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Abstract

Igarashi and Kobayashi have proposed a general type system for checking whether resources
such as files and memory are accessed in a valid manner. Their type system is, however, for call-
by-value λ-calculus with resource primitives, and does not deal with non-functional primitives such
as exceptions and pointers. We extend their type system to deal with exception primitives and
prove soundness of the type system. Dealing with exception primitives is especially important in
practice, since many resource access primitives may raise exceptions. The extension is non-trivial:
While Igarashi and Kobayashi’s type system is based on linear types, our new type system is a
combination of linear types and effect systems. We also report on a prototype analyzer based on
the new type system.

1 Introduction

Background There has recently been growing interest in methods for verifying that resources (such as
files, memories or network channels) used in a program are accessed in a valid manner [1, 3, 8, 10, 23, 25].
For example, Tofte et al.’s type system [23] can ensure that certain memories are not accessed after their
deallocation and Freund and Mitchell’s type system [8] can ensure that objects are used only after their
initialization is finished. Igarashi and Kobayashi [10] have coined the term “resource usage analysis”
for such general verification problems and proposed a type-based method for resource usage analysis for
call-by-value λ-calculus with resource primitives.

The idea of their type system is to augment types of resources with information about in which order
resources are accessed. For example, the type of read-only files is given by (File, R∗; C) and the type
of read-write files is given by (File, (R + W )∗; C), where the order of operations on files is represented
by regular expressions (the concatenation is given by ’;’) with R,W and C as labels for read, write and
close operations, respectively (in their type system, actually, a more expressive language called usage
expressions is used to represent the access order).

Typing rules are designed by taking the evaluation order into account. For example, the usual typing
rule for let expressions:

Γ ` M : σ1 Γ, x : σ1 ` N : σ2

Γ ` let x = M in N : σ2

is replaced by:

Γ ` M : σ1 ∆, x : σ1 ` N : σ2

Γ;∆ ` let x = M in N : σ2

1



Here, Γ; ∆ denotes the type environment obtained by composing the usage expression of Γ and ∆ by ‘;’.
For example, if Γ = x : (File, R∗), which intuitively means the resource x is read several times during
the evaluation of M , and if ∆ = x : (File, C), which means x is closed (once) during the evaluation of
N , then Γ;∆ = x : (File, R∗; C), which means x is read several times and then closed. The new typing
rule reflects the fact that M is evaluated first and then N is in let x = M in N .

In this way, their type system can keep track of the order of accesses to resources. However, the
target language is pure call-by-value λ-calculus only with resource primitives. So, it is not clear that
the method can be extended to practical programming languages, which are usually equipped with
non-functional primitives such as exceptions and references.

Our Contributions In this paper, we extend their type system to deal with exception primitives. This
extension is very important in practice because access primitives in practical programming languages
may raise exceptions such as End of File. Our technical contributions are summarized as follows:

• Design and formalization of a type system for resource usage analysis for a functional language
with an exception handling mechanism;

• Proof of soundness of the type system;

• Development of a type reconstruction algorithm; and

• Implementation of a prototype resource usage analyzer.

Although the exception mechanism here is much simpler than that of ML or Java (there is only one
exception constructor, which does not carry values), the extension is already non-trivial. While the
type system of Igarashi and Kobayashi [10] is based on linear types, our new type system is based on a
combination of linear type and effect systems [21, 22]. In fact, even for the problem of just checking that
certain values are used only once (which can be considered an instance of the resource usage analysis
problem), previous linear type systems [10, 13, 16, 24] are insufficient; For example, they cannot judge
that x is used once in the following program (suppose that use is a function that uses its argument just
once):

let f () = use x
in try (if b then f() else raise E)

with E -> use x

Key Ideas in the Type System As mentioned above, we extend Igarashi and Kobayashi’s type
system to deal with exception primitives, in particular, we add the new terms raise and try M1 with M2.
Here, raise raise an exception and try M1 with M2 evaluates a term M1 and then evaluates M2 if an
exception is raised during the evaluation of M1. So, we must analyze in which order each resource is
accessed even in situations that an exception is raised and uncaught or the exception is caught by an
exception handler and the evaluation of the hander code proceeds.

First, we keep track of information on exceptions, as well as that on access sequences, by usage
expressions. For this purpose, we extend usage expressions by introducing the special label E and the
constructor ;E . E means that a resource is not accessed any more because an exception is raised; for
example, the usage R;E means a resource is first read and then an exception is raised. The usage
U1;E U2, which corresponds to exception handling, means that a resource is used according to U1 and
if an exception is raised, then it is used according to U2. Thus, for example, the usage (R;E );E C is
equivalent to R; C.

In order to deal with new exception primitives, it may seem enough to add the following simple
typing rules using the new usage expressions to Igarashi and Kobayashi’s type system:
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Use(τi) = E for each i ∈ {1, · · · , n}
x1 : τ1, . . . , xn : τn ` raise : τ

(T-Raise-Simple)

Γ ` M1 : τ ∆ ` M2 : τ dom(Γ) = dom(∆)
Γ;E ∆ ` try M1 with M2 : τ

(T-Try-Simple)

Here, the premis part of the first rule states that if τi is resouce type, then the usage of type τi is E ,
which means an exception is raised and Γ;E ∆ in the conclution part of the second rule denotes the type
environment obtained by composing the usage expression of Γ and ∆ by ‘;E ’. The first rule says that,
during the evaluation of the term raise, any resouce is never accessed but an exception is raised and
the secont rule says that, during evaluation of try M1 with M2, each resource is accessed according
to Γ during the evaluation of M1 and, if an exception is raised, is accessed according to ∆ during the
evaluation of M2.

Now, for example, try (read(x);raise) with E -> close(x) is typed as follows:

Π =

x : (File, R) ` read(x) : bool
x : (File, E) ` raise : bool

x : (File, R; E) ` read(x); raise : bool

Π x : (File, C) ` close(x) : bool

x : (File, (R;E);E C) ` try read(x);raise
with E -> close(x)

: bool.

Notice that ;E corresponds to the use of try. The type judgment above tells us that, during the
evaluation of M , the file x is first read and then closed. (Here, we assume access primitives themselves
do not raise exceptions; we can model access primitives that may raise exceptions by combining them
with conditional expressions.)

Unfortunately, using only usage expressions is not sufficient to obtain the accuracy required for
practical programs using exceptions (so, the typing rules (T-Raise-Simple), (T-Try-Simple) is not
sufficient). The problem stems from the fact that Igarashi and Kobayashi’s type system does not give
very accurate usage information when resources are put in function closures. For example, let us concider
the followings:

Mrc
M= let f = λy.close(x)in (read(x); f())

Mrec
M= let f = λy.raise in (try read(x); f() with close(x)).

Here, the typing rules for lambda-abstraction terms in Igarashi and Kobayashi’s type system is given as
follows:

Γ, x : τ1 ` M : τ2

3Γ ` λx.M : τ1 → τ2.
(T-Abs-IK)

The intuitive meanigs of 3Γ in the conclusion part of the rule (T-Abs-IK) is that accesses according
to Γ are encapsulated in the body of a function and may be delayed (until the function is called).

So, using this typing rule (T-Abs-IK), the usage of resource x in the term Mrc is given as 3C; R.
As mentioned above , the usage 3C roughly means that the close operation represented by C may be
delayed. As a result the usage (3C); R can mean either R; C or C; R, which means the resource x may
be read after closed.

Similarly, using this typing rules (T-Abs-IK), (T-Raise-Simple) and (T-Try-Simple), the term
Mrec is typed under the type environment x : (R, (3E); (R;E C)), which can mean that the resouce x
is accessed according to either E; (R;E C) (equivalent to E ), (E; R);E C (equivalent to C), (R; E);E C
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(equivalent to R; C) or (R;E C); E (equivalent to R; E). The first usage expression says that the resouce
is never accessed, the second ∼ forth says that the resouce is just closed, read and then closed, just
read respectively. We therefore cannot know almost in what order and by what kind of operations the
resource x is accessed in term Mrec.

As is shown in the above example Mrc, the inaccurate usage problem goes for only the exception
but also for other operations to access resources [14]. However the timing of exception raising have a
big influence on the control of evaluation and on the usage of all resources in the context as shown in
above example Mrec. Note that we get the inaccurate information about usage of resouce x even though
the function λy.raise does not include x as a free variable. So, this problem of inaccuracy due to an
exception will be very serious.

To solve this problem, we exploit the idea of effect systems [21, 22] to keep track of more accurate
information on when exceptions are raised. As a result, a type judgment becomes of the form:

Γ ‖ ϕ ` M : σ,

which means that, during the evaluation of M , each resource is accessed according to (usages in) Γ and
exceptions are raised according to effect ϕ. Under the type judement, the new typing rule for functions
is given by:

Γ, x : σ1 ||ϕ ` M : σ2

3(Γ\E ) ||0 ` λx.M : (σ1\E )
ϕ−→ σ2

In the above rule, (Γ\E ), (σ1\E ) denotes the type environment, type obtained by deleting the informa-
tion about exception raising (namely, usage expression E) form Γ, σ. This rule states that if an exception
is raised according to ϕ during the evaluation of function body M , then the effect ϕ is expressed as the
latent effect of the function λx.M and that the information about exception raising is deleted from type
environment Γ and type of function’s argument σ1 because the information is expressed as latent effect
in the type of functions. For example, using the new typing rule (and others introduced in this papar)
the usage of resource x in the above term Mrec is given as (R;E);E C as expected.

Rest of This Paper In Section 2, we introduce our target language formally. In Section 3, we present
our type system for resource usage analysis. Section 4 shows the correctness of the type system. Section 5
describes a type inference algorithm. Section 6 reports on implementation and experiments. We discuss
other possible methods for dealing with the exception mechanism in Section 7. After discussing related
work in Section 8, we conclude in Section 9.

2 Target Language λR
E

This section introduces the target language λR
E

of our analysis. λR
E

is a call-by-value λ-calculus extended
with resources and exceptions.

We assume a finite set A of access-labels, ranged over by a. An access label denotes the kind of
access to a resource; We shall use access labels I, R, W and C for initialization, read, write, and close
operations respectively.

A trace is a sequence consisting of access labels and the special label ↓. Formally, the set A∗,↓ of
traces is defined by:

A∗,↓ = A∗ ∪ {s ↓ |s ∈ A∗}
Here, A∗ is the set of finite sequences of elements of A. The additional symbol ↓ expresses that the
evaluation terminates normally or abruptly with an exception.

A trace expresses how a resource has been accessed at a certain point of the execution of a program.
A trace a1a2 . . . ak means that the resource is accessed by each operation ai in the order a1, a2, . . . , ak.
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A trace a1a2 . . . ak ↓ means that the evaluation has terminated after the resource is accessed in the order
a1, a2, . . . , ak. For example, a trace RRC ↓ means that the resource has been read twice, closed, and
then the evaluation has terminated.

A trace set is a set of traces that is closed under the prefix operation. We write S# for the set of
prefixes of elements of S. A set S of traces is called a trace set if S# = S. We use the metavariable Φ
for a trace set.

Consider a regular expression (RW ↓), then (RW ↓)# = {ε, R,RW,RW ↓} is a trace set. We can
consider a trace set Φ as a specification of each resource, which requires the resource is accessed only
according to a trace in the set Φ.

Example 2.1 Let us consider the trace set Φ = (IR∗C ↓)# and program: init(x); read(x); close(x).
The program initializes, reads and closes the resource x. This program satisfies the specification Φ. On
the other hand, neither read(x); close(x) nor init(x); read(x) satisfies Φ, since the resource x can be
accessed according to RC ↓ or IR ↓ but neither trace is contained in Φ. The meaning of ↓ is a little
tricky; Let us consider the program:
init(x); read(x); loop infinitely . It initializes and reads the resource x, and then goes into an infinite
loop. This program does satisfy the specification Φ. Actually, the resource x is accessed according to a
trace in the set {IR}# ⊂ Φ. 2

Definition 2.2 (Terms, Values)

M (terms) ::= v | M1M2 | let x = M1 in M2 | if M1 then M2 else M3

| newΦ() | acca(M) | M{x} | try M1 with M2 | raise
v (values) ::= true | false | x | fun(f, x,M)

The first line shows standard constructs for the λ-calculus. fun(f, x,M) is a recursive function (which
is often defined by f(x) = M). We write λx.M when f is not free in M . The primitives for resources are
the same as those of λR [10]: newΦ() is the primitive for creating a resource. The trace set Φ specifies
how the resource should be accessed afterwards. In this paper, we often use a regular expression to
specify a trace set. acca(M) is the primitive for accessing the resource M with an operation specified
by a. We assume that the resource access primitive returns a boolean. M{x} is the same as M , except
that the evaluation gets stuck if the resource bound to x escapes from M . The escape information is used
to refine the accuracy of the analysis. A separate escape analysis is assumed, which checks that x does
not escape from M in M{x}. The term try M1 with M2 first evaluates M1. If an exception is raised,
then M2 is evaluated; Otherwise, the value of M1 is returned. The term raise raises an exception. For
the sake of simplicity, we consider a single kind of exception, so raise takes no argument.

We write M1; M2 for let x = M1 in M2 if variable x is not free in M2.

Example 2.3 Consider the following terms:

M1
M= if init(x){x} then (write(x){x}; close(x){x}) else raise

M2
M= try M1 with close(x){x}

M
M= let x = new(I(W )∗C↓)#() in M2

M1 first initializes x. If the initialization returns true, then it writes and closes x; otherwise an exception
is raised. The term M2 closes x when an exception is raised by M1. Therefore, the resource x is closed
no matter whether init(x) returns true or false. The term M creates a resource x and evaluates M2.
The trace set (I(W )∗C ↓)# specifies that x should be first initialized, that it can be written an arbitrary
number of times after that, and that it must be closed once before the program terminates. The term
M2 obeys that specification, so that M should be accepted as a good program. 2

Example 2.4 The following is a fragment of a typical OCaml program accessing files.
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try while (true)
do write char(y,read char(x)) done

with End of File -> close(x);close(y)

It copies a character from x to y until the end-of-file exception is raised, when the exception handler
is executed and x and y are closed.

The above program can be modeled in our language as the following term M .

M
M= try fun(f, z,M1)true with (close(x); close(y))

Here, M1 is
(if read(x) then true else raise);write(y); f true

Note that the library function call read char(x), which may raise an exception, has been modeled by
if read(x) then true else raise. 2

2.1 Operational semantics of λR
E

An operational semantics of λR
E

is given by reduction of pairs of a term and a heap, used to record the
states of resources.

Definition 2.1 (Heap) A heap H is a finite mapping from variables to trace sets.

We write {x1 7→ Φ1, . . . , xn 7→ Φn} (n ≥ 0) for the heap H such that dom(H) = {x1, . . . , xn} and
H(xi) = Φi. It expresses that each variable xi refers to a resource that should be used according to
one of the traces of Φi. When dom(H1) ∩ dom(H2) = ∅, we write H1 ] H2 for the heap H such that
dom(H) = dom(H1) ∪ dom(H2) and H(x) = Hi(x) for x in dom(Hi).

The reduction relation is given using evaluation contexts, defined below.

Definition 2.2 (Evaluation Contexts) Evaluation contexts, ranged over by E, and evaluation con-
texts without try, ranged over by Etry, are defined by the following syntax:

E ::= [ ] | if E then M1 else M2 | E M | v E
| let x = E in M | E{x} | acca(E) | try E with M

Etry ::= [ ] | if Etry then M1 else M2 | Etry M | v Etry

| let x = Etry in M | Etry
{x} | acca(Etry)

E is an ordinary call-by-value evaluation context; Etry is one without exception handlers and used
to identify an innermost exception handler. We write E [M ] and Etry[M ] for the expressions obtained
by replacing [ ] in E and Etry respectively with M .

We write [M1/x1, . . . , Mn/xn] for the capture-avoiding simultaneous substitution of Mi for xi and
Φ−a for {s | as ∈ Φ}. FV(M) denotes the set of free variables in M .

Definition 2.3 (Reduction Relation) The relation (H, M) ; P , where P is either a pair (H ′,M ′)
or Error, is defined as the least relation closed under the rules in Figure 1. We write ;∗ for the
reflexive and transitive closure of ;.

The rule R-New is for fresh resource allocation. The rules R-Acc and R-AccErr express an access
to a resource. The rule R-Acc is for successful resource access: the trace set Φ−a after the access is
obtained by removing the label a at the head of a trace (if the trace begins with a; the traces not
beginning with a are discarded). If no trace begins with a (i.e., Φ−a = ∅), then the resource access
results in an Error. We do not care about the result of resource access here, it is left unspecified which
boolean values are returned in R-Acc, so reduction ; is nondeterministic. The rule R-TryRai is for
exception handling. A term of the form try Etry[raise] with M represents the execution state in which
an exception is being raised and the innermost handler is M , and so reduces to M .
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z fresh
(H, E [newΦ()]) ; (H ] {z 7→ Φ}, E [z])

(R-New)

b = true or false Φ−a 6= ∅
(H ] {x 7→ Φ}, E [acca(x)]) ; (H ] {x 7→ Φ−a}, E [b])

(R-Acc)

Φ−a = ∅
(H ] {x 7→ Φ}, E [acca(x)]) ; Error

(R-AccErr)

(H, E [fun(f, x,M) v]) ; (H, E [[fun(f, x,M)/f, v/x]M ]) (R-App)

(H, E [if true then M1 else M2]) ; (H, E [M1]) (R-IfT)

(H, E [if false then M1 else M2]) ; (H, E [M2]) (R-IfF)

x 6∈ FV(v)

(H, E [v{x}]) ; (H, E [v])
(R-ECheck)

(H, E [try v with M ]) ; (H, E [v]) (R-Try)

(H, E [try Etry[raise] with M ]) ; (H, E [M ]) (R-TryRai)

Figure 1: Operational semantics of λR
E

3 Type System

In this section, we present a type system to guarantee that all accesses to resources in a well-typed term
obey the specification (given by the trace set Φ attached to each resource creation newΦ()).

3.1 Usages

Usage expressions (in short, usages) describe in which order and by which operations a resource can be
accessed. As mentioned above, we express information about exceptions also with usages. We therefore
add new constructors E and U1 ;E U2 to the usages given in [10].

Syntax of Usages.

Let the set L of labels, ranged over by l, be A∪{1, τ,E}. The label 1 is a special label used to count the
number of function applications; the labels τ and E denote exception handling (which is an unobservable,
internal action, hence τ) and a raised exception, respectively.

Definition 3.1 (Usages) The set U of usages, ranged over by U , is defined by:

U ::= 0 | l | α | U1; U2 | U1 ⊗ U2 | U1&U2 | 3U | ¨U | µα.U | U1;E U2

We assume that the unary usage constructors 3 and ¨ bind tighter than the binary constructors (&, ;,⊗
and ;E).
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We briefly explain informal meaning of usage constructors; see also Igarashi and Kobayashi [10].
The usage 0 means that a resource cannot be accessed at all. The usage l ∈ L means that a resource
is accessed by an access primitive labeled with l (if l ∈ A), or that an event corresponding to l occurs:
especially, E ∈ L means that a resource is not accessed later due to a raise of an exception. α is the
usage variable, bound in the form of µα.U , which denotes a recursive usage that satisfies α = U . U1; U2

means that a resource is first accessed according to U1 and then according to U2. U1 ⊗ U2 means that
a resource is accessed according to a sequence obtained by interleaving U1 and U2. U1&U2 means that
a resource is accessed according to either U1 or U2. U1;E U2 means a resource is accessed according to
U1 and, if an exception is raised during the execution, then the resource is accessed according to U2.
For example, ((R&E ); W );E C is equivalent to (R; W )&C. 3U means that some of the resource access
expressed by U may be delayed. For example, (3l1); l2 expresses access order either l1; l2 or l2; l1. ¨U ,
which cancels 3, means that the access represented by U must occur now. So, (¨3U1); U2 is equivalent
to U1; U2.

Example 3.1 The accesses to x in M2 of Example 2.3 is expressed by the usage I; ((W ;C)&E );E C.
Similarly, the accesses to x in M of Example 2.4 is expressed by the usage µα.(R; (0&E ); α);E C.

In what follows, we write U\E for U ;E 0, which cancels exceptions in U . For example, ((l1; l2)⊗ E )\E
is equivalent to 0&l1&(l1; l2).

Semantics of Usages and Subusage Relation.

We give the formal semantics of usages via a labeled transition system. Then, we define the subusage
relation U1 ≤ U2, which means that the access order U1 is more general than U2.

We define the transition relation of the form U
l−→ U ′, which means that a resource of usage U can

be first accessed by l and then accessed according to U ′. In this paper, the transition relation is defined
in a manner similar to the one for process calculi.

Definition 3.2 Let CT be evaluation usage contexts defined by the following syntax:

CT ::= [ ] | 3CT | ¨CT | CT ⊗ U | CT ; U | CT ;E U.

The binary relation U ¹ U ′ on usages are the least preorder that satisfies the rules in Figure 2 and
preserved by all evaluation usage contexts, where U ≡ U ′ means U ¹ U ′ and U ′ ¹ U .

For example, (3U1&U2); U3 ¹ 3U1 ⊗ U3 holds.

30 ≡ 0 ¨0 ≡ 0
0⊗ U ≡ U 0;U ≡ U U ;0 ≡ U 0;E U ≡ 0

U1 ⊗ U2 ≡ U2 ⊗ U1 U1&U2 ≡ U2&U1

3U1 ⊗3U2 ≡ 3(U1 ⊗ U2) 3U1;E U2 ¹ 3(U1;E U2)
3U1;U2 ≡ 3U1 ⊗ U2

U1&U2 ¹ U1 µα.U ≡ [µα.U/α]U

Figure 2: Structual preorder rules on usages

Now, we give the transition rules on usages.

Definition 3.3 (Transition Relation on Usages) The transition relation U
l−→ U ′ on usages is the

least relation closed under the rules in Figure 3. The multi-step transition relation U
t−→ U ′, where
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t ∈ (A ∪ {1, τ})∗, is defined inductively as follows.

t−→def
=

{
¹ if t = ε

l−→ t′−→ if t = lt′

l l−→ 0 (UR-Lab)
U

l−→ U ′

3U
l−→ 3U ′

(UR-Box)
U

l−→ U ′

¨U
l−→ ¨U ′

(UR-Ubox)

U1
l−→ U ′

1

U1 ⊗ U2
l−→ U ′

1 ⊗ U2

(UR-Par)
U1

l−→ U ′
1

U1; U2
l−→ U ′

1;U2

(UR-Seq)

U1
l−→ U ′

1 l 6= E

U1;E U2
l−→ U ′

1;E U2

(UR-SeqE)
U1

E−→ U ′

U1;E U2
τ−→ U2

(UR-Hdlr)

U1 ¹ U ′
1 U ′

1
l−→ U ′

2 U ′
2 ¹ U2

U1
l−→ U2

(UR-Pcon)

Figure 3: Usage transition rules

Example 3.2 Usage R; (C&E);E C has the following transition sequences:

(R; (C&E));E C
R−→ (C&E);E C

C−→ 0

(R; (C&E));E C
R−→ (C&E);E C

τ−→ C
C−→ 0

By using the labeled transition system, we define the trace set expressed by a usage.

Definition 3.4 Let U be a usage. The trace set [[U ]] is defined by

[[U ]] = {t̂ | ∃U ′.(U t−→ U ′)}
∪{t̂ ↓ | U

t−→ 0} ∪ {t̂ ↓ | ∃U ′.(U t−→ E−→ U ′)}

Here, t̂ ∈ A∗ is the label sequence obtained by removing all the occurrences of τ from t.

Example 3.3 [[µα.α]] = {ε}, [[0]] = {ε, ↓}, [[3l1; l2]] = {l1l2 ↓, l2l1 ↓}#, [[¨3l1; l2]] = {l1l2 ↓}#, [[(R&E ); C]] =
{RC ↓}#, and [[((R&E ); C);E C]] = {RC ↓, C ↓}#.

We write U1 =⇒ U2 when U1
τ ···τ−−−→ U2 (where τ · · · τ is a possibly empty sequence of τ). We also

write l=⇒ for =⇒ l−→=⇒.
The subusage relation U1 ≤ U2 is defined as a weak simulation relation closed under usage contexts.

A usage context, written C, is an expression obtained from a usage by replacing one occurrence of a free
usage variable with [ ]. Suppose that the set of free usage variables in U are disjoint from the set of
bound usage variables in C. We write C[U ] for the usage obtained by replacing [ ] with U . For example,
if C = µα.([ ] ; α), then C[U ] = µα.(U ; α).

Definition 3.5 (Subusage relation) U1 ≤ U2 is the largest relation that satisfies the following con-
ditions:
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(1) C[U1] ≤ C[U2] for any usage context C,

(2) If U2
l−→ U ′

2 and l ∈ A ∪ {1}, then U1
l=⇒ U ′

1 and U ′
1 ≤ U ′

2 for some U ′
1,

(3) If U2
τ−→ U ′

2, then U1 =⇒ U ′
1 and U ′

1 ≤ U ′
2 for some U ′

1,

(4) If U2
ε−→ 0, then U1 =⇒ 0, and

(5) If U2
E−→ U ′

2, then U1
E=⇒ U ′

1 for some U ′
1.

We write U1
∼= U2 if U1 ≤ U2 and U2 ≤ U1.

Example 3.4 E ;E C ∼= C and (C&E )\E ∼= C&0 hold.

Note that, if U1 ≤ U2, then [[C[U1]]] ⊇ [[C[U2]]] for any C—in particular, [[U1]] ⊇ [[U2]]. Moreover,
U ≤ µα.α and 3U ≤ U hold for any usage U . U1 ¹ U2 implies U1 ≤ U2 and U1 ≡ U2 implies U1

∼= U2.

3.2 Effects and Types

We proceed to the definitions of effects and types.
An effect expresses the termination behavior of an evaluation. Intuitively, the effect 0 means that

evaluation can terminate normally; E that evaluation can abort with an exception; E ? that evaluation
can terminate normally or abort; and, finally, > that evaluation cannot terminate.

Definition 3.6 (Effects and Subeffect Relation) The set of effects, ranged over by ϕ, is {E ?,0,E ,>}.
The subeffect relation v is the partial order given by E ? v 0 v > and E ? v E v >.

Note that non-termination is denoted by >, which is the greatest element of the order v, as opposed
to the common practice in denotational semantics, where non-termination denotes the least element.
Viewing effects as the set of termination capabilities that a program can exercise, we define the order
so that lower elements have more capabilities, similarly to the subusage relation.

Effects can be considered usages that do not include access labels. We write (ϕ)use for the usage
corresponding to ϕ, defined by:

(E ?)use = 0&E (0)use = 0 (E )use = E (>)use = µα.α.

We define some operations on effects, which correspond to usage constructors of the same symbols.

Definition 3.7 (Operations on effects) The operations on effects ϕ1opϕ2 are defined (where op is
either ;, &,⊗ or ;E) by the following tables (the leftmost columns correspond to ϕ1 and the topmost rows
ϕ2) :

; E ? 0 E >
E ? E ? E ? E E

0 E ? 0 E >
E E E E E
> > > > >

& E ? 0 E >
E ? E ? E ? E ? E ?

0 E ? 0 E ? 0

E E ? E ? E E

> E ? 0 E >

⊗ E ? 0 E >
E ? E ? E ? E E

0 E ? 0 E >
E E E E E
> E > E >

;E E ? 0 E >
E ? E ? 0 E ? 0
0 0 0 0 0

E E ? 0 E >
> > > > >

Example 3.5 E ;0 = E and E&0 = E ? and E ?;E 0 = 0.

10



Definition 3.8 (Types) The set of types, ranged over by σ, is given by the following syntax:

σ ::= bool | (δ1
ϕ−→ δ2, U) | (R, U)

δ ::= bool | (δ1
ϕ−→ δ2, U0) | (R, U0)

Here, U0 ranges over the set of usages that satisfy U0
∼= U0\E.

bool is the type of boolean values. (δ1
ϕ−→ δ2, U) is the type of functions that take a value of type

δ1 as an argument and return a value of type δ2 and that, during the execution of the body, may raise
an exception according to ϕ. U describes how a function is accessed (i.e., called). (R, U) is the type of
resources that are accessed according to U .

For example, a function of the type (R, ((R&0); C)) E?

−−→ bool, 1; 1) takes a resource as an argument,
closes the resource after a possible read, and may raise an exception during the function call. Moreover,
the usage 1; 1 states that the function is called twice.

We write the (outermost) usage of σ under effect ϕ by: Useϕ(bool) = (ϕ)use, Useϕ((σ1
ϕ′−→ σ2, U)) =

U and
Useϕ((R, U)) = U .

The subusage relation defined in Section 3.1 is extended to the subtype relation σ1 ≤ σ2 below. It
means that a value of type σ1 may be used as a value of type σ2.

Definition 3.9 (Subtype relation) σ1 ≤ σ2 is the least relation closed under the following rules:

bool ≤ bool
U ≤ U ′ ϕ′ v ϕ

(σ1
ϕ−→ σ2, U) ≤ (σ1

ϕ′−→ σ2, U
′)

U ≤ U ′

(R, U) ≤ (R, U ′)

3.3 Type Judgment

A type judgment is of the form Γ ‖ ϕ ` M : δ, read “term M is given type δ under type environment Γ
and effect ϕ” where Γ is a finite mapping from variables to types. The intended meaning of Γ ‖ ϕ ` M : δ
is that (1) the term M is evaluated to a value of type δ, if the evaluation terminates, and (2) during the
evaluation, each free variable x in M are used according to type Γ(x) and an exception may be raised
according to effect ϕ. The meaning of the judgment is tricky when 3 appears in Γ [10]: If a usage in Γ(x)
is guarded by 3, the access represented by the usage may be postponed until the value of M is used;
otherwise the access cannot be postponed. For example, x :(R, R; C) ‖ 0 ` read(x); close(x) : bool and
x :(R, R;3C) ‖ 0 ` read(x);x : (R, C) are valid judgments, while x :(R, R; C) ‖ 0 ` read(x); x : (R, C)
is invalid. (Actually, read(x) and close(x) must be annotated with ·{x} in our type system.)

We write ∅ for the empty type environment, and when x 6∈ dom(Γ), we write Γ, x : σ for the type
environment ∆ such that dom(∆) = dom(Γ) ∪ {x}, ∆(x) = σ and ∆(y) = Γ(y) for y ∈ dom(Γ).

The type judgment relation will be defined by using typing rules. We first give a few auxiliary
definitions used in the typing rules.

Definition 3.10 Let C be a usage context. Suppose that the set of free usage variables in σ or Γ is
disjoint from the set of bound usage variables in C. We define C[σ] and C[Γ] by:

C[bool] = bool C[(R, U)] = (R, C[U ])
C[(σ1

ϕ−→ σ2, U)] = (σ1
ϕ−→ σ2, C[U ])

dom(C[Γ]) = dom(Γ) C[Γ](x) = C[Γ(x)]

11



Definition 3.11 Let op be a binary usage constructor ‘;’ , ‘&’ or ‘;E’. σ1opσ2 is defined as follows:

bool op bool = bool
(σ1

ϕ−→ σ2, U1) op (σ1
ϕ−→ σ2, U2) = (σ1

ϕ−→ σ2, U1opU2)
(R, U1) op (R, U2) = (R, U1opU2)

Let Γ1 and Γ2 be type environments with the same domain (dom(Γ1) = dom(Γ2)). Then, Γ1opΓ2 is
defined as follows:

dom(Γ1opΓ2) = dom(Γ1)(= dom(Γ2))
(Γ1opΓ2)(x) = Γ1(x)opΓ2(x)

For example, the type environment Γ1; Γ2 states that the value stored in each variable x ∈ dom(Γ1)(=
dom(Γ2)) should be first used according to Γ1(x) and then should be used according to Γ2(x).

We also define the type environment ¨xΓ as follows:

¨xΓ =
{

Γ if x 6∈ dom(Γ)
Γ′, x : (R,¨U) if Γ = Γ′, x : (R, U).

Note that, if Γ(x) = bool or Γ(x) = (σ1
ϕ−→ σ2, U), then ¨xΓ is not defined.

Definition 3.12 (Type Judgment) The type judgment relation Γ ‖ ϕ ` M : δ is the least relation
closed under the rules in Figure 4.

Note that when Γ1; Γ2 or Γ1;E Γ2 appears in the conclusion of a rule, the rule can be applied only
when the operation is well-defined; In particular, it must be the case that dom(Γ1) = dom(Γ2).

Now we explain the key typing rules of T-Raise, T-Try, T-Fun, T-App, and T-Weak below.
The others are essentially the same as those in the original type system [10] (except for the effect part
in type judgments).

Rule T-Raise is the easiest: Since the term raise immediately raises an exception without accessing
any resources, it is typed under the empty type environment with effect E .

Rule T-Try is explained as follows. Usages in Γ1 and Γ2 record how each resource is accessed before
and after, respectively, an exception is raised. So, the total usage for try M1 with M2 is expressed by
Γ1;E Γ2, obtained by applying ;E to usages in those type environments.

Rule T-Fun is defined according to the following intuitions. First, the premise says: Each time
the function fun(f, x, M) is called, its body M causes effect ϕ, accessing the function’s free variables
according to Γ. In addition, M recursively calls f according to usage U1. M also uses the argument x

according to type σ1 and yields a value of type δ2. Therefore, the function is given a type (δ1
ϕ−→ δ2, U),

where δ1 ≤ σ1\E . Here, E is removed by \E from σ1 since any possible exception that may be raised
in M is already considered in the latent effect ϕ. The type environment for the function is obtained
by multiplying 3(Γ\E ) (which expresses how the function’s free variables are accessed each time the
function is called) according to U (which expresses how often the function is called from the outside)
and U1\E (which expresses how often the function is called recursively). We safely approximate this
multiplication by considering only the following three simple cases: the function is never called, it is
called exactly once, or it is called an arbitrary number of times. In the first case, the free variables are
never accessed. In the second case, the free variables are accessed exactly according to 3(Γ\E ). In
the last case, 3(Γ\E ) is arbitrarily replicated by ! where !U is defined by µα.0&(U ⊗ α) and !Γ is its
pointwise extension. Thus, the approximated multiplication ∆fun

(U,U1,Γ) is defined as follows:

∆fun
(U,U1,Γ) =




∅ if 1 6∈ [[U ]]
Γ if (1 ∈ [[U ]] ⊆ {ε, 1, 1 ↓}) ∧ (1 6∈ [[U1]])
!Γ otherwise .

Specially, the typing rule for non-recursive functions λx.M is given as follows:
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Γ, x : σ1 ‖ ϕ ` M : δ2 σ′1 ≤ (τ1\E )

∆fun
(U,0,3(Γ\E)) ‖ 0 ` λx.M : (σ′1

ϕ→ σ2, U).
(T-Abs)

Rule T-App is explained as follows. When the term M1M2 is evaluated, the term M1 is first
evaluated to a function and M2 is then evaluated and finally the function is called. The type environment
Γ1; Γ2; (ϕ3)use reflects this order, where ϕ3 comes from the latent effect of the type of the function.

Rule T-Weak deals with weakening and subsumption (on types and effects). Here, Γ ≤ϕ Γ′ is
defined by

Γ ≤ϕ Γ′

⇔



dom(Γ) ⊇ dom(Γ′)
Γ(x) ≤ Γ′(x) for each x ∈ dom(Γ′)
Useϕ(Γ′(x)) ≤ (ϕ)use for each x ∈ dom(Γ) \ dom(Γ′)

It means that if we add x : σ to the domain of Γ′, σ must respect the effect ϕ of the term. For
example, from Γ′ ‖ E ` M : δ, we can derive Γ′, x : (R,E ) ‖ E ` M : δ (where x 6∈ dom(Γ′)) but not
Γ′, x : (R,0) ‖ E ` M : δ. In the latter, the usage of x contradicts with the effect E .

Example 3.6 The following type judgments can be derived for the terms M1,M2 and M of Example
2.3:

x : (R, I; ((W ; C)&E )) ‖ E ? ` M1 : bool
x : (R, I; ((W ; C)&E ));E C ‖ 0 ` M2 : bool
∅ ‖ 0 ` M : bool.

Example 3.7 Let us consider the term

Mfun
y

M= λx.(if read(x){x} then write(y){y} else raise)
M body

xy
M= if read(x){x} then write(y){y} else raise

This term Mfy is tyed as follows:

Π1 =

x : (R, 3R) ‖ 0 ` x : (R, R)
(T-Var)

x : (R, 3R) ‖ 0 ` read(x) : bool
(T-Acc)

x : (R,�3R) ‖ 0 ` read(x){x} ` bool
(T-Now)

x : (R, R) ‖ 0 ` read(x){x} ` bool
(T-Weak)

x : (R, R), y(R,0) ‖ 0 ` read(x){x} ` bool
(T-Weak)

Π2 =

x : (R, 3W ) ‖ 0 ` x : (R, W )
(T-Var)

x : (R, 3W ) ‖ 0 ` write(y) : bool
(T-Acc)

y : (R,�3W ) ‖ 0 ` read(y){y} ` bool
(T-Now)

y : (R, W ) ‖ 0 ` write(y){y} ` bool
(T-Weak)

x : (R,0), y : (R, W ) ‖ 0 ` write(y){y} ` bool
(T-Weak)

x : (R,0&E), y : (R, W&E) ‖ 0 ` write(y){y} ` bool
(T-Weak)

Π3 =

∅ ‖ E ` raise : bool
(T-Const)

x : (R,E), y : (R,E) ‖ E ? ` raise : bool
(T-Weak)

x : (R,0&E), y : (R, W&E) ‖ E ? ` raise : bool
(T-Weak)
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and
Π1 Π2 Π3

x : (R, R; (0&E)), y : (R,0; (W&E)) ‖ E ? ` Mbody
xy : bool

(T-If)

∆fun
(U,0,(y:(R,3((0;(W&E))\E)))) ‖ 0 ` Mfun

y : ((R, (R; (0&E))\E)
E?

−−→ bool, U)

(T-Abs)

∆fun
(U,0,(y:(R,3(W&0)))) ‖ 0 ` Mfun

y : ((R, R)
E?

−−→ bool, U).

(T-Weak)

Here, we use subtype relations (R; (0&E ))\E ∼= R and 3((0; (W&E ))\E ) ∼= 3(W&0).
So, for example, when the function M is called once (that is U = 1), we have

y : 3(W&0) ‖ 0 ` M : ((R, R) E?

−−→ bool, 1).

Example 3.8 By annotating every access to a resource x by (·){x}—for example, close(x) becomes
close(x){x}— the term M of Example 2.4 is typed as follows (the type derivation is shown in Appendix
A).

x : (R, (!R); C), y : (R, (!W ); C) ‖ 0 ` M : bool

Here, we have [[(!R); C]] = (R∗C ↓)#. Similarly, [[(!W ); C]] = (W ∗C ↓)#. Therefore, we can conclude
the resources x and y are closed when the evaluation of M terminates.

4 Type Soundness

Our type system is sound in the sense that if a closed well-typed term of type τ where Use(τ) = 0
is evaluated, any resource is accessed according to the specification (declared by the resource creation
primitive newΦ()).

We say that M is well-annotated if all the annotations on escape information ·{x} are sound, i.e., if
({},M) is never reduced to a configuration (H, E [v{x}]) such that x ∈ FV(v). The soundness of our
type system is stated formally as follows:

Theorem 4.1 (Type Soundness) Suppose M is well-annotated. If ∅ ‖ ϕ ` M : δ and Use0(δ) ≤ 0,
then all the following properties hold:

(1) ({},M) 6;∗ Error.

(2) If ({},M) ;∗ (H,M ′) 6;, then ∀x ∈ dom(H). ↓ ∈ H(x).

The condition Use0(τ) ≤ 0 states that even if the term M is evaluated to a resource, the resource may
not be accessed after the evaluation. Property (1) means that M never performs an illegal resource
access. Property (2) means that all the resources are used up when the evaluation terminates (normally
or abruptly). Note that property (1) holds even if Use0(δ) 6≤ 0.

We give an outline of the proof of Theorem 4.1 below. The full proof is shown in Appendix B.
We first define a type judgment relation ϕ ` (H,M) : δ, which means that the state (H, M) is

well-typed under the effect ϕ.

Definition 4.1
x1 : (R, U1), . . . , xn : (R, Un) ‖ ϕ ` M : δ

dom(H) = {x1, . . . , xn}
[[U1]] ⊆ H(x1), . . . , [[Un]] ⊆ H(xn)

ϕ ` (H,M) : δ
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c = true or false
∅ ‖ 0 ` c : bool

(T-Const)

x : 3δ ‖ 0 ` x : δ (T-Var)

[[U ]] ⊆ Φ
∅ ‖ 0 ` newΦ() : (R, U)

(T-New)

Γ ‖ ϕ ` M : (R, a)
Γ ‖ ϕ ` acca(M) : bool

(T-Acc)

Γ1 ‖ ϕ1 ` M1 : bool Γ2 ‖ ϕ2 ` M2 : δ Γ2 ‖ ϕ2 ` M3 : δ

Γ1; Γ2 ‖ ϕ1; ϕ2 ` if M1 then M2 else M3 : δ
(T-If)

Γ1 ‖ ϕ1 ` M1 : σ1\E Γ2, x : σ1 ‖ ϕ2 ` M2 : δ2

Γ1; Γ2 ‖ ϕ1;ϕ2 ` let x = M1 in M2 : δ2

(T-Let)

Γ1 ‖ ϕ1 ` M1 : (δ1
ϕ3−→ δ2, 1) Γ2 ‖ ϕ2 ` M2 : δ1

Γ1; Γ2; (ϕ3)use ‖ ϕ1; ϕ2; ϕ3 ` M1M2 : δ2

(T-App)

Γ, f : (δ1
ϕ−→ δ2, U1), x : σ1 ‖ ϕ ` M : δ2 δ1 ≤ σ1\E

∆fun
(U,U1\E ,3(Γ\E)) ‖ 0 ` fun(f, x, M) : (δ1

ϕ−→ δ2, U)
(T-Fun)

Γ ‖ ϕ ` M : δ

¨xΓ ‖ ϕ ` M{x} : δ
(T-Now)

∅ ‖ E ` raise : δ (T-Raise)

Γ1 ‖ ϕ1 ` M1 : δ Γ2 ‖ ϕ2 ` M2 : δ

Γ1;E Γ2 ‖ ϕ1;E ϕ2 ` try M1 with M2 : δ
(T-Try)

ϕ v ϕ′ Γ ≤ϕ′ Γ′ Γ′ ‖ ϕ′ ` M : δ′ δ′ ≤ δ

Γ ‖ ϕ ` M : δ
(T-Weak)

Figure 4: Typing Rules

The first premise means that M uses the resources x1, . . . , xn according to U1, . . . , Un. The other
premises mean that the current heap indeed allows such resource usage.

We list main lemmas below. Lemma 4.4 states that typing is preserved by reductions. Lemma 4.1
states that an invalid resource access cannot happen immediately in a well-typed state. Lemma 4.3
states that evaluation may terminate only when the expression becomes a value or raises an uncaught
exception. Lemma 4.2 states that every heap element contains ↓ in a well-typed, final state. (See
Appendix B for proofs.)
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Lemma 4.1 (Safety I) If ϕ ` (H,M) : δ, then (H,M) 6; Error.

Proof Suppose ϕ ` (H, M) : δ and (H, M) ; Error. (H, M) ; Error must have been derived
from (R-AccErr). Hence, there exist E , x and a such that M = E [acca(x)] and H(x)−a = ∅. From
ϕ ` (H, M) : δ, it follows that there exist Γ′ and Ux such that Γ′, x : (R, Ux) ‖ ϕ ` E [acca(x)] : δ and
[[Ux]] ⊆ H(x). We can easily show that Γ, x : (R, Ux) ‖ ϕ ` E [acca(x)] : δ implies a ∈ [[Ux]] (by induction
on the structure of E). Therefore, we have a ∈ [[Ux]](⊆ H(x)), which implies ε ∈ H(x)−a 6= ∅. This is a
contradiction. 2

Lemma 4.2 (Safety II)

(1) If ϕ ` (H, v) : δ and Use0(δ) ≤ 0, then ∀x ∈ dom(H). ↓ ∈ H(x).

(2) If ϕ ` (H, Etry[raise]) : δ, then ∀x ∈ dom(H). ↓ ∈ H(x).

Lemma 4.3 (Progress) Suppose M is well-annotated. If ϕ ` (H, M) : δ, then either

(1) (H, M) ; (H ′, M ′) for some H ′ and M ′ or

(2) M is either a value v or of the form Etry[raise]

Lemma 4.4 (Type Preservation) If ϕ ` (H, M) : σ and (H,M) ; (H ′,M ′), then ϕ ` (H ′,M ′) : σ.

Theorem 4.1 is an immediate corollary of the above lemmas.

Proof of Theorem 4.1.

• Property (1): Let (H1,M1) be ({},M) and assume (H1,M1) ; · · · ; (Hn,Mn) and (Hn, Mn) ;

Error. By Theorem 4.4 and ϕ ` ({},M) : τ , we have ϕ ` (Hn,Mn) : τ . Hence, the assumption
(Hn,Mn) ; Error contradicts with Theorem 4.1.

• Property (2): Let (H1, M1) be ({},M) and assume that (H1, M1) ; · · · ; (Hn,Mn) 6;. By
Lemma 4.4, we have ϕ ` (Hn,Mn) : δ. By Lemma 4.3, Mn is either a value v or of the form
Etry[raise]. So, ∀x ∈ dom(Hn). ↓ ∈ Hn(x) follows from Lemma 4.2. 2

5 Type Inference

By the soundness of the type system, a sufficient condition for a closed term M to access resources in a
valid manner is that there exists an effect ϕ and δ such that ∅ ‖ ϕ ` M : δ and Use0(δ) ≤ 0. (Actually,
it is sufficient to give an algorithm to check whether ∅ ‖ ϕ ` M : bool, since if M does not have type
bool, we can check the term (λx.true)M instead.) We sketch an algorithm for checking the sufficient
condition in this section.

The overall structure of the algorithm is the same as the constraint-based type inference algorithm
for Igarashi and Kobayashi’s type system [10]. Based on the typing rules, we can construct an algorithm
which, given a closed term M , generates constraints on variables expressing unknown usages, effects,
and types as a sufficient and necessary condition for ∅ ‖ ϕ ` M : δ. By reducing the constraints on type
variables (using the standard unification algorithm), we can obtain constraints of the following form:

{ ξ1 ≤ ϕ1, . . . , ξm ≤ ϕm,
α1 ≤ U1, . . . , αn ≤ Un, [[U ′

1 ]] ⊆ Φ1, . . . , [[U ′
k ]] ⊆ Φk }

At this point, U1, . . . , Un may contain effect variables (in the form of (ξ)use) and expressions of the
form ∆fun

(U1,U2,U3)
(which is defined in the same way as ∆fun

(U1,U2,Γ)), where U1 and U2 are the usages of
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functions. To remove them, we first solve constraints on effects and function usages by using a standard
method for solving constraints over a finite lattice [18].

Then, the greatest solution for a subusage constraint of the form α ≤ U (where U no longer contains
an effect or ∆fun

(U1,U2,U3)
) can be represented by µα.U . Thus, the above constraints can be further reduced

to constraints of the form: {[[U ′′
1 ]] ⊆ Φ1, . . . , [[U ′′

k ]] ⊆ Φk} .
Like in our previous type system [10], the relation [[U ]] ⊆ Φ is generally undecidable (think of the

case where Φ is a context-free language). We, however, believe that typical resource usage specifications
can be expressed in regular languages. As hinted in [10], in such cases, it is not difficult to develop an
algorithm (which may be incomplete but sound at least) to verify the condition [[U ]] ⊆ Φ. In fact, we
have already implemented such an algorithm for the case where Φ = (R∗C ↓)#: see Section 6.

Example 5.1 Consider the term

let x = new(R∗C ↓)#() in let y = new(W ∗C ↓)#() in Ma

Here, Ma is a term obtained by annotating every access to a resource x by (·){x} —for example, close(x)
becomes close(x){x}— in the term M of Example 2.4. Then, as shown in Appendix A, we finally gain
the following constraints after extracting and solving subusage and subeffect constrains:

[[(!(3((R; (0&E );E )\E ));E );E C ]] ⊆ (R∗C ↓)#
[[(!(3((W ; (0&E );E )\E ));E );E C ]] ⊆ (W ∗C ↓)#

Since these constraints are satisfied, we can conclude that the above term is well-typed. 2

Example 5.2 Consider the term

M
M= let x = new(R∗C ↓)#() in M2,

where M2
M= try (read(x ){x}; raise) with close(x ). The following constraints are extracted.

Γread(x) = x : (R, α1)
Γraise = x : (R, α2)
Γclose(x) = x : (R, α3)
Γread(x){x} = x : (R, α4)

Γread(x){x};raise = x : (R, α5)
ΓM2 = x : (R, α6)
Γ

new(R∗C ↓)# ()
= ∅

ΓM = ∅

ϕread(x) = ξ1 ϕraise = ξ2 ϕclose(x) = ξ3

ϕread(x){x} = ξ4 ϕread(x){x};raise = ξ5
ϕM2 = ξ6 ϕ

new(R∗C ↓)# ()
= ξ7 ϕM = ξ8

δread(x) = bool δraise = bool δclose(x) = bool
δread(x){x} = bool δread(x){x};raise = bool

δM2 = bool δ
new(R∗C ↓)# ()

= (R, α7) δM = bool

[[α7]] ⊆ (R∗C ↓)#
α1 ≤ 3R
α2 ≤ E
α3 ≤ 3C

α4 ≤ ¨α1

α5 ≤ α4; α2

α6 ≤ α5;E α3

α7 ≤ α6

ξ1 v 0
ξ2 v E
ξ3 v 0
ξ4 v ξ3

ξ5 v ξ4; ξ2

ξ6 v ξ5;E ξ3

ξ7 v 0
ξ8 v ξ7; ξ6

Here, ΓN , ξN , and δN are respectively the type environment, effect, and type of a subterm N . By
solving the constraints on effects and usages, we obtain α7 = (¨3R;E );E 3C and ϕ8 = 0. Since
[[α7]] ⊆ (R∗C ↓)# holds, we can conclude that M is well-typed. 2
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Example 5.3 Consider the term M defined by:

M
M= let f = Mf in let x = new(R∗C ↓)#() in Mbody

Mf
M= λx.(if read(x){x} then write(y){y} else raise)

Mbody
M= try f(x); close(x){x} with close(x){x}.

This term first defines function f that reads from a given resource and, if an certain condition holds
(read(x) return true), write to a globally-defined resource y , otherwise raise an exception, and then
creates resource x and then apply the function f to the resource x.

We will show a sketch of the type inference for the term M . For simplicity, we assume that the
raw type (the part of type obtained by removing usage expressions) of every term have been already
obtained (by usual type inference). Moreover, we also assume that the type environments, effects and
types of new(R∗C ↓)#() and Mf have been inferred as follows:

ΓMf
= y : (R,∆fun

(αf ,1,3(W&0)), b : bool
ϕMf

= 0

δMf
= ((R, R) E?

−−→ bool, αf1)

Γ
new(R∗C ↓)# ()

= ∅
ϕ

new(R∗C ↓)# ()
= 0

δ
new(R∗C ↓)# ()

= (R, α0)

Here, ΓN , ξN , and δN are respectively the type environment, effect, and type of a term N . Then, the
following constraints are extracted for the terms Mbody and M1

M= let x = new(R∗C ↓)#() in Mbody (we
reduce several constraints for simplicity).

ΓMbody
= f : ((R, α1)

ξf−→ bool, αf2),
x : (R, α2), y : (R, α3), b : bool

ϕMbody
= ξ1

δMbody
= bool

ΓM1 = f : ((R, α1)
ξf−→ bool, αf3),

x : (R, α4), y : (R, α5), b : bool
ϕM1 = ξ2

δM1 = bool

[[α0]] ⊆ (R∗C ↓)#
α0 ≤ α4

α2 ≤ (α1; (ξf )use; C);E C
α3 ≤ 0

α4 ≤ 0; α2

α5 ≤ 0; α3

αf2 ≤ 1
αf3 ≤ 0; αf2

ξ1 v (E ?;0);E 0
ξ2 v 0; ξ1

Moreover, for the term M , the following constraints are generated.

ΓM = y : (R, α6), b : bool
ϕM = ξ3

δM = bool

α1 ≤ R
α6 ≤ ∆fun

(αf1,1,3(W&0));α3

αf1 ≤ αf3

ξ3 ≤ 0; ξ2

ξf ≤ E ?

Note that, constraints α1 ≤ R and αf1 ≤ αf3 are generated from from the constraint δMf
≤ ΓM1(f)

(this is generated based on the typing-rules (T-Let) and (T-Weak)).
As mentioned above, we first solve function usage constrains αf1, αf2 and αf3 and gain αf1 = αf2 =

αf3 = 1. So we have ∆fun
(αf1,1,3(W&0)) = 3(W&0). Now, other usage and effect constraints are solved as

follows:
α0 ≤ (R; (0&E ); C);E C
α1 ≤ R&0
α2 ≤ (R; (0&E ); C);E C
α3 ≤ 0

α4 ≤ (R; (0&E );C);E C
α5 ≤ 0
α6 ≤ 3(W&0)

ξ1 v 0
ξ2 v 0
ξ3 v 0
ξf v E ?

Here, since [[R; (0&E ); C);E C]] ⊆ (R∗C ↓)# holds the constraint [[α0]] ⊆ (R∗C ↓)# satisfies. So,
all constrains are satisfied and the term M has type bool under the type environment ΓM = y :
(R, 3(W&0)), b : bool and effect 0.
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6 Experiments

Based on our type system, we have implemented a prototype resource usage analyzer. The implementa-
tion will be made available at http://www.kb.ecei.tohoku.ac.jp/~iwama/rue/. The analyzer inputs
a program written in λR

E
, without annotations (·{x}) on escape information. The analyzer first performs

the standard type inference and annotate terms of non-function types with escape information. It then
performs the usage analysis as described in the previous section. In the final phase, constraints of the
form [[U ]] ⊆ Φ are checked. Currently, the analyzer accepts only the specification Φ = (R∗C ↓)#, and
uses a sound but incomplete algorithm for checking [[U ]] ⊆ Φ. The algorithm works as sketched in Sec-
tion 6.6 of our previous paper [10]. The basic observation behind the algorithm is as follows. Although
the language of usage expressions is very expressive (for example, it can express any context-free lan-
guages as well as some context-sensitive languages), we can approximate usages by using a finite set of
abstract usages as long as the specification Φ is regular; For example, we need not distinguish between
usages R;C and R;R; C when the specification is (R∗C ↓)#. We have designed an abstract usage do-
main that is sufficient for checking the inclusion with respect to the specification Φ = (R∗C ↓)#, so that
the constraint [[U ]] ⊆ Φ can be replaced by a decidable, sufficient condition [[α(U)]] ⊆ Φ (where α is the
abstraction function). The formalization of an algorithm that can deal with more general specifications
Φ is left for future work.

Experiments We have tested several programs including the examples given in this paper (where
init(x) is replaced by read(x) since the current system can handle only the specification (R∗C ↓)#).
We confirmed that the analyzer gives correct answers. The tested programs include the following tricky
one.

let create =
fun(f,x,let y=new[read*;close]() in y) in

let repeat =
fun(g,x, let z = create x in

try
if acc[read](z) then raise
else (g x; acc[close](z))

with acc[close](z)) in
repeat true;;

The above program repeatedly creates a new resource and closes it. Note that arbitrarily many resources
may be created, and also that arbitrarily many exception handlers can be nested.

We have also inspected source programs of O’Caml compiler (3.08.4), manually translated some
fragments of the programs accessing input files, and run our analyzer. Of 46 fragments of the code
we have inspected, 42 of them can be categorized into the access patterns (expressed in our target
language) summarized in Figure 5. We have confirmed that all of the four patterns can be analyzed by
our prototype system. For example, the following is an example of the 4th pattern:

let exclude filename =
let ic = open_in filename in
try
while true do

let s = input_line ic in
primitives := StringSet.remove s !primitives

done
with End_of_file -> close_in ic

| x -> close_in ic; raise x

The body of the above function is expressed in our language:
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Normal pattern: 16 places

... (let z = new(R∗C)#() in (read(z); ..; close(z))) ...

TryWith pattern: 18 places

let z = new(R∗C)#()
in try read(z); .. ; close(z) with close(z)

TryClose pattern: 3 places

let z = new(R∗C)#()
in (try read(z); .. with ..); close(z)

WhileTrue pattern: 5 places
let f = λx.(..; read(x); ..) in

let z = new(R∗C)#()
in try while(true){..; (f z); .. } with close(z)

Figure 5: Typical file access patterns in O’Caml program

let input_line = lambda x.
if acc[read](x) then true else raise in

let ic = new[read*;close]()
in try fun(g,x, input_line ic;g x) true

with acc[close](ic);;

Our prototype analyzer accepts the above program, while it rejects the slightly modified program ob-
tained by replacing acc[close](ic) with false.

Additionally, we have found that there are two fragments that seem to forget to close a file (in
asmcomp/asmlink.ml and debugger/source.ml).

The 4 fragments that our analyzer cannot deal with use pointers (reference cells) or records to store
file pointers. The following is the most interesting one:

let ic = open_in_bin Sys.executable_name in
Bytesections.read_toc ic;
{ read_string = Bytesections.read_section_string ic;

read_struct = Bytesections.read_section_struct ic;
close_reader = fun () -> close_in ic }

It opens a file, and then creates a record consisting of closures for reading and closing files. To properly
handle this, we need to refine the type system to control the order between the uses of record elements.

7 Discussion

Alternative approach for dealing with exceptions An alternative, more straightforward ap-
proach for dealing with exceptions would be to encode exception primitives into λR (e.g., by using
the continuation-passing style) [10] or the extension of π-calculus with resources [15], and then apply
previous type systems [10, 15]. The resulting analysis is not, however, accurate enough to deal with the
examples given in this paper.

To encode the exception handling primitive try M1 with M2 into a function, we just have to express
the exception handler M2 as a function and give it to a function denoting M1 as a function parameter.
For example, let consider the following program:

let f = λy.raise in (try f() with write(x)); close(x)
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This program defines the function f , which may raise an exception, and calls the function under exception
handler write(x) and then evaluates close(x). This program is encoded into the following function:

let f = λy.λh.λc.h() in
let c = λz.close(x) in
let h = λz.(write(x); c()) in f()(h)(c)

Note that the exception handler write(x) (and the ordinary continuation) is given to the function f
as an argument. However, with this straightforward technique, the accuracy of inferred usages are
insufficiency as mentiond above. For example, with this technique, we infer usage 3C;3W of resource
x for the above term. By the inferred usage, we do not know which operation either W or C is done
first to the resource, while our type system infers usage (E;E W ); C for the resource, that says that a
write operation is first performed and then close operation is performed.

Another approach would be to put information about both resource usage and exceptions into effects
to make the type system simpler. For example, a function

λx.(write(x); close(x); raise)

can be given a type (R, ρ)
ρW ;ρC ;E−−−−−−→ bool, where ρ is a abstract resource (called a region). The effect

ρW ; ρC ; E means that a resource belonging to the region ρ is written and closed, and then an exception
is raised. As discussed elsewhere [10, 14], however, this approach does not work well when different
resources are aliased to the same region.

Extensions for multiple exceptions and exception arguments Unlike the simple language stud-
ied in this paper, real languages like ML allow multiple exceptions and exception arguments. We can
extend our type system to deal with multiple exceptions, by introducing distinct usage constructors Ei

and ;Ei for each kind of exception. As for exception arguments, there are two main issues: (1) how
to deal with an exception having a resource as an argument (for example, consider the case where an
exception carries a file that must be closed), and (2) how to deal with pattern matching on arguments,
like “try ... with E 1 -> ...”. We can deal with both issues by combining our type system with
analyses of uncaught exceptions [17, 28]. For the first issue, we can impose a restriction that the usage
U of a resource passed as an argument of an uncaught exception must be a subusage of 0. For the
second issue, we can extend usage constructors Ei and ;Ei by annotating them with information (like
“rows” [17]) about exception arguments.

8 Related Work

A number of type systems have been proposed for statically checking whether a certain kind of resource
is accessed in a valid manner [1, 3, 8, 10, 23, 25]. Only a few of them, however, deal with exception
primitives. Type systems for JVM lock primitives [3, 12] support exceptions. In those type systems, the
handler for each exception is statically known, so that exceptions can be treated in the same manner as
if -statements.

It seems easier to extend effect-based type systems [4, 7, 19] for dealing with exceptions than to
extend Igarashi and Kobayashi’s type system. The effect-based approach, however, suffers from the
problem mentioned in Section 7.

Another approach to the analysis of resource usage in the presence of exceptions would be to extend
work on typestates [5, 6, 20, 26, 27]. In this approach, each type have several states (typestates) and
a typestate of each resource may be changed by resource accesses or procedure calls. Each access
to a resource is permitted only if the resource is in a valid typestate, so, inferring the typestate of
each resource at any program points, we can verify valid resource usage. Indeed, the original work
on typestates [20] does deal with exceptions. However, unlike ours, their method (1) requires explicit
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annotations on procedures ( with a specification: pre-typestates, post-typestates, exception-typestates
meaning that typestates of argument values before resource-access/procedure-call after the resource-
access/procedure-call has been performed normally and abruptly) and (2) cannot deal with aliasing,
that makes their verification be unsound; (3) cannot deal with higher-order functions.

The succeeding works on typestates [5, 6, 26, 27] extends the original work to lift the restriction on
aliasing and deal with data structures (or objects) and pointers (although exceptions are no longer
explicitly discussed). However, these requires every procedure in their language to be annotated with
at least alias information about how argument values and a return value are aliased to keep track of
alias relation of variables. In order to extend their techniques for dealing with exception handling, we
must find enough alias information that is invariant at each entry point of exception hander for any
exception-flow. It seem to be possible but not trivial. The paper [6] handles similar problems in this
paper (e.g. whether a resources is accessed according to read∗; close in a program) and deals with alias
precisely on the assumption that all paths in the program are feasible. However, their target language
is relatively theoretical one i.e. that does not include procedure calls and exceptions.

On the other hand, the general advantage for the typestate techniques is that (1) the analysis is
accurate due to the annotations about alias information, (it also could be that an extra alias analysis or
annotations make our analysis more accurate). (2) properties described in reglar language are verifiable,
while we have not identified how large class of properties is verified with our type system (i.e. we does
not identified the class of Φ such that [[U ]] ⊆ Φ is decidable). Moreover , the paper [5, 26, 27] handle
pointers and date-structures (objects) that our target language do not deal with. The papers [6] give
verification algorithms and it’s computational complexities. These issues for our work are future works
for us.

Kobayashi [14] has proposed another combination of linear types and effect systems. His type system
is, however, so complicated that no reasonable type inference algorithm has been developed.

In parallel to the present work, we have recently studied type-based resource usage analysis for
concurrent programs [15]. It would be interesting future work to integrate the type system in this paper
with that type system.

Model checking technologies [2, 9] have recently been applied to verification of temporal properties
of programs. Advantages of our type-based approach are that our analysis is modular, and that our
analysis can be deal with programs creating infinitely many resources (recall the tricky example shown
in Section 6).

9 Conclusion

We have extended Igarashi and Kobayashi’s type-based resource usage analysis to deal with exceptions,
proved the soundness of the extended analysis, and implemented a prototype analyzer.

Future work includes extension of the type system to deal with a larger set of language constructs
(e.g., multiple exceptions, pointers, concurrency primitives) and development of an algorithm for check-
ing [[U ]] ⊆ Φ for a certain class of languages Φ.
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A Type Derivation for the Term from Example 3.8

We show how the term M from Example 3.8 (or Example 2.4). below is typed.

M
M= try fun(f, z,M1)true with close(x){x}; close(y){y}

M1
M= (if read(x){x} then true else raise);write(y){y}; f true

As mentioned before, each resource access is annotated with (·){x} to get more accurate usage informa-
tion. First, the type derivation for read(x){x} is as follows:

x : (R, 3R) ‖ 0 ` x : (R, R)
(T-Var)

x : (R, 3R) ‖ 0 ` read(x) : bool
(T-Acc)

x : (R,�3R) ‖ 0 ` read(x){x} ` bool
(T-Now)

x : (R, R) ‖ 0 ` read(x){x} ` bool
(T-Weak)

Terms write(y){y}, close(x){x}, and close(y){y} are typed similarly. Then, the type judgments x :
(R,0) ‖ E ? ` true : bool and x : (R,E ) ‖ E ? ` raise : bool are derived as follows:

∅ ‖ 0 ` true : bool
(T-Raise)

x : (R,0) ‖ E ? ` true : bool
(T-Weak)

∅ ‖ E ` raise : bool
(T-Const)

x : (R,E) ‖ E ? ` raise : bool
(T-Weak)
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Then, M2
M= if read(x){x} then true else raise is typed as follows:

Π1 =

x : (R, R) ‖ 0 ` read(x){x} : bool

x : (R,0) ‖ E ? ` true : bool

x : (R,E) ‖ E ? ` raise : bool

x : (R, R; (0&E)) ‖ E ? ` M2 : bool
(T-If)

x : (R, R; (0&E)), y : (R,0&E) ‖ E ? ` M2 : bool
(T-Weak)

(As the domains of type environments in premises must be the same, we need to apply T-Weak
appropriately; We will often omit applications of T-Weak in what follows.) The function fun(f, z, M1)
is typed as follows:

Π2 =

f : (bool
E−→ bool, 31) ‖ 0 ` f : (bool

E−→ bool, 1)
(T-Var) ...

f : (bool
E−→ bool, 31;E) ‖ E ` f true : bool

(T-App)

Π3 =

Π1 x : (R,0), y : (R, W ) ‖ 0 ` write(y){y} : bool

Γ1 ‖ E ? ` M2;write(y){y} : bool
(T-Let)

Π2

Γ2 ‖ E ` M1 : bool
(T-Let)

Γ3 ‖ 0 ` fun(f, z, M1) : (bool
E−→ bool, 1)

(T-Fun)

where
Γ1 = x : (R, R; (0&E )), y : (R, (0&E ); W )
Ux = R; (0&E );E Uy = (0&E ); W ;E
Γ2 = x : (R, Ux), y : (R, Uy), f : (bool E−→ bool, 31;E )
Γ3 = x : (R, !3(Ux\E )), y : (R, !3(Uy\E )).

Finally, we complete the derivation of the type judgment of the term M as follows:

Π4 =
Π3 x : (R,0), y : (R,0) ‖ 0 ` true : bool

Γ4 ‖ E ` fun(f, z, M1) true : bool
(T-App)

where Γ4 = x : (R, !3(Ux\E );E ), y : (R, !3(Uy\E );E ) and

Π4

x : (R, C), y : (R,0) ‖ 0 ` close(x){x} : bool

x : (R,0), y : (R, C) ‖ 0 ` close(y){y} : bool

x : (R, C), y : (R, C) ‖ 0 ` close(x){x}; close(y){y} : bool
(T-Let)

x : (R, (!3(Ux\E);E);E C), y : (R, (!3(Uy\E);E);E C) ‖ 0 ` M : bool
(T-Try)

x : (R, (!R); C), y : (R, (!W ); C) ‖ 0 ` M : bool
(T-Weak)

B Proofs of the Main Lemmas

In this appendix, we will prove Lemmas 4.2 – 4.4. First, in Section B.1, we show several properties
of usages. In Section B.2, we show properties of type judgments and type environments, which are
used in later proofs. In Section B.3, we prove Lemmas 4.2 and 4.3. Section B.4 presents a substitution
lemma, which is necessary for proving Lemma 4.4. Finally, in Section B.5, we prove Lemma 4.4 (type
preservation).

B.1 Basic properties of usages

Lemma B.1 The relation ≤ satisfies the following properties:

1. if U1 ¹ U2, then U1 ≤ U2,
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2. U ≤ µα.α,

3. U1 ⊗ U2 ≤ U1 ; U2,

4. (U1 ; U2)⊗ (U3 ; U4) ≤ (U1 ⊗ U3) ; (U2 ⊗ U4),

5. (U1 ⊗ U3) & (U2 ⊗ U3) ∼= (U1 & U2)⊗ U3,

6. 33U ∼= 3U ≤ U ,

7. !(3U) ∼= 3(!U),

8. U ≤ ¨U ,

9. ¨U1 ⊗ ¨U2 ≤ ¨(U1 ⊗ U2),

10. E ; U ∼= E,

11. (U\E )\E ∼= U\E,

12. !(U\E )\E ∼=!(U\E ),

13. (U1;E U2);E U3 ≤ U1;E (U2;E U3),

14. ¨U1;E U2 ≤ ¨(U1;E U2),

15. if U =⇒ U ′ then U ≤ U ′,

16. if U ≤ C[U ], then U ≤ µα.C[α],

17. ((ϕ)use\E )⊗ (ϕ)use ≤ (ϕ)use,

18. (ϕ)use ∼= ¨(ϕ)use,

19. If U1\E ⊗ (ϕ1)use ≤ U1 and U2\E ⊗ (ϕ2)use ≤ U2, then the followings hold:

(1) (U1; U2)\E ⊗ (ϕ1; ϕ2)use ≤ U1; U2 and

(2) (U1;E U2)\E ⊗ (ϕ1;E ϕ2)use ≤ U1;E U2,

20. [[U ]] = [[3U ]] and

21. if U1 ≤ U2, then [[U2 ]] ⊆ [[U1 ]].

In order to prove the above properties, we first introduce an “up-to” technique for proving the
subusage relation.

Definition B.1 S is a weak usage simulation up to ¹, if the following conditions hold for any U1SU2.

(C1) (C[U1], C[U2]) ∈ S for any usage context C with a hole..

(C2) If U2
l−→ U ′

2 and l ∈ A ∪ {1}, then U1
l=⇒ U ′

1 and U ′
1 ¹ S ¹ U ′

2 for some U ′
1.

(C3) If U2
τ−→ U ′

2, then U1 =⇒ U ′
1 and U ′

1 ¹ S ¹ U ′
2 for some U ′

1.

(C4) If U2
ε−→ 0, then U1 =⇒ 0.

(C5) If U2
E−→ U ′

2, then U1
E=⇒ U ′

1 for some U ′
1.

Lemma B.2 If S is a weak usage simulation up to ¹, then S ⊆≤.
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Proof It suffieces to show that ¹ S ¹ satisfies the five conditions (C1),...,(C5) in Definition B.1 for
any U1 ¹ S ¹ U2. So, we must show C[U1] ¹ S ¹ C[U2] for any usage context C (this is trivial) and
must find U ′

1 which completes each of the following diagrams, given the top row and the right transition:

U1 ¹ S ¹ U2wÄl
yl

U ′
1 ¹ S ¹ U ′

2

U1 ¹ S ¹ U2wÄ yτ
U ′

1 ¹ S ¹ U ′
2

U1 ¹ S ¹ U2wÄ yε
0 0

U1 ¹ S ¹ U2wÄE
yE

U ′
1 U ′

2

We treat only the first diagram; the other diagrams are treated in the same way. By U1 ¹ S ¹ U2, we
have U11, U22 such that U1 ¹ U11 S U22 ¹ U2. Here note that, by usage transition rules, U0 ¹ U and
U

l−→ U ′ imply U0
l−→ U ′. Therefore, by the fact that S is a weak usage simulation up to ¹ and the

right-most transition U2
l−→ U ′

2, there exists U ′
22, U ′

11 and U ′
1 that satisfy the following diagrams.

U1 ¹ U11wÄl
wÄl

U ′
1 = U ′

11

U11 S U22wÄl
yl

U ′
11 ¹ S ¹ U ′

22

U22 ¹ U2yl
yl

U ′
22 = U ′

2

Since ¹ is transitive, we have U ′
1 ¹ S ¹ U ′

2 and U1
l=⇒ U ′

1 as required. 2

Lammas B.1(20,21) follows from the definition of [[ ]]. For the other sub-usage properties, we give
only proofs of Lammas B.1(3,15). The others (1, 2, 4, . . . , 13, 15, . . . , 19) are shown in a similar way.
Firstly, we give a proof of Lemma B.1(3) and then give a proof of Lemma B.1(15).

Let S3 be the following binary relation on usages.

S3 =
{

(C[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2], C[V11; V12, . . . , Vn1; Vn2])∣∣ V1, . . . Vn ∈ U , C is a usage context with n (n ≥ 0) holes.

}

The required property U1 ⊗ U2 ≤ U1; U2 follows if we show S3 ⊆≤. By Lemma B.2, it suffices to show
that S3 is a weak usage simulation up to ¹. In order to show this, we first prove several propositions.

Lemma B.3

(1) If (U1,0) ∈ S3 then U1 = 0.

(2) If (U1, 3Ub) ∈ S3 then U1 = 3U ′
b for some U ′

b such that (U ′
b, Ub) ∈ S3

Proof By the definition of S3.

Lemma B.4 If (U1, U2) ∈ S3 and U2 ¹ U ′
2, then U1 ¹ U ′

1 and (U ′
1, U

′
2) ∈ S3 for a usage U ′

1.

Proof If (U1, U2) ∈ S3 then there exist C and V11, V12 . . . , Vn1, Vn2 such that U1 = C[V11⊗V12, . . . , Vn1⊗
Vn2] and U2 = C[V11;V12, . . . , Vn1;Vn2]. By induction on derivation of U2 = C[V11; V12, . . . , Vn1; Vn2] ¹ U ′

2

with case analysis on the last rule used, we show that there is a usage U ′
1 that satisfies U1 ¹ U ′

1 and
(U ′

1, U
′
2) ∈ S3.

• Case 30 ¹ 0. It must be the case that: C[V11; V12, . . . , Vn1;Vn2] = 30 ¹ 0 = U ′
2. So the following

case holds:

(a) C = 3C1 and C1[V11;V12, . . . , Vn1;Vn2] = 0

In the case (a), by Lemma B.3(1), we have C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2] = 0. So, U1 = 30 ¹ 0
holds. Thus, U ′

1 = 0 finishes the case.
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• Case 0 ¹ 30. It must be the case that: C[V11; V12, . . . , Vn1;Vn2] = 0 ¹ 30 = U ′
2. By Lemma

B.3(1), C[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2] = 0. So, we have U1 = 0 ¹ 30 and this satisfies the required
conditions.

• Case ¨0 ¹ 0 and 0 ¹ ¨0. Similar to the cases 30 ¹ 0 and 0 ¹ 30.

• Case 0;U ¹ U . It must be the case that: C[V11;V12, . . . , Vn1; Vn2] = 0;U ¹ U = U ′
2. So either of

the following case holds:

(a) C = C1; C2 and C1[V11; V12, . . . , Vl1;Vl2] = 0 and C2[V(l+1)1; V(l+1)2, . . . , Vn1; Vn2] = U

(b) C = [ ] and V11; V12 = 0; U

In the case (a), by Lemma B.3(1), we have C1[V11⊗V12, . . . , Vl1⊗Vl2] = 0. So, U1 = 0; C2[V(l+1)1⊗
V(l+1)2, . . . , Vn1⊗Vn2] ¹ C2[V(l+1)1⊗V(l+1)2, . . . , Vn1⊗Vn2]. Hence U ′

1 = C2[V(l+1)1⊗V(l+1)2, . . . , Vn1⊗
Vn2] satisfies the required conditions.

In the case (b), it follows from V11 = 0, V12 = U that U1 = V11 ⊗ V12 = 0 ⊗ U ¹ U . So, U ′
1 = U

satisfies the required conditions.

• Case U ¹ 0; U . It must be the case that: C[V11; V12, . . . , Vn1; Vn2] = U ¹ 0;U = U ′
2. For the usage

context 0; C, (0; C)[V11; V12, . . . , Vn1; Vn2] = U ′
2 holds. So, since U1 = C[V11⊗V12, . . . , Vn1⊗Vn2] ¹

0; C[V11⊗V12, . . . , Vn1⊗Vn2] = (0; C)[V11⊗V12, . . . , Vn1⊗Vn2] holds, U ′
1 = (0; C)[V11⊗V12, . . . , Vn1⊗

Vn2] satisfies the required conditions.

• Cases 0⊗ U ≡ U , U ;0 ≡ U and 0;E U ≡ U . Similar to the cases 0; U ¹ U and U ¹ 0; U .

• Case U11 ⊗ U22 ¹ U22 ⊗ U11. It must be the case that: C[V11; V12, . . . , Vn1; Vn2] = U11 ⊗ U22 ¹
U22 ⊗ U11 = U ′

2. So the following case holds:

(a) C = C1 ⊗ C2 and C1[V11;V12, . . . , Vl1; Vl2] = U11 and C2[V(l+1)1; V(l+1)2, . . . , Vn1; Vn2] = U22

In the case, we can easily show that the required conditions are satisfied in a similar way to the
previous cases.

• Case U11&U22 ¹ U22&U11. Similar to the case U11 ⊗ U22 ¹ U22 ⊗ U11.

• Case 3U11;U22 ¹ 3U11 ⊗ U22. It must be the case that: C[V11; V12, . . . , Vn1; Vn2] = 3U11; U22 ¹
3U11 ⊗ U22 = U ′

2. So either of the following case holds:

(a) C = 3C1;3C2 and 3C1[V11;V12, . . . , Vl1; Vl2] = 3U11 and C2[V(l+1)1; V(l+1)2, . . . , Vn1; Vn2] =
U22

(b) C = [ ] and V11; V12 = 3U11; U22

In the case (a), by Lemma B.3(2), we have U ′
11 such that C1[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2] = U ′

11

and (U11, U
′
11) ∈ S3. So, U1 = 3U ′

11; C2[V(l+1)1 ⊗ V(l+1)2, . . . , Vn1 ⊗ Vn2] ¹ 3U ′
11 ⊗ C2[V(l+1)1 ⊗

V(l+1)2, . . . , Vn1 ⊗ Vn2] holds. Thus U ′
1 = 3U ′

11 ⊗ C2[V(l+1)1 ⊗ V(l+1)2, . . . , Vn1 ⊗ Vn2] finishes the
case.

In the case (b), from V11 = 3U11 and V12 = U22, U1 = V11 ⊗ V12 = 3U11 ⊗ U22 follows. So,
U ′

1 = 3U11 ⊗ U22 = U ′
2 satisfies the required conditions.

• Case 3U11 ⊗ U22 ¹ 3U11;U22. Similar to the case 3U11; U22 ¹ 3U11 ⊗ U22.

• Case 3U11 ⊗3U22 ¹ 3(U11 ⊗ U22). It must be the case that: C[V11; V12, . . . , Vn1; Vn2] = 3U11 ⊗
3U22 ¹ 3(U11 ⊗ U22) = U ′

2. So the following case holds:

(a) C = 3C1; 3C2 and 3C1[V11; V12, . . . , Vl1; Vl2] = 3U11 and 3C2[V(l+1)1; V(l+1)2, . . . , Vn1;Vn2] =
3U22
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In the case (a), by Lemma B.3(2), we have C1[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2] = U ′
11 and C2[V(l+1)1 ⊗

V(l+1)2, . . . , Vn1 ⊗ Vn2] = U ′
22 and (U11, U

′
11)S3 and (U22, U

′
22)S3. So, U1 = 3U11 ⊗ 3U22 ¹

3(U11 ⊗ U22) holds. Thus U ′
1 = 3(U11 ⊗ U22) finishes the case.

• Cases 3(U11 ⊗ U22) ¹ 3U11 ⊗ 3U22. It must be the case that: C[V11; V12, . . . , Vn1; Vn2] =
3(U11 ⊗ U22) ¹ 3U11 ⊗3U22 = U ′

2. So the following case holds:

(a) C = 3C1 and C1[V11;V12, . . . , Vn1;Vn2] = (U11 ⊗ U22).

In the case, by C1[V11; V12, . . . , Vn1; Vn2] = (U11 ⊗ U22), the following condition holds:

(a1) C1 = C11⊗C12 and C11[V11; V12, . . . , Vl1; Vl2] = U11 and C12[V(l+1)1; V(l+1)2, . . . , Vn1; Vn2] = U22

In the case ,

U ′
2 = 3C11[V11; V12, . . . , Vl1;Vl2]⊗3C12[V(l+1)1; V(l+1)2, . . . , Vn1; Vn2]

U1 = 3(C11[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2]⊗ C12[V(l+1)1 ⊗ V(l+1)2, . . . , Vn1 ⊗ Vn2]])
¹ 3C11[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2]⊗3C12[V(l+1)1 ⊗ V(l+1)2, . . . , Vn1 ⊗ Vn2]

So, for the usage context 3C11 ⊗ 3C12, we have U ′
2 = (3C11 ⊗ 3C12)[V11; V12, . . . , Vn1; Vn2]

and 3C11[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2]⊗3C12[V(l+1)1 ⊗ V(l+1)2, . . . , Vn1 ⊗ Vn2] = (3C11 ⊗3C12)[V11 ⊗
V12, . . . , Vn1⊗Vn2]. Thus U ′

1 = 3C11[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2]⊗3C12[V(l+1)1 ⊗ V(l+1)2, . . . , Vn1 ⊗ Vn2]
finishes the case.

• Cases 3U11;E U22 ≡ 3(U11;E U22). Similar to the cases 3U11 ⊗ 3U22 ¹ 3(U11 ⊗ U22) and
3(U11 ⊗ U22) ¹ 3U11 ⊗3U22.

• Case U11&U22 ¹ U11. It must be the case that: C[V11; V12, . . . , Vn1; Vn2] = U11&U22 ¹ U11 = U ′
2.

So only the following case holds:

(a) C = C1&C2 and C1[V11; V12, . . . , Vl1;Vl2] = U11 and C2[V(l+1)1;V(l+1)2, . . . , Vn1; Vn2] = U22

In the case (a), U1 = C1[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2]&C2[V(l+1)1 ⊗ V(l+1)2, . . . , Vn1 ⊗ Vn2] ¹ C1[V11 ⊗
V12, . . . , Vl1 ⊗ Vl2] holds. So, U ′

1 = C1[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2] finishes the case.

• Case µα.U ¹ [µα.U/α]U . It must be the case that: C[V11; V12, . . . , Vn1; Vn2] = µα.U ¹ [µα.U/α]U =
U ′

2. So only the following case holds:

(a) C = µα.C1 and C1[V11;V12, . . . , Vn1;Vn2] = U .

In the case (a), U1 = µα.C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2] holds. Since

([µα.U11/α]U11, [µα.U21/α]U21) ∈ S3

holds for U11 = C1[V11⊗V12, . . . , Vn1⊗Vn2] and U21 = C1[V11; V12, . . . , Vn1; Vn2], U ′
1 = [µα.U11/α]U11

satisfies the required conditions.

• Case
U ¹ U ′

3U ¹ 3U ′. It must be the case that: U2 = C[V11; V12, . . . , Vn1; Vn2] = 3U and U ¹ U ′ and

U ′
2 = 3U ′. So only the following case holds:

(a) C = 3C1 and C1[V11;V12, . . . , V1n;V2n] = U

In the case (a), by the induction hypothesis, there exists U ′′ such that

C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2] ¹ U ′′ and (U ′′, U ′) ∈ S3.

So, we have U1 = 3C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2] ¹ 3U ′′. From (U ′′, U ′) ∈ S3, (3U ′′, 3U ′) ∈ S3

follows. Thus, U ′
1 = 3U ′′ satisfies the required conditions.
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• Case
U ¹ U ′

¨U ¹ ¨U ′. Similar to the case
U ¹ U ′

3U ¹ 3U ′.

• Case
U11 ¹ U ′

11

U11; U22 ¹ U ′
11;U22

. It must be the case that: U2 = C[V11;V12, . . . , Vn1; Vn2] = U11; U22 and

U11 ¹ U ′
11 and U ′

2 = U ′
11; U22.

So either of the following cases holds:

(a) C = C1; C2 and C1[V11; V12, . . . , Vl1;Vl2] = U11 and C2[V(l+1)1;V(l+1)2, . . . , Vn1; Vn2] = U22

(b) C = [ ] and V11; V12 = U11;U22

In the case (a), by the induction hypothesis, there exists U ′′
11 such that

C1[V11 ⊗ V12, . . . , Vl1 ⊗ Vl2] ¹ U ′′
11 and (U ′′

11, U
′
11) ∈ S3.

So, we have U1 = C1[V11⊗V12, . . . , Vl1⊗Vl2]; C2[V(l+1)1⊗V(l+1)2, . . . , Vn1⊗Vn2] ¹ U ′′
11; C2[V(l+1)1⊗

V(l+1)2, . . . , Vn1 ⊗ Vn2]. From (U ′′
11, U

′
11) ∈ S3 and U ′

2 = U ′
11; C2[V(l+1)1; V(l+1)2, . . . , Vn1; Vn2],

(U ′′
11; C2[V(l+1)1⊗V(l+1)2, . . . , Vn1⊗Vn2], U ′

2) ∈ S3 follows. Thus, U ′
1 = U ′′

11; C2[V(l+1)1⊗V(l+1)2, . . . , Vn1⊗
Vn2] satisfies the required conditions.

In the case (b), since V11 = U11 and V12 = U22, U1 = V11⊗ V12 = U11⊗U22 holds. So, by the rule
U11 ¹ U ′

11

U11 ⊗ U22 ¹ U ′
11 ⊗ U22

, we have U1 = U11 ⊗ U22 ¹ U ′
11 ⊗ U22. This finishes the case.

• Cases
U11 ¹ U ′

11

U11 ⊗ U22 ¹ U ′
11 ⊗ U22

and
U11 ¹ U ′

11

U11;E U22 ¹ U ′
11;E U22

. Similar to the case
U11 ¹ U ′

11

U11; U22 ¹ U ′
11; U22

.

• Case
U2 ¹ U ′′

2 U ′′
2 ¹ U ′

2

U2 ¹ U ′
2

. By (U1, U2) ∈ S3 and the induction hypothesis, there exists U ′′
1 such

that U1 ¹ U ′′
1 and (U ′′

1 , U ′′
2 ) ∈ S3. So, using the induction hypothesis again, we have U ′

1 such that
U ′′

1 ¹ U ′
1 and (U ′

1, U
′
2) ∈ S. Hence, we have U1 ¹ U ′

1 and (U ′
1, U

′
2) ∈ S3 as required. 2

Now, we show that S3 is a weak usage simulation up to ¹
Proposition B.1 S3 is a weak usage simulation up to ¹.

Proof Note that if (U1, U2) ∈ S3, then there exist V11, V12, . . . , Vn1, Vn2, and C such that U1 = C[V11⊗
V12, . . . , Vn1 ⊗ Vn2] and U2 = C[V11; V12, . . . , Vn1;Vn2]. We show that each condition in Definition B.1
holds as follows:

(C1) Trivial.

(C2) By induction on derivation of U2
l−→ U ′

2, with case analysis on the last rule used.

- Case (UR-Lab). U2 = C[V11; V12, . . . , Vn1; Vn2] = l and U1 = C[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2]
hold. So we have C = l. In the case, it follows that U1 = l

l=⇒ 0. Thus, U ′
1 = 0 finishes this

case.
- Case (UR-Box). In this case, the following condition holds:

(i) U2 = 3C1[V11;V12, . . . , Vn1;Vn2] and U1 = 3C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2].

In the case, U ′
2 must be of the form 3U ′

21 and U2
l−→ U ′

2 must have been derived from
C1[V11;V12, . . . , Vn1;Vn2]

l−→ U ′
21. So, by the induction hypothesis, there exists U ′

11 such that
C1[V11⊗V12, . . . , Vn1⊗Vn2]

l=⇒ U ′
11 and U ′

11 ¹ S3 ¹ U ′
21. So, U ′

1 = 3U ′
11 satisfies the required

condition.
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- Case (UR-Ubox). Similar to the case for (UR-Box).

- Case (UR-Par). In this case, the following case holds:

(i) U2 = C1[V11; V12, . . . , Vm1; Vm2]⊗ C2[V(m+1)1; V(m+1)2, . . . , Vn1;Vn2] and
U1 = C1[V11 ⊗ V12, . . . , Vm1 ⊗ Vm2]⊗ C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2]

In the case, the followings must be derived:

C1[V11;V12, . . . , Vm1; Vm2]
l−→ U ′

21 U ′
2 = U ′

21 ⊗ C2[V(m+1)1; V(m+1)2, . . . , Vn1; Vn2]

By the induction hypothesis, there exists U ′
11 such that C1[V11⊗V12, . . . , Vm1⊗Vm2]

l=⇒ U ′
11

and U ′
11 ¹ S3 ¹ U ′

21. So, U ′
1 = U ′

11⊗C2[V(m+1)1⊗V(m+1)2, . . . , Vn1⊗Vn2] satisfies the required
condition.

- Case (UR-Seq). Similar to the case for (UR-Par).

- Case (UR-SeqE). Similar to the case for (UR-Par).

- Case (UR-Hdlr). Since τ 6∈ A ∪ {1}, this case cannot happen.

- Case (UR-Pcon). In this case, it must be the case that:

U2 ¹ U21 U21
l−→ U ′

21 U ′
21 ¹ U ′

2

By (U1, U2) ∈ S3, Lemma B.4 and the induction hypotheses, we have U11 and U ′
11 that satisfy

the following diagrams:
U2 ¹ U21

l−→ U ′
21 ¹ U ′

2

¹

S3 S3 S3

¹

U1 ¹ U11
l=⇒ U ′

11

Since, U ′
11 ¹ S3 ¹ U ′

21 ¹ U ′
2 implies U ′

11 ¹ S3 ¹ U ′
2, U ′

1 = U ′
11 finishes the case.

(C4) By Lemma B.4.

(C5) By induction on derivation of U2
E−→ U ′

2, with case analysis on the last rule used.

- Case (UR-Lab). U2 = C[V11; V12, . . . , Vn1; Vn2] = E and U1 = C[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2]
hold. So we have C = E . In the case, it follows that U1 = E E=⇒ 0. Thus, the required
conditions are satisfied.

- Case (UR-Box). In this case, the following condition holds:

(i) U2 = 3C1[V11;V12, . . . , Vn1;Vn2] and U1 = 3C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2].

In the case, U ′
2 must be of the form 3U ′

21 and U2
E−→ U ′

2 must have been derived from
C1[V11;V12, . . . , Vn1;Vn2]

E−→ U ′
21. So, by the induction hypothesis, there exists U ′

11 such
that C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2]

E=⇒ U ′
11. So, U1 = 3C1[V11 ⊗ V12, . . . , Vn1 ⊗ Vn2]

E=⇒ 3U ′
11

satisfies the required condition.

- Case (UR-Ubox). Similar to the case for (UR-Box).

- Case (UR-Par). In this case, the following case holds:

(i) U2 = C1[V11; V12, . . . , Vm1; Vm2]⊗ C2[V(m+1)1; V(m+1)2, . . . , Vn1;Vn2] and
U1 = C1[V11 ⊗ V12, . . . , Vm1 ⊗ Vm2]⊗ C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2]
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In the case, the followings must be derived:

C1[V11;V12, . . . , Vm1; Vm2]
E−→ U ′

21 U ′
2 = U ′

21 ⊗ C2[V(m+1)1; V(m+1)2, . . . , Vn1; Vn2]

By the induction hypothesis, there exists U ′
11 such that C1[V11⊗V12, . . . , Vm1⊗Vm2]

E=⇒ U ′
11.

So, U1
E=⇒ U ′

11 ⊗ C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2] satisfies the required condition.
- Case (UR-Seq). Similar to the case for (UR-Par).
- Case (UR-SeqE). Similar to the case for (UR-Par).
- Case (UR-Hdlr). This case cannot happen.
- Case (UR-Pcon). In this case, it must be the case that:

U2 ¹ U21 U21
E−→ U ′

21 U ′
21 ¹ U ′

2

By (U1, U2) ∈ S3, Lemma B.4 and the induction hypotheses, we have U11 and U ′
11 that satisfy

the following diagrams:
U2 ¹ U21

l−→ U ′
21 ¹ U ′

2

¹

S3 S3 S3

¹
U1 ¹ U11

l=⇒ U ′
11

This satisfies the required conditions.

(C3) By case analysis on the last rule used to derive U2
τ−→ U ′

2.

- Case (UR-Hdlr). In this case, the following holds:
(i) U2 = C1[V11; V12, . . . , Vm1; Vm2];E C2[V(m+1)1; V(m+1)2, . . . , Vn1; Vn2] and

U1 = C1[V11 ⊗ V12, . . . , Vm1 ⊗ Vm2];E C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2].
In the case, the following derivation must be derived for a usage U ′

21:

C1[V11; V12, . . . , Vm1;Vm2]
E−→ U ′

21 U ′
2 = C2[V(m+1)1;V(m+1)2, . . . , Vn1; Vn2]

By (C5), there exists U ′
11 such that C1[V11 ⊗ V12, . . . , Vm1 ⊗ Vm2]

E=⇒ U ′
11. So, we have Ue ,

U ′
e such that C1[V1, . . . , Vn] =⇒ Ue

E−→ U ′
e =⇒ U ′

11. Thus, the followings hold:

C1[V11 ⊗ V12, . . . , Vm1 ⊗ Vm2];E C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2]
=⇒ Ue;E C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2]

τ−→ C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2]

Therefore, we have U1 =⇒ C2[V(m+1)1 ⊗ V(m+1)2, . . . , Vn1 ⊗ Vn2] and U ′
1 = C2[V(m+1)1 ⊗

V(m+1)2, . . . , Vn1 ⊗ Vn2] satisfies the required condition.
- Cases for other rules: Similar to (C1). 2

Proof of Lemma B.1 (3). By Lemmas B.1 and B.2. 2

From here, we give a proof of Lemma B.1(15). Let S15 be the following binary relation on usages.

S15 =
{

(C[V1, . . . , Vn], C[V ′
1 , . . . , V ′

n]) V1, . . . Vn ∈ U , and Vi =⇒ V ′
i ,

C is a usage context with n (n ≥ 0) holes.

}

The required property U ≤ U ′ follows if we show S15 ⊆≤. By Lemma B.2, it suffices to show that S15

is a weak usage simulation upto ¹. In order to show this, we first prove several propositions.
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Lemma B.5

(1) If (U1,0) ∈ S15 then U1 =⇒ 0.

(2) If (U1, 3Ub2) ∈ S15 then U1 =⇒ 3Ub1 and (3Ub1,3Ub2) ∈ S15 for some usage Ub1.

Proof (1): By (U1,0) ∈ S15, there exist C and V ′
1 , . . . , V ′

n such that C[V ′
1 , . . . , V ′

n] = 0. So, either
C = 0 or (C = [ ] ∧ V ′

1 = 0) holds. In the first case, U1 = 0 holds. In the second case, U1 = V1 =⇒ 0
holds. (2): By (U1,3Ub2) ∈ S15, there exist C and V ′

1 , . . . , V ′
n such that C[V ′

1 , . . . , V ′
n] = 3Ub2.

- Case C = [ ]. It must be the case V ′
1 = 3Ub2. So, we have U1 =⇒ 3Ub2. Thus, Ub1 = Ub2 finishes

this case.

- Case C = 3C1. It must be the case C[V ′
1 , . . . , V ′

n] = 3C1[V ′
1 , . . . , V ′

n]. So, U1 = 3C1[V1, . . . , Vn]
holds. Thus, Ub1 = C1[V1, . . . , Vn] finishes the case. 2

Lemma B.6 If (U1, U2) ∈ S15 and U2 ¹ U ′
2, then U1 =⇒ U ′

1 and (U ′
1, U

′
2) ∈ S15 for some usage U ′

1.

Proof If (U1, U2) ∈ S15 then there exist C and V1, . . . , Vn such that U1 = C[V1, . . . , Vn] and U2 =
C[V ′

1 , . . . , V ′
n] and Vi =⇒ V ′

i for i = 1 . . . n. By induction on derivation of U2 = C[V ′
1 , . . . , V ′

n] ¹ U ′
2

with case analysis on the last rule used, we show that there is a usage U ′
1 that satisfies U1 =⇒ U ′

1 and
(U ′

1, U
′
2) ∈ S15.

• Case 30 ¹ 0. It must be the case that: C[V ′
1 , . . . , V ′

n] = 30 ¹ 0 = U ′
2. So either of the followings

case holds:

(a) C = [ ] and V ′
1 = 30

(b) C = 3C1 and C1[V ′
1 , . . . , V ′

n] = 0

In the case (a), since U1 =⇒ 30 ¹ 0, U ′
1 = 0 satisfies the required conditions. In the case (b), by

Lemma B.5(1), we have C1[V1, . . . , Vn] =⇒ 0. So, U1 =⇒ 30 ¹ 0 holds. Thus, U ′
1 = 0 finishes the

case.

• Case 0 ¹ 30. It must be the case that: C[V ′
1 , . . . , V ′

n] = 0 ¹ 30 = U ′
2. By Lemma B.5(1),

C[V1, . . . , Vn] =⇒ 0. So, we have U1 =⇒ 0 ¹ 30 and this satisfies the required conditions.

• Case ¨0 ¹ 0 and 0 ¹ ¨0. Similar to the cases 30 ¹ 0 and 0 ¹ 30.

• Case 0; U ¹ U . It must be the case that: C[V ′
1 , . . . , V ′

n] = 0;U ¹ U = U ′
2. So either of the

followings case holds:

(a) C = [ ] and V ′
1 = 0; U

(b) C = C1; C2 and C1[V ′
1 , . . . , V ′

l ] = 0 and C2[V ′
l+1, . . . , V

′
n] = U

In the case (a), since U1 = V1 =⇒ V ′
1 = 0; U ¹ U holds, the required conditions are satisfied. In

the case (b), by Lemma B.5(1), we have C1[V1, . . . , Vl] =⇒ 0. So, U1 =⇒ 0; C2[Vl+1, . . . , Vn] ¹
C2[Vl+1, . . . , Vn]. Hence U ′

1 = C2[Vl+1, . . . , Vn] satisfies the required conditions.

• Case U ¹ 0; U . It must be the case that: C[V ′
1 , . . . , V ′

n] = U ¹ 0; U = U ′
2. For the usage

context 0; C, (0; C)[V ′
1 , . . . , V ′

n] = U ′
2 holds. So, since U1 = C[V1, . . . , Vn] ¹ 0; C[V1, . . . , Vn] =

(0; C)[V1, . . . , Vn] holds, U ′
1 = (0; C)[V1, . . . , Vn] satisfies the required conditions.

• Cases 0⊗ U ≡ U , U ;0 ≡ U and 0;E U ≡ U . Similar to the cases 0; U ¹ U and U ¹ 0; U .
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• Case U11⊗U22 ¹ U22⊗U11. It must be the case that: C[V ′
1 , . . . , V ′

n] = U11⊗U22 ¹ U22⊗U11 = U ′
2.

So either of the followings case holds:

(a) C = [ ] and V ′
1 = U11 ⊗ U22

(b) C = C1 ⊗ C2 and C1[V ′
1 , . . . , V ′

l ] = U11 and C2[V ′
l+1, . . . , V

′
n] = U22

In each case, we can easily show that the required conditions are satisfied in a similar way to the
previous cases.

• Case U11&U22 ¹ U22&U11. Similar to the case U11 ⊗ U22 ¹ U22 ⊗ U11.

• Case 3U11; U22 ¹ 3U11⊗U22. It must be the case that: C[V ′
1 , . . . , V ′

n] = 3U11;U22 ¹ 3U11⊗U22 =
U ′

2. So either of the following cases holds:

(a) C = [ ] and V ′
1 = 3U11;U22

(b) C = C1; C2 and C1[V ′
1 , . . . , V ′

l ] = 3U11 and C2[V ′
l+1, . . . , V

′
n] = U22

In the case (a), since U1 = V1 =⇒ V ′
1 = 3U11; U22 ¹ 3U11 ⊗ U12, U ′

1 = 3U11 ⊗ U22 satisfies
the required conditions. In the case (b), by Lemma B.5(2), we have C1[V1, . . . , Vl] =⇒ 3Ub1 and
(3Ub1,3U11) ∈ S15 for a usage Ub1. So, U1 =⇒ 3Ub1; C2[Vl+1, . . . , Vn] ¹ 3Ub1 ⊗ C2[Vl+1, . . . , Vn]
holds. Thus U ′

1 = 3Ub1 ⊗ C2[Vl+1, . . . , Vn] finishes the case.

• Case 3U11 ⊗ U22 ¹ 3U11;U22. Similar to the case 3U11; U22 ¹ 3U11 ⊗ U22.

• Cases 3U11 ⊗ 3U22 ¹ 3(U11 ⊗ U22). It must be the case that: C[V ′
1 , . . . , V ′

n] = 3U11 ⊗ 3U22 ¹
3(U11 ⊗ U22) = U ′

2. So either of the following case holds:

(a) C = [ ] and V ′
1 = 3U11 ⊗3U22

(b) C = C1; C2 and C1[V ′
1 , . . . , V ′

l ] = 3U11 and C2[V ′
l+1, . . . , V

′
n] = 3U22

In the case (a), we can easily show that the required conditions are satisfied in a similar way
to the previous cases. In the case (b), by Lemma B.5(2), we have C1[V1, . . . , Vl] =⇒ 3Ub11 and
(3Ub11, 3U11) ∈ S15 and C2[Vl+1, . . . , Vn] =⇒ 3Ub12 and (3Ub12, 3U22) ∈ S15 for usages Ub11 and
Ub12. So, U1 =⇒ 3Ub11 ⊗3Ub12 ¹ 3(Ub11 ⊗ Ub12) holds. Thus U ′

1 = 3(Ub11 ⊗ Ub12) finishes the
case.

• Cases 3(U11 ⊗ U22) ¹ 3U11 ⊗ 3U22. It must be the case that: C[V ′
1 , . . . , V ′

n] = 3(U11 ⊗ U22) ¹
3U11 ⊗3U22 = U ′

2. So either of the following cases holds:

(a) C = [ ] and V ′
1 = 3(U11 ⊗ U22)

(b) C = 3C1 and C1[V ′
1 , . . . , V ′

n] = U11 ⊗ U22.

In the case (a), since U1 = V1 =⇒ V ′
1 , we can easily show that the required conditions are satisfied.

In the case (b), by C1[V ′
1 , . . . , V ′

n] = U11 ⊗ U22, either of the following conditions holds:

(b1) C1 = [ ] and V ′
1 = U11 ⊗ U22

(b2) C1 = C11 ⊗ C12 and C11[V ′
1 , . . . , V ′

l ] = U11 and C12[V ′
l+1, . . . , V

′
n] = U22

In the case (b1), U1 = 3V1 =⇒ 3V ′
1 = 3(U11 ⊗ U22) ¹ 3U11 ⊗ 3U22 holds. So, U ′

1 = 3U11 ⊗
3U22 = U ′

2 satisfies the required conditions.

In the case (b2),

U ′
2 = 3C11[V ′

1 , . . . , V ′
l ]⊗3C12[V ′

l+1, . . . , V
′
n]

U1 = 3(C11[V1, . . . , Vl]⊗ C12[Vl+1, . . . , Vn]) ¹ 3C11[V1, . . . , Vl]⊗3C12[Vl+1, . . . , Vn]
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So, for the usage context 3C11⊗3C12, we have U ′
2 = (3C11⊗3C12)[V ′

1 , . . . , V ′
n] and 3C11[V1, . . . , Vl]⊗

3C12[Vl+1, . . . , Vn] = (3C11 ⊗3C12)[V1, . . . , Vn]. Thus U ′
1 = 3C11[V1, . . . , Vl]⊗3C12[Vl+1, . . . , Vn]

finishes the case.

• Cases 3U11;E U22 ≡ 3(U11;E U22). Similar to the cases 3U11 ⊗ 3U22 ¹ 3(U11 ⊗ U22) and
3(U11 ⊗ U22) ¹ 3U11 ⊗3U22.

• Case U11&U22 ¹ U11. It must be the case that: C[V ′
1 , . . . , V ′

n] = U11&U22 ¹ U11 = U ′
2. So either

of the following cases holds:

(a) C = [ ] and V ′
1 = U11&U22

(b) C = C1&C2 and C1[V ′
1 , . . . , V ′

l ] = U11 and C2[V ′
l+1, . . . , V

′
n] = U22

In the case (a), U1 = V1 =⇒ V ′
1 = U11&U22 ¹ U11 holds. Thus, U ′

1 = U11 finishes the case. In
the case (b), U1 = C1[V1, . . . , Vl]&C2[Vl+1, . . . , Vn] ¹ C1[V1, . . . , Vl] holds. So, U ′

1 = C1[V1, . . . , Vl]
finishes the case.

• Case µα.U ¹ [µα.U/α]U . It must be the case that: C[V ′
1 , . . . , V ′

n] = µα.U ¹ [µα.U/α]U = U ′
2. So

either of the following cases holds:

(a) C = [ ] and V ′
1 = µα.U

(b) C = µα.C1 and C1[V ′
1 , . . . , V ′

n] = U .

In the case (a), by U1 = V1 =⇒ V ′
1 = µα.U , U ′

1 = µα.U satisfies the required conditions.

In the case (b), U1 = µα.C1[V1, . . . , Vn] holds. Since

([µα.U11/α]U11, [µα.U21/α]U21) ∈ S15

holds for U11 = C1[V1, . . . , Vn] and U21 = C1[V ′
1 , . . . , V ′

n], U ′
1 = [µα.U11/α]U11 satisfies the required

conditions.

• Case
U ¹ U ′

3U ¹ 3U ′. It must be the case that: U2 = C[V ′
1 , . . . , V ′

n] = 3U and U ¹ U ′ and U ′
2 = 3U ′.

So either of the following cases holds:

(a) C = [ ] and V ′
1 = 3U

(b) C = 3C1 and C1[V ′
1 , . . . , V ′

n] = U

In the case (a), since U1 = V1 =⇒ V ′
1 = 3U ¹ 3U ′ holds, U ′

1 = 3U ′ = U ′
2 satisfies the required

conditions. In the case (b), by the induction hypothesis, there exists U ′′ such that

C1[V1, . . . , Vn] =⇒ U ′′ and (U ′′, U ′) ∈ S15.

So, we have U1 = 3C1[V1, . . . , Vn] =⇒ 3U ′′. From (U ′′, U ′) ∈ S15, (3U ′′, 3U ′) ∈ S15 follows.
Thus, U ′

1 = 3U ′′ satisfies the required conditions.

• Case
U ¹ U ′

¨U ¹ ¨U ′. Similar to the case
U ¹ U ′

3U ¹ 3U ′.

• Case
U11 ¹ U ′

11

U11; U22 ¹ U ′
11; U22

. It must be the case that: U2 = C[V ′
1 , . . . , V ′

n] = U11; U22 and U11 ¹ U ′
11

and U ′
2 = U ′

11; U22. So either of the following cases holds:

(a) C = [ ] and V ′
1 = U11; U22

(b) C = C1; C2 and C1[V ′
1 , . . . , V ′

l ] = U11 and C2[V ′
l+1, . . . , V

′
n] = U22
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In the case (a), we can easily show that the required conditions are satisfied in a similar way to
the previous case. In the case (b), by the induction hypothesis, there exists U ′′

11 such that

C1[V1, . . . , Vl] =⇒ U ′′
11 and (U ′′

11, U
′
11) ∈ S15.

So, we have U1 = C1[V1, . . . , Vl]; C2[Vl+1, . . . , Vn] =⇒ U ′′
11; C2[Vl+1, . . . , Vn]. From (U ′′

11, U
′
11) ∈ S15

and U ′
2 = U ′

11; C2[V ′
l+1, . . . , V

′
n], (U ′′

11; C2[Vl+1, . . . , Vn], U ′
2) ∈ S15 follows. Thus, U ′

1 = U ′′
11; C2[Vl+1, . . . , Vn]

satisfies the required conditions.

• Cases
U11 ¹ U ′

11

U11 ⊗ U22 ¹ U ′
11 ⊗ U22

and
U11 ¹ U ′

11

U11;E U22 ¹ U ′
11;E U22

. Similar to the case
U11 ¹ U ′

11

U11; U22 ¹ U ′
11; U22

.

• Case
U2 ¹ U ′′

2 U ′′
2 ¹ U ′

2

U2 ¹ U ′
2

. By (U1, U2) ∈ S15 and the induction hypothesis, there exists U ′′
1 such

that U1 =⇒ U ′′
1 and (U ′′

1 , U ′′
2 ) ∈ S15. So, using the induction hypothesis again, we have U ′

1 such
that U ′′

1 =⇒ U ′
1 and (U ′

1, U
′
2) ∈ S15. Hence, we have U1 =⇒ U ′

1 and (U ′
1, U

′
2) ∈ S15 as required. 2

Now, we show that S15 is a weak usage simulation up to ¹
Lemma B.7 S15 is a weak usage simulation up to ¹.

Proof Note that if (U1, U2) ∈ S15, then there exist V1, . . . , Vn, V ′
1 , . . . , V ′

n and C such that U1 =
C[V1, . . . , Vn] and U2 = C[V ′

1 , . . . , V ′
n] and Vi =⇒ V ′

i for i = 1 . . . n. We show that each condition in
Definition B.1 holds as follows:

(C1) Trivial.

(C2) By induction on derivation of U2
l−→ U ′

2, with case analysis on the last rule used.

- Case (UR-Lab). U2 = C[V ′
1 , . . . , V ′

n] = l and U1 = C[V1, . . . , Vn] hold. So we have either
C = l or (C = [ ] and V ′

1 = l). In both cases, it follows that U1
l=⇒ 0. Thus, U ′

1 = 0 finishes
this case.

- Case (UR-Box). In this case, either of the following conditions holds:
(i) C = [ ] and U2 = V ′

1 = 3Ub, U1 = V1 =⇒ V ′
1 = 3Ub for a Ub

(ii) U2 = 3C1[V ′
1 , . . . , V ′

n] and U1 = 3C1[V1, . . . , Vn].
In the first case, since U1 =⇒ U2 holds, U ′

1 = U ′
2 satisfies the required condition. In

the second case, U ′
2 must be of the form 3U ′

21 and U2
l−→ U ′

2 must have been derived
from C1[V ′

1 , . . . , V ′
n] l−→ U ′

21. So, by the induction hypothesis, there exists U ′
11 such that

C1[V1, . . . , Vn] l=⇒ U ′
11 and U ′

11 ¹ S15 ¹ U ′
21. So, U ′

1 = 3U ′
11 satisfies the required condition.

- Case (UR-Ubox). Similar to the case for (UR-Box).
- Case (UR-Par). In this case, either of the following conditions holds.

(i) C = [ ] and U2 = V ′
1 = U11 ⊗ U22, U1 = V1 = U11 ⊗ U22 for some U11, U22.

(ii) U2 = C1[V ′
1 , . . . , V ′

m]⊗ C2[V ′
m+1, . . . , V

′
n] and

U1 = C1[V1, . . . , Vm]⊗ C2[Vm+1, . . . , Vn].
In the first case, since U1 =⇒ U2 holds, U ′

1 = U ′
2 satisfies the required condition. In the

second case, the followings must be derived:

C1[V ′
1 , . . . , V ′

m] l−→ U ′
21 U ′

2 = U ′
21 ⊗ C2[V ′

m+1, . . . , V
′
n]

By the induction hypothesis, there exists U ′
11 such that C1[V1, . . . , Vn] l=⇒ U ′

11 and U ′
11 ¹

S15 ¹ U ′
21. So, U ′

1 = U ′
11 ⊗ C2[Vm+1, . . . , Vn] satisfies the required condition.
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- Case (UR-Seq). Similar to the case for (UR-Par).

- Case (UR-SeqE). Similar to the case for (UR-Par).

- Case (UR-Hdlr). Since τ 6∈ A ∪ {1}, this case cannot happen.

- Case (UR-Pcon). In this case, it must be the case that:

U2 ¹ U21 U21
l−→ U ′

21 U ′
21 ¹ U ′

2

By (U1, U2) ∈ S15, Lemma B.6 and the induction hypotheses, we have U11 and U ′
11 that

satisfy the following diagrams:

U2 ¹ U21
l−→ U ′

21 ¹ U ′
2

¹

S15 S15 S15

¹

U1 =⇒ U11
l=⇒ U ′

11

Thus, U ′
1 = U ′

11 finishes the case.

(C4) By Lemma B.5(1).

(C5) Similar to the case for (C2).

(C3) By induction on derivation of U2
τ−→ U ′

2, with case analysis on the last rule used.

- Case (UR-Hdlr). In this case, either of the following conditions holds.

(i) C = [ ] and U2 = V1 = U11;E U12, U1 = V1 =⇒ V ′
1 for some U11, U12.

(ii) U2 = C1[V ′
1 , . . . , V ′

m];E C2[V ′
m+1, . . . , V

′
n] and

U1 = C1[V1, . . . , Vm];E C2[Vm+1, . . . , Vn].

In the first case, since U1 =⇒ U2 holds, U ′
1 = U ′

2 satisfies the required condition. In the
second case, the following derivation must be derived for a usage U ′

21:

C1[V ′
1 , . . . , V ′

m] E−→ U ′
21 U ′

2 = C2[Vm+1, . . . , Vn]

By (C5), there exists U ′
11 such that C1[V1, . . . , Vm] E=⇒ U ′

11. So, we have Ue and U ′
e such that

C1[V1, . . . , Vm] =⇒ Ue
E−→ U ′

e =⇒ U ′
11. Thus, the followings hold:

C1[V1, . . . , Vm];E C2[Vm+1, . . . , Vn]
=⇒ Ue;E C2[Vm+1, . . . , Vn]

τ−→ C2[Vm+1, . . . , Vn]

Therefore, we have U1 =⇒ C2[Vm+1, . . . , Vn] and U ′
1 = C2[Vm+1, . . . , Vn] satisfies the required

condition.

- Cases for other rules: Similar to the corresponding cases of (C1). 2

Proof of Lemma B.1 (15). By Lemma B.7 and Lemma B.2. 2

Lemma B.8 If ϕ1 v ϕ2, then (ϕ1)use ≤ (ϕ2)use.

37



Proof Since the subeffect relation v has been defined as the partial order given by E ? v 0 v > and
E ? v E v > in Section 3.2, it is sufficient to show E&0 ≤ 0 ≤ µα.α and E&0 ≤ E ≤ µα.α.

E&0 ≤ 0 and E&0 ≤ E follow immediately from E&0 ¹ 0,E&0 ¹ E and the definition of
subusage (Definition 3.5). By Lemma B.1(16) and U ≤ U , we have U ≤ µα.α for any usage U . So, we
get 0 ≤ µα.α and E ≤ µα.α. 2

B.2 Basic properties of type judgment relation

We introduce several notations for convenience. For type environments Γ1 and Γ2 such that dom(Γ1) =
dom(Γ2), we define Γ1 ⊗ Γ2 by (Γ1 ⊗ Γ2)(x) = Γ1(x)⊗ Γ2(x). Moreover, we define Γ⊗ ∅ = ∅ ⊗ Γ = Γ.
Next, we write Γ1 ≤ Γ2, if dom(Γ1) = dom(Γ2) and ∀x ∈ dom(Γ1).Γ1(x) ≤ Γ2(x). Note that, if Γ1 ≤ Γ2,
then Γ1 ≤ϕ Γ2 holds for any ϕ.

Finally, we define U.τ as the type obtained from replacing the usage of τ with U , that is:

U.bool = bool U.(σ1
ϕ−→ σ2, U

′) = (σ1
ϕ−→ σ2, U) U.(R, U ′) = (R, U).

Lemma B.9 (Inversion)

1. If Γ ‖ ϕ ` true : δ or Γ ‖ ϕ ` false : δ, then δ = bool and Γ ≤0 ∅ and ϕ v 0.

2. If Γ ‖ ϕ ` x : δ then Γ ≤0 x : 3δ and ϕ v 0.

3. If Γ ‖ ϕ ` newΦ() : δ, then Γ ≤0 ∅, ϕ v 0 and there exists U such that U ⊆ [[Φ]] and (R, U) ≤ δ.

4. If Γ ‖ ϕ ` acca(M) : δ, then δ = bool and there exist Γ1 and ϕ1 such that Γ1 ‖ ϕ1 ` M : (R, a)
and Γ ≤ϕ1 Γ1 and ϕ v ϕ1.

5. If Γ ‖ ϕ ` if M1 then M2 else M3 : δ, then there exist Γ1, Γ2, ϕ1, ϕ2 and δ1 such that Γ1 ‖ ϕ1 `
M1 : bool and Γ2 ‖ ϕ2 ` M2 : δ1 and Γ2 ‖ ϕ2 ` M3 : δ1 and Γ ≤ϕ1;ϕ2 Γ1; Γ2 and ϕ v ϕ1;ϕ2 and
δ1 ≤ δ.

6. If Γ ‖ ϕ ` let x = M1 in M2 : δ, then there exist Γ1, Γ2, ϕ1, ϕ2, σ1 and δ2 such that Γ1 ‖ ϕ1 `
M1 : σ1 and Γ2, x : σ1\E ‖ ϕ2 ` M2 : δ2 and Γ ≤ϕ1;ϕ2 Γ1; Γ2 and δ2 ≤ δ and ϕ v (ϕ1;ϕ2).

7. If Γ ‖ ϕ ` fun(f, x, M) : δ, then ϕ v 0 and there exist U,U1, σ1, δ1, δ2, Γ1 and ϕ1 such that
Γ1, f : (δ1

ϕ1−→ δ2, U1), x : σ1 ‖ ϕ1 ` M : δ2 and δ1 ≤ (σ1\E ), (δ1
ϕ1−→ δ2, U) ≤ δ and Γ ≤0

∆fun
(U,U1\E ,3(Γ1\E)).

8. If Γ ‖ ϕ ` M1M2 : δ, then there exist Γ1, Γ2, ϕ1, ϕ2, ϕ3, δ1 and δ2 such that Γ1 ‖ ϕ1 ` M1 : (δ1
ϕ3−→

δ2, 1) and Γ2 ‖ ϕ2 ` M2 : δ1 and Γ ≤(ϕ1;ϕ2);ϕ3 (Γ1; Γ2); (ϕ3)use and ϕ v (ϕ1; ϕ2); ϕ3 and δ2 ≤ δ.

9. If Γ ‖ ϕ ` M{x}, then there exist Γ1, ϕ1, δ2 and σ1 such that Γ1 ‖ ϕ1 ` M : δ2 and Γ ≤ϕ1 ¨xΓ1

and ϕ v ϕ1 and δ2 ≤ δ.

10. If Γ ‖ ϕ ` raise : δ, then Γ ≤E ∅ and ϕ v E.

11. If Γ ‖ ϕ ` try M1 with M2 : δ, then there exist Γ1, Γ2, ϕ1, ϕ2 and δ1 such that Γ1 ‖ ϕ1 ` M1 : δ1

and Γ2 ‖ ϕ2 ` M2 : δ1 and Γ ≤ϕ1;Eϕ2 (Γ1;E Γ2) and ϕ v ϕ1;E ϕ2 and δ1 ≤ δ.

Proof From the typing rules. 2

Lemma B.10

(1) If Γ ‖ ϕ ` v : δ and Use0(δ) ≤ 0, then, for all x ∈ dom(Γ), Use0(Γ(x)) ≤ 0 and ϕ v 0.

(2) If Γ ‖ ϕ ` Etry[raise] : δ, then, for all x ∈ dom(Γ), UseE (Γ(x)) ≤ E and ϕ v E.
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Proof (1): Follows immediately from Lemma B.9(1, 2 and 7).
(2): By structural induction on Etry. We show a few representative cases below.

• Case Etry = [ ]. By assumption,
Γ ‖ ϕ ` raise : δ.

By Lemma B.9(10), we have ϕ v E and Γ ≤E ∅, which implies that ∀x ∈ dom(Γ).UseE (Γ(x)) ≤ E .

• Case Etry = acca(Etry
1 ).

Γ ‖ ϕ ` acca(Etry
1 [raise]) : δ

By Lemma B.9(4), there exist Γ1 and ϕ1 such that Γ1 ‖ ϕ1 ` Etry
1 [raise] : (R, a) and Γ ≤ϕ1 Γ1

and ϕ v ϕ1.

By the induction hypothesis, we have ϕ1 v E and UseE (Γ1(x)) ≤ E for all x ∈ dom(Γ1).

Therefore, we get ϕ v ϕ1 v E and
{ ∀x ∈ dom(Γ1).UseE (Γ(x)) ≤ UseE (Γ1(x)) ≤ E
∀x ∈ (dom(Γ ) \ dom(Γ1 )).UseE (Γ(x)) ≤ (ϕ1)use ≤ E

• Case Etry = if Etry
1 then M2 else M3.

Γ ‖ ϕ ` if Etry
1 [raise] then M2 else M3 : δ

By Lemma B.9(5), there exist Γ1, Γ2, ϕ1, ϕ2 and δ1 such that Γ1 ‖ ϕ1 ` Etry
1 [raise] : bool and

Γ2 ‖ ϕ2 ` M2 : δ1 and Γ2 ‖ ϕ2 ` M3 : δ1 and Γ ≤ϕ1;ϕ2 Γ1; Γ2 and ϕ v ϕ1;ϕ2 and δ1 ≤ δ.

By the induction hypothesis we have ϕ1 v E and UseE (Γ1(x)) ≤ E for all x ∈ dom(Γ1).

Therefore, we get ϕ v ϕ1; ϕ2 v E ; ϕ2 = E ,

∀x ∈ dom(Γ1)(= Γ2).UseE (Γ(x)) ≤ (UseE (Γ1(x));UseE (Γ2(x)))
≤ (E ;UseE (Γ2(x)))
≤ E (by Lemma B.1(10))

and, by Γ ≤ϕ1;ϕ2 Γ1; Γ2 and Lemma B.8

∀x ∈ (dom(Γ ) \ dom(Γ1 )).UseE (Γ(x)) ≤ (ϕ1; ϕ2)use

≤ (E ; ϕ2)use

= (E )use = E .

2

Lemma B.11 If Γ ‖ ϕ ` M : δ, then there exist Γ′ and ϕ′ such that Γ ≤ Γ′ and ϕ ≤ ϕ′ and
Γ′ ‖ ϕ′ ` M : δ and (Useϕ′(Γ′(x))\E )⊗ (ϕ′)use ≤ Useϕ′(Γ′(x)) for all x ∈ dom(Γ′) .

Proof By induction on the derivation of Γ ‖ ϕ ` M : δ.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Const). By (T-Const), we have Γ = ∅ and ϕ = 0.
Therefore, Γ′ = Γ and ϕ′ = ϕ finish this case.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Var). By (T-Var), we have Γ = x : 3δ and ϕ = 0.
Since δ\E ∼= δ and (3δ)\E ≤ 3(δ\E ) hold, we have (3δ)\E ⊗ (0)use ≤ 3δ. This finishes the
case.
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• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-New). By (T-New), we have Γ = ∅ and ϕ = 0.
Therefore, Γ′ = Γ and ϕ′ = ϕ finish this case.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Acc). By (T-Acc), δ = bool and there exist M1 and a
such that M = acca(M1) and Γ ‖ ϕ ` M1 : (R, a). By the induction hypothesis, there exist Γ′, ϕ′

such that

Γ ≤ Γ′ ϕ ≤ ϕ′ Γ′ ‖ ϕ′ ` M1 : (R, a)
∀x ∈ dom(Γ′).(Useϕ′(Γ′(x))\E )⊗ (ϕ′)use ≤ Useϕ′(Γ′(x))

So, by (T-Acc), we get Γ′ ‖ ϕ′ ` M : δ. This type judgement satisfies the required condition.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-If). By (T-If), there exist Γ1, Γ2, ϕ1, ϕ2 , M1, M2 and
M3 such that

M = if M1 then M2 else M3

Γ1 ‖ ϕ1 ` M1 : bool Γ2 ‖ ϕ2 ` M2 : δ Γ2 ‖ ϕ2 ` M3 : δ
Γ = Γ1; Γ2 ϕ = ϕ1; ϕ2

By the induction hypothesis, there exist Γ′1, ϕ
′
1 and Γ′2, ϕ

′
2 such that

Γ1 ≤ Γ′1 ϕ1 ≤ ϕ′1 Γ′1 ‖ ϕ′1 ` M1 : bool
Γ2 ≤ Γ′2 ϕ2 ≤ ϕ′2 Γ′2 ‖ ϕ′2 ` M2 : δ Γ′2 ‖ ϕ′2 ` M3 : δ

∀x ∈ dom(Γ′1).(Useϕ′1(Γ
′
1(x))\E )⊗ (ϕ′1)

use ≤ Useϕ′1(Γ
′
1(x)) (1)

∀x ∈ dom(Γ′2).(Useϕ′2(Γ
′
2(x))\E )⊗ (ϕ′2)

use ≤ Useϕ′2(Γ
′
2(x)) (2)

So, by (T-If), we get Γ′1; Γ
′
2 ‖ ϕ′1; ϕ

′
2 ` M : δ. Here, by Lemma B.1(19), the expressions (1) and

(2), the following relation holds for all x ∈ dom(Γ′1) = dom(Γ′2):

(Use(ϕ′1;ϕ
′
2)

((Γ′1; Γ
′
2)(x))\E )⊗ (ϕ′1; ϕ

′
2)

use ≤ Use(ϕ′1;ϕ
′
2)

((Γ′1; Γ
′
2)(x)).

Thus, the type judgment relation Γ′1; Γ
′
2 ‖ ϕ′1; ϕ

′
2 ` M : δ satisfies the required condition.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Let) or (T-App). Similar to the case for (T-if).

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Fun). By (T-Fun), there exist Γ1, U , U1, δ1, δ2 and
ϕ1 such that

Γ = ∆fun
(U,U1\E ,3(Γ1\E)) ϕ = 0. (3)

By Lemma B.1(7,12), we have

(3(U\E ))\E = 3(U\E );E 0 ¹ 3((U\E );E 0) = 3((U\E )\E ) ∼= 3(U\E )

(!(3(U\E )))\E ∼= (3(!(U\E )))\E ¹ 3((!(U\E ))\E ) ∼= 3(!(U\E )) ∼=!(3(U\E ))

for any U . Thus, we have Use0(Γ(x))\E ⊗ 0 ≤ Use0(Γ(x)) for all x ∈ dom(Γ).

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Now). By (T-Now), there exist Γ1, x and M1 such
that Γ = ¨xΓ1 and M = M

{x}
1 and Γ1 ‖ ϕ ` M1 : δ. By the induction hypothesis, there exist

Γ′1, ϕ
′
1 such that

Γ1 ≤ Γ′1 ϕ1 ≤ ϕ′1 Γ′1 ‖ ϕ′1 ` M1 : δ

∀y ∈ dom(Γ′1).(Useϕ′1(Γ
′
1(y))\E )⊗ (ϕ′1)

use ≤ Useϕ′1(Γ
′
1(y)). (4)
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So, by (T-Acc), we get ¨xΓ′1 ‖ ϕ′1 ` M : δ. Here, by Lemma B.1(18,9,14) and the expression (4),
we have

(¨Useϕ′1(Γ
′
1(x)))\E ⊗ (ϕ′1)

use ≤ ¨(Useϕ′1(Γ
′
1(x))\E )⊗ ¨(ϕ′1)

use by Lemma B.1(14,18)
≤ ¨((Useϕ′1(Γ

′
1(x))\E )⊗ (ϕ′1)

use) by Lemma B.1(9)
≤ ¨Useϕ′1(Γ

′
1(x)) (4)

Therefore, the type judgment ¨xΓ′1 ‖ ϕ′1 ` M : δ satisfies the required condition.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Raise). By (T-Raise), we have Γ = ∅ and ϕ = E .
Therefore, Γ′ = Γ and ϕ′ = ϕ finish this case.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Try). By (T-Try), there exist Γ1, Γ2, ϕ1, ϕ2 , M1

and M2 such that
M = try M1 with M2

Γ1 ‖ ϕ1 ` M1 : δ Γ2 ‖ ϕ2 ` M2 : δ

By the induction hypothesis, there exist Γ′1, ϕ
′
1 and Γ′2, ϕ

′
2 such that

Γ1 ≤ Γ′1 ϕ1 ≤ ϕ′1 Γ′1 ‖ ϕ′1 ` M1 : δ

Γ2 ≤ Γ′2 ϕ2 ≤ ϕ′2 Γ′2 ‖ ϕ′2 ` M2 : δ

∀x ∈ dom(Γ′1).(Useϕ′1(Γ
′
1(x))\E )⊗ (ϕ′1)

use ≤ Useϕ′1(Γ
′
1(x)) (5)

∀x ∈ dom(Γ′2).(Useϕ′2(Γ
′
2(x))\E )⊗ (ϕ′2)

use ≤ Useϕ′2(Γ
′
2(x)) (6)

So, by (T-Try), we get Γ′1;E Γ′2 ‖ ϕ′1;E ϕ′2 ` M : δ. Here, by Lemma B.1(19)(2),(5) and (6), the
following relation holds for all x ∈ dom(Γ′1) = dom(Γ′2):

(Use(ϕ′1;Eϕ′2)((Γ
′
1;E Γ′2)(x))\E )⊗ (ϕ′1;E ϕ′2)

use ≤ Use(ϕ′1;Eϕ′2)((Γ
′
1;E Γ′2)(x)).

Thus, the type judgment relation Γ′1;E Γ′2 ‖ ϕ′1;E ϕ′2 ` M : δ satisfies the required condition.

• Case: Γ ‖ ϕ ` M : δ is derived by rule (T-Weak). By (T-Weak), there exist ϕ1, Γ1, δ1 such
that ϕ v ϕ1 and Γ ≤ϕ1 Γ1 and δ1 ≤ δ and Γ1 ‖ ϕ1 ` M : δ1. By the induction hypothesis, there
exist Γ′1, ϕ

′
1 such that

Γ1 ≤ Γ′1 ϕ1 ≤ ϕ′1 Γ′1 ‖ ϕ′1 ` M : δ′

(Useϕ′1(Γ
′
1(x))\E )⊗ (ϕ′1)

use ≤ Useϕ′1(Γ
′
1(x)) (7)

Here, for x1, . . . , xn ∈ (dom(Γ) \ dom(Γ′1)), we can construct a type environment Γ′′1

Γ′′1 = Γ′1, x1 : (ϕ′1)
use.(Γ(x1)), . . . , xn : (ϕ′1)

use.(Γ(xn))

Operators U.τ used above are defined in the first sentence of Appendix B.2. Then, by (T-Weak),
we have dom(Γ) = dom(Γ′′1) and Γ′′1 ‖ ϕ′1 ` M : δ. By LemmaB.1(17) and (7), letting Γ′ = Γ′′1 and
ϕ′ = ϕ′1 finishes this case. 2

Lemma B.12 If Γ, x : σ1 ‖ ϕ ` M : δ, then Γ, x : (σ1\E )⊗ (ϕ)use ‖ ϕ ` M : δ.

Proof By Lemma B.11, there exist Γ′, σ′1 and ϕ′ such that Γ ≤ Γ′ and σ ≤ σ′ and ϕ ≤ ϕ′ and

Γ′, x : σ′1 ‖ ϕ′ ` M : δ and (Γ′\E )⊗ (ϕ′)use ≤ Γ′ and (σ′1\E )⊗ (ϕ′)use ≤ σ′1.

Hence, we have Γ′, x : (σ′1\E ) ⊗ (ϕ′)use ‖ ϕ′ ` M : δ by (T-Weak). It follows that Γ, x : (σ1\E ) ⊗
(ϕ)use ‖ ϕ ` M : δ from Γ ≤ Γ′, σ ≤ σ′, ϕ ≤ ϕ′ and (T-Weak). 2

Lemma B.13 If Γ1 ≤ϕ Γ2, then Γ1; (ϕ′)use ≤(ϕ;ϕ′) Γ2; (ϕ′)use.
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Proof By definitions of Γ1 ≤ϕ Γ2 and the subtype relation. 2

Lemma B.14 If U1 ≤ 1, then ∆fun
(U1,U2,Γ) ≤ ∆fun

(U2,U2,Γ) ⊗ Γ.

Proof By U1 ≤ 1, we have 1 ∈ [[U1]]. If 1 6∈ U2 and [[U1]] ⊆ {ε, 1, 1 ↓}, then ∆fun
(U1,U2,Γ) = Γ and

∆fun
(U2,U2,Γ) = ∅. Therefore, ∆fun

(U1,U2,Γ) = ∆fun
(U2,U2,Γ) ⊗ Γ = Γ. In the case where either 1 ∈ U2 or

[[U1]] 6⊆ {ε, 1, 1 ↓} holds, ∆fun
(U1,U2,Γ) =!Γ and !Γ ≤ ∆fun

(U2,U2,Γ) hold. Hence, we have ∆fun
(U1,U2,Γ) =!Γ ≤

!Γ⊗ Γ ≤ ∆fun
(U2,U2,Γ) ⊗ Γ. 2

Lemma B.15 If Γ ‖ ϕ ` v : δ, then there exists a type environment Γ′ such that Γ ≤ 3Γ′ and
3Γ′ ‖ ϕ ` v : δ.

Proof A value is either a boolean value (true or false), a variable or a function.

• Case v = true or v = false.
Γ ‖ ϕ ` v : bool
Γ = x1 : σ1, . . . , xn : σn

By Lemma B.9(1), Γ ≤0 ∅ and ϕ v 0 hold. By Γ ≤0 ∅, we have

x1 : σ1, . . . , xn : σn ≤ x1 : 0.σ1, . . . , xn : 0.σn.

Let Γ1 = x1 : 0.σ1, . . . , xn : 0.σn. Then, from 30 ≡ 0, it follows that Γ ≤ Γ1 ≡ 3Γ1.

Moreover, by ϕ v 0, (T-Const) and (T-Weak), we have

x1 : 0.σ1, . . . , xn : 0.σn ‖ ϕ ` v : bool

Hence, we get 3Γ1 ‖ ϕ ` v : bool. Γ′ = Γ1 finishes this case.

• Case v = x
Γ ‖ ϕ ` x : δ
Γ = x1 : σ1, . . . , xn : σn

By Lemma B.9(2), we have x1 : σ1, . . . , xn : σn ≤0 x : 3δ and ϕ v 0 hold.

By x1 :σ1, . . . , xn :σn ≤0 x :3δ, there exists i such that xi = x and σi ≤ 3δ and σj ≤ 0.σj (i 6= j).

Let Γ1 = x : δ, xj1 : 0.σj1 , . . . , xj(n−1) : 0.σj(n−1) , {1, .., i − 1, i + 1, .., n} = {j1, .., j(n−1)}. Then,
from 30 ≡ 0, it follows that Γ ≤ Γ1 ≡ 3Γ.

Moreover, by ϕ v 0, (T-Var) and (T-Weak), we have 3Γ1 ‖ ϕ ` v : δ. Γ′ = Γ1 finishes this
case.

• Case v = fun(x, f, M)
Γ ‖ ϕ ` fun(f, x, M) : δ
Γ = x1 : σ1, . . . , xn : σn

By Lemma B.9(7), ϕ v 0 and there exist U,U1, σ1, δ1, δ2, Γ1 and ϕ1 such that Γ1, f : (δ1
ϕ1−→ δ2, U1),

x : σ1 ‖ ϕ1 ` M : δ2 and δ1 ≤ (σ1\E ) and (δ1
ϕ1−→ δ2, U) ≤ δ and Γ ≤0 ∆fun

(U,U1\E ,3(Γ1\E)).

Here, by Γ ≤0 ∆fun
(U,U1\E ,3(Γ1\E)), we can assume

Γ1 = x1 : σ11, . . . , xk : σ1k (k ≤ n)

without loss of generarity.
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By ϕ v 0, (δ1
ϕ1−→ δ2, U) ≤ δ, (T-Weak) and (T-Fun), we have

x1 : ∆fun
(U,U1\E ,3(σ11\E)), . . . , xk : ∆fun

(U,U1\E ,3(σ1k\E)),

xk+1 : 0.σk+1, . . . xn : 0.σn
‖ ϕ ` fun(f, x, M) : δ

Here, by the definition of ∆fun
(U,U1\E ,3(σ1i\E)) and 30 ≡ 0 and Lemma B.1(7), we have a type σ′1i

such that ∆fun
(U,U1\E ,3(σ1i\E))

∼= 3σ′1i (i ∈ {1 . . . n}).
Therefore, we have σ′11, . . . , σ

′
1k such that

x1 : 3σ′11, . . . , xk : 3σ′1k,
xk+1 : (0.σk+1), . . . , xn : (0.σn) ‖ ϕ ` fun(f, x,M) : δ

Hence, Γ′ = x1 : σ′11, . . . , xk : σ′1k, xk+1 : (0.σk+1), . . . , xn : (0.σn) satisfies the required condition.

B.3 Proofs of Lemmas 4.2 and 4.3

In this section, we prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2.

- For the first part, by ϕ ` (H, v), we have

x1 : (R, U1), . . . , xn : (R, Un) ‖ ϕ ` v : δ
dom(H) = {x1, . . . , xn}

[[U1]] ⊆ H(x1), . . . , [[Un]] ⊆ H(xn)

From Lemma B.10(1), it follows that U1 ≤ 0, . . . , Un ≤ 0. Therefore, we get ↓ ∈ [[0]] ⊆ [[Ui]] ⊆
H(xi) for all i ∈ {1, . . . , n}.

- For the second part, by ϕ ` (H, Etry[raise]), we have

x1 : (R, U1), . . . , xn : (R, Un) ‖ ϕ ` Etry[raise] : δ
dom(H) = {x1, . . . , xn}

[[U1]] ⊆ H(x1), . . . , [[Un]] ⊆ H(xn)

From Lemma B.10(2), it follows that U1 ≤ E , . . . , Un ≤ E . Therefore, we get ↓ ∈ [[E ]] ⊆ [[Ui]] ⊆
H(xi) for all i ∈ {1, . . . , n}.

Proof of Lemma 4.3. Evaluation of a well-annotated term may get stuck only in the following three
cases:

- Case M = E [acca(v)] and v is not a variable. By ϕ ` (H, E [acca(v)]), there are x1, . . . , xn,
U1, . . . , Un and ϕ′ such that

x1 : (R, U1), . . . , xn : (R, Un) ‖ ϕ′ ` acca(v) : bool
dom(H) = {x1, . . . , xn}

Hence, by (T-Acc), v must have a resource type. Therefore, v must be a variable, hence a
contradiction.
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- Case M = E [v1v2] and v1 is not a function. By ϕ ` (H, E [v1v2]), there are x1, . . . , xn, U1, . . . , Un

and ϕ′ such that
x1 : (R, U1), . . . , xn : (R, Un) ‖ ϕ′ ` v1v2 : bool

dom(H) = {x1, . . . , xn}
Hence, by (T-App), v1 must have a function type. Therefore, v1 must be of the form fun(f ′, x′, M ′),
hence a contradiction.

- Case M = E [if v then M1 else M2] and v is a not boolean.

This case is rejected by a similar argument. 2

B.4 Substitution Lemma

We will the following substitution lemma:

If Γ1, x : σ1 ‖ ϕ1 ` M : δ2 and Γ2 ‖ 0 ` v : σ1\E and dom(Γ1) = dom(Γ2) then Γ1 ⊗ Γ2 ‖
ϕ1 ` [v/x]M : δ2.

Unfortunately, this property cannot be directly proved by induction on the derivation of Γ1, x :σ1 ‖ ϕ1 `
M : δ2 – the type environment Γ1⊗Γ2 in the conclusion is too weak when that statement is used as the
induction hypothesis. Thus, we strengthen the property for induction to work.

For this purpose, we first extend usage expressions by introducing a new usage (U1|U2) which is
similar to U1⊗U2 but synchronizes on the transition E. We then prove the following properties (Lemma
B.19 and B.22)

If Γ1, x : τx, y : τy ‖ ϕ1 ` M : δ2, then Γ1, y : (τy|τx) ‖ ϕ1 ` [y/x]M : δ2.

and

If Γ1, f : (σf , U1) ‖ ϕ1 ` M : δ2 and Γ2 ‖ 0 ` fun(f ′, x′,M ′) : (σf , 1), then Γ1|(U1 ¯ Γ2) ‖
ϕ1 ` [fun(f ′, x′, M ′)/f ]M : δ2

Here, U1 ¯ Γ2, which intuitively means multiplication of Γ2 by U1, will be defined later. Using these
lemmas, we can prove the substitution lemma.

We introduce a new expression (U1|U2) to the syntax of usage expressions

U ::= · · · | (U1|U2).

Then, the structural pre-order on usages U1 ¹ U2 and the transition relation U1
l−→ U2 are extended:

Definition B.2 (Additional Pre-order relations for (U1|U2)) The relation ¹ on usages is extended
to the one closed under the additional relations (recall that U1 ≡ U2 means U1 ¹ U2 and U2 ¹ U1):

3(U1|U2) ≡ 3U1|3U2 (U1|U2) ≡ U2|U1 0 ≡ (0|0)

Definition B.3 (Additional Usage Reduction rules for (U1|U2)) The transition relation on us-
ages is extended to the one closed under the additional relations:

U1
l−→ U ′

1 l 6= E

U1|U2
l−→ U ′

1|U2

U1
E−→ U ′

1 U2
E−→ U ′

2

U1|U2
E−→ U ′

1|U ′
2

The second rule means that (U1|U2) has a transition labeled E if both usages U1 and U2 can make
transition on E simultaneously.
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Note. I general, we must prove old lemmas (like Lemma B.1) again for the new usage expression
(U1|U2). However, we omit those proofs since these are similar to the case U1 ⊗ U2 of corresponding
lemmas

From here, we use notations ∆fun
(U,U1,U ′) and ∆fun

(U,U1,σ) which are defined in a manner similar to
∆fun

(U,U1,Γ) as follows:

∆fun
(U2,U1,U) =





0 if 1 6∈ [[U2]]
U (1 ∈ [[U ]] ⊆ {ε, 1, 1 ↓}) ∧ (1 6∈ [[U1]])
!U otherwise

∆fun
(U2,U1,σ) =





0.σ if 1 6∈ [[U2]]
σ (1 ∈ [[U ]] ⊆ {ε, 1, 1 ↓}) ∧ (1 6∈ [[U1]])
!σ otherwise

Here, 0.σ is defined at the beginning of Appendix B.2.
Moreover, we add σ1|σ2 and Γ1|Γ2 to the binary operations on types and type environments in

Definition 3.11. Here, the operations σ1|σ2 and Γ1|Γ2 are defined in a manner similar to other operations
in the definition, namely ; , &, ;E .

Lemma B.16 The subusage relation ≤ satisfies the following properties:

1. (U1; U2)|(U3;U4) ≤ (U1|U3); (U2|U4),

2. (U1;E U2)|(U3;E U4) ≤ (U1|U3);E (U2|U4),

3. (!U1|!U2) ≤!(U1|U2),

4. (¨U1|¨U2) ≤ ¨(U1|U2),

5. ((ϕ)use|(ϕ)use) ≤ (ϕ)use

6. U1 ⊗ U2 ≤ U1|(U2 ⊗ (ϕ)use) for any ϕ.

Proof Similarly to the proof of Lemma B.1.

Lemma B.17 If Γ ‖ ϕ ` M :δ, then there exist Γ′ and ϕ′ such that Γ ≤ Γ′ and ϕ v ϕ′ and Γ′ ‖ ϕ′ ` M :δ
and ((Useϕ′(Γ′(x)))|(ϕ′)use) ≤ Useϕ′(Γ′(x)) for all x ∈ dom(Γ′) . 2

Proof Similar to Lemma B.11

Lemma B.18 If Γ, x : σ1 ‖ ϕ ` M : δ, then Γ, x : (σ1|(ϕ)use) ‖ ϕ ` M : δ.

Proof By Lemma B.17, there exist Γ′, σ′1 and ϕ′ such that Γ ≤ Γ′ and σ ≤ σ′ and ϕ ≤ ϕ′ and

Γ′, x : σ′1 ‖ ϕ′ ` M : δ and (Γ′|(ϕ′)use) ≤ Γ′ and (σ′1|(ϕ′)use) ≤ σ′1.

Hence, we have Γ′, x : (σ′1|(ϕ′)use) ‖ ϕ′ ` M : δ by (T-Weak). It follows that Γ, x : (σ1|(ϕ)use) ‖ ϕ `
M : δ from Γ ≤ Γ′, σ ≤ σ′, ϕ ≤ ϕ′ and (T-Weak). 2

Lemma B.19 (Substitution of Variables)
If Γ, y : σy, x : σx ‖ ϕ ` M : δ and σx|σy is well-defined, then Γ, y : (σy|σx) ‖ ϕ ` [x/y]M : δ.
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Proof By induction on the structure of M . We show a few representative cases below:

- Case M = try M1 with M2 By Lemma B.9(11), ϕ v ϕ1;E ϕ2, there exist Γ1, Γ2, σy1, σy2, σx1, σx2,
δ2, ϕ1 and ϕ2 such that Γ ≤ Γ1;E Γ2 and σx ≤ σx1;E σx2 and σy ≤ σy1;E σy2 and δ2 ≤ δ and
ϕ v ϕ1;E ϕ2 and

Γ1, y : σy1, x : σx1 ‖ ϕ1 ` M1 : δ2

Γ2, y : σy2, x : σx2 ‖ ϕ2 ` M2 : δ2

Thus, by the induction hypothesis, we have

Γ1, y : (σy1|σx1) ‖ ϕ1 ` [y/x]M1 : δ2

Γ2, y : (σy2|σx2) ‖ ϕ2 ` [y/x]M2 : δ2.

By rule (T-Try),

Γ1;E Γ2, y : (σy1|σx1);E (σy2|σx2) ‖ ϕ1;E ϕ2 ` try [|y!|/x]M1 with [y/x]M2.

By Lemma B.16(2),

(σy|σx) ≤ ((σy1;E σy2)|(σx1;E σx2)) ≤ (σy1|σx1);E (σy2|σx2).

By (T-Weak) and ϕ v ϕ1;E ϕ2 and δ2 ≤ δ, we have

Γ, y : (σy|σx) ‖ ϕ ` [y/x](try M1 with M2) : δ.

- Case M = fun(f, z,M1). By Lemma B.9(11), ϕ v 0 and there exist U,U1, σ1, δ1, δ2,Γ1, σx1, σy1

and ϕ1 such that δ1 ≤ σ1\E and (δ1
ϕ1−→ δ2, U) ≤ δ and

Γ1, y : σy1, x : σx1, f : (δ1
ϕ1−→ δ2, U1), z : σ1 ‖ ϕ1 ` M1 : δ2

and Γ ≤0 ∆fun
(U,U1\E ,3(Γ1\E)) and σy ≤ ∆fun

(U,U1\E ,3(σy1\E)) and σx ≤ ∆fun
(U,U1\E ,3(σx1\E)).

Then, by the induction hypothesis, we have

Γ1, y : (σy1|σx1), f : (δ1
ϕ1−→ δ2, U1), z : σ1 ‖ ϕ1 ` [y/x]M1 : δ2.

By rule (T-Fun),

∆fun
(U,U1\E ,(3(Γ1\E))), y : ∆fun

(U,U1\E ,(3((σy1|σx1)\E))) ‖ 0

` fun(f, z, [y/x]M1) : (δ1
ϕ1−→ δ2, U)

Then,

σx|σy ≤ (∆fun
(U1,U2\E ,3(σy1\E))|∆fun

(U1,U2\E ,3(σx1\E)))
≤ ∆fun

(U1,U2\E ,(3(σy1\E)|3(σx1\E))) by Lemma B.16(3)
≡ ∆fun

(U1,U2\E ,(3((σy1\E)|(σx1\E)))) by Definition B.2
≤ ∆fun

(U1,U2\E ,(3((σy1|σx1)\E))) by Lemma B.16(2)

Hence, by (T-Weak), (δ1
ϕ1−→ δ2, U1) ≤ δ and ϕ v 0, we have

Γ, y : (σy|σx) ‖ ϕ ` [y/x](fun(f, z, M1)) : δ. 2
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We will give the substitution lemma for function values. In order to prove the lemma, we define
U ¯ U1, U ¯ τ and U ¯ Γ as follows:

U ¯ U1 = [µα.α/a, U1/1]U U ¯ τ = [µα.α/a, τ/1]U U ¯ Γ = [µα.α/a,Γ/1]U

where, [µα.α/a]U means the usage expression obtained by replacing all occurrences of access label a in
U with µα.α.

For example, (1&(1;E ))¯ (R; C) = (R; C)&(R; C;E ) and (1&E )¯ (x : (R, R; C), y : (R, (W&0)), z :
bool) = x : (R, (R;C)&E ), y : (R, (W&0)&E ), z : bool, (1; W ;C)¯ (R; C) = R; C; (µα.α); (µα.α).

Lemma B.20

1. If U1 ≤ U2, then U1 ¯3U ≤ U2 ¯3U .

2. If U1 ≤ U2, then U ¯ U1 ≤ U ¯ U2.

Proof Similar to Lemma B.1. 2

Lemma B.21 If U ∼= U\E, then the followings hold.

1. 0 ≤ U ¯ 0

2. ∆fun
(U,U2,U1)

≤ U ¯∆fun
(1,U2,U1)

Proof We assume U ∼= U\E and define a function on usages as follows:

TimesFun(U) =





0 if 1 6∈ [[U ]]
1 if 1 ∈ [[U ]] ⊆ {ε, 1, 1 ↓}
!1 otherwise

By U ∼= U\E , [µα.α/a]U can make only τ or 1 transitions. Hence, we have TimesFun(U) ≤ [µα.α/a]U
by the definition of TimesFun(·). Moreover, [µα.α/a]U ¯U ′ = U ¯U ′ holds by the definition of U ¯U ′.
So, we have TimesFun(U)¯ U ′ ≤ U ¯ U ′ for any U,U ′.

We first prove 1 as follows

0 ≡ 30 ∼= [30/1](TimesFun(U)) ≤ [µα.α/a, 30/1]U = U ¯ (30) ≡ U ¯ 0.

Next, we prove 2.

• Case 1 6∈ [[U ]]: By Lemma B.20(1),

∆fun
(U,U2,U1)

= 0 = (0¯∆fun
(1,U2,U1)

)
= (TimesFun(U)¯∆fun

(1,U2,U1)
) ≤ (U ¯∆fun

(1,U2,U1)
)

• Case 1 ∈ [[U ]] ⊆ {ε, 1, 1 ↓} and 1 6∈ [[U2]]: By Lemma B.20(1),

∆fun
(U,U2,U1)

= U1 = (1¯ U1) = (1¯∆fun
(1,U2,U1)

)
= (TimesFun(U)¯∆fun

(1,U2,U1)
) ≤ (U ¯∆fun

(1,U2,U1)
)

• Otherwise: By Lemma B.20(1),

∆fun
(U,U2,U1)

= !U1
∼=!!U1 = (!1¯∆fun

(1,U2,U1)
)

= (TimesFun(U)¯∆fun
(1,U2,U1)

) ≤ (U ¯∆fun
(1,U2,U1)

)

Lemma B.22 (Substitution of Functions)
If Γ1, f :(δf1

ϕf−−→ δf2, U1) ‖ ϕ1 ` M :δ2 and Γ2 ‖ ϕ2 ` fun(f ′, x′,M ′):(δf1
ϕf−−→ δf2, 1) and dom(Γ1) =

dom(Γ2) and Γ1|Γ2 is well-defined, then Γ1|(U1 ¯ Γ2) ‖ ϕ1 ` [fun(f ′, x′,M ′)/f ]M : δ2
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Proof By induction on the structure of M . We show a few representative cases below:

• Case M = try M1 with M2. By Lemma B.15, there is Γ′2 such that

dom(Γ′2) = dom(Γ2) Γ2 ≤ 3Γ′2
3Γ′2 ‖ ϕ2 ` fun(f ′, x′,M ′) : (δf1

ϕf−−→ δf2, 1).

By Lemma B.9, there exist Γ11, Γ12, U11, U12, δ3, ϕ11 and ϕ12 such that Γ1 ≤ Γ11;E Γ21 and
U1 ≤ U11;E U12 and δ3 ≤ δ2 and ϕ1 v ϕ12;E ϕ12 and

dom(Γ11) = dom(Γ1) Γ11, f : (δf1
ϕf−−→ δf2, U11) ‖ ϕ11 ` M1 : δ3

dom(Γ12) = dom(Γ1) Γ12, f : (δf1
ϕf−−→ δf2, U12) ‖ ϕ12 ` M2 : δ3

By the induction hypothesis, δ3 ≤ δ2 and (T-Weak), we have

Γ11|(U11 ¯3Γ′2) ‖ ϕ11 ` [fun(f ′, x′,M ′)/f ]M1 : δ2

Γ12|(U12 ¯3Γ′2) ‖ ϕ12 ` [fun(f ′, x′,M ′)/f ]M2 : δ2.

By rule (T-Try), we have

(Γ11|(U11 ¯3Γ′2));E (Γ12|(U12 ¯3Γ′2)) ‖ ϕ1;E ϕ2

` try [fun(f ′, x′,M ′)/f ]M1 with [fun(f ′, x′,M ′)/f ]M2 : δ2.

By Lemma B.16(2) and (T-Weak), we have

(Γ11;E Γ12)|((U11 ¯3Γ′2);E (U12 ¯3Γ′2)) ‖ ϕ1;E ϕ2

` try [fun(f ′, x′,M ′)/f ]M1 with [fun(f ′, x′,M ′)/f ]M2 : δ2

In general, for any U , it holds that (U11 ¯ U);E (U12 ¯ U) = (U11;E U12)¯ U . Hence, we have

(Γ11;E Γ12)|((U11;E U12)¯3Γ′2) ‖ ϕ1;E ϕ2

` try [fun(f ′, x′,M ′)/f ]M1 with [fun(f ′, x′,M ′)/f ]M2 : δ2.

By Lemma B.20(1), (T-Weak) and Γ1 ≤ Γ11;E Γ12 and U1 ≤ U11;E U12 and ϕ1 v ϕ11;E ϕ12, we
have

Γ1|(U1 ¯3Γ′2) ‖ ϕ1 ` [fun(f ′, x′,M ′)/f ](try M1 with M2) : δ2.

By (T-Weak), Lemma B.20(2) and Γ2 ≤ 3Γ′2, we get

Γ1|(U1 ¯ Γ2) ‖ ϕ1 ` [fun(f ′, x′,M ′)/f ](try M1 with M2) : δ2.

• Case M = fun(g, x1,M1). By Lemma B.15 and (T-Fun), there is Γ′2 such that

dom(Γ′2) = dom(Γ2) Γ2 ≤ 3Γ′2
3Γ′2 ‖ 0 ` fun(f ′, x′,M ′) : (δf1

ϕf−−→ δf2, 1).

By Lemma B.9, we have ϕ1 v 0 and there exist Γ′1, U ′
1, Uo, Ug, δg1 and δg2 such that δ1 ≤ σ1\E

and (δg1
ϕg−−→ δg2, U) ≤ δ2 and

Γ1 ≤ ∆fun
(Uo,Ug\E ,3(Γ′1\E)) U1 ≤ ∆fun

(Uo,Ug\E ,3(U ′1\E)) dom(Γ) = dom(Γ′1)

Γ′1, f : (δf1
ϕf−−→ δf2, U

′
1), g : (δg1

ϕg−−→ δg2, Ug), x1 : σ1 ‖ ϕg ` M1 : δg2.
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By (T-Weak) and dom(Γ′1) = dom(Γ′2), we have

3Γ′2, g : (δg1
ϕg−−→ δg2,0), x1 : 0.σ1 ‖ 0 ` fun(f ′, x′,M ′) : (δf1

ϕf−−→ δf2, 1).

So, by the induction hypothesis, we have

(Γ′1|(U ′
1 ¯3Γ′2)), g : (δg1

ϕg−−→ δg2, (Ug|(U ′
1 ¯ 0))), x1 : (Use(σ1)|(U ′

1 ¯ 0)).σ1 ‖ ϕg

` [fun(f ′, x′, M ′)/f ]M1 : δg2.

Here, for any U,U ′, it follows that

U\E ∼= (U\E )⊗ 0 ≤ ((U\E )|0) ≤ ((U\E )|((U ′\E )¯ 0)) = ((U\E )|((U ′ ¯ 0)\E ))
≤ (U |(U ′ ¯ 0))\E (8)

from Lemma B.21(1) and Lemma B.16(2,6). So, we have δ1 ≤ σ1\E ≤ ((Use(σ1)|(U ′
1 ¯ 0)).σ1)\E .

Therefore, from (T-Fun), it follows that

∆fun
(Uo,((Ug|(U ′1¯0))\E),3((Γ′1|(U ′1¯3Γ′2))\E)) ‖ 0 ` fun(g, x1, [fun(f ′, x′,M ′)/f ]M1) : (δg1

ϕg−−→ δg2, Uo).

By (δg1
ϕg−−→ δg2, U) ≤ δ2 and fun(g, x1, [fun(f ′, x′,M ′)/f ]M1) = [fun(f ′, x′,M ′)/f ]fun(g, x1,M1),

∆fun
(Uo,((Ug|(U ′1¯0))\E),3((Γ′1|(U ′1¯3Γ′2))\E)) ‖ 0 ` [fun(f ′, x′,M ′)/f ]fun(g, x1, M1) : δ2.

holds.

Therefore, we have

Γ1|(U1 ¯ Γ2) ≤ Γ1|(U1 ¯3Γ′2) (by (T-Weak))
≤ Γ1|∆fun

(Uo,Ug\E ,3(U ′1\E)) ¯3Γ′2) (by Lemma B.20(1))
= Γ1|∆fun

(Uo,Ug\E ,3((U ′1¯3Γ′2)\E)) (by Definition of ¯)
≤ ∆fun

(Uo,Ug\E ,3(Γ′1\E))|∆fun
(Uo,Ug\E ,3((U ′1¯3Γ′2)\E)) (by (T-Weak))

≤ ∆fun
(Uo,Ug\E ,3(Γ′1\E)|(3((U ′1¯3Γ′2)\E))) (by Lemma B.16(3))

≤ ∆fun
(Uo,Ug\E ,3((Γ′1\E)|((U ′1¯3Γ′2)\E))) (by Definition B.2)

≤ ∆fun
(Uo,Ug\E ,3((Γ′1|(U ′1¯3Γ′2))\E)) (by Lemma B.16(2))

≤ ∆fun
(Uo,(Ug|(U ′¯0))\E ,3((Γ′1|(U ′1¯3Γ′2))\E)) (by the equation (8)).

So, we get
Γ1|(U1 ¯ Γ2) ‖ ϕ1 ` [fun(f ′, x′, M ′)/f ]fun(g, x1,M1) : δ2.

• Case M = M1M2. By Lemma B.15, there is Γ′2 such that

dom(Γ2) = dom(Γ′2) Γ2 ≤ 3Γ′2
3Γ′2 ‖ ϕ2 ` fun(f ′, x′,M ′) : (σf , 1).

By Lemma B.9, there exist Γ11,Γ21,U11, U12, ϕ11, ϕ12, ϕ3, δ1 and δ3

such that Γ1 ≤ (Γ11; Γ12); (ϕ3)use and U1 ≤ (U11;U12); (ϕ3)use and ϕ ≤ (ϕ11; ϕ12); ϕ3 and δ3 ≤ δ2

and
dom(Γ11) = dom(Γ1) Γ11, f : (σf , U11) ‖ ϕ11 ` M1 : (δ1

ϕ3−→ δ3, 1)
dom(Γ12) = dom(Γ1) Γ12, f : (σf , U12) ‖ ϕ12 ` M2 : δ1.
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By the induction hypothesis, we have

Γ11|(U11 ¯3Γ′2) ‖ ϕ11 ` [fun(f ′, x′,M ′)/f ]M1 : (δ1
ϕ3−→ δ3, 1)

Γ12|(U12 ¯3Γ′2) ‖ ϕ12 ` [fun(f ′, x′,M ′)/f ]M2 : δ1.

By rule (T-App), we have

(Γ11|(U11 ¯3Γ′2)); (Γ12|(U11 ¯3Γ′2)); (ϕ3)use ‖ ϕ11; ϕ12; ϕ3

` ([fun(f ′, x′,M ′)/f ]M1)([fun(f ′, x′,M ′)/f ]M2) : δ3.

By Lemma B.16(1) and (T-Weak), we have

((Γ11; Γ12)|((U11 ¯3Γ′2); (U12 ¯3Γ′2))); (ϕ3)use ‖ ϕ11; ϕ12;ϕ3

` ([fun(f ′, x′,M ′)/f ]M1)([fun(f ′, x′,M ′)/f ]M2) : δ3.

By (T-Weak) and Lemma B.16(1),(5), we have

(((Γ11; Γ12); (ϕ3)use)|((U11 ¯3Γ′2); (U12 ¯3Γ′2)); (ϕ3)use) ‖ ϕ11; ϕ12; ϕ3

` ([fun(f ′, x′,M ′)/f ]M1)([fun(f ′, x′,M ′)/f ]M2) : δ3.

In general, for any U and ϕ, it holds that (U11¯U); (U12¯U); (ϕ)use = ((U11; U12)¯U); (ϕ)use =
(U11; U12; (ϕ)use)¯ U . Therefore, we have

(((Γ11; Γ12); (ϕ3)use)|(((U11;U12); (ϕ3)use)¯3Γ′2)) ‖ ϕ11; ϕ12; ϕ3

` ([fun(f ′, x′,M ′)/f ]M1)([fun(f ′, x′, M ′)/f ]M2) : δ3

Finally, by Lemma B.20(1), (T-Weak) and Γ1 ≤ (Γ11; Γ12); (ϕ3)use and U1 ≤ (U11; U12); (ϕ3)use

and ϕ1 v (ϕ11;ϕ12); ϕ3, we have

Γ1|(U1 ¯3Γ′2) ‖ ϕ1 ` [fun(f ′, x′,M ′)/f ](M1M2) : δ2.

By (T-Weak), Lemma B.20(2) and Γ2 ≤ 3Γ′2, we get

Γ1|(U1 ¯ Γ2) ‖ ϕ1 ` [fun(f ′, x′,M ′)/f ](M1M2) : δ2.

2

Lemma B.23 If Γ ‖ ϕ ` fun(f, x, M) : (δ1
ϕf−−→ δ2, U) then there exists Γ′ such that 3Γ′ ‖ ϕ `

fun(f, x, M) : (δ1
ϕf−−→ δ2, 1) and Γ ≤ U ¯3Γ′.

Proof By Lemma B.9(7), there exist U1, σ1, Γ1 and ϕ1 such that

δ1 ≤ σ1\E (9)

Γ ≤0 ∆fun
(U,U1\E ,3(Γ1\E)) (10)

Γ1, f : (δ1
ϕf−−→ δ2, U1), x : σ1 ‖ ϕ ` M : δ2 (11)

By (T-fun), (9) and (11), we have

∆fun
(1,U1\E ,3(Γ1\E)) ‖ 0 ` fun(f, x, M) : (δ1

ϕf−−→ δ2, 1)

Here, from Lemma B.1(7) and Lemma B.21(2), it follows that

Γ ≤0 ∆fun
(U,U1\E ,3(Γ1\E)) ≤ U ¯∆fun

(1,U1\E ,3(Γ1\E))
∼= U ¯ (3(∆fun

(1,U1\E ,(Γ1\E)))).

So, Γ′ = ∆fun
(1,U1\E ,(Γ1\E)) finishes this case. 2

Now, we are ready to to prove the following substitution lemma.

Lemma B.24 (Substitution Lemma)
If Γ1, x :σ1 ‖ ϕ1 ` M :δ2 and Γ2 ‖ ϕ2 ` v :σ1\E and dom(Γ1) = dom(Γ2) and Γ1⊗Γ2 is well-defined,

then Γ1 ⊗ Γ2 ‖ ϕ1 ` [v/x]M : δ2.
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Proof We prove this lemma by case analysis on value v.

• Case: v is either true or false. The conclusion follows by straightforward induction on the
derivation of Γ1, x : σ1 ‖ ϕ1 ` M : δ2.

• Case: v is a variable y.

We assume y ∈ dom(Γ1) without loss of generality. We therefore assume Γ1 = Γ11, y : σy.

Γ11, y : σy, x : σ1 ‖ ϕ1 ` M : δ2 (12)
Γ2 ‖ ϕ2 ` y : σ1\E . (13)

By applying Lemmas B.12 and B.18 to the type judgment (12) above, we have

(Γ11|(ϕ1)use), y : σy, x : (σ1\E )⊗ (ϕ1)use ‖ ϕ1 ` M : δ2 (14)

By Lemma B.19, we have

(Γ11|(ϕ1)use), y : (σy|((σ1\E )⊗ (ϕ1)use)) ‖ ϕ1 ` [y/x]M : δ2. (15)

By applying Lemma B.9 to the type judgment (13) above,

Γ2 ≤ϕ2 y : 3(σ1\E )

Then, by Lemma B.13,

Γ2; (ϕ1)use ≤(0;ϕ1) y : 3(σ1\E ); (ϕ1)use ≤ y : 3(σ1\E )⊗ (ϕ1)use ≤ y : (σ1\E )⊗ (ϕ1)use

Thus, we have
Γ2; (ϕ′1)

use ≤(0;ϕ′1) y : (σ1\E )⊗ (ϕ1)use. (16)

Now consider the type environment Γ1|(Γ2; (ϕ1)use), where Γ1 = Γ11, y : σy. By (16),




(Γ1|(Γ2; (ϕ1)use))(y) = σy|(Γ2; (ϕ1)use)(y)
≤ σy|((σ1\E )⊗ (ϕ1)use)

(Γ1|(Γ2; (ϕ1)use))(z) = Γ11(z)|(Γ2; (ϕ1)use)(z)
≤ Γ11(z)|(0; ϕ1)use

≤ Γ11(z)|(ϕ1)use

= (Γ11|(ϕ1)use)(z) if z 6= y

Therefore, by (T-Weak), we have

Γ1|(Γ2; (ϕ1)use) ‖ ϕ1 ` [y/x]M : δ2.

By Lemma B.16(6) and Γ1|(Γ2 ⊗ (ϕ1)use) ≤ Γ1|(Γ2; (ϕ1)use) we have

Γ1 ⊗ Γ2 ‖ ϕ1 ` [y/x]M : δ2.

• Case v is a function fun(f, z, M1).

By Lemma B.23, there exists Γ′2 such that

3Γ′2 ‖ ϕ2 ` v : 1.(σ1\E )
Γ2 ≤ (U1\E )¯3Γ′2 U1 = Use(σ1) (17)
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By Lemma B.22, we have
Γ1|(U1 ¯3Γ′2) ‖ ϕ1 ` [v/x]M : δ2.

By Lemma B.12, we also have

Γ1|(((U1 ¯3Γ′2)\E )⊗ (ϕ1)use) ‖ ϕ1 ` [v/x]M : δ2.

Here, in general, for any U,U ′, ϕ, it holds that ((U\E )¯ U ′)\E = (U\E ) ¯ U ′ and (U ¯ U ′) ⊗
(ϕ)use = (U ⊗ ϕ)¯ U ′. Therefore, we get

Γ1|((((U1\E )⊗ (ϕ1)use))¯3Γ′2) ‖ ϕ1 ` [v/x]M : δ2.

It remains to show Γ1 ⊗ Γ2 ≤ Γ1|((((U1\E )⊗ (ϕ1)use))¯3Γ′2), which follows from:

Γ1 ⊗ Γ2 ≤ Γ1|(Γ2 ⊗ (ϕ1)use) (by Lemma B.16(6))
≤ Γ1|(((U1\E )¯3Γ′2)⊗ (ϕ1)use) (by (17))
≤ Γ1|(((U1\E )⊗ (ϕ1)use)¯3Γ′2) (by the definition of ¯)

B.5 Proof of Lemma 4.4

Lemma B.25 If Γ ‖ ϕ ` E [newΦ()] : δ and z does not occur in E or Γ, then Γ, z : (R, U) ‖ ϕ ` E [z] : δ
for some U such that [[U ]] ⊆ Φ.

Proof By structural induction on E . We show a few representative cases below.

• Case E = [ ].
E [newΦ()] = newΦ()

By Lemma B.9(3), Γ ≤0 ∅ and ϕ v 0 and there exists U such that [[U ]] ⊆ Φ and (R, U) ≤ δ.
From (T-Var), we have

z : (R,3U) ‖ 0 ` z : (R, U)
From (T-Weak), Γ ≤0 ∅ and ϕ v 0, we have Γ, z : (R, 3U) ‖ ϕ ` z : δ.
[[3U ]] = [[U ]] ⊆ Φ finishes the case.

• Case E = (let x = E1 in M1).

E [newΦ()] = (let x = E1[newΦ()] in M1)

By Lemma B.9(6), there exist Γ1,Γ2, ϕ1, ϕ2, δ1, σx such that Γ ≤ϕ1;ϕ2 Γ1; Γ2 and ϕ v ϕ1; ϕ2 and
δ1 ≤ σx\E and

Γ1 ‖ ϕ1 ` E1[newΦ()] : δ1

Γ2, x : σx ‖ ϕ2 ` M1 : δ

By the induction hypothesis, there exists U such that

[[U ]] ⊆ Φ
Γ1, z : (R, U) ‖ ϕ1 ` E1[z] : δ1

Hence, from (T-Let), we have

Γ1; Γ2, z : (R, U ; (ϕ2)use) ‖ ϕ1;ϕ2 ` let x = E1[z] in M1 : δ

Moreover, from (T-Weak), we get

Γ, z : (R, U ; (ϕ2)use) ‖ ϕ ` let x = E [z] in M1 : δ

Here, for any usage U and effect ϕ, we have [[U ; (ϕ)use]] ⊆ [[U ]] since [[U ; µα.α]] ⊆ [[U ]] = [[U ; 0]] =
[[U ;E ]] = [[U ; (E&0)]]. Therefore, [[U ; (ϕ2)use]] ⊆ [[U ]] ⊆ Φ holds as required.

Lemma B.26 If Γ, x : (R, U) ‖ ϕ ` E [acca(x)] : δ, then Γ, x : (R, U ′) ‖ ϕ ` E [b] : δ for some U ′ such
that U ≤ a; U ′.
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Proof By structural induction on E . We show a few representative cases below.

• Case E = [ ].
E [acca(x)] = acca(x)

By Lemma B.9(4), there exist Γ1, Ux and ϕ1 such that Γ1, x : (R, Ux) ‖ ϕ1 ` x : (R, a) and
Γ ≤ϕ1 Γ1 and U ≤ Ux and ϕ v ϕ1.

By Lemma B.9(2), Γ1, x : (R, Ux) ≤0 (R, 3a) and ϕ1 v 0. Hence we have Γ ≤ϕ1 Γ1 ≤0 ∅ and
Ux ≤ 3a and ϕ v ϕ1 v 0.

On the other hand, by (T-Bool)
∅ ‖ 0 ` b : bool

Hence, by (T-Weak), Γ1 ≤0 ∅, ϕ1 v 0 and δ = bool,

Γ1, x : (R,0) ‖ ϕ1 ` b : δ.

Therefore, by (T-Weak), Γ ≤ϕ1 Γ1 and ϕ v ϕ1, we have

Γ, x : (R,0) ‖ ϕ ` b : δ.

Let U ′ = 0. Then U ≤ Ux ≤ 3a ≤ a ≡ a;0 = a;U ′ finishes the case.

• Case E = vE1.
E [acca(x)] = vE1[acca(x)]

By Lemma B.9(8), there exist Γ1, Γ2, U1, U2, ϕ1, ϕ2, ϕ3 and δ1 such that Γ ≤ϕ1;ϕ2;ϕ3 Γ1; Γ2; (ϕ3)use

and U ≤ U1; U2; (ϕ3)use and ϕ v ϕ1; ϕ2; ϕ3 and

Γ1, x : (R, U1) ‖ ϕ1 ` v : (δ1
ϕ3−→ δ, 1)

Γ2, x : (R, U2) ‖ ϕ2 ` E1[acca(x)] : δ1.

By Lemma B.15, (T-Weak), we have U ′
1 such that

U1 ≤ 3U ′
1

Γ1, x : (R, 3U ′
1) ‖ ϕ1 ` v : (δ1

ϕ3−→ δ, 1).

By the induction hypothesis, we have U ′
2 such that

U2 ≤ a;U ′
2

Γ2, x : (R, U ′
2) ‖ ϕ2 ` E [b] : δ1.

Hence, by using (T-App) and (T-Weak), we get

Γ, x : (R, 3U ′
1; U

′
2; (ϕ3)use) ‖ ϕ ` vE [b] : δ

Here, by Lemma B.1(3,4) we have

U ≤ U1; U2; (ϕ3)use ≤ (3U ′
1); (a; U ′

2); (ϕ3)use ≡ (3U ′
1)⊗ (a; U ′

2; (ϕ3)use)
≤ ((3U ′

1)⊗ a); (U ′
2; (ϕ3)use) ≡ (a⊗ (3U ′

1)); (U
′
2; (ϕ3)use)

≡ a; (3U ′
1); U

′
2; (ϕ3)use.

So, U ′ = 3U ′
1; U

′
2; (ϕ3)use satisfies the required condition. This finishes the case.
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Proof of Lemma 4.4. By a case analysis on the reduction rule used. We show a few representative
cases below.

- Case (R-New).

M = E [newΦ()]
H ′ = H ] {z 7→ Φ} , z is a fresh variable M ′ = E [z]

By ϕ ` (H, E [newΦ()]) : δ, there exist x1, . . . , xn and U1, . . . , Un such that

dom(H) = {x1, . . . , xn}
x1 : (R, U1), . . . , xn : (R, Un) ‖ ϕ ` E [newΦ()] : δ

[[U1]] ⊆ H(x1), . . . , [[Un]] ⊆ H(xn).

By Lemma B.25, there exists Uz such that

x1 : (R, U1), . . . , xn : (R, Un), z : (R, Uz) ‖ ϕ ` E [z] : δ
[[Uz]] ⊆ Φ

Hence, we have
dom(H ′) = {x1, . . . , xn, z}

x1 : (R, U1), . . . , xn : (R, Un), z : (R, Uz) ‖ ϕ ` E [z] : δ
[[U1]] ⊆ H ′(x1), . . . , [[Un]] ⊆ H ′(xn) [[Uz]] ⊆ Φ = H ′(z).

Therefore ϕ ` (H ] {z 7→ Φ}, E [z]) : δ holds.

- Case (R-Acc).
H = H1 ] {x 7→ Φ} M = E [acca(x)]
H ′ = H1 ] {x 7→ Φ−a} M ′ = E [b]

By ϕ ` (H1 ] {x 7→ Φ}, E [acca(x)]) : δ, there exist x1, . . . , xn and U1, . . . , Un, Ux such that

dom(H) = {x1, . . . , xn, x}
x1 : (R, U1), . . . , xn : (R, Un), x : (R, Ux) ‖ ϕ ` E [acca(x)] : δ

[[U1]] ⊆ H(x1), . . . , [[Un]] ⊆ H(xn), [[Ux]] ⊆ H(x) = Φ

By Lemma B.26, there exist U ′
x and b such that

x1 : (R, U1), . . . , xn : (R, Un), x : (R, U ′
x) ‖ ϕ ` E [b] : δ

Ux ≤ a;U ′
x

From Lemma B.1(21), we have [[U ′
x]] ⊆ [[Ux]]−a. Hence, we have

dom(H) = {x1, . . . , xn, x}
x1 : (R, U1), . . . , xn : (R, Un), x : (R, U ′

x) ‖ ϕ ` E [b] : δ
[[U1]] ⊆ H ′(x1), . . . , [[Un]] ⊆ H ′(xn),

[[U ′
x]] ⊆ [[Ux]]−a = Φ−a = (H1 ] {x 7→ Φ−a})(x) = H ′(x)

Therefore ϕ ` (H1 ] {x 7→ Φ−a}, E [b]) : δ holds.

- Case (R-Try-Rai).
M = E [try Etry[raise] with M1]
H ′ = H M ′ = E [M1]

So, it suffices to show
Γ ‖ ϕ ` E [try Etry[raise] with M1] : δ
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implies
Γ ‖ ϕ ` E [M1] : δ

by induction on the structure of E . Since the induction step is straightforward, we show only the
base case, where E = [ ].

The following is assumed:
Γ ‖ ϕ ` try Etry[raise] with M1 : δ.

By Lemma B.9(11), there exist Γ1, Γ2,ϕ1, ϕ2 and δ′ such that Γ ≤ Γ1;E Γ2 and ϕ v ϕ1;E ϕ2 and
δ′ ≤ δ and

Γ1 ‖ ϕ1 ` Etry[raise] : δ′

Γ2 ‖ ϕ2 ` M1 : δ′

It follows that ∀x ∈ dom(Γ1).(UseE (Γ1(x)) ≤ E ) and ϕ1 v E from Lemma B.10(2).

Hence, we have Γ ≤ Γ1;E Γ2 ≤ Γ2, and ϕ v (ϕ1;E ϕ2) v ϕ2 by Lemma B.1(10) and Definition 3.7.

So, by (T-Weak), we get Γ ‖ ϕ ` M1 : δ.

- Case (R-App).
M = E [fun(f, x, M1)v]
H ′ = H M ′ = E [[fun(f, x, M1)/f, v/x]M1]

So, it suffices to show
Γ ‖ ϕ ` E [fun(f, x, M1)v] : δ

implies
Γ ‖ ϕ ` E [[fun(f, x, M1)/f, v/x]M1] : δ

by induction on the structure of E . Since the induction step is straightforward, we show only the
base case, where E = [ ].

The following is assumed in the case E = [ ]:

Γ ‖ ϕ ` fun(f, x, M1)v : δ.

By Lemma B.9(8), there exist Γ1, Γ2, ϕ1, ϕ2, ϕ3, δ1 and δ2 such that

Γ ≤ Γ1; Γ2; (ϕ3)use (18)
ϕ v ϕ1;ϕ2;ϕ3 (19)

Γ1 ‖ ϕ1 ` fun(f, x,M1) : (δ1
ϕ3−→ δ2, 1) (20)

Γ2 ‖ ϕ2 ` v : δ1 (21)
δ2 ≤ δ. (22)

By Lemma B.15 and (20), there exists Γ′1 such that Γ1 ≤ 3Γ′1 and

3Γ′1 ‖ ϕ1 ` fun(f, x, M1) : (δ1
ϕ3−→ δ2, 1) (23)

By (23) and Lemma B.9(7), there exist Uf1, Uf2, σf1,δf1, δf2 and ΓM1 , ϕM1 such that

ϕ1 v 0 (24)

ΓM1 , f : (δf1

ϕM1−−−→ δf2, Uf2), x : σf1 ‖ ϕM1 ` M1 : δf2 (25)
δf1 ≤ (σf1\E ) (26)

(δf1

ϕM1−−−→ δf2, Uf1) ≤ (δ1
ϕ3−→ δ2, 1) (27)

3Γ′1 ≤0 ∆fun
(Uf1,(Uf2\E),3(ΓM1\E)) (28)
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By (27), we have δ1 = δf1 ≤ σf1\E , δf2 = δ2, ϕ3 v ϕM1 and Uf1 ≤ 1.
By (25),(26) and (T-Fun),

∆fun
((Uf2\E),(Uf2\E),3(ΓM1\E)) ‖ 0 ` fun(f, x, M1) : (δf1

ϕM1−−−→ δf2, Uf2\E )

By (T-Weak),

∆fun
((Uf2\E),(Uf2\E),3(ΓM1\E)), x : 0.σf1 ‖ 0 ` fun(f, x,M1) : (δf1

ϕM1−−−→ δf2, Uf2\E ) (29)

From Lemma B.12 and (25), it follows that

(ΓM1\E )⊗ (ϕM1)
use, f : (δf1

ϕM1−−−→ δf2, Uf2), x : σf1 ‖ ϕM1 ` M1 : δf2 (30)

By Lemma B.24, (29) and (30),

∆fun
((Uf2\E),(Uf2\E),3(ΓM1\E)) ⊗ ((ΓM1\E )⊗ (ϕM1)

use), x : σf1 ⊗ 0 ‖ ϕM1

` [fun(f, x, M1)/f ]M1 : δf2
(31)

Here, we have

(3Γ′1; (ϕM1)
use), x : σf1 ≤ϕM1

(∆fun
((Uf2\E),(Uf2\E),3(ΓM1\E)) ⊗ ((ΓM1\E )⊗ (ϕM1)

use)), x : σf1

by

(3Γ′1; (ϕM1)
use), x : σf1

≤ϕM1
(∆fun

(Uf1,(Uf2\E),3(ΓM1\E)); (ϕM1)
use)

�
by

Lemma B.13
and (28)

�
≤ (∆fun

((Uf2\E),(Uf2\E),3(ΓM1\E)) ⊗ (3(ΓM1\E ))); (ϕM1)
use

�
by

Lemma B.14
and Uf1 ≤ 1

�
≤ ∆fun

((Uf2\E),(Uf2\E),3(ΓM1\E)) ⊗ (3(ΓM1\E ); (ϕM1)
use) (by Lemma B.1(4))

≤ ∆fun
((Uf2\E),(Uf2\E),3(ΓM1\E)) ⊗ (3(ΓM1\E )⊗ (ϕM1)

use) (by the definition of ≡)

Therefore, by (T-Weak), we get

(3Γ′1); (ϕM1)
use, x : σf1 ‖ ϕM1 ` [fun(f, x, M1)/f ]M1 : δf2. (32)

So, from dom(3Γ′1) = dom(Γ1) = dom(Γ2), Lemma B.24, (21), (32) and δ1 ≤ σf1\E , it follows
that

((3Γ′1); (ϕM1)
use)⊗ Γ2 ‖ ϕM1 ` [fun(f, x, M1)/f, v/x]M1 : δf2.

By Lemma B.1(4) and (T-Weak),

((3Γ′1)⊗ Γ2); (ϕM1)
use ‖ ϕM1 ` [fun(f, x, M1)/f, v/x]M1 : δf2. (33)

By Lemma B.10 and (21), we have ϕ2 v 0. From ϕ1 v 0 and ϕ3 v ϕM1 , it follows that
ϕ1; ϕ2; ϕ3 v ϕM1 .
By (T-Weak), (22) and (33), we have

((3Γ′1)⊗ Γ2); (ϕ3)use ‖ ϕ1; ϕ2; ϕ3 ` [fun(f, x,M1)/f, v/x]M1 : δ

By (3Γ′1)⊗ Γ2 ≡ (3Γ′1); Γ2, Γ1 ≤ 3Γ′1, Γ ≤ Γ1; Γ2; (ϕ3)use and ϕ v ϕ1; ϕ2; ϕ3, we get

Γ ‖ ϕ ` [fun(f, x, M1)/f, v/x]M1 : δ.

as required.
2
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