
Foundations of Computer Software: Exercise 3

January 20, 2012

Note: Before doing the following exercise, load the definitions and theorems
proved in the previous exercise.

Exercise 3-1

Define the predicate even n (which means that n is an even number) as
follows.

Inductive even: mynat -> Prop :=

even_b: (even Z)

| even_i: forall n:mynat, (even n) -> (even (S (S n))).

Run the command: Check even_ind. What does the output mean?

Exercise 3-2

Prove the following theorem.

Theorem even_plus_even_is_even:

forall m n: mynat, (even m) -> (even n) -> (even (plus m n)).

Exercise 3-3

Define the predicate oddn, which means that n is an odd number.

Exercise 3-4

Prove the following theorems.

Theorem even_oddS:

forall n:mynat, (even n) -> (odd (S n)).

Theorem odd_evenS:

1



forall n:mynat, (odd n) -> (even (S n)).

Theorem odd_plus_odd_is_even:

forall m n: mynat, (odd m) -> (odd n) -> (even (plus m n)).

Theorem odd_plus_even_is_odd:

forall m n: mynat, (odd m) -> (even n) -> (odd (plus m n)).

Exercise 3-5

The following is another definition of even numbers.

Definition even2 :=

fun n:mynat => exists m:mynat, n=(mult Two m).

Prove the following theorems.

Theorem even_implies_even2:

forall n:mynat, (even n) -> (even2 n).

Theorem even2_implies_even:

forall n:mynat, (even2 n) -> (even n).

Exercise 3-6

The following is a yet another definition of even and odd numbers, given
by simultaneous induction.

Inductive even3 : mynat->Prop :=

even3_b: (even3 Z)

| even3_i: forall n:mynat, (odd3 n) -> (even3 (S n))

with odd3: mynat->Prop :=

odd3_i: forall n:mynat, (even3 n) -> (odd3 (S n)).

Prove that even and even3 are equivalent, i.e. that the following theormes
hold.

Theorem even_implies_even3:

forall n:mynat, (even n) -> (even3 n).

Theorem even3_implies_even:

forall n:mynat, (even3 n) -> (even n).

2


