactly once, or it is
called an arbitrary number of times. In the first case, the free vari-
ables are never accessed. In the second case, the free variables are
accessed exactly according to3(Γ\E). In the last case,3(Γ\E)
is arbitrarily replicated by ! where !U is defined byµα.0&(U ⊗ α)
and!Γ is its pointwise extension. Thus, the approximated multipli-
cation∆fun

(U,U1,Γ) is defined as follows:

∆fun
(U,U1,Γ) =

8<: ∅ if 1 6∈ [[U]]
Γ if (1 ∈ [[U]] ⊆ {ε, 1, 1 ↓}) ∧ (1 6∈ [[U1]])
!Γ otherwise

Rule T-APP is explained as follows. When the termM1M2 is
evaluated, the termM1 is first evaluated to a function andM2 is
then evaluated and finally the function is called. The type environ-
mentΓ1; Γ2; (ϕ3)

use reflects this order, whereϕ3 comes from the
latent effect of the type of the function.

RuleT-WEAK deals with weakening and subsumption (on types
and effects). Here,Γ ≤ϕ Γ′ is defined by

Γ ≤ϕ Γ′

⇔8<: dom(Γ) ⊇ dom(Γ′)
Γ(x) ≤ Γ′(x) for eachx ∈ dom(Γ′)
Useϕ(Γ′(x)) ≤ (ϕ)use for eachx ∈ dom(Γ) \ dom(Γ′)

It means that if we addx : σ to the domain ofΓ′, σ must respect
the effectϕ of the term. For example, fromΓ′ ‖ E ` M : δ, we
can deriveΓ′, x : (R,E) ‖ E ` M : δ (wherex 6∈ dom(Γ′))
but notΓ′, x : (R,0) ‖ E ` M : δ. In the latter, the usage ofx
contradicts with the effectE .

Example 3.6.The following type judgments can be derived for the
termsM1, M2 andM of Example 2.2:

x : (R, I; ((W ; C)&E)) ‖ E ? ` M1 : bool
x : (R, I; ((W ; C)&E));E C ‖ 0 ` M2 : bool
∅ ‖ 0 ` M : bool .

2

4. Type Soundness
Our type system is sound in the sense that if a closed well-typed
term of typeτ whereUse(τ) = 0 is evaluated, any resource is
accessed according to the specification (declared by the resource
creation primitivenewΦ()).

We say thatM is well-annotatedif all the annotations on escape
information ·{x} are sound, i.e., if({}, M) is never reduced to a

c = true or false

∅ ‖ 0 ` c : bool
(T-CONST)

x : 3δ ‖ 0 ` x : δ (T-VAR)

[[U]] ⊆ Φ

∅ ‖ 0 ` newΦ() : (R, U)
(T-NEW)

Γ ‖ ϕ ` M : (R, a)

Γ ‖ ϕ ` acca(M) : bool
(T-ACC)

Γ1 ‖ ϕ1 ` M1 : bool Γ2 ‖ ϕ2 ` M2 : δ Γ2 ‖ ϕ2 ` M3 : δ

Γ1; Γ2 ‖ ϕ1; ϕ2 ` if M1 then M2 else M3 : δ
(T-IF)

Γ1 ‖ ϕ1 ` M1 : σ1\E Γ2, x : σ1 ‖ ϕ2 ` M2 : δ2

Γ1; Γ2 ‖ ϕ1; ϕ2 ` let x = M1 in M2 : δ2

(T-LET)

Γ1 ‖ ϕ1 ` M1 : (δ1
ϕ3−−→ δ2, 1) Γ2 ‖ ϕ2 ` M2 : δ1

Γ1; Γ2; (ϕ3)
use ‖ ϕ1; ϕ2; ϕ3 ` M1M2 : δ2

(T-APP)

Γ, f : (δ1
ϕ−→ δ2, U1), x : σ1 ‖ ϕ ` M : δ2 δ1 ≤ σ1\E

∆fun
(U,U1\E,3(Γ\E)) ‖ 0 ` fun(f, x, M) : (δ1

ϕ−→ δ2, U)
(T-FUN)

Γ ‖ ϕ ` M : δ

�xΓ ‖ ϕ ` M{x} : δ
(T-NOW)

∅ ‖ E ` raise : δ (T-RAISE)

Γ1 ‖ ϕ1 ` M1 : δ Γ2 ‖ ϕ2 ` M2 : δ

Γ1;E Γ2 ‖ ϕ1;E ϕ2 ` try M1 with M2 : δ
(T-TRY)

ϕ v ϕ′ Γ ≤ϕ′ Γ′ Γ′ ‖ ϕ′ ` M : δ′ δ′ ≤ δ

Γ ‖ ϕ ` M : δ
(T-WEAK)

Figure 4. Typing Rules

configuration(H, E [v{x}]) such thatx ∈ FV(v). The soundness
of our type system is stated formally as follows:

THEOREM 4.1 (Type Soundness).SupposeM is well-annotated.
If ∅ ‖ ϕ ` M : δ and Use0(δ) ≤ 0, then all the following
properties hold:

(1) ({}, M) 6;∗ Error .
(2) If ({}, M) ;∗ (H, M ′) 6;, then∀x ∈ dom(H). ↓ ∈ H(x).

The conditionUse0(τ) ≤ 0 states that even if the termM is
evaluated to a resource, the resource may not be accessed after the
evaluation. Property (1) means thatM never performs an illegal
resource access. Property (2) means that all the resources are used
up when the evaluation terminates (normally or abruptly). Note that
property (1) holds even ifUse0(δ) 6≤ 0.

We give an outline of the proof of Theorem 4.1 below. The full
proof is available in the full version [11].

We first define a type judgment relationϕ ` (H, M) : δ, which
means that the state(H, M) is well-typed under the effectϕ.

DEFINITION 4.1.

x1 : (R, U1), . . . , xn : (R, Un) ‖ ϕ ` M : δ
dom(H) = {x1, . . . , xn}

[[U1]] ⊆ H(x1), . . . , [[Un]] ⊆ H(xn)

ϕ ` (H, M) : δ

The first premise means thatM uses the resourcesx1, . . . , xn

according toU1, . . . , Un. The other premises mean that the current
heap indeed allows such resource usage.

We list main lemmas below. Lemma 4.1 states that typing is pre-
served by reductions. Lemma 4.2 states that an invalid resource ac-
cess cannot happen immediately in a well-typed state. Lemma 4.3
states that evaluation may terminate only when the expression be-
comes a value or raises an uncaught exception. Lemma 4.4 states
that every heap element contains↓ in a well-typed, final state. (See
[11] for proofs.)

LEMMA 4.1 (Type Preservation).If ϕ ` (H, M) : σ and(H, M) ;

(H ′, M ′), thenϕ ` (H ′, M ′) : σ.

LEMMA 4.2 (Safety I). If ϕ ` (H, M) : δ,
then(H, M) 6; Error .

LEMMA 4.3 (Progress).SupposeM is well-annotated. Ifϕ `
(H, M) : δ, then either(H, M) ; (H ′, M ′) for someH ′ and
M ′ or M is either a valuev, or of the formEtry[raise].

LEMMA 4.4 (Safety II).(1) If ϕ ` (H, v) : δ andUse0(δ) ≤ 0,
then∀x ∈ dom(H). ↓ ∈ H(x).

(2) If ϕ ` (H, Etry[raise]) : δ, then∀x ∈ dom(H). ↓ ∈ H(x).

Theorem 4.1 is an immediate corollary of the above lemmas:
Property (1) follows from Lemmas 4.1 and 4.2; Property (2) fol-
lows from Lemmas 4.3 and 4.4.

5. Type Inference
By the soundness of the type system, a sufficient condition for a
closed termM to access resources in a valid manner is that there
exists an effectϕ andδ such that∅ ‖ ϕ ` M : δ andUse0(δ) ≤ 0.
(Actually, it is sufficient to give an algorithm to check whether
∅ ‖ ϕ ` M : bool, since if M does not have typebool, we
can check the term(λx.true)M instead.) We sketch an algorithm
for checking the sufficient condition in this section.

The overall structure of the algorithm is the same as the
constraint-based type inference algorithm for Igarashi and Kobayashi’s
type system [10]. Based on the typing rules, we can construct an
algorithm which, given a closed termM , generates constraints on
variables expressing unknown usages, effects, and types as a suf-
ficient and necessary condition for∅ ‖ ϕ ` M : δ. By reducing
the constraints on type variables (using the standard unification
algorithm), we can obtain constraints of the following form:

{ ξ1 ≤ ϕ1, . . . , ξm ≤ ϕm,
α1 ≤ U1, . . . , αn ≤ Un, [[U ′1]] ⊆ Φ1, . . . , [[U

′
k]] ⊆ Φk }

At this point,U1, . . . , Un may contain effect variables (in the form
of (ξ)use) and expressions of the form∆fun

(U1,U2,U3) (which is
defined in the same way as∆fun

(U1,U2,Γ)), whereU1 andU2 are the
usages of functions. To remove them, we first solve constraints on
effects and function usages by using a standard method for solving
constraints over a finite lattice [18].

Then, the greatest solution for a subusage constraint of the form
α ≤ U (whereU no longer contains an effect or∆fun

(U1,U2,U3)) can
be represented byµα.U . Thus, the above constraints can be further
reduced to constraints of the form:{[[U ′′1]] ⊆ Φ1, . . . , [[U

′′
k]] ⊆

Φk}.
Like in our previous type system [10], the relation[[U]] ⊆ Φ is

generally undecidable (think of the case whereΦ is a context-free
language). We, however, think that for a certain class of languages
for describingΦ, we can develop an algorithm (which may be
incomplete but sound at least) to verify the condition[[U]] ⊆ Φ.

In fact, we have already implemented such an algorithm for the
case whereΦ = (R∗C ↓)#: see Section 6.

Example 5.1.Consider the term

let x = new(R∗C ↓)#() in let y = new(W∗C ↓)#() in Ma

Here,Ma is a term obtained by annotating every access to a re-
sourcex by (·){x} —for example,close(x) becomesclose(x){x}—
in the termM of Example 2.3. Then, we finally gain the following
constraints after extracting and solving subusage and subeffect con-
strains:

[[(!(3((R; (0&E);E)\E));E);E C]] ⊆ (R∗C ↓)#
[[(!(3((W ; (0&E);E)\E));E);E C]] ⊆ (W ∗C ↓)#

Since these constraints are satisfied, we can conclude that the above
term is well-typed.2

Example 5.2.Consider the term

M
M
= let x = new(R∗C ↓)#() in M2,

whereM2
M
= try (read(x){x}; raise) with close(x). The fol-

lowing constraints are extracted.

Γread(x) = x : (R, α1)
Γraise = x : (R, α2)
Γclose(x) = x : (R, α3)
Γread(x){x} = x : (R, α4)

Γread(x){x};raise = x : (R, α5)
ΓM2 = x : (R, α6)
Γ

new(R∗C ↓)# ()
= ∅

ΓM = ∅
ϕread(x) = ξ1 ϕraise = ξ2 ϕclose(x) = ξ3

ϕread(x){x} = ξ4 ϕread(x){x};raise = ξ5

ϕM2 = ξ6 ϕ
new(R∗C ↓)# ()

= ξ7 ϕM = ξ8

δread(x) = bool δraise = bool δclose(x) = bool
δread(x){x} = bool δread(x){x};raise = bool

δM2 = bool δ
new(R∗C ↓)# ()

= (R, α7) δM = bool

[[α7]] ⊆ (R∗C ↓)#
α1 ≤ 3R
α2 ≤ E
α3 ≤ 3C

α4 ≤ �α1

α5 ≤ α4; α2

α6 ≤ α5;E α3

α7 ≤ α6

ξ1 v 0
ξ2 v E
ξ3 v 0
ξ4 v ξ3

ξ5 v ξ4; ξ2

ξ6 v ξ5;E ξ3

ξ7 v 0
ξ8 v ξ7; ξ6

Here,ΓN , ξN , andδN are respectively the type environment, effect,
and type of a subtermN . By solving the constraints on effects and
usages, we obtainα7 = (�3R;E);E 3C and ϕ8 = 0. Since
[[α7]] ⊆ (R∗C ↓)# holds, we can conclude thatM is well-typed.
2

6. Experiments
Based on our type system, we have implemented a prototype re-
source usage analyzer. The implementation is made available at
http://www.kb.ecei.tohoku.ac.jp/~iwama/rue/. The ana-
lyzer inputs a program written inλR

E
, without annotations (·{x})

on escape information. The analyzer first performs the standard
type inference and annotate terms of non-function types with es-
cape information. It then performs the usage analysis as described

in the previous section. In the final phase, constraints of the form
[[U]] ⊆ Φ are checked. Currently, the analyzer accepts only the
specificationΦ = (R∗C ↓)#, and uses a sound but incomplete al-
gorithm for checking[[U]] ⊆ Φ. The algorithm works as sketched
in Section 6.6 of our previous paper [10]. The basic observation
behind the algorithm is as follows. Although the language of us-
age expressions is very expressive (for example, it can express
any context-free languages as well as some context-sensitive lan-
guages), we can approximate usages by using a finite set ofab-
stract usagesas long as the specificationΦ is regular; For example,
we need not distinguish between usagesR; C andR; R; C when
the specification is(R∗C ↓)#. We have designed an abstract usage
domain that is sufficient for checking the inclusion with respect to
the specificationΦ = (R∗C ↓)#, so that the constraint[[U]] ⊆ Φ
can be replaced by a decidable, sufficient condition[[α(U)]] ⊆ Φ
(whereα is the abstraction function). The formalization of an al-
gorithm that can deal with arbitrary regular languagesΦ is left for
future work.

Experiments We have tested several programs including the ex-
amples given in this paper (whereinit(x) is replaced byread(x)
since the current system can handle only the specification(R∗C ↓)#).
We confirmed that the analyzer gives correct answers. The tested
programs include the following tricky one.

let create =
fun(f,x,let y=new[read*;close]() in y) in

let repeat =
fun(g,x, let z = create x in

try
if acc[read](z) then raise
else (g x; acc[close](z))

with acc[close](z)) in
repeat true;;

The above program repeatedly creates a new resource and closes it.
Note that arbitrarily many resources may be created, and also that
arbitrarily many exception handlers can be nested.

We have also inspected source programs of O’Caml compiler
(3.08.4), manually translated some fragments of the programs ac-
cessing input files, and run our analyzer. Of 46 fragments of the
code we have inspected, 40 of them can be categorized into the
access patterns (expressed in our target language) summarized in
Figure 5. We have confirmed that all of the four patterns can be an-
alyzed by our prototype system. For example, the following is an
example of the 4th pattern:

let exclude filename =
let ic = open_in filename in
try

while true do
let s = input_line ic in
primitives := StringSet.remove s !primitives

done
with End_of_file -> close_in ic

| x -> close_in ic; raise x

The body of the above function is expressed in our language:

let input_line = lambda x.
if acc[read](x) then true else raise in

let ic = new[read*;close]()
in try fun(g,x, input_line ic;g x) true

with acc[close](ic);;

Our prototype analyzer accepts the above program, while it rejects
the slightly modified program obtained by replacingacc[close](ic)
with false.

Normalpattern: 16 places

... (let z = new(R∗C)# () in (read(z); ..; close(z))) ...
TryWithpattern: 18 places

let z = new(R∗C)# ()
in try read(z); .. ; close(z) with close(z)

TryClosepattern: 3 places

let z = new(R∗C)# ()
in (try read(z); .. with ..); close(z)

WhileTruepattern: 5 places
let f = λx.(..; read(x); ..) in

let z = new(R∗C)# ()
in try while(true){..; (f z); .. }with close(z)

Figure 5. Typical file access patterns in O’Caml program

Of the remaining 6 fragments (that do not fit any of the
four patterns), two of them seem to forget to close a file (in
asmcomp/asmlink.ml anddebugger/source.ml). Our analyzer
rejects them as ill-typed.

The other 4 fragments seem to use files correctly, but they are
rejected or cannot be handled by our analyzer. They use pointers
(reference cells) or records to store file pointers. The following is
the most interesting one:

let ic = open_in_bin Sys.executable_name in
Bytesections.read_toc ic;
{ read_string = Bytesections.read_section_string ic;

read_struct = Bytesections.read_section_struct ic;
close_reader = fun () -> close_in ic }

It opens a file, and then creates a record consisting of closures for
reading and closing files. To properly handle this, we need to refine
the type system to control the order between the uses of record
elements.

7. Discussion
Alternative approach to dealing with exceptionsAn alterna-
tive, more straightforward approach to dealing with exceptions
would be to encode exception primitives intoλR (e.g., by using
the continuation-passing style) [10] or the extension ofπ-calculus
with resources [15], and then apply previous type systems [10, 15].
The resulting analysis is not, however, accurate enough to deal with
the examples given in this paper. For example, let us consider the
following program:

M
M
= let f = λy.raise in (try f() with write(x)); close(x)

It can be encoded into followingλR term:

let f = λy.λh.λc.h() in
let c = λz.close(x) in
let h = λz.(write(x); c()) in f()(h)(c)

Here the functionf takes two continuationsh and c as extra
arguments:h is to be called when an exception is raised, whilec
is to be called when the evaluation terminates normally. Igarashi
and Kobayashi’s type system would infer that the usage ofx is
3C; 3W , which does not tell us which ofW or C is performed
first.

Another approach would be to put information about both re-
source usage and exceptions into effects to make the type system
simpler. For example, a function

λx.(write(x); close(x); raise)

can be given a type(R, ρ)
ρW ;ρC ;E−−−−−−→ bool, whereρ is an abstract

resource (called a region). The effectρW ; ρC ; E means that a

resource belonging to the regionρ is written and closed, and then an
exception is raised. As discussed elsewhere [10, 14], however, this
approach does not work well when different resources are aliased
to the same region.

Extensions for multiple exceptions and exception arguments
Unlike the simple language studied in this paper, real languages
like ML allow multiple exceptions and exception arguments. We
can extend our type system to deal with multiple exceptions, by
introducing distinct usage constructorsEi and;Ei for each kind of
exception. As for exception arguments, there are two main issues:
(1) how to deal with an exception having a resource as an argument
(for example, consider the case where an exception carries a file
that must be closed), and (2) how to deal with pattern matching
on arguments, like “try ... with E 1 -> ...”. We can deal
with both issues by combining our type system with analyses of
uncaught exceptions [17, 27]. For the first issue, we can impose a
restriction that the usageU of a resource passed as an argument
of an uncaught exception must be a subusage of0. For the second
issue, we can extend usage constructorsEi and;Ei by annotating
them with information (like “rows” [17]) about exception argu-
ments.

8. Related Work
A number of type systems have been proposed for statically check-
ing whether a certain kind of resource is accessed in a valid man-
ner [1, 3, 8, 10, 22, 24]. Only a few of them, however, deal with
exception primitives. Type systems for JVM lock primitives [3, 12]
support exceptions. In those type systems, the handler for each ex-
ception is statically known, so that exceptions can be treated in the
same manner asif -statements.

It seems easier to extend effect-based type systems [4, 7, 19] for
dealing with exceptions than to extend Igarashi and Kobayashi’s
type system. The effect-based approach, however, suffers from the
problem mentioned in Section 7.

Another approach to the analysis of resource usage in the pres-
ence of exceptions would be to extend work on typestates [20, 25,
26, 6, 5]. In this approach, each type have several states (typestates)
and a typestate of each resource may be changed by resource ac-
cesses or procedure calls. Each access to a resource is permitted
only if the resource is in a valid typestate, so, inferring the type-
state of each resource at any program points, we can verify valid
resource usage.

Indeed, the original work on typestates [20] does deal with
exceptions. However, unlike ours, their method requires; (1) ex-
plicit annotations on procedures, where with a specification:pre-
typestates, post-typestates, exception-typestatesmeaning that type-
states of argument values before resource-access/procedure-call,
after the resource-access/procedure-call has been performed nor-
mally and abruptly; (2) cannot deal with aliasing, that makes their
verification be unsound; (3) cannot deal with higher-order func-
tions.

Indeed, the original work on typestates [20] does deal with ex-
ceptions. However, unlike ours, their method requires explicit an-
notations on procedures, and cannot deal with aliasing and higher-
order functions. The succeeding work on typestates [25, 26, 6, 5]
extends the original work to lift the restriction on aliasing and deal
with data structures (or objects) and pointers (although exceptions
are no longer explicitly discussed). Those methods seem to either
require complex annotations for higher-order functions or suffer
from the same problem as the effect-based approach discussed in
Section 7.

Kobayashi [14] has proposed another combination of linear
types and effect systems. His type system is, however, so compli-
cated that no reasonable type inference algorithm has been devel-
oped.

In parallel to the present work, we have recently studied type-
based resource usage analysis for concurrent programs [15]. It
would be interesting future work to integrate the type system in
this paper with that type system.

Model checking technologies [2, 9] have recently been applied
to verification of temporal properties of programs. Advantages
of our type-based approach are that our analysis is modular, and
that our analysis can deal with programs creating infinitely many
resources (recall the tricky example shown in Section 6).

9. Conclusion
We have extended Igarashi and Kobayashi’s type-based resource
usage analysis to deal with exceptions, proved the soundness of the
extended analysis, and implemented a prototype analyzer.

Future work includes an extension of the type system to deal
with a larger set of language constructs (e.g., multiple exceptions,
pointers, concurrency primitives) and development of an algorithm
for checking[[U]] ⊆ Φ for a certain class of languagesΦ.

Acknowledgments
We would like to thank Eijiro Sumii, Manuel F̈ahndrich and anony-
mous referees for useful comments.

References
[1] A. Aiken, M. Fähndrich, and R. Levien. Improving region-based

analysis of higher-order languages. InProceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 174–185, 1995.

[2] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. InProceedings of ACM
SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, pages 1–3, 2002.

[3] G. Bigliardi and C. Laneve. A type system for JVM threads.
In Proceedings of 3rd ACM SIGPLAN Workshop on Types in
Compilation (TIC2000), Montreal, Canada, 2000.

[4] R. DeLine and M. F̈ahndrich. Adoption and focus: Practical linear
types for imperative programming. InProceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2002.

[5] R. DeLine and M. F̈ahndrich. Typestates for objects. In M. Odersky,
editor,ECOOP, volume 3086 ofLecture Notes in Computer Science,
pages 465–490. Springer, 2004.

[6] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate
verification: Abstraction techniques and complexity results. In
R. Cousot, editor,SAS, volume 2694 ofLecture Notes in Computer
Science, pages 439–462. Springer, 2003.

[7] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2002.

[8] S. N. Freund and J. C. Mitchell. The type system for object
initialization in the Java bytecode language.ACM Transactions
on Programming Languages and Systems, 21(6):1196–1250, 1999.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InProceedings of ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages, pages 58–70, 2002.

[10] A. Igarashi and N. Kobayashi. Resource usage analysis.ACM
Transactions on Programming Languages and Systems, 27(2):264–
313, Mar. 2005.

[11] F. Iwama, A. Igarashi, and N. Kobayashi. Resource usage analysis
for a functional language with exceptions, 2005. Full version.
Available fromhttp://www.kb.ecei.tohoku.ac.jp/~iwama/
rue/res-use-exce-full.pdf.

[12] F. Iwama and N. Kobayashi. A new type system for JVM lock
primitives. InProceedings of ASIA-PEPM’02, pages 156–168. ACM
Press, 2002.

[13] N. Kobayashi. Quasi-linear types. InProceedings of ACM
SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, pages 29–42, 1999.

[14] N. Kobayashi. Time regions and effects for resource usage analysis.
In Proceedings of ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation (TLDI’03), pages 50–61,
2003.

[15] N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis
for π-calculus. InProceedings of VMCAI’06, 2006.

[16] I. Mackie. Lilac : A functional programming language based on linear
logic. Journal of Functional Programming, 4(4):1–39, October 1994.

[17] F. Pessaux and X. Leroy. Type-based analysis of uncaught exceptions.
In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles
of Programming Languages, pages 276–290, 1999.

[18] J. Rehof and T. Mogensen. Tractable constraints in finite semilattices.
Science of Computer Programming, 35(2):191–221, 1999.

[19] C. Skalka and S. Smith. History effects and verification. In
Proceedings of APLAS 2004, volume 3302 ofLecture Notes in
Computer Science, pages 107–128. Springer-Verlag, 2004.

[20] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability.IEEE, Transactions on
Software Engineering, 12(1):157–171, Jan. 1986.

[21] J.-P. Talpin and P. Jouvelot. The type and effect discipline. In
Proceedings of IEEE Symposium on Logic in Computer Science,
pages 162–173, 1992.

[22] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, 132(2):109–176, 1997.

[23] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In
Proceedings of Functional Programming Languages and Computer
Architecture, pages 1–11, 1995.

[24] D. Walker, K. Crary, and J. G. Morrisett. Typed memory management
via static capabilities.ACM Transactions on Programming Languages
and Systems, 22(4):701–771, 2000.

[25] Z. Xu, B. P. Miller, and T. Reps. Safety checking of machine code.
In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation, pages 70–82,
New York, NY, USA, 2000. ACM Press.

[26] Z. Xu, T. W. Reps, and B. P. Miller. Typestate checking of machine
code. InESOP ’01: Proceedings of the 10th European Symposium on
Programming Languages and Systems, pages 335–351, London, UK,
2001. Springer-Verlag.

[27] K. Yi. Compile-time detection of uncaught exceptions in Standard
ML programs. InProceedings of SAS’94, volume 864 ofLecture
Notes in Computer Science, pages 238–254, 1994.

