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Abstract We propose a new type system for information flow analysis for the
m-calculus. As demonstrated by recent studies, information about whether each
communication succeeds is important for precise information flow analysis for
concurrent programs. By collecting such information using ideas of our previ-
ous type systems for deadlock/livelock-freedom, our type system can perform
more precise analysis for certain communication/synchronization patterns (like
synchronization using locks) than previous type systems. Our type system treats
awide range of communication/synchronization primitives in a uniform manner,
which enabled development of a clear proof of type soundness and a sound and
complete type inference algorithm.

Keywords type system —information flow analysis — pi-calculus — secrecy

1 Introduction

Information flow analysisisa static program analysisto check that aprogram does
not leak information about secret data. Since Denning and Denning’swork [5], in-
formation flow analysis has been studied for various programming languages, in-
cluding imperative languages [5, 33], functional languages [7, 28], low-level lan-
guages [19, 35], and concurrent languages [10, 11, 27, 29, 31, 36].

Previous information flow analyses (especially, automated ones) for concur-
rent languages have not been quite satisfactory. Some of them [31] have shared
memory primitives as only the communication/synchronization primitives. Al-
though synchronization primitives can be expressed in terms of shared memory
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primitives by using, for example, Peterson’s algorithm, the resulting type-based
information flow analysis for such encoding is not precise enough. Honda and
Yoshida[10, 11], Pottier [27], Hennessy and Riely [8, 9], and Zdancewic and My-
ers [36] studied information flow analysis for the w-calculus and similar calculi,
so that various communication/synchronization primitives can be dealt with in a
uniform manner. Pottier's type system [27] and Hennessy and Riely [8,9] are,
however, not expressive enough: Let us consider a process x( ). P, which waits
to receive a null tuple on channel = and then behaves like P. In Pottier's type
system, if z is a secret (high-level) channel (a channel such that the communi-
cation behavior on it is kept secret; the precise meaning becomes clearer later in
the paper), then P can communicate viaonly secret channels (since if P performs
communication on non-secret channels, it may reveal information that someone
has sent a message on the secret channel x). So, once a process performs commu-
nication or synchronization on a secret channel, it can no longer perform commu-
nication on non-secret channels, which is too restrictive. Honda and Yoshida[11]
and Zdancewic and Myers [36] overcome this problem by alowing P to commu-
nicate vianon-secret channelsif the input on = always succeeds. For that purpose,
they introduced special kinds of communication channels, and constructed type
systems guaranteeing that communications on such channels always succeed, so
that z( ). P isallowed aslong as x issuch achannel, evenif = is secret and P com-
muni cates through non-secret channels. A problem of those type systems[11, 36]
is, however, that they can deal with only specific kinds of channels (such as lin-
ear channels). For example, they cannot properly deal with processes using locks.
Another problem of Honda and Yoshida's type system [11] is that there seemsto
be no reasonable type inference algorithm (which works as an a gorithm for infor-
mation flow analysis) for their type system: Since they introduce a separate typing
rulefor each kind of channel, aprogrammer at |east needs to explicitly declare the
kind of each channel to enable type inference.

In this paper, we propose a type system for information flow analysis for the
m-calculus, which relaxes the above-mentioned limitations of information flow
analyses for concurrent languages. As indicated above, to enable precise anal-
ysis of information flow for concurrent languages, it is important to analyze
whether each communication/synchronization succeeds or not. While the previ-
ouswork [11, 36] introduces specific kinds of channelsto enable that analysis, our
type system can treat general usage patterns of communication channels, using the
ideas of our previous type system for lock-freedom [14]. One of the key ideasis
to extend channel types with channel usages, which express how each channdl is
used for input/output and whether each input/output is guaranteed to succeed. Our
type system can deal with various communication/synchronization patternsin a
uniform manner, such as the cobegin/coend-style synchronization, locks (binary
semaphores), and communications through linear channels [17]. Such uniform
treatment of communication patterns also leads to a clear proof of the soundness
of the type system. More detailed technical comparisons with previous work is
found in Section 7.

The second main contribution of the present paper is the development of a
sound and complete type inference algorithm (which works as an automatic al-
gorithm for information flow analysis) for our type system for information flow
analysis. As mentioned above, the type system in the present paper borrows ideas
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from our previous type system for lock-freedom [14]. There was, however, no
type inference algorithm for the latter type system. Following our previous work
on type inference for a type system for deadlock-freedom [18] (which guaran-
tees aweaker property that certain communications eventually succeed unless the
whole process diverges), we extend channel usages of the previous type system
[14] with recursion and choice operators. The previous type inference algorithm
for deadlock-freedom [14] was sound but incomplete. Since the type system in
the present paper and its (sound and complete) type inference algorithm can also
be easily modified to obtain type systems and inference a gorithms for deadlock-
freedom and lock-freedom, the present work can also be considered a refinement
of the previous work on deadlock-freedom and lock-freedom [14, 18]. Indeed, we
have already implemented a tool that can automatically anayze lock-freedom,
deadlock-freedom, and information flow for m-calculus processes, based on the
algorithm described in this paper [16].

The rest of this article is structured as follows. Section 2 introduces the tar-
get language of our type-based information flow analysis. Section 3 presents our
type system for information flow analysis, and Section 4 proves its soundness.
Section 5 describes a type inference agorithm. In this article, we make severa
restrictions that are not present in the previous type systems for information flow
analysis, so that our type system does not completely subsume the previous type
systems (Honda and Yoshida's type system [11], in particular). Some of the re-
strictions are imposed just to clarify the essence (e.g., absence of subtyping on
values) while others seem essentia for the soundness of our type system. We dis-
cuss them in Section 6. Section 7 discusses related work, and Section 8 concludes.

2 Target Language

This section introduces the target language of our type-based information flow
analysis. The language is a subset of the polyadic w-calculus [23], extended with
booleans values and conditionals.t

2.1 Syntax

We first introduce secrecy levels, which denote the degree of secrecy of infor-
mation about data and processes. For the sake of simplicity, we only consider two
secrecy levels: H, which describes secret information (i.e., information that should
be kept to privileged principals), and L, which describes non-secret information
(i.e., information that can be revealed to any principal). As usua, if we need to
deal with more than two secrecy levels, we can classify secrecy levelsinto H and
L in many ways, and run the information flow analysis on the two levels for each
classification.

Definition 1 (secrecy levels) The set of secrecy levelsis {H, L}. The binary re-
lation C on secrecy levelsisthe total order defined by L C H.

I It isin principle possible to encode booleans and conditionals into the 7-calculus, but a
more complex type machinery (such asthose studied in [13]) is necessary to perform a sufficient
analysis for the encoding.
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We use ameta-variable ! for a secrecy level.

Definition 2 (processes) The set of processes, ranged over by P, is defined by:

=0 |™v,...,vn). Plax(yi, - yn). P
| (P )|*P|(wc €) P |if v then P else Q
v u= true! | false | « | z

Here, x and y; range over a countably infinite set Var of variables. £ ranges over
the set of core channel types (which isdefined later in Section 3).

Notation 1 Theprefix z(y, ..., y,) bindsvariablesyy, . .., y, and (vx : £) binds
2. As usual, we identify processes up to a-conversions (renaming of bound vari-
ables), and assume that a-conversions are implicitly applied so that bound vari-
ables are aways different from each other and from free variables. We write
[x1 — v1,...,2, — v,] P for the process obtained by replacing all the free occur-
rencesof xy,...,x, in Pwithvy, ..., v,. Wewrite Z for a sequence of variables
Z1,..., Ty, We abbreviate [z — vy,..., 2, — v,] @0d (vz1:&) -+ (VEn &)
to [ — o] and (vZ: £) respectively. We often omit 0 and write Z(v) and x(y) for
Z(v). 0 and z(y). O respectively.

We assumethat prefixes (z(v), z(y), (vz) , and x) bind tighter than the parallel

composition operator |, so that Z(y). P | Q means (Ky). P) | Q, not y). (P | Q).

Process 0 does nothing. Process z(@). P sends a tuple (v) on = and then (af-
ter the tuple is received by some process) behaves like P. Each v; is a boolean
(trué’ or false'), the unit value (x) (the element of a singleton set), or a variable.
A communication channel is represented by afree variable or avariable bound by
(va:§).

Process x(y). P waits to receive a tuple (v) on x and then behaves like
[y — v]P. P|Q represents concurrent execution of P and Q. P represents in-
finitely many copies of the process P running in parallel, and (vz: &) P denotes
a process that creates a fresh communication channel = and then behaves like P.
The core channel type ¢ is attached just for technical convenience (in proving
soundness of the type system); It does not affect the operational semantics. We
often omit £ when it is not important if v then P else Q behaveslike P if v is
true’ and behaveslike Q if v isfalse’; otherwiseit is blocked forever.

The secrecy level | attached to a boolean value (truée! or false') expresses the
degree of secrecy of the value. For example, information about truet! should not
be revealed to non-privileged principals. On the other hand, no secrecy level is at-
tached to %, since it carries no information. The secrecy level of acommunication
channel may be specified in the core channel type £ of (v : £) . Those annotations
of secrecy levels (for values and channels) are only used for a programmer to
declare which value should be hidden to non-privileged principals. The program-
mer can omit them if they are unnecessary, since the type inference algorithm
described in Section 5 can recover them.

In examples given in the rest of this paper, we sometimes annotate variables
with their secrecy levels, just for the sake of readability.
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2.2 Operationa Semantics

Following the standard reduction semantics for the 7-calculus, we define the op-
erational semantics using a structural relation P < @, and a reduction relation
P — Q. Theformer relation meansthat P can be restructured to ) by using the
commutativity and associativity lawson |, etc. The latter relation meansthat P is
reduced to Q by one communication on a channel. Differences from the standard
reduction semantics are that < isnot symmetric, and that we include reductionson
if-expressions in < rather than in — (so that if true’ then P else Q < P). The
idea of using a non-symmetric structural relation goes back to our previous type
system for deadl ock-freedom [18]. That is necessary to make the type preservation
hold in our type system.

Definition 3 Thestructural preorder < istheleast reflexive and transitiverelation
closed under the following rules (P = @ denotes (P < Q) A (Q < P)):

P=P|0O (S-ZERO1)

0=x0 (S-ZERO2)

0= (vz:€)0 (S-ZERO3)
PlQ=Q|P (S-CommuT)
PIQIR)=(P|Q)|R (S-Assoc)

(ve: &) P|lQ=(ve:&)(P|Q) (ifxzisnotfreein @) (S-NEw)
(va:&1) (vy:&2) P = (vy:&2) (ve:61) P (S-Swap)
if true/ then P else Q < P (S-IFT)

if false’ then P else Q < Q (S-IFF)

*P < «P|P (S-REP)
Pgii’lQ (S-PAR)

P2Q (S-CNEWw)

(vx:&)P = (vz:£)Q

Definition 4 The reduction relation — is the least relation closed under the fol-
lowing rules:

o). Plz(y). @ — Py —1]Q (R-Cowm)
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P—Q
PIR—QR (R-PAR)
P—Q
v P — w26 Q (R-NEW)
PpP P—Q Q=2Q (R-SP)

P—qQ

We write —* for the reflexive and transitive closure of —.

2.3 Examples

As given above, the basic 7-calculus has only afew primitives, but various mech-
anisms present in real programming languages can be easily encoded [24, 30].
We give below some examples of such encodings, which will be used after-
wards.? Note that our analysis described later does not always give best possible
analyses for those encodings; please consult Section 6 for such situations.
For the sake of clarity, we regard integers and operations on them as primitives
below.

Example 1 The process xsucc(n,r).7(n + 1) works as afunction server comput-
ing the successor of an integer. It receives a pair consisting of an integer n and a
channel r, and sendsn + 1 on channel r. O

Example 2 (locks) A lock (a binary semaphore) can be implemented by using a
channel that holds at most one value at any moment. We can regard the presence
of a value in the channel as the unlocked state, and the absence of a value as
the locked state. Then, creation of a new lock | et x=new ock() in Pis
encoded into aprocess. (vz) (Z() | P). Lock/unlock operations| ock( x) ; P and
unl ock( x) ; P can be encoded into processes z( ). P and Z() | P respectively.
(Note that the unlock operation is encoded into an asynchronous output since the
unlock operation is anon-blocking operation.) O

Example 3 (shared variables) Shared variables can aso be implemented by us-
ing a channel that holds at most one value at any moment. Creation of a shared
variablel et x=newref v in P,thereadoperationl et y=!x in P,and
the write operation x: =v; P can be encoded respectively into: (vz) (Z(v) | P),
z(y). (T{y) | P), and z(y). (z{v) | P). Another way for encoding shared vari-
ables [22] would be to represent a variable as a concurrent object with two meth-
ods: read and write. See Example 7 for how to encode a concurrent object. O

Example 4 (sequencing) A sequential execution P; Q can also be easily encoded
by using the idea of continuation-passing. Let P be aprocess that simulates P and
signals its termination to a channel ¢, and @ be a process that simulates Q. Then,
P; Qisencodedinto (vc) (Ple().Q). O

2 We give below only one encoding for each construct; interested readers can consult other
encodingsin the literature.
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Thread A Thread B Thread C Thread D
if(!lsecret) | ock(x); | ock(y); | ock(x);
{1 ock(x); I ock(y); I ock(x); unl ock(x);
unl ock(x)}; unlock(y); unl ock(x); public := fal se
public := true unlock(x); unl ock(y);

Fig. 1 Threads using lock-primitives

Example 5 Let usconsider the four threadsin Figure 1, which use the above three
features (locks, shared variables, and sequencing). Thread A first reads the value
of the shared variable secr et , and if it istrue, acquires and releases the lock x,
and then updates the value of the shared variable publ i c. Thread B and C both
acquire and release locks x and y, but in a different order. Thread D acquires and
releases the lock x, and then updates the value of the shared variable publ i c.
Here, we assume that the shared variable publ i ¢ and thelock y can be accessed
by anyone (who may be untrusted), while the shared variable secr et and the
lock x can be accessed by only privileged principals.
The threads are encoded into the w-calculus as follows.

A2 (vcH) secrett (b7). (secret® (BH)
|if b5 then 25 (). (zH() | cH()) else cH()
| B (). public(z) . public(true®) )

B2 2H().yk(). (yE() [2H())

yH (). 2 0). (H() [yE())
DéxH( ). (2B () | public®(z) . publict (false®™) )

The channel ¢ in the process A is used to signa the termination of the if-
expression. We have annotated variables with their secrecy levels to clarify the
assumption.

Note that none of the above processes is well-typed in Pottier’s type sys-
tem [27]; al the processes try to perform communication on low-level channels
after receiving values on high-level channels. Some combinations of those pro-
cesses should, however, still be considered safe (if we ignore timing leaks). For
example, A|C and A|D are safe provided that other privileged principals use locks
x properly, without holding lock z forever. Although A, C and D perform com-
munication on public after communicating over a high-level channel ¢ or x, the
communication on ¢ or x always succeeds, so that no secret information is leaked.
On the other hand, A|B is (arguably) unsafe, on the assumption that low-level
processes may maliciously lock y forever. In that case, Thread B may be blocked
forever at the statement | ock(y) and fail to release the lock x, which would
cause A to get blocked only if the value of secr et istrue. Thus, a low-level
process can guessthevalue of secr et by reading the value of publ i ¢c. We will
later show that A|C and A|D areindeed well-typed in our type system, while A| B
isnot. O

Example 6 The cobegin/coend statement:
cobegin P1 | ... | Pn coend (which executes P1,..., Pn concur-
rently) can also be easily encoded. Let P; be a process that simulates Pi and
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signals its termination to ¢;. Then, cobegin P1 | ... | Pn coend; Q
can be encoded into aprocess. (vey) - -+ (vep) (Pr| -+ [ Polei(). -+ en(). Q).

This construct can be freely combined with other communication or synchro-
nization primitives. Consider the following program:

cobegin
(x:=true; send(c, nil))
| let =receive(c) iny:=lx
coend;
w := fal se

Here, send and r ecei ve are commands to synchronously send/receive values.
Thefirst thread of the cobegi n isaproducer, which writest r ue to the variable
x and notify that it is ready, and the second one waits for the notification and reads
the variable x. It can be encoded into:

(ver) (vep) (o(z). (z(true™) | ). e ()

[e(). z(2). (T(2) |y(u). ( (2)122()))
[e1()- c2(). w(z) . w(false™))
O

Example 7 Concurrent objects can be easily expressed in the w-calculus [ 20, 26].
The following process implements a bank account object:

(vs) (3(100H)
| swithdraw™ (amount, ). s(z).
if © > amount then (7
else (7(false™) | 5(x))
| xgetBalance™ (r). s(z). (F(z) | 5(x))
| «deposit™ (amount, r). s(z). (F() | 5(z + amount) )

(true) | 3(x — amount))

Here, we follow Pierce and Turner’s encoding of concurrent objects [26], where
concurrent objects are realized as a set of processes, each of which realizes each
method. The above process stores the current balancein the channel s, and handles
three kinds of requests through channel swithdraw, getBalance, and deposit. Upon
receiving a request on withdraw, the process checks whether the current balance
is enough and replies whether the withdraw operation has succeeded or not. Upon
receiving a request on getBalance, the process sends the current balance to the
client. Upon receiving a request on deposit (for depositing the specified amount
of money to this account), the process updates the current balance and sends an
acknowledgment on r. The channels withdraw and getBalance are secret, so that
only aprivileged person can send requests, while the channel deposit (for sending
arequest for transferring money to this account) can be accessed by anyone. The
current balance should also be kept secret, so that 100 is annotated with H.

The type system presented in the next section can guarantee that one can-
not obtain any information about the current balance through the public channel
deposit (see Example 17). Note that the previous type systems for information
flow-analysis for the w-calculus and similar calculi [10, 11, 27, 36] cannot accept
the process above, since the sub-process «xdeposit(amount, ). - - - sendsamessage
through a non-secret channdl r after receiving a value through the secret channel
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s. (One may, however, use other encodings so that a process having the same func-
tionality is well-typed in previous type systems [11]. So, the point here is rather
about the synchronization between multiple threads inside the same object; in the
above process, synchronization occurs through channel s. The type system should
be able to infer that the synchronization succeeds to conclude that information
about the current balance is not leaked.)

Channels withdraw, getBalance, and deposit can be passed around through
other channels as identities of the bank account object above. The following pro-
cess stores the channel withdraw in the shared variable vy, reads it, invokes the
withdraw method, and then waits for areply on anew channel r (recall the encod-
ing of shared variablesin Example 3):

yH(x). (yH(withdraw)| store withdraw in variable y
yH(m). (yH(m) | read the channel stored in y
(vr)m(10,r).7(b).0)) invoke the method
and wait for areply

3 Type System for Information Flow Analysis

This section introduces atype system for information flow analysis. The type sys-
tem guarantees that any well-typed process does not leak secret information, so
that the problem of checking whether a process |eaks secret information is reduced
to the problem of type inference. Wefirst explain main ideas of the type systemin
Subsection 3.1, and then introduce formal definitionsin later subsections.

3.1 Overview

We explain ideas of the type system informally in three steps.

3.1.1 Extending types with secrecy levels

Asin other type systems for information flow analysis, we extend the usual types
with secrecy levels. For example, the type bool of booleans is refined to bool™
and bool™: The former is the type of secret booleans and the latter is the type of
non-secret bool eans.

Since information about values may be propagated through the behavior of
processes, we also need to consider secrecy levels of channels and processes. For
example, if aprocessif truet! then 7() else 0 isexecuted, information about the
boolean truet! is propagated through i nformation about whether amessage is sent
on z or not. Moreover, if aprocessz( ). P isexecuted in parallel, theinformationis
further propagated through information about whether the process P is executed.
To keep track of thiskind of information flow, we | et the secrecy level of achannel
express the degree of secrecy of information about what communication takes
place on the channel (e.g., whether some message is sent on the channel), and let
the secrecy level of a process express the degree of secrecy of information about
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whether the process is executed. (The latter corresponds to the secrecy level of
a program counter in information flow analysis for imperative languages [5].) In
the example above, we consider that the secrecy levels of the channel = and the
process P are also H.

We write (7)! for the type of achannel of secrecy level [ that is used for trans-
mitting values of type 7. The secrecy level of a channel should not be confused
with the secrecy level of values sent on the channel. For example, if a channel
hastype (boolH>L, then a non-privileged principal may obtain information about
whether some message is sent along the channel although he or she cannot obtain
information about the contents of the message.

A type judgment for a processis of theform zy : 7, ..., 2, : 7, F; P, where
T,...,T, ae extended types and [ denotes the secrecy level of the behavior of
P. The secrecy level [ corresponds to “pc” found in analyses for sequentia lan-
guages[5]. If [ isH, the behavior of P isonly observableto privileged principals.
For example, 2 : (bool™)H |-y Z(truef) isvalid, but 2 : (bool™)¥ -y Z(true™)
isinvalid, sincethe latter process sends a value on a non-secret channel, so that its
behavior is observable to any principals.

Based on the intuition above, it would not be difficult to understand the fol-
lowing rule for if-expressions:

I'tv:bool® Iy, P T'FH,Q LCl
I' by, if v then P else Q)

Since one can infer the value of v by observing whether P or () is executed, the
secrecy level [ of P and Q must be greater than or equal to the secrecy level [; of
v.

Based on a similar intuition, we can obtain the following rule for an input
process z(y). P:

F,m:<T>l1?y:Tl_l2P lgllglz
Iz (r) b a(y). P

(IN-NAIVE)

Since one can infer whether some process sends avalue on x by observing whether
P is executed or not, the rule imposes the condition /; C Is.

3.1.2 Extending channel s types with usage expressions

The rule IN-NAIVE given above is actually too naive. Because of the condition
l; C Iy, once a process performs an input on a secret channel, it can no longer
perform communications on non-secret channels. For example, the process A in
Example 5 cannot betyped: Since b isasecret value, both channels xz and ¢ must be
secret, so that c( ). public(z) . public(true™) cannot be typed. Actualy, however,
aslong astheinput on = always succeeds, the input on ¢ also succeeds, so that the
process does not leak any information about 7.

Based g)n the above observation, we want to replacerule IN-NAIVE with some-
thing like:

3 Actually, additional subtle conditions are required in order for this rule to be valid: See the
paragraph on well-formedness conditions in Section 6.
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Nx: () y:rh, P 1Ty,
l; C Iy if theinput on 2 may not succeed

Ix: () b a(y). P

(IN-1DEAL)

What remains to do is to replace the sentence “if the input on z may not suc-
ceed” with awell-defined and statically verifiable condition. For this purpose, we
use the idea of type systems for lock-freedom [14, 18, 32]. The ideais to extend
channel types with usage expressions (usages, in short) [14, 18, 32], which specify
how each channel should be used by each process.

Usages are constructed from 1, denoting an input action, and O, denoting an
output action, by using sequential composition (.), parallel composition (|), etc.
For example, usage .0 describes achannel that should befirst used once for input
and then used oncefor output. So, if « hasusage I.0, theprocessz( ). z( ) isvalid
but the processes 7 ). () and (). (Z{) | Z()) areinvalid. Usage I | O describes
achannel that should be used once for input and once for output in parallel. So, if
x hasusage I | O, then the process z() | Z() isvalid. A channel type is annotated
with a usage and written (7)!/U, which describes a channel that is used according
tousage U.

Typing rules are extended to take into account usage information by using the
idea of linear types[17]. For example, the rule for parallel compositionis:

Ik P Ik Py
NIy PPy

Here, I | I» is the type environment obtained by combining usages of each
variable in I'; and Iz with |. For example, from z: (boolH>H/I Fg P, and
z: (bool™H/O g P, (Which mean that = is used once for input in P; and once
for output in P), we can derive z : (bool™)¥/(I|O) g P; | Py, which means
that « is used once for input and once for output in paralel. The rule for input
processes would be replaced by (for the moment, we forget conditions on secrecy
levels and omit them):

Iz:(r)/Uy:7+ P
Ia:(n)/I.UF z(y). P

(IN-WITH-USAGE)

Here, the usage of x in the conclusion capturesthe fact that « isfirst used for input
and then used accordingto U in P.
Similarly, the rule for output processes would be:

Iax:{r)) U+ P
Ia:{1)/O.U,y: 7+ T(y)

(OUT-WITH-USAGE)

Using the above rules, we obtain the following type derivation for
z(y)-y(1) [2(2):
x: ((int)/0)/0,y: (int)/O F g(1)
x: {(int)/O)/I F x(y).7(1) x: {{int)/0)/ 0, z : (int)/ O + T(z)
: ((int)/ O)/(1|0), z: (int)/ O & x(y). y(1) | 7(2)
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From the conclusion, we can deduce that x is used once for input and output, and
z isused once for output.

From the usage part of a channel type, we can obtain some information
about whether communications succeed or not. For example, in the process
(vx)z().7(), the usage of x is expressed by I. So, we know that x is used once
for input but never used for output, so that the input never succeeds.

3.1.3 Refining usages with obligation/capability levels

Usage expressions explained above are not sufficient for the purpose of checking
that certain communications must succeed, since they can express only channel-
wise communication behavior of processes, not inter-channel dependencies. For
example consider the process z().7() |y().z(). Usage of = and y can be ex-
pressed by I | O, but communications on 2 and y never succeed because of adead-
lock. The problem of the above process can be explained as follows: In order for
the input on z to succeed, the righthand process has an obligation to do an output
on z. Before fulfilling the obligation, however, the righthand process is claiming
a capability to successfully complete the input on y. In order for the input on y to
succeed, the lefthand process has an obligation to do an output on y, but before
fulfilling the obligation, the lefthand process is claiming a capability to success-
fully complete the output on z. Thus, both processes claim their capabilities before
fulfilling the obligations, so that a deadlock occurs.

In order to avoid this kind of circular dependency, we associate each I and
O in usages with an obligation level ¢, and a capability level t., and write Ifj
and O,fj. Obligation levels and capability levels range over the set consisting of
natural numbers and oc. The obligation level expressesthe degree of an obligation
to do an action, while the capability level expresses the degree of a capability to
successfully complete an action. More precisely, obligation and capability levels
control the behavior of processes through the following rules:

Rule A If a process holds an obligation of level n to do some action, then the
process can exercise only afinite number of capabilities whose levels are less
than n before fulfilling the obligation. As a special case, if a process holds an
obligation of level 0 to do some action, then the process must do the action
immediately; no prefix is allowed. On the other hand, if a process holds an
obligation of level oo, then the process need not do the action at all. For ex-
ample, if the usage of = is O3 and the usage of y is O3, the process 7 ). z( ) is
alowed since the process tries to use the capability of level 0 to send a value
on y before fulfilling the obligation of level 1 to send a value on z. On the
other hand, & ). 7( ) is not allowed since the process tries to use the capability
of level 3 to send avalue on x before fulfilling the obligation of level 2, which
islessthan 3.

Rule B If aprocess holds a capability of level n to perform an action, there must
exist another process that holds an obligation to do its co-action whose level
isless than or equal to n. For example, if a process holds a channel of usage
0Og°, then there must be another process that uses the channel according to 7°
(where n can be any level), so that the capability of level 0 to send avalue by
the former processis guaranteed by the second process's obligation to receive
the value.
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These rules ensure that every action of a finite capability level will eventually
succeed. For example, consider the process z().%() |y() |Z(). We can assign
usages I{ | Of and 1Y | O} to = and y, so that the above rules are satisfied. Since
the capability levels are finite, we can conclude that the communications on x and
y succeed.

On the other hand, for the deadlocked process z(). 7 () |y().Z(), thereisno
way to assign a finite capability level to the input on z: Let usages of = and y be
I;11Op and I}® | O)7. Rule A requires t, < t; and ts < t3. On the other hand,
Rule B requires the following conditions:

ty <ty ty < to ts < tg t7 < tg.

So, we obtain the constraint t5 < t7 < tg < t3 < ta, SO that the capability level ¢o
cannot befinite.
The typing rule for input processes is now refined as follows.

Lo (Y Uyy:tF, P 1T, te=00=11 Cly
et bt P g ()T U by a(y). P

(IN-REFINED)

1(e+Lte1) 1 |ifts the obligations whose levels are less than or equal to ¢, up to
t. + 1, to enforce Rule A. The statement “if the input on = may not succeed” has
now been replaced by a statically verifiable condition ¢, = co.

Rule B is enforced by the following typing rule for v-prefix:

Lz (r)a/U +y, P rel(U)
'y, (va)P

(NEW)

The condition rel(U') means that for any usage of the form If;.Ul in U where
t. isfinite, there is a corresponding usage of the form O:f’.UQ such that ¢/ < ¢,

(and a similar condition for O}fg .U1 in U) and that the same condition must hold
for any U’ obtained by discharging a matching 7 and O in U. For example, in
order for rel(I} |O;?) to hold, it must be the case that ¢; < t4 and t3 < t,.
rel(0O% | 15°.09%,) holds but rel(OY, | I5°.03) does not, since discharging a pair
of 7 and O in the latter usage yields O, which has a finite capability level but
there is no corresponding usage of the form 1°.U.

A part of the requirement of Rule A, that only a finite number of capabilities
can be exercised before an obligation isfulfilled, is enforced by the following rule
for output processes (we omit the continuation part for the sake of simplicity):

IChL
@i ()10 U,y et by a2 (y)

(OuT)

Like in IN-REFINED, we apply 1<t *Y to the type of z to enforce Rule A.
In addition, we apply an operator 1 to increase obligation levels of + by one.
For example, ((bool™H/0}) = (bool™)H/02. This enforces that when an
obligation is delegated to another process (by sending it through a channel), the
level of the delegated obligation is less than the current obligation level, so that
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Usages Interpretation
0 Cannot be used at all
Ifj U Used once for input, and then used according to U

O,’fg U Used once for output, and then used according to U

U, U2 Used according to U; and Uz, possibly in paralel

«U Used according to U by infinitely many processes

1C¢182)7 | Thesameas U, except that input and output obligation levels are raised
to ¢; and to respectively.

U1 & U, | Used according to either U; or Uz

P Usage variable (used in combination with recursive usages below)
up.U Recursively used according to [p — up.UJU.

Table 1 Meaning of Usage Expressions

an obligation of afinite level cannot be infinitely delegated (since the level of the
obligation eventually reaches 0). For example, consider the process

Ti(y) [21(2). T2(2) [ 22(2). P.

Suppose that the sub-process 77 (y) initially holds an obligation of level 2 to do an
output on y. When y is sent through 1, the obligation level becomes 1, and when
it is further sent through x-, the obligation level becomes 0, so that the process
P must use y immediately. In the process xx(z).Z(z) | Z{y), which forwards y
forever, y's obligation level must be oc.

3.2 Usages
3.2.1 Syntax

Now we introduce the formal syntax of usages.

Definition 5 (usages) The set I/ of usages, ranged over by U, is given by the
following syntax.

Uz=0|al.U|(UL|Us) | +U [ 12U | UL & Us | p | pupU
az=1]0
t1,ts € Nat U {oco}

Here, Nat isthe set of natural numbers.

We often omit 0 and write o} for o;!.0. We extend the usual binary rela-
tion < on Nat to that on Nat U {co} by ¥t € Nat U {co}.t < co. We write
min(zy,...,x,) for theleast element of {z1,...,z,} (co if n = 0) with respect
to < and write max(z1,...,x,) for the greatest element of {z1,...,2,} (0 if
n = 0). We assume that 1.p binds p. We write [p — U, U, for the usage obtained
by replacing the free occurrences of p in U, with U;. We write F'V (U) for the set
of free usage variables. A usageisclosed if FV (U) = 0.

Intuitive meaning of usagesis summarized in Table 1. Additional explanation
isin order. If ¢, isfinite, achannel of usage a;°.U must be used for the action «,
whileif ¢, is oo, the channel need not be used. If ¢, isfinite, whenever the action o
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istried on achannel of usage aig .U, the action will eventually succeed. If ¢, is o,
thereisno such guarantee. A channel of usage aij .U must be used according to U
only when it has been used for the action o and the action succeeds. For example,
achannel of usage 15°.0Y, can be used for input (but need not be used), and if it
has been used for input and the input has succeeded, it must be used for output.
Usage 1(082) 7 [iftsthe obligation levels occurring in U (except for those guarded
by I or O) so that theinput obligations and output obligations become greater than
or equal to ¢, and ¢, respectively. For example, 112 (19.02, | 03 | 09) isthe same
as1t.0% | 03034

Choice U; & U, and recursive usages up.U are only required to enable typein-
ference[18], so that they can be skipped at first reading. Usage 1p.O3° .. p describes
achannel that can be used for output infinitely often.>

Notation 2 We give a higher precedence to prefixes (ai: and x) than to |. So,
Ij°.Uy | Uy means (1;°.Uy) | Uz, not Ij°.(Uy | Us). We write @ for the co-action of
a(l=0andO = I).

Example 8 Linear channels (channels that are used once for input and once for
output) [17] are given a usage of the form I;! | Oﬁj. For example, the channel ¢ in
Example 4 is given ausage I1 | O}. The usage of channels used for client-server
connection (like succ in Example 1) is expressed as *I2 | *O5°. The part 1%,
means that a server must wait for requests forever, and the part *Og° means that
clients can send an infinite number of requests, and that it is guaranteed that the
requests are received by a server.

Example 9 The usage of a lock channdl (i.e., a channel used as a lock: recall
Example 2) is expressed by O7Z | «12°.0%, for somen € Nat. The part O, says
that a value must be first put into the channel (to initialize the lock), and the part
12°.0%, saysthat the lock can be eventually acquired, and after the lock has been
acquired, then the lock must be released. The natural number n can be used to
control in which order locks are acquired. Suppose that lock channels = and y
have usages *1;;°.0%= and *I;;j.OZg respectively and n,, < n, holds. Then, the
process z( ). y(). (7() |Z()), which locks = and y in this order, is allowed, but
the process y( ). (). (Z({) |5()) is not alowed. Note that the latter process tries
to exercise the capability of level n, to lock = before fulfilling the obligation of
level n, to release the lock y. O

Example 10 The usage of a channel implementing a shared variable (recall Ex-
ample 3) is expressed as 09 | x15°.0%.. It is a specid case of the usage of lock
channels. The capability level of an input action being 0 captures the fact that
read/write operations always succeed, and the obligation level of an output action

4 Readerswho arefamiliar with our previous type system for lock-freedom[14] find 1 (‘1-*2) {7
to be similar to [t |U. The readers should not, however confuse between them. While [t]O%,
is Ot 10t expresses 022" Please also note that [t[U was an operation, while
1(t1:t2) s a constructor. 11+*2) cannot be defined as an operation because of the presence of
usage variables.

> A careful reader may think that *U can be represented by jip.(p | U). Theformal semantics
of U and pp.(p | U), given later, are different in a subtle way.
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being 0 captures the fact that a value must be immediately written back when a
valueis extracted from the channel. O

Example 11 (choice and recursion)

Theprocessif b then Z() else (z({) | 7()) usesthe channel = according to 0%, &
(0% | 0Y%). The usage 11p.0L.p describes channels that can be used for output
repeatedly. For example, the process repeat(x) | xrepeat(y). % ). repeat(y) uses
the channel = according to that usage. O

3.2.2 Semantics

The forma meaning of a usage is determined by its obligation/capability levels

of a usage, which represent what capabilities/obligations currently exist, and its

reduction, which expresses how the usage changes during reduction of processes.
We first define capability/obligation levels of ausage.

Definition 6 (capabilities) The input and output capability levels of usage U,
written cap;(U) and cap, (U), are defined by:

cap,(0) = capa(a, U) = cap,(p) = 0

capp (ol U) = 1,

cap, (xU) = cap,(1112)0) = cap, (up.U) = cap, (U)

capo, (U1 |Uz) = cap o, (Ur & Us) = min(cap, (U1), cap, (U2))

Definition 7 (obligations) The input and output obligation levels of a closed us-
age U, written ob;(U) and obo (U), are defined by:

U) = oby(U)
obF 0) = obg(_ij.U) =00
obt () = F(p )

obZ (1t110)y) = max(t O(,obF(U))

obF U, & Usy) = max(ob” (Uy), obE (U3))
«U) = obX ()

pp.U) = Mp(Az.ob"~"1(U))

Here, Ifp denotes the least fixed-point operator. We write ob(U) for
min(ob;(U), 0bo(U)).

ba
(
Et
obF(Ut\ ) mln(obF(Ul) obE (U3))
(
(
(
(

The above definition uses a sub-function ob%, where F is a mapping
from usage variables to obligation levels. For example, obo(up.(p|03)) =
Ifp(Az.min(z, 1)) = 0. On the other hand, obo(x03) = 1. (So, *U is not the
sameas yip.(p|U).)

The following lemma guarantees that ob,, (U) defined for any U.

Lemmal Supposethat f isa function fromNat U {occ} to Nat U {co} and that
f ismonotonic with respect to <. Then, f has a least fixed-point.
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Proof The monotonicity of f impliesthat 0, £(0), f(£(0)), ..., f™(0),...isanin-
creasing sequence. If f7(0) = f(»+1) holds for some n, f™(0) isthe least fixed-
point of f. Otherwise, 0, f(0), f(f(0)), ..., f*(0),... is unbounded. Since f is
monotonic, f™(0) < f(oo) for any n, which implies f(co) = oo. Therefore,
oo istheleast fixed-point. O

The usage of a channel describes how the channel should be used afterwards,
S0 the usage changes during reduction of processes. For example, if = has usage
1.0 | 019, after acommunication on - occurs,  should be used according to
O§ | I9. This change of usage is expressed by the usage reduction relation defined
below. Intuitively, U — U’ means that if a channel of usage U has been used
for acommunication, then it should be used according to U’ afterwards. Asin the
definition of the process reduction relation, we use a structural relation < as an
auxiliary relation.

Definition 8 < is the least reflexive and transitive relation on usages satisfying
the following rules:

Ur|Uz 2 Uz | Uy (UP-CoMMUT)

(U1 |U2)|Us = Up | (U2 |Us) (UP-Assoc)
Uy U, Uy =Uj

UP-CONGP

Uy U 2 UL | U} ( )

*U < «U | U (UP-REP)

o)l U < appxtut) i (UP-1)

102Uy | Uy) < (102)00) | (1002 0y) (UP-DisT)

Uy &U; < U; (i € {1,2}) (UP-OR)

pp.U = [p— pup.UJU (UP-REC)

U=<u
— (UP-CoONGY)

T(tl,tz)U { T(tl,tz)U/

Definition 9 (usage reduction) The binary relation — on usages is the least
relation closed under the following rules:

I{2.U1 |Ofp .Uy — Uy | Us

U1—>U{
U1|U2—>U{‘U2

Uy =U, U —U, Uj=U,
U1—>U2
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3.2.3 Relations and operations on usages

Therelation rel(U) explained in Section 3.1 is formally defined below. It ensures
that whenever thereis a capability of level n to successfully perform some action,
there exists an obligation of the same or lower level to do its co-action.

Definition 10 (reliability) We write con, (U) when obz(U) < cap,(U). We
write con(U') when both con; (U) and conp (U) hold. A usage U isreliable, writ-
ten rel(U), if con(U’) holdsfor any U’ suchthat U —* U’.

For example, rel(OL, | xI$°.0L,) holds but rel(OL, | xI$°.02,) does not. The lat-
ter usage is reduced to O2, | xI5°.02,, of which the input capability level is 1 but
the output obligation level is 2.

The subusage relation U; < Us defined below means that U; expresses more
liberal usage of channels than U, so that a channel of usage U; may be used as
that of usage U,. For example, U; & U, < Uy and I3 < I hold. (The latter comes
from the intuition that an obligation can be replaced by a stronger one, while a
capability can be replaced by a weaker one.) We define the subusage relation co-
inductively, by using the idea of process simulation relations.

Definition 11 (subusage) The subusage relation < on closed usagesisthe largest
binary relation on usages such that the following conditions hold whenever U; <
Us.

1 [p— Uh)U < [p+— UsJU for any usage U suchthat F'V (U) = {p}.
2. If Uy — U3, then there exists U such that Uy — U7 and Uy < Usj.
3. Foreach o € {I,0}, cap,,(Uy) < cap,(Uz) holds

4. For each o € {I, 0}, if cong(Uy), then 0b, (U1) > 0bo (U2).

The first and second conditions require that the subusage relation is closed under
contexts and reduction. The third condition disallows capabilities to be strength-
ened, while the fourth condition disallows obligations to be weakened when
cong(U7) holds.

We first prove some important properties of the subusage relation.

Lemma?2 1. If U; < U, and con,(U7), then con,, (Us).
2. If U, < Uy and ’I‘El(Ul), then TGZ(UQ).
3. The subusage relation < isreflexive and transitive.

Proof The first property immediately follow from the assumptions and the
third and fourth conditions of the subusage relation: obgz(Us) < obg(U;) <
Capa(Ul) < capa(UQ)'

To show the second property, suppose U; < Us, rel(Uy), and Uy —* UJ.
By the second condition of Definition 11, there exists U] such that U; —* Uj
and U] < Uj. The assumption rel(U;) implies con(U7), from which we obtain
con(U3) by using thefirst property of thislemma.

The last property follows from the fact that the identity relation and the com-
position of < satisfies al the conditions of Definition 11. The transitivity of the
fourth condition of Definition 11 follows from the first property of thislemma. O

We list some useful laws about the subusage relation. These are part of laws
givenin Lemmal1lin Appendix A.
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Lemma3 1. IfU <X U’,thenU < U’.
2. If 0b(U) = oo, then U < 0.

3. Ift) < t,andt, <t thenale.U < als.U.
4. 1fU, < [p+— UiU, thenU; < pup.U.

1U defined below is the usage obtained by increasing the input and obligation
levelsof U by one. As explained in Section 3.1, it will be used in the typing rule
for output processes.

Definition 12 The operation | on usages is defined by: U = 1(ti+ht+ (1)
wheret; = 0b;(U) and ta = 0bo(U).

For example, 1(04 | 09) = 11D (0} | 09), which is equivalent to O} | O1. (For-
mally, 1(0g | OF) < O5 | O1 and Og | Oy < 1(Og | 07).)

3.3 Types
Definition 13 (types) The set of typesis given by:

7 (types) ::= bool' | unit | £/U
¢ (core channel types) ::= (71,...,7,)!

Type bool' isthe type of booleans whose secrecy level isi. Type unit isthe type
of the unit value x. A channel type (7)!/U describes a channel that have secrecy
level [ and should be used according to U for communicating tuples of values of
types 7.

Throughout this paper, we assume that channel types always satisfy the fol-
lowing well-formedness conditions.

Definition 14 A channel type (7)!/U is well-formed if it satisfies the following
two conditions:

— If I = H, then all the secrecy annotationsin 7 are H.
— If I = L, then all the capability level annotationsin U are cc.

The well-formedness condition allows (bool™)¥/0% but neither (bool™)H/0%,
nor (bool™)%/0Y: the second usage violates the first condition while the third us-
age violates the second condition. The well-formedness conditions are introduced
to simplify the typing rules and the proof of type soundness; how to remove the
above conditionsiis discussed in Section 6. We think that the first condition above
is not too restrictive in the presence of subtyping based on secrecy levels (see Sec-
tion 6). Although the first condition rules out a channel of type (bool™)H/09_, it
is often (not always, however) the case that one can instead assign (bool™)H/0%
to the channel, and coerce alow-level boolean to a high-level boolean before send-
ing it. The second condition is reasonable, since, for the purpose of information
flow analysis, analyzing whether communications succeed is important only for
secret channels.
We extend relations and operations on usages to those on types.
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Definition 15 (subtyping) A subtyping relation < is the least reflexive relation
closed under the following rule:

Uu<u’

U <ET (SUBT-CHAN)
For the sake of simplicity, we do not consider subtyping based on secrecy levels
(e.g. bool” < bool™) and input/output modes [25]. Extension to alow such
subtyping is discussed in Section 6.

Definition 16 The obligation level of type 7, written ob(7), is defined by:
ob(unit) = ob(bool') = oo and 0b(¢/U) = ob(U).

Definition 17 Unary operations = and T on types is defined by: Tunit = unit,
Tbooll = bool, 1(&/U) = &/1U, xunit = unit, xbool’ = bool’, and
*(§/U) =¢/+U.

Definition 18 A (partia) binary operation | ontypesisdefined by: unit | unit =
unit, bool' | bool' = bool’, and (¢/U1) | (¢/Us) = £/(Uy | Uy). 71 | 7 is unde-
fined if it does not match any of the above rules.

3.4 Type Environment

A type environment is a mapping from a finite set of variables to types. We use
metavariables I" and A for type environments. We write () for the type environment
whose domain is empty. When = ¢ dom(I), we write ', = : 7 for the type envi-
ronment I’ such that dom(I"') = dom(I") U {z}, I'(z) = 7,and I"'(y) = I'(y)
forall y € dom(I).

A type environment I” is extended to a mapping from afinite set of variables
and constants to types, by I'(true!) = I'(false') = bool’ and I'(x) = unit. When
v isaconstant, I',v: 7 is defined to be I only when I'(v) = 7. We abbreviate
0,01 :7T1, .., Up:Tn 10V 1T, ..., Up i Th.

The operations and relations on types are pointwise extended to those on type
environments bel ow.

The subtyping relation is extended to arelation on type environments. I} < I
means that I'; represents more liberal usage of free variablesthan Is.

Definition 19 A binary relation < on type environmentsis defined by: Iy < I
if and only if (i) dom(I1) 2 dom(I»), (ii) It (x) < I'y(z) for each z € dom(I%),
and (iii) ob(I1(x)) = oo for each z € dom(I1)\dom(I%).

Definition 20 The operations | and * on type environments are defined by:

I (z) | Ia(x) it @ € dom(I') N dom(I3)
(I | ) (z) =< () if 2 € dom(I')\dom(I%)
Iy(x) if x € dom(Ix)\dom(I)

() () = *(I'(2))
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— 'ty (ve:§)P
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Fig. 2 Typing Rules

3.5 Typing Rules

A type judgment is of the form I +; P, which should be read “P is well
typed under I and has secrecy level [.” It means that P uses free variables
as specified by I', and the secrecy level of information about its behavior is
l. The typing rules for deriving valid type judgments are given in Figure 2. In
therules, “I',Z:7" and “I'|z: 7" are abbreviations for “I",xq:71,..., 2y : 7"
and “I'|xy:71]| -+ |zn 7" respectively. 77 < 7 is an abbreviation for 7{ <
T1,y ..., 7T < Tn. We explain some rules below. Rules T-IN, T-PAR, and T-NEw
have aready been explained in Section 3.1.

T-OuT: The operation 1< *1**1) enforces Rule A given in Section 3.1. It
ensures that the level of obligations held by the output processis greater than the
level of the capability of the output on z being used. Note that the types of v
in the type environment of the conclusion must be subtypes of 17 rather than 7
As explained in Section 3.1, it prevents infinite delegations of obligations. The
obligation level of the output on x is0, sinceit isfulfilled immediately.

T-1F: In combination with T-WEAK, the rule ensures that the secrecy level
of the boolean is less than or equal to the secrecy levels of the then-part and the
else-part. Note that the type environment I | v : bool' in the conclusion implicitly
assumesthat I" | v : bool’ iswell defined; so, the process cannot be typed if v = .
The rule can actually be replaced by the following, lessrestrictive rule:

'~ P I'HQ r'ci
F|v:booll' F, if v then P else

This rule avoids propagation of the secrecy level of the boolean to the if-
expression. If we extend the subtyping relation based on the secrecy level (as
discussed in Section 6), the two rules become equivalent.

T-WEAK: This rule alows the type environment to be replaced by atype en-
vironment expressing more liberal uses of channels, and the secrecy level of the
process to be replaced by alower one. For example, from z: £/0%, g P, wecan
obtain z:£/OF° ty, P.
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3.6 Examples

Example 12 The process (vx: ()1 (z().7() | Z()) istyped as follows:

z: ()70,y: (YOZ FLy()

T-NEW

H,70 . /\L/+(1,1) oo — T-IN C\H/A0 L =
o OBy 1000 e o050 e 20O T0 |
x: ()18, y: ()Y OZ Froa(). () z:()7/08 Fr () P
-FAR
x: ()/15108),y: ()Y 0% Fu (). 7() | %()
)

y: OYO0Z Fu (va: ()M) (=().9() [Z()
The secrecy level of y can be L, although that of z is declared as H.

Example 13 Let us consider the following process P:

*s(r).7() |3(z) [2().5()

Itiswell typed under the following type environment:

s ()05 T/ (+I5 | O5°), & (V) (0% | I7°), y: ()1 O

Note that the type system can infer that the input on x succeeds, so that y is
assigned level L athough the secrecy level of = isH.

Example 14 Supposethat = hastype ()¥/x«I°.0% andy hastype<>H/*I°° (0)¢]
withn, < n,. Then, asmentioned in Example 9, the processz( ). y(). (7() \ <>)
is allowed which locks z and y in this order, but the process y( ). z(). (Z() | 7())
isnot. Infact, (). y(). (g() | Z()) istyped asfollows.

z: ()7/0%z,y: ()70 Fu () |7()
)-

8l

T-1
x:<>H/T<"y“"y“ Om g (VY10 0% Fur y(). @0 120)
= H 1 o ——— T-WEAK
2 OB0m g VI 0% e y()- (@) | 7)) -
2 (IS, 0% g (Y1 ma D 12 O by () (). (5() | 7
> T-WEAK

o (VF/*I35 .05y (OF/+I25 .0 Froa(). (). (5() 1 7())

Here, we usethefact U < 1)U whento < obo(U) and t; < ob;(U) in
the applications of T-WEAK.
On the other hand,

(/.05 g (F/+002 .05 Fry(). 2(). (3() [9()

is not derivable. By applying T-IN to z: ()¥/O7= o : (VB/0%¢ g 5() | Z(), we
obtain

2 (VIO 0%y (YRt D ony by (). (5() | 2()
Sincen, < ng, we cannot obtain

z: (VYL 0%y (VPO ba (). (5() |%())
from the above judgment.
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Example 15 The process A in Example 4 has the secrecy level L under the fol-
lowing type environment:
secret = (bool™YH/x 12200 public : (bool™)F/+I2.0%,
x: (Y/x15°.09,
(The bound channel ¢ is assigned atype ()¥/(01 | I}).)

TheprocessC = y().x(). (Z() |5()) iswell typed under:
z: (Y1500 y: (VH/+IZ.0.
So, the process (vz) (vsecret) (A|C | Z() | secret(b)) is well typed where b is
truet® or false™. (Here, () | secret (b) initializes the lock 2 and the shared vari-
able secret. ) So, we know that the concurrent execution of threads A and C in
Figure 1 is safe.

On the other hand, the process B = z().y().(w({)|Z()) is well-typed
not under the type environment z: ()H/x15°.0% v : ()L/xI.0 but under
(V512,02 y: (YE/+12.02. S0, (vx) (vsecret) (A| B|Z() | secret(b)) is
not well typed (since the whole usage of x: xI12.0 | x15°.0%, | O, is not reli-
able), which implies that the concurrent execution of threads A and B may leak
secret information.

Example 16 Let us consider the process given at the end of Example 6. Suppose
that I, I'» and I';3 are given asfollows.

I = z: (bool™H/x15°.0%  c: (VH/O}, ¢, - (YH/OL
Iy = 2: (bool™H/x1°.0%  y: (bool™)H/x15°.00,
e OB/, ea: ()F/O%,
I3 =cy: (VI co: OVB/I2 w: (bool™)E/«12.02
Then, we have:
I e x(2). (T(true?) |§). e ()
Iy ba e(y). 2(2). (T(2) |y(u). (9(2) |e2())
I3bper().ea(). w(z) . w(false®)
The whole process is well-typed under the type environment:
z: (bool™)H/x15° 0% y: (bool™YH/x15°.09  c: (VH/(O} | IV),
w: (bool™)/x1%°.0%
So, althoughthe part cobegi n ... coend performs synchronization on high-

level channels, our type system can correctly infer that it does not affect the exe-
cution of thepartw : = f al se.

Example 17 Let us reconsider the process in Example 7. Subprocesses
«withdraw(amount, ). - - -, xgetBalance(r). - - -, and «deposit(amount, ). - - - are
typed as follows. (Here, we assume that the type system is extended with integer
types.)
withdraw: (int™, (bool™)H/O1 YH/x10 s (intT)H/x15°.00

Fg +«withdraw(amount, ). - - -
getBalance: ((int™)H/O YVH/x10 s (int™)H/x15°.0%,

Fu +getBalance(r). - - -
deposit: (int™, ()¥/OLVY/+19, | s (int™)H/x152.09,

L «deposit(amount, r). - - -
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The key is the typing for the last sub-process. Although it performs communi-
cation on a high-level channdl s, it is allowed to send a message on a low-level
channel r, since our type system guarantees that the input on s always succeeds.
(Note that the capability level of an input on s is0.) The bank object is well-typed
under:
withdraw: (int™, (bool™)H/OL YH/x10 |
getBalance: ((int™)H/01 YH/x19 |
deposit: (int™, ()¥/OL)L/+I%,
Thisimplies that information about the current balance is not leaked through the
public channel deposit.

Let us now consider the client process given at the end of Example 7. The part
m(10,7).r(b). 0 istyped under:

m: (int™, (bool™YH/OL YH/+0Og°,

r: (bool™YH/(OL | I°).

So, the whole client process is typed under:
withdraw: (int, (bool™)H/0! YH/+05°,

y: ((int?, (bool™YH/OL YH/+05°)VH/x15°.09, .

Example 18 The following process implements the parallel-or:

= «por (f1, fa,1).
(vz) (f1(z) | f2{x) | x(b1).if by then 7(true) else z(by).7(bs))

It receives artriple [f1, f2, 7], where f; and f, are the locations of processes that
return booleans, and r is a channel that should be used for returning the result.
Upon receiving [f1, f2, 7], P createsanew channel = and sendsthemto f; and f5.
It then waits for a reply on channel x. Two booleans are expected to arrive on z,
but if the value received first is true, the process returns true without waiting for
the second value.

For example, consider the following process (). (Q sends on por the locations
t and f of servers that aways answer true and false respectively, and then waits
for the result.

Q = #t(r).T(true) | «f(r). {false) | (vy) (or(t, f.y) | y(b). 5uce())
P | Q iswell-typed under the following type environment:

t, f: ({(bool™)H/ O )F/ (I3, | xOF°),

por: (7,7, (bool™)H/OZ )H/ (+I3, | +O5°),

suce: (Y10

where r 2 ((bool™YH/00 \H/Oge.

The bound variable x in P is given the following type:
(bool™)H/(0%, | 0%, | }-(0 & I7)).

The usage indicates that while outputs on = may not succeed (the capability level
is o), the inputs on x aways succeed.
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4 Soundness of the Type System

In this section, we show that well-typed processes satisfy a so-caled non-
interference property, which says that high-level values and processes (i.e., values
and processes of the secrecy level H) do not affect the behavior of low-level pro-
cesses. The property implies that information about high-level values or processes
cannot be observed by low-level processes.

Before proving the non-interference property, we show a subject reduction the-
orem. Asin other linear type systems for process calculi [17], type environments
may change during reduction. We write I’ — I when I = I, z:£/U and
I'=n,2:£/U withU — U’ forsome Iy, z, & U,and U".

Theorem 1 (subject reduction) If I" =, P and P — @, then A F; @ holds for
some AsuchthatI'= Aor I' — A.

Proof See Appendix A.

In order to formally state the non-interference property, we define a process
equivalence relation based on the notion of barbed congruence. Theidea of barbed
congruence is to put two processes into various contexts and check whether they
exhibit the same observational behavior. The set of observables, called barbs, is
defined as follows.

Definition 21 (barbs) The barbs of P, written Barbs(P), is defined by:

Barbs(P) = {z | P —"= (vy) (1(v). Q| R),z & {y}}
U{z | P —"=2(vy) (2(2). Q| R), = & {y}}

The two processes put into the same context are compared by using the following
barbed bisimulation.

Definition 22 (barbed bisimulation) A binary relation R on processes is a
barbed bisimulation if the following conditions hold for every (P, Q) € R:

— If P — P/, thenthereexists Q' suchthat @ —* Q" and (P’,Q’) € R,
— If @ — @', then there exists P’ such that P —* P’ and (P’,Q’) € R, and
— Barbs(P) = Barbs(Q).

P and Q are barbed bisimilar, written P ~ Q, if (P,Q) € R holds for some
barbed bisimulation.

The definition of contextsis given as follows.

Definition 23 (context) A context is aterm obtained from a process by replacing
a sub-process with []. We write C[P] for the process obtained by replacing [] in
C with P. A context C isa (I,1)-(A,l")-context if A +;, C is derivable from
't [)

We introduce some terminology about type environments. A type environment
I'" is low-level if all the secrecy level annotations appearing in I are L. A type
environment I" is closed [30] if I'(z) is achannel type for any = € dom(I"). I
isreliable, written rel(I), if for any = € dom(I"), I'(z) is achannel type of the
form ¢/U and rel(U) holds.
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Now we can define the barbed congruence. Basically, two processes P and
Q are barbed congruent if C[P] and C[Q] are barbed bisimilar for an arbitrary
context C. Here, since we are dealing with well-typed processes, we consider
only “well-typed” contexts.

Definition 24 (barbed congruence) P and @ are barbed (I, [)-congruent, writ-
ten P ~p; Q,if (i) I' ; P, (ii) I' =, @, and (iii) for any closed A and secrecy
level I, C[P] ~ C[Q] holdsfor any (I',1)-(A,1")-context C.

We can now state the non-interference property as the following theorems.
The first one says that the difference between high-level values is not observ-
able to low-level processes, and the second one says that the difference between
high-level processes is not observable to low-level processes. The second one is
required to prevent leakage of information about complex data structures, which
are represented as processes in the r-calculus [30].

Theorem 2 (non-interference (1)) Suppose that I" is a low-level type environ-
ment. If I" b, [z — true™] P holds, then [z — trueH| P ~p; [z — false™]P.

Theorem 3 (non-interference (2)) Suppose that I" is a low-level type environ-
ment, and that C; isa (©, H)-(I,[)-context. If © Fg P; holdsfor ¢ = 1,2, then
C1[P1] =, C1[P2].

Therest of this section is devoted to proofs of Theorems 2 and 3. The centra
idea of the proofsisthat if A ; P holds (with a certain condition on A), then
P and the process Er(P) obtained from P by eliminating all the high-level val-
ues and processes are barbed bisimilar (Theorem 4). In the case of Theorem 2,
for any (I',1) — (A,1') context C, C[[z — true'|P] and C[[z — false™|P] are
erased to the same process (up to astructural relation), so that C[[z — truet| P] ~
Er(C[[z — truet|P])) & Er(C|[[z — false™|P]) & C|[[z — false™]P] holds.

Below we define Er formally and then prove the non-interference theorems.

We write High(7) if 7 isunit, bool™, or achannel type of the form (7)H/U.
Definition 25 Er(P) isdefined by:

| = if High(I'(v))
BrVr(v) = {v otherwise
EI‘F(O) =0
V). Erp(P)
Erp(Z0). P) = if I'(z) = (7)Y/U and v} = ErV p(v;)
Erp(P) otherwise
z(y). Brpy.7 (P) @f I'(z)= @L/U
Err(x(y). P) = Erpg.7(P) if I'(z) = (MU
Er, . —(P) otherwise
Erp(P|Q) = Erp(P) [Erp(Q)
Erp(xP) = «xErp(P)
oy oy Wa ) Brp, e p0(P) if € = ()T
Err((ve:) P) = {Ernw: ¢/o(P) otherwise
if v then Er(P) else Er(Q)
Er(if v then P else Q) = if I"(v) = bool™
0 otherwise
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The following lemma shows that all high-level processes are erased to 0. (Re-
cadlthaa P=Q meansP < QandQ < P.)

Lemma4 If I' by P, then Erp(P) = 0.
Proof Straightforward induction on derivation of I" ¢ P.

The following is a key theorem, which states that the erasure function pre-
serves barbed bisimilarity.

Theorem 4 Suppose that I" is a low-level, reliable type environment. If " +; P,
then P ~ Erj(P).

The proof the above theorem is given in Appendix B. Here, we explain informally
why the above theorem holds. The difference between P and Er-(P) is that al
the input and output prefixes on high-level channels of P areremoved in Er - (P).
The behavior of P can be simulated by Er-(P) can be simulated as follows.

— Any reduction of P on alow-level channel is matched by the corresponding
reduction of Er(P).

— Any reduction of P on a high-level channel is matched by the skip
EI'F(P) — EI‘['(P)

For example, let us consider a process P = (v : (V) (z().5() |&).y()) and
atype environment I' = y: ()¥/(02 | IL). Erp(P) = y{) |y(). The reduction
P — (va: ()™) (5() |y()) ismaiched by the skip 7() [ () —* 5} [y().

The simulation of Er-(P) by P needs more attention. Since some prefixes of
P have been removed in Er-(P), some communications enabled in Er - (P) may
not be enabled in P. In the example above, the communication on y is enabled
in Erp(P), but not in P. However, because of the typing rules T-OuT and T-IN
(the condition ¢, = co = Iy C ), all the input/output prefixes that are blocking
communicationsthat are enabled in Er - (P) but not in P have capabilities of finite
level (thatis, t. isfinitein T-OuT and T-IN). Since those input/output operations
eventually succeed (see Theorem 5 in Appendix B), the communications that are
enabled in Er(P) are also eventually enabled in P. For example, in the case of
the above example, the reduction Er-(P) = 3{) | y() — 0 can be simulated by
P = (ve: (%) (z().70) |7).y()) — (we: %) @) 1y() — (wz: ()F)o0.
See Appendix B for amore detailed proof.

We now move on to prepare for the proofs of the non-interference theo-
rems. We write low(I") for the type environment obtained from I" by replac-
ing all the secrecy annotations with L and all the capability level annotations
with co. We also write low(C) for the context obtained from C by replac-
ing all the secrecy annotations with L and al the capability level annotations
with co. For example, low ((vx: (()H/ONL) (if true® then z(y) else [])) =
(v (YO L) (if true® then Z(y) else []).

Lemma5 Supposethat I" isalow-level type environment. If C'isa (I',1)-(A,1)-
context, then low(C) isa (I',1)-(low(A), L)-context.

Proof Thisfollows by straightforward induction on the derivation of A -, C.

The erasure function is extended to that on contexts by Er([]) = []. Thefollow-
ing lemma follows by straightforward induction on the structure of C.
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Lemma6 Suppose that I" -, P and that C' isa (I,1) — (A,l") context. Then,
ErA(C[P]) = Era(C)[Err(P)].

Now we can prove the non-interference theorems.

Proof of Theorem 2 Suppose that A is closed. Then low(A) is a low-
level, reliable type environment (since all the capability level annotations
have been replaced by oc). Let C' be a (I1)-(A,l')-context, and C’ be
low(C). By Lemma 5, ¢’ is a (I,l)-(low(A),L)-context. By Lemma 4

and Theorem 4, C'[[z — true®]P] = Erjow(a)(C'[[z — truet]P]) =
EI‘IOW(A)(C)[EI‘F([I?—)UUGH] )] = Erlow(A)(C’)[Erp([xHfalseH}P)] =
Erjow () (C'[[z — false™|P)) & C'[[z ~— false™]|P]. Since ~ does not depend
on type annotation, C[[z +— truet]P) P& C C|[z — false™]P] holds. O

Proof of Theorem 3 Suppose that A is closed. Then low(A) is alow-level, reli-
able type environment. Let C be a (I, 1)-(A,1")-context, and C’ be low (C). By
Lemma5, C"isa(I}1)-(low(A),L)-context. By Lemma4 and Theorem 4,

C'[C1[P1)] ® Eriow(an(C'[C1[P1]])
= Erjow(a)(C'[C1])[Ere(P1)]
? Erlow(A)(Cl[Cﬂ)[ ]
~ Erlow(A)( /[ 1])[Ere (F2)]
.: EI‘1ow(A( "IC1[P2]])
~ C'|C[P]].

Since ~ does not depend on type annotation, C[Cy [P,]] ~ C[C}[P,]] holds. O

5 Type I nference Algorithm

This section describes a type inference algorithm. By the soundness of the type
system, the type inference algorithm can be used to check that processes do not
leak secret information. An input of the algorithm isatriple (I, P, ), where types
and secrecy levels appearing in the triple may contain variables (to represent un-
known types, secrecy levels, etc.), and al the usagesin the triple must be variables.
The algorithm answers whether there exists a substitution 6 such that 61" ¢; 6 P.
(The agorithm can be modified to aso output a set of constraints that contain all
the correct substitutions.) The algorithm is sound and complete with respect to
the type system, in the sense that it always terminates and gives a correct yes/no-
answer.

Thanksto the type inference a gorithm, programmers only need to put annota-
tions only when they want to explicitly specify values that should be regarded as
secret or assumptions about the behavior of the environment (by specifying a part
of information about I"). Since the input I, P, of the type inference algorithm
may contain variables, programmers are not obliged to provide any annotation.
In the extreme case, a programmer can write an ordinary pi-calculus term (with-
out annotations on v-prefixes and truth valuesin Definition 2). Then, asystem can
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automatically insert variablesin the places where annotations are required accord-
ing to the syntax of Definition 2, and use the annotated process as an input to the
inference algorithm, along with a dummy type environment =1 : ay,...,Z, : ay,
wherezq, ..., z, arethefreevariablesof theprocessand ay, . . ., a,, are unknown
type variables. Then, the inference algorithm tries to assign H to as many values
aspossible.

The overal structure of the type inference algorithm is similar to other
constraint-based type inference algorithms for the w-calculus [12, 13, 18]: Given
aninput (I, P,1), we can first obtain aset C of constraints on type variables, usage
variables, etc. such that C holds if and only if 01" -4, 6P holds. Then, we can
reduce C step by step to decide whether C is satisfiable.

In the rest of this section, we first show an algorithm to extract constraints
in Section 5.1, and then explain how to solve the constraints in Section 5.2. Sec-
tion 5.3 gives some examplesto illustrate how the type inference algorithm works,
and Section 5.4 briefly explains our prototype implementation of the type infer-
ence algorithm.

5.1 Step 1: Extracting constraints based on syntax-directed rules

We can convert the typing rulesto syntax-directed ones, by combining each typing
rule with T-WEAK. For example, the rule for parallel composition becomes:

nEP P LEP PR 1T,
I |, FSD P[P,

The whole set of syntax-directed rulesis given in Figure 3. It is equivaent to the
origina typing rulesin the following sense.

Lemma?7 If I' -, P, thenthereexist I and I’ such that I F5P P with I < I
and! C I'.1f " +5D P, then '+, P.

Proof Straightforward induction on derivationsof I" -, P and I FlSD pP.O

An agorithm Tinf for extracting constraints is shown in Figure 4. In the fig-
ure,C= (I, I;) denotestheset {1y (z) < I(x) | € dom(I%)}U{noob(I'(z)) |
x & dom(I%)} of constraints on types. The constraint noob(7) in ST-IN denotes
the same constraint as ob(7) = oo, but noob((7)/U) should be reducedto U < 0
rather than ob(U) = oo (since we want to generate only restricted forms of con-
straints to simplify the reduction of constraints in the next step). The constraint
WF(I') means that I'(x) is well-formed for every © € dom(I"). WF(r) means
that 7 iswell-formed. Meta-variables 3, ¢, and n represent variables denoting un-
known types, secrecy levels, and capability/obligation levels respectively.

The sub-algorithm PT takes P asaninput, and outputs atriple (I,1’,C’) that
satisfies: (i) 01" 4, 6.P holdsfor any substitution 6 such that C’ holds, and (ii) if
I'" 1 0" P, then there exists a substitution ¢ such that 6C’, ' < 017, 1" C 60U,
and 0”P = 6P. Since PT(P) collects the premises of each syntax-directed rule,
the following corollary immediately follows from Lemma 7.

Corollary 1 Let Tinf(I,l,P) = C. Then, C holds if and only if 6" 4, 6P
holds.
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0FSP o (ST-ZERO)
=P P 1C,
I'(z) = (MU or (z ¢ dom(I") and U < 0) te=o00=>UCl
tot1,tet1 ~ i~ ~\1 0 SD —/~ (ST-OuT)
Tletblet ) (P\{a} |5:17) |2 : (7)"1/OL, .U P Ho). P
I'HP P IChly  te=oc0=1 Ll
I'(z) = (MU or (x ¢ dom(I") and U < 0)
7 < I'(y;) or (y; & dom(I") and ob(7;) = oo) (foreach ; € {7})

totltetl ~\11/70 SD (ST-IN)

pletbtetD P\ Lgd o 7Y/ 10 .U 5P 2(g). P

I 3P p L P p 1T 1,1
1M 1 2 Sg 2 Loly,l2 (ST-PAR)
Fl ‘ FQ '_l Pl | P2
P p I'(z) = l if dom(I"
i (I(z) gl/DU/\re (U)) ifz € dom(I") (ST-New)
Mz PP (vz: &) P
LFPP Pi(fori=1,2) TI'<I; 1CI(fori=1,2) (ST-1F)
I'|v: bool’ hSD if v then P; else P»
LHo P (ST-REP)
«[ PP *P

Fig. 3 Syntax-Directed Typing Rules

5.2 Reducing constraints

By reducing the constraints on types generated by the algorithm in the previous
step, we obtain constraints on usages and secrecy/capability/obligation levels of
the following forms:

p<U 11 Cly rel(U)
n=o0=10 Cly =L = Cap,(U)

Here, Cap_ (U) in the last constraint means that all the capability levels ap-
pearing in U are oco. The constraint comes from the well-formedness condition
on types (recall Definition 14). The meta-variable [ represents L, H, or a vari-
able (called secrecy variables) representing an unknown secrecy level. The meta-
variable n) represents a variable (called level variables) representing an unknown
obligation/capability level. Usage U in constraints may contain the operation 1 (in
addition to usage constructors), and all the capability level annotationsin U are
level variables.
Constraints can be further reduced step by step as described bel ow.

5.2.1 Solving subusage constraints

A set of subusage constraints {p; < U,...,p, < U,} issolved in the following
two steps:

1. Transform the constraints so that each usage variable appears exactly once
in the lefthand side of the inegualities. This is achieved by replacing {p <
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Tinf(I,1, P) =
let (I,1',C") = PT(P)
inC’'ucCs(I, "yu{lCl'}yu WF(I')

PT(0) =(0,6,0)
(where § isfresh)

PT(f(Ul,‘..7Un>.P0) =
let (Io,lo,Co) = PT(Po)
C1 = if x € dom(Ip) then {Io(x) = (B1,...,0.)°"/p} ese {p < 0}
C=CUCU{§C 6,0 Clo,n=00=6 Clo}
in (10D (To\ {2} o181 | -+ [on:18a) |22 (B)*/ O}, 6,
CU{WF ((3)"/0;.p)})
(Where/glv c 'aﬁ'mé 61,n,parefr$h)

PT(z(y1,-.-,yn). Po) =
let (I, lo,Co) = PT(Py)
Ci = if x € dom(Ip) then {Io(x) = (B1,...,0.)°"/p} ese {p < 0}
C:COU61U{dgdl,dglo,n:oo:mﬁ Clp
U{Bi < To(yi) | vi € {y1,-- ., yn} Ndom(Io)}
U{nood(B:) | y: € {yh---,yn}\dC’m(FO)}

(where 31, ..., Bn,0,01,n, p arefresh

PT (P | P) =
et (Fl,ll,Cl) PT ( 1
(I3,12,C2) = PT ( p
in(F1|F2,6,C1 C {

= )
L Scusc l2})
PT((vz:&) Py) =
let (I, lo,Co) = PT(Fo)
Ci1 =if x € dom(Iv)then {Io(z) =&/p, rel(p)} else O
in (Io\{z},lo,Co UC1 U{WF(£/0)})
(where p isfresh)

PT(if v then P; else P>) =
let (I,01,C1) = PT(P1)
(I2,12,C2) = PT(P,)
I'=x1:01,...,Zn:0n
where {z1, ... ,mn} =dom(I'1) Udom(I2)and 31,..., B, arefresh
in(I'|v:bool®, §,Ci UC2 U{ C 11,0 C lo} UCS(I, 1) UCS(T, Is))
(where § isfresh)

PT(xPy) =
let (Fo,lo,Co) = PT(P())
in (*Fo,lmCo)

in (1B D T\{@, 41, un ), w) (B)*/13.p),6,C U{WF((B)**/,).p)})

Fig. 4 A Type Inference Algorithm
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Ui, p < Uy} with {p < Uy & Us}, and add p < p for each usage variable p
that does not appear in the lefthand side.

2. Eliminate subusage constraints by repeatedly applying the rule: C U {p <
Ut — [pr— pp.U|C.

The set of reduced constraints is satisfiable if and only if the original set of con-
straintsis satisfiable, since by Lemma3, p = up.U isthe greatest (with respect to
<) solution for p < U. Note that the constraints other than subusage constraints
are monotonic with respect to < in the sense that if U; < Us, then [p — U;]C
implies [p — Us]C.

5.2.2 Removing the operator 7

Usagesin the set of constraints obtained so far may contain the operator 1. TU can
be replaced by 1(°¢1 (V) +1:060 ()11 \We can show by induction on the structure
of U that 0b,,(U) is expressed in terms of min, max, constants (in Nat U {co}),
and expressions of the form n 4+ n where 7 is a level variable. The non-trivia
is the case where U is of the form pp.U;. By the definition of 0b,, 0b,(U) =

1fp(\z.0b =%} (U1)). By induction hypothesis, ob{”~*}(U;) can be normalized
to:

max(ey,...,ep)

where each ¢; is of theform ¢; or min(z + n;, ¢;). Here, n; € Nat and ¢; isan
expression not containing x. If n > 0, then

Ifp(Ar.max(min(z + n,c), e)) = fp(A\z.max(c, e))

(Note that max(min(z + n,c¢),e) and max(c, e) can differ only in the range
0 < z < ¢ — n, and that there is no fixpoint in that range.) So, we can assume
without loss of generality that ob{*~}(U;) is of the form max(c, min(z, ¢/)) or
c. Ineither case, 0b,(U) = c.

Example 19 ob, (up.1p) = Up(Az.2 + 1) = fp(Az.max(min(z + 1,00))) =
Ifp(Az.max(c0)) = oc.

5.2.3 Reducing rel(U)

Next, we eliminate constraints of the form rel(U).

By definition, rel(U') holdsif and only if con(U’) holds for every U’ such that
U —* U’. The set of such U’ can be infinite, but we can normalize U’ by using
the lemma below. We write 2 for the least equival ence relation on usages that sat-
isfies the monoid lawson | (where 0 isthe unit) and thelaws 1(1:12) (1(1:82) ) =
T(max(tht'l),max(tz,té))U and T(tl,tz)(Ul |Us) = T(tl’tQ)Ul | T(tl’tZ)Ug. We write
nU for parallel composition of n occurrences of U. 0U is 0. We say that a usage
U isatomic if the outermost constructor of U is neither 0, | nor 1(*t2),

Lemma8 For any U, there exists a finite set of usages {Uq, ..., U,} such that
for any U’ such that U —* U’, there exist k1, ..., k, € Nat such that U’ =
kUp| - | knUny.
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Proof Investigation of each rule for U < U’ and U — U’ shows that each
atomic usage in U’ are introduced by each reduction is either a subformula of U
or those obtained by expanding recursion (by UP-REC) or raising the capability
level of input prefixes (by UP-1). Let Atoms(U) be the set of atomic usages that
are sub-expressions of usages obtained by finitely expanding U and do not contain
“redundant unfolding” of theform [p — pp.U;|U; asaproper sub-expression (i.e.,
asub-expression which is not the expression itself). Atoms(U) isafinite set. Let
EAtoms(U) be the set:

Atoms(U) U {ajr@tm) 17 | o1 U € Atoms(U)}
U {T(max(tu,...,tlm),max(tzl,.4.,t2n))U1

| Uy € Atoms(U)and U, isnot of theform o} .U}

Here, t11,...,tin, to1,- .., ta, ranges over the set of level expressions that occur
inU. EAtoms(U) isaso afinite set. By the above observation, the required prop-
erty holdsfor EAtoms(U) = {U;,...,U,}. O

For example, if U is 14 up.(I1.p| O2), EAtoms(U) is the set:

{1 up.(11.p| O3) | 1,12 € {1,2,3}}
(L up(I}p | OF) | th, 12 € {1,2.3}}
{011 | th,ts € {1,2,3}}

The following lemma ensures that whether con(U’) holds depends only on

whether theindices k1, . . ., k, are 0 or not, so that we need to check only afinite
number of cases.

Lemma9 If U" = kUy | --- |k Up With kq, ...k, > 0, then con(TU”) if and
onlyif con(Uy | -+ |Uy).

Proof By thedefinitionsof ob,, cap,,,and =, (i) if U = U’ then 0b,, (U) = 0b, U’
and cap,(U) = cap,(U’), and (ii) for any k& > 0, 0bo(kU) = 0b,(U) and
cap,,(kU) = cap,(U). The required property follows immediately follow from
those properties. O

By the decidability of the reachability problem of Petri nets [21], we have the
following lemma.

Lemmal0 Let {Uy,...,U,,} be a subset of the set of usages in Lemma 8.
Then, it is decidable whether there exist kq,...,k, > 0 such that U —*=
kUL - [ kU,

Proof We can reduce the problem into the reachability problem of Petri nets as
follows. For each usage expression U, in EAtoms(U ), we prepare two places Xy,
and Yy, of aPetri net. Intuitively, a usage expression k.U, | - - - k, U, is encoded
into a state of the Petri net k1 Xy, |- - - |knXv, (Which expresses the state where
thereare k; markingsin each place X;,). Theplace Yy, isused for testing whether
U, occurs at the top level.

We prepare the following transitions of the Petri net.

— For each U; in EAtoms(U), the transitions Xy, — Yy, and Xy, [Yu, —
Yu

1
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— Transitions that correspond to each rule for < and —.
For example, for each I;*.U; and Of: .U inEAtoms(U), we add the transition

Xzf;.U1|Xof;.U{ — k1 Xv [ [k X,

where k1 Vi | -+ |k, V,, 2 U, Uy and V..., V,, € EAtoms(U).
For each U; & U, € EAtoms(U ), we add the transitions:
Xv,ev, — kiXv, |- [kn Xy,

wherek Vi | - |k, V,, 2 Uy and V..., V,, € EAtoms(U)
XUl&Uz — leV1| T |anVn
where k Vi | -+ |k, Vy, 2 Uy and V4, ..., V,, € EAtoms(U)

Let U = K{Vi| -+ |k V, and Vi, ...,V Uy, ..., Uy, € EAtoms(U). Then,
by the above construction of the Petri net, U —* kU | kU, for some
k1,...,kn > 0if and only if the marking Yy, |- - - |Yy,, is reachable from the
initial marking k1 Xy, | - - - |k, Xy, . Thus, the problem is decidable [21]. O

Thus, the constraint rel(U) is replaced by the conjunction of constraints of the
form obz(Ur| -+ |Up) < cap,(Uy| -+ |Up). By the result of the previous
subsection, such a constraint can be further reduced to a constraint of the form
t; < to. Moreover, by the definition of cap , (U), t2 can be expressed in the form
min(nq,...,n,) Wherenq, ..., n, arelevel variables. So, t; < t» can be further
reducedto ¢y < my,...,t1 < Mp.

5.2.4 Final step

Now the resulting constraint is a set of constraints of the form:
t<n Ll 77:OO2>Z1E12 l:Lin:oo

Constraints of the first and fourth forms can be solved by a symbolic method.
The constraint I = L = n = oo can be first converted into a constraint
IF(I = L,00,0) < n of the first form, where IF (e, e2, e3) iS ey if e; holds
and it is e3 otherwise. In each constraint of the first form, ¢ can be normalized to
max(eq,...,en), Whereeach e; is of theform min(n + n, ¢) or ¢, and ¢ does not
contain the variable 5. Notice that max(min(7, c),e) < nif and only if e < 5,
and that for n > 0, max(min(n + n, c),e) < nif and only if max(c,e) < 7. So,
we can remove n from ¢ in ¢t < 5. Thus, we can eliminate the level variable n by
substituting ¢ for the occurrences of 7 in the other constraints.

After dl the level variables have been eliminated, the remaining constraints
can be normalized to the following set of constraints:

{61 C F1(61,-..,0n), =+ 0n E Fp(d1,...,0n),
ll EGl(élv"'v(sn)v Ty lm EGm(élvaan)}

Here, §; isasecrecy variable, and [; isaconstant L or H. F; and G ; are monotonic
functions on 6y, . .., d,, constructed from H, L, secrecy variables, and IF(t =
oo, 1, H) (where! is asecrecy variable or a constant). Note that each constraint of
theformt = co = I3 C I hasbeen normalized to I, C IF (¢t = oo, o, H). Here,
t is anti-monotonic with respect to secrecy variables, hence IF (¢ = oo, 12, H) is
monotonic on secrecy variables.



Type-Based Information Flow Analysis for the Pi-Calculus 35

Let us abbreviate the above constraints to {5 C F(8),] C G(5)}. Since F is
monotonic, we have:
H J F(H) 3 F(H) 3
So, we can find k € Nat such that 5 = F*(H) is the greatest solution for § C
F(6). For such k, the constraint {6 C F'(6),1 T G(0)} issatisfiable if and only if
| C G(F*(H)) holds.

5.3 Examples

Example 20 Let us consider the following process P:

(vs (BYF) (2= ()°) (xs(y) - (B0) |5(n)) 5(2) | 2(). 7))

To check that z: ()¥/p, F1. P holds for some 3 and 4., it suffices to compute
Tinf (I, L, P) for I' = x: ()%/p, and check whether it is satisfiable. We list the
output of PT for some of the sub-expressions of P.

PT(xs(y) . (W() [3(y)) =
(51 (B1)2o/*I}, .08, 60, {B1 < ()ou/Of, | 1= H1mHt D1,
5() C 53,50 C 5y,771 =00 = 53 C 5y}
PT(5(z)) = ((z: 114018y 51 (B)0/0Y,), 61, {01 E 6:})
PT(2().%()) =
((x: T(""’“’"””<>5”/0267 o <>5z/[25)7 5,
{62 C 53;,52 C 527775 =00 = 52 C 593})

Here, we have omitted unimportant constraints and those of the form WF(r): in
particular, we have substituted 0 for usage variables p that can be constrained by
only p <0.

Tinf (I, L, P) producesthefollowing constraintsin addition to the constraints
generated for sub-expressions.

{()%ps = 1 FLmst1g, | )=/ I, , rel(p-),
(BYH/ ps = (B1)°+/+I5,.08, | (B2)°+/ O3, rel(ps),
0o < 1000
L C 4, 91,92,

WFE((8)%/ps), WF(T(%H’%H)(>5’“/026)}

By reducing constraints on types, we obtain the following constraints (trivial
constraints have been removed):

B=01=02=1()/py
pe = (100t V1)) | 1)
Ps = (*1771 '10772)1| 0773
pw < T(ns+ s+ )Og6 (= Oty
py < O, [T 1p,
J — 4 E
rel(p:) rel(ps)
0 =H 0, =L Ny =00 =6, C d, m=oco=HLCJ,
HC, Ng = 00



36 Naoki Kobayashi

Here, ps, ps, py, p, e usages of s, z, y, and z respectively. Constraints on the
last line come from the conditions on well-formed types. By solving the subusage
constraints, we obtain the following solutions for ps, pa, py, p=:

Ps = (*121 OO )|O,)3
Po = 0775+
Py = pp- (0O | 12t m )
p. = (T(n3+17n3+1)T )|IO

= (pUmeth "””Tup (00, [ 1m0 1 5)) | 1O

To remove T, we compute ob;(p,) and obo(py).

obr(py) = Ufp(Az.min(co, max(ns + 1,z + 1)))
= Ifp(Az.max(ny + 1, min(z + 1, 00))
= lfp(Az.max(n2 + 1,00)) = o0

obo(py) = Up(Az. mm(O max(ng +1,241)))
= lfp(\z.0) =

So, py and p. are: 11p.(09, |19+ p) and (12 p )| 10 . Since p, —
ps — -+ capr(ps) = m1 and capy(ps) = min(na,n3), rel(p1) is reduced to
the constraints 0 < min(n9,n3) and 0 < n; (which are tautologies). On the other

hand, p. can be reduced to U, = 1(max(mst1mt) 5 or U, = O+ | U;. So
rel(p.) can be reduced to

0br(p.) < capo(pz)  obo(p:) < cap;(p-)
obr(Ui) < capo(Us)  obo(Us) < capy(U;) (i = 1,2),

from which we obtain s + 1 < 15 and co < n4. (We have omitted tautology). So,
the remaining constraints are;

0o < g n3+1 <15 00 <1y
HCJ, I CIF(ns = oo,L,H)

The least solution for constraints on level varigblesis: 7, = 7, =
N3+ 1= 1,m74 = ng = oco. SO, we obtain the constraints {H C
which hold for 6, = H

Example 21 Let P bethe process:

(vz: (OB (vsecret : (bool™H) (A | C'|T() | secret (b))
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in Example 15 and I' be public: (bool“)¥/py, z: ()¥/ps. By computing
Tinf (I, L, P) and reducing constraints on types, we obtain the following con-
straints.

1,m5+1 1,m15+1
p1 < T(775+ N5+ )T(m5+ ms+ )17(7)10972

pa < IOS~T(U10+1’W10+1)024
ps < I%E)'O?]G ‘0977

ps <1 775—&-1,775—5-1)([28.029 &0) | T(n3+1,n3+1)1210.0211 |070712
ps < T('fls+1»7]5+1)((T(ﬁ8+177ls+1)00 & OO )‘Ir(]) )

713 MN14
relps)  rel(p)  rel(ps)
Cap,(p1) Cap,(p2) d=L= Capyl(ps)
N5 =00 =>HCL
ng=oc0o=HLCJ
ms=00=90CL
nmo=o0c=HCL
HCS

Here, p3, p4, ps are usages of channels secret, x, and ¢ respectively, and § is the
secrecy level of c.

By solving the subusage constraints, we obtain:
pL= Igax(n5+1’nl5+l).09]2
p2 = I‘L.Ogioﬂ
Ps = ]"5.07176 ‘0027 1 0 0
Pa = (IT7§+ '0779 & 0) |I777]fo+ '07711 |O7l12

_ (nHmax(ns+1,ms+1) ns+1Y | Ts+1
Ps = (07713 i & 07754 ) |I77]fs

Therefore, the constraints:

rel(p3)  rel(ps)  rel(ps)
Cap,(p1) Cap,(p2) 0=L= Cap,l(ps)

are reduced to:

oo < ng
N3+ 1 < nia 0o < M1 00 < g
N5 +1<m3 N5+ 1<y max(ns + 1,m5 + 1) < 15

o8 S M, 12,13, 74
IF(0 = L, 00,0) < n13,714, 715

By solving them, we obtain the following solution for level variables:

m=mN2="nN3="nN4 =176 =19 =M1 ="12=0X
s =n7=n8 =1n10=10
M3 = M4 = ms = max(1,IF(0 = L,0,0))

By substituting it for the constraints on secrecy levels, we obtain:

0=c0o=HCL

O0=c0o=HLC/

max(1,IF(§ =L,00,0)) =00 =0 C L
0=0c0=HCL

HC
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They are normalized to the following constraints:

H C IF(0 = oo, L, H)

H C IF(0 = oo, 5, H)

0 C IF (max(1,IF(6 = L, 00,0)) = 0o, L, H)
HCIF(0=o00,L,H)

HC/

The constraint is satisfied for 6 = H.

5.4 Implementation

We have implemented an information flow analyzer TyPi Cal , which is avail-
able from http://ww. kb. ecei . t ohoku. ac. j p/ “ koba/ typi cal /.
The implementation is mostly based on the algorithm described above, but there
are the following discrepancies between the above algorithm and the current im-
plementation of TyPi Cal .

— TyPi Cal alows no annotation on secrecy levels. TyPi Cal simply tries to
assign the level H to as many values as possible.

— TyPi Cal TyPiCad dlows no declaration on the environment.
TyPi Cal TyPiCal assumesthat all the free channels are low-level channels.

— TyPi Cal alows subtyping on base typesand pair type constructors (see Sec-
tion 6) to enhance the analysis.

— TyPi Cal usesasound but incomplete algorithm for the Petri net reachability
problem, so the current implementation is not complete with respect to the
type system described in this paper.

The first and second are just limitations of the current interface, not those of the
core of the implemented algorithm. The last one is inevitable as no complete,
efficient algorithm for the Petri net reachability problem is known. To obtain an
approximated solution for the Petri net reachability problem, we abstract a Petri
net into afinite state machine, and then solve the reachability problem for thefinite
state machine by using boolean decision diagrams. The detail will be described in
a separate technical report.

Figure 5 shows a sample input for TyPi Cal . The code is based on the bank
account example given in Example 7. The current balance (100) is kept in the
message bal ance! 100 on the second line. The last but two lines expresses the
client process given at the end of Example 7 (where we have removed the first
input fromy sothat y! wi t hdr awservesasan initializer for the shared variable).
Thelast two lines simulate high-level client processes which may access withdraw
and deposit methods an arbitrary number of times. The only free nameistransfer.
S0, low-level processes are assumed to access only through that name. Figure 6
shows a sample session for the sample code.® As the figure shows, TyPi Cal
outputs the code whose base values (booleans and integers) are annotated with
secrecy levels. Notethat the current balance (100) isannotated with/ * H* / , which

6 TyPi Cal can also perform other kinds of analyses; the option - i specifies that the infor-
mation flow analyzer should be invoked. We have modified indentations and line breaks of the
actual output for the clarity.



Type-Based Information Flow Analysis for the Pi-Calculus 39

new bal ance in new withdraw in new getBalance in newy in
bal ance! 100 |
*Withdraw?z. (I et amount=fst(z) inlet r = snd(z) in
bal ance?x.
i f x>=amount then (r!true | bal ance! (x-anount))
else (r!false | balancelx)) |
*get Bal ance?r. bal ance?x. (r!x | bal ance!x) |
*deposit?z. (let amount=fst(z) inlet r = snd(z) in
i f amount >=0
then bal ance?x. (r!true | bal ance! (x+anmount))
else rifalse) |
y!'withdraw | y?m(y!m| newr in m(21,r)) |
*(if true then (new r in getBalance!r) else O |
*(if true then (newr in withdraw (1,r)) else O

Fig. 5 A sampleinput for TyPi Cal : account.pi

% typical -i account. pi
TyPi Cal 1.0.2: A Type-based static analyzer for the Pi-...
anal yzi ng account.pi...
new bal ance in new withdraw i n new getBal ance in newy in
bal ance! 100/ *H*/ |
*withdraw?z. (I et anpbunt=fst(z) inlet r = snd(z) in
bal ance?x.
i f x>=zamount then (r!true/*H*/ | bal ance! (x-anount))
else (r!lfalse/*H/ | balancelx)) |
*get Bal ance?r. bal ance?x. (r!x | bal ance!x) |
*deposit?z. (l et amobunt=fst(z) inlet r = snd(z) in
i f anount>=0/*L*/
t hen bal ance?x. (r!true/*L*/ | bal ance! (x+anmount))
else r!falsel/*L*/) |
ylwithdraw | y?m(y!m| newr in m (1/*H/,r)) |
*(if true/*H/ then (new r in getBalance!r) else O
*(if true/*H/ then (newr in withdraw (1/*H/,r)) else O
El apsed Tinme: 0. 16sec

Fig. 6 The output of TyPi Cal for account.pi

means that the balance is kept secret to the environment, which can access the
account only through transfer.

Figure 7 shows an unsafe version of the account code. Here, the current bal-
ance is returned as the result of the transfer method. TyPi Cal annotates the
current balance 100 with / *L*/ for this example, which means that information
about the current balance may be leaked to the environment.

6 Discussions
In Section 3, we have imposed severa restrictions on the type system for the sake

of simplicity. In this section, we discuss those restrictions and how to remove
them.

Conditions on well-formed typesin Section 3.1, we have presented IN-IDEAL as
an ideal rule for input processes. Actually, however, we also need some subtle,
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new bal ance in new withdraw in new getBalance in newy in
bal ance! 100 |
*Withdraw?z. (I et amount=fst(z) inlet r = snd(z) in
bal ance?x.
i f x>=amount then (r!true | bal ance! (x-anount))
else (r!false | balancelx)) |
*get Bal ance?r. bal ance?x. (r!x | bal ance!x) |
*transfer?z.(let amount=fst(z) inlet r = snd(z) in
i f amount >=0
t hen bal ance?x. (r! (x+anount) | bal ance! (x+anount))
else r!0) |
*(if true then (new r in getBalance!r) else O |
*(if true then (newr in withdrawl (1,r)) else O

Fig. 7 An unsafe account

extra conditions, which are implicitly enforced by the conditions on well-formed
types (Definition 14): If = is a high-level channel and P is a low-level process,
x(y). P issafe only if the success of « is guaranteed by only communications on
high-level channels and if y is not used as alow-level valuein P. Indeed, without
the assumption about well-formed types, the typing rulesin Section 3 are unsound.
For example, consider the following process (which violates the first condition on
well-formed types):

(vz: (bool™)H)
(if secret then Z(true®) else z(false™)
| 2(y). non_secret{y))

It is well-typed under the type environment:
secret : bool™, non_secret : (bool™)/0%

if we remove the first condition on well-formed types, but it leaks the value of
secret.
Let us also consider the following process:

(v ()F) (vy: (int™)")

(if secret then Z() else 0

| y(true®) | =(). y(false")

|y(2). (Z() | non_secret({z)))
It iswell typed under the type environment:

secret : bool™, non_secret : (bool™)/O

if we remove the second condition on well-formed types. (Let the usage of y be
0§ | 0% | I9 and the usage of = be (O & 0) | I | OL,.) The process, however,
leaks information about secret, since false™ can be sent on non_secret only if
secret istrueH.

One way to remove the first condition on well-formed types would be to re-
placethe condition¢. = co = [; C Iy inrule T-IN with (¢, = coVSL(7) = L) =
1 C Iy, where SL(7T) is the least secrecy level annotation that appearsin 7. (We
have not yet checked whether this is a sufficient condition.) Then, in the first ex-
ample above, - must be low-level, so that if secret then Z(truel) else 7 (false™)
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isill-typed. The erasure function Er must be redefined, so that a high-level com-
munication is not erased if it carries low-level values.

The second condition on well-formed types can be removed by changing the
operation 1Tt *1 jn T-OuT and T-IN so that if the channel  islow-level, then
obligation levels of high-level channels are raised to co. Note that the problem of
the second example above was that the output on the high-level channel x on the
last line being executed depended on the input capability on the low-level channel

Y.

SubtypingOur type system does not allow subtyping based on secrecy levels (e.g.,
bool” £ bool™). Allowing the relation bool" < bool™ does not cause any
problem: we only need to redefine the erasure function Er(P), so that, for ex-
ample, true is also replaced by « if it is used as a value of type bool™. On
the other hand, introducing subtyping on channel typesistricky. In fact, allowing
(1)U < (7)H/U for an arbitrary U makes the type system unsound [27]. Honda
and Yoshida's type system [11] allows subtyping based on secrecy levels for cer-
tain kinds of channels. It is left for future work to find a general condition on U
for (7)L/U < (7)H/U to be valid.

Introducing subtyping based on input/output modes [25] does not cause any
problem and the type inference algorithm can be developed along the lines of
[12].

Other data structuresThe formalization in this paper deals with only booleans as
primitive values. We believethat it is straightforward to extend our analysisto ded
with other data structures such as integers, pairs, variants, and lists. Indeed, the
current implementation of TyPi Cal aready supports integers and pairs (recall
Section 5.4).

Encoding of functionsUnlike Honda and Yoshida's type system [11], there are
certain terms of the simply-typed A-calculus whose termination property can-
not be captured in our type system. (For example, our type system cannot
guarantee that the process obtained by the call-by-value encoding of let ¢ =
Af.f(1) in g(Ay.g(Az.2)), which calls g inside g, will eventually return aresult.)
To remove the limitation, we need to introduce some form of polymorphism on
capability/obligation levels. Alternatively, we can treat functions as primitives and
give typing rules for them directly.

Treatment of shared variablesAs discussed in Example 4, we can encode opera
tions on shared variables into communication primitives, but the resulting anal-
ysisis not precise enough. For example, consider the following command [10]:
if secret>0 then secret := non_secret. Since reading from the
non-secret variable non_secr et does not leak any information, the command
should be safe. However, its encoding into the 7-calculus performs communica-
tions on non-secret channels, so that it is judged to be unsafe. To overcome this
limitation, it seems necessary to take z(y). (Z{(y) | P) as a primitive, and give a
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special typing rule for it.” With such special treatment, we believe that our analy-
sisfor shared variables is comparable to other analyses [10, 11].

Timing leaksOur type system does not prevent leakage of secret information from
the timing behavior. To prevent such leakage, we can use the type system for
time-boundedness [14], which can statically guarantee that each communication
succeedsin acertain number of reduction steps. An alternative way to avoid timing
leaks would be to impose a restriction that programs must be confluent [36].

I1l-typed contextsln Section 4, we considered only well-typed contexts as ob-
servers (recall Definition 24). In practice, however, we may not be able to assume
that malicious processes respect types. To make the non-interference property hold
also in the presence of ill-typed processes, we need to extend our type system with
a special type for describing untyped values[1, 4, 15].

More precise analysis for dependencies between different channelsln the type sys-
tem presented in this paper, dependencies between different channels are con-
trolled only through capabilities/obligations, which is sometimes too restrictive.
As discussed elsawhere [14], we can extend our type system using the idea of
generic types [13] or graph types[34].

7 Related Work

We have already discussed previous studies on information flow analysis for con-
current programs in Section 1. We discuss some of them in more detail below.
Mantel and Sabelfeld [29] have also proposed atype-based information flow anal-
ysis for amulti-threaded language with communication primitives. Their analysis
suffers from the same problem as Pottier’s type system [27] discussed in Sec-
tion 1. To improve the expressive power, they instead introduced encrypted chan-
nels (in addition to high-level/low-level channels) and more communication prim-
itives (such as a primitive for non-blocking receive). Such a solution is orthogonal
to our approach, so that we can combine them to obtain a more expressive secure
concurrent language. Hennessy and Riely [8, 9] have also studied a type system
for the asynchronous w-calculus. Their type system also suffers from the same
problem as Pottier’s one.

The idea of refining secrecy analysis based on information about the suc-
cess of synchronization seems to go back to the idea of linear continuations of
Zdancewic and Myers for a sequentia language with continuations [35]. Along
that line of work, Zdancewic and Myers [36] have recently proposed a type sys-
tem for a concurrent language having (a restricted form) of join-patterns [6] as
synchronization primitives. To overcome the problem discussed in Section 1,
their type system introduce linear (use-once) channels and control the tempo-
ral ordering on communications on linear channels (which are controlled in our

" Thisisagainst our goal to uniformly treat various concurrency primitives, but it isinevitable
since there is no way to distinguish between z(n). (T(n) | P) and z(n). (z(n + 1) | P) at the
type-level: Note that if x is a non-secret channel, the former does not leak any information in
the asynchronous 7r-calculus, while the |atter does.
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type system through capability/obligation levels) in a syntactic manner. It seems
fairly easy to encode their typed calculus into our typed cal culus (although exten-
sions with subtyping discussed in Section 6 are necessary). In fact, a join-pattern
let ¢1 (z1)] - - - |en(zn) > P in @ can be encoded into

(ver) - (vep) (xcr(@1). -+ en(@n). P Q)
and alinear join-pattern let ¢; (z1)| - - - |en(z,) —o P in @ can be encoded into

(ver) -+ (vey) (ar(x1). - en(@n). Pl Q)

On the other hand, it is not clear how to extend Zdancewic and Myers [36]’s type
system to encode our calculusinto their cal culus. For example, sincethe success of
communications is guaranteed only on linear channels, their type system cannot
deal with the example given in Section 1. Moreover, their type system impose
restrictionsthat linear channel s cannot be passed through linear channels, etc. (The
type system of Honda et al. [10] also imposes similar restrictions.)

Some of theideas found in Honda and Yoshida s work [11] (such as subtyping
on channel types discussed in the previous section) are missing in our type system,
so that our type system does not completely subsume their type system. It would
be interesting to study how the missing features can be integrated into our type
system.

Our type system has been obtained by simplifying and refining our previous
type system for lock-freedom [14]. The most important technical contribution with
respect to the previous work (besides the extension to deal with secrecy) is the
development of a sound and complete type inference algorithm (and refinement
of the type system to enable the type inference). The agorithm has been inspired
from our type inference algorithm for a deadlock-free w-calculus [18]. The latter
algorithm was, however, incomplete (see [18] for details). The completeness of
the type inference algorithm in this paper has been obtained by careful definitions
of the semantics of recursive usages: The key property of recursive usages is that
up.U isthe greatest usage that satisfiesp < U.

Our techniquefor proving non-interference using the erasure function has been
inspired from our recent work on type-based useless-code elimination for the -
calculus [15] and is probably also related with Pottier’s proof technique [27]. The
proof in the present paper is, however, more sophisticated since we need a lock-
freedom property to show the correspondence between P and Er - (P).

8 Conclusion

We have presented a type system for information flow analysis for the pi-calculus
and proved its soundness. Like recent type systems for information flow anal-
ysis [11, 36], our type system takes into account information that certain com-
munications eventually succeed. Thanks to the uniform treatment of communica-
tion/synchronization patterns, our type system can perform more precise anaysis
than previous type systems for certain communication/synchronization patterns
(like synchronization using locks). The uniform treatment also enabled devel op-
ment of a sound and complete type inference algorithm. The result on the sound
and compl ete type inference a gorithm also serves as a refinement of our previous
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work on deadlock/livelock-freedom [14, 18, 32] We have implented a prototype
analysistool TyPi Cal [16] based on the result described in this article.

Our type system in this paper can a so be used for program slicing and useless-
code elimination for concurrent programs, since both information flow analysis
and program slicing are instances of dependency analysis [2]. Our previous type
system for slicing and useless-code elimination for the w-calculus [15] did not
take the lock-freedom property into account, so that it was not so effective. We
can refine it by using the type system in the present paper.

Extending our type-based information flow analysis to deal with encryp-
tion/decryption primitives [3] is also interesting future work.
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A Proof of Theorem 1

Lemmall 1. IfU <U’,thenU < U’.

2.
3.

4.
5.

Ulo<U.

If 0b(U) = oo, thenU < 0.

Itt, < ob(Uz) andt. < ob(Us), then ale.Uy | Us < ale.(Uy |Us).
If 0b(U) = oo, thenU’ |U < U’ for any U”.
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6. Ift, < t,andt. < t., thenale.U < o'?.U holds.
7. 1fU, < [p+— U1]U, thenUy < pp.U.
8. T(il,tz)U < U.

Before proving the above lemma, we introduce an “ up-to” technique which is often used for
proving simulation/bisimulation of processes.

Lemma12 Let R be a binary relation on usages. If the following conditions are satisfied for
every pair (U1,Usz) € R, R C<.

1. [p— UiJUR[p — Us]U for any usage U such that 'V (U) = {p}.

2. If Uy — Us, thenthereexists U; suchthat Uy — Uj andU; < R < Us.

3. Foreacha € {I,0}, cap,(U1) < cap,(U2) holds.

4. For each o € {I, 0}, if cong(U1), then 0b (Ur) > 0ba (Uz).

Proof It suffices to show that RU < R < satisfies the four conditions in Definition 11. We
only show the second condition, as the other conditions are trivial.

Suppose that (U1,U2) €< R < and Uz — Us. Then there exists Us and U, such
that Uy < UsRU; < Us. By the definition of <, there exists U, such that U; < Uj and
U, — U}. By the condition on R, there exists U3 suchthat U < R < Uj and Uz — Usj.
Again by the definition of <, we have U7 suchthat U; < Uj; and U; — Uj. Therefore, we
have U] << R << Uj. Since < istransitive, U; < R < U, holds as required.

We now prove Lemma 11.

Proof of Lemma 11 We show only the seventh law, asit is most complex and important. The
other laws can be proved in a similar manner. The fifth law follows from the first and second
lawsby: U’ |U <U'|0 < U".

Suppose U1 < [p+ U1]U and let R be {([p == U1]Uo, [p" = pp.UU0) | {p'} =
FV (Uop)}. It suffices to show that R satisfies the conditions of Lemma 12. The first condition
istrivial.

To show the second condition, suppose that [p" +— up.U]Uy — U’. We show that there

existsU" suchthat [p' — U1|Uy — U” andU"” < R < U’ by induction on the number n of
applications of the expansionrule up.U < [p — up.U]U before the reduction in the derivation
of [p) — up.UJUy — U’.If n. = 0 (i.e., up.U is never expanded before the reduction), then
there exists Uy such that [p" — pp.U)Uy < U’ (which aso implies [p" — pup.UJU; < U’
by the first law of Lemma 11.) and Uy — Uy. Therefore, U = [p’ — U1]Uj, satisfies the
required conditions. If n = k+1, thenthereexistsUj suchthat [p’ — pp.U)Us < Uy — U’,
where the expansion rule is used k times before the reduction in U, — U’ and Uy, is obtained
from by replacing one occurrence of pp.U in [p" — pp.UUy with [p — up.U|U. Let UY
be the usage obtained from [p’ — U1]Up by replacing the corresponding occurrence of Uy
with [p — U;]U. By the induction hypothesis, there exists U""’ such that Uy’ — U’ and
U"” < R < U'. Moreover, by the condition U < [p — U1]U, we have [p’ — U1]Up <
Uy . So, by the condition [p — Ui|Uy < Uy and Uy — U"’, there exists U” such that
[ — U1|Uy — U" and U" < U"'. Therefore, we obtain U’ < U < R < U’ as
required.
™ The fourth condition follows from the fact that ob. (up.U) is the least fixed-point for
Az.0b2 7% (U) and oba (Ur) > 0b5™ "> WD (1), which implies ob (U1) > oba (up.U).
(This is the very reason why we defined the obligation level of a recursive usage as the least
fixed-point.)

Similar observation for the capability level yields the third condition cap,(U1) <
cap,(pp.U). O

Lemmal3 If I' < I"and I" — A’, thenthereexists A suchthat " — Aand A < A'.

Proof By the definition of the subusage réelation, if U < U’ and U’ — V’, then there exists
Vsuchthat U — V and V < V'. So, the lemma follows immediately. O
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Lemmal14 If rel(U) and U — U’, then rel(U’). If rel(U) and U < U’, then rel(U").

Proof Thefirst property followsimmediately from the definition of rel. The second one follows
immediately from Lemma 2. O

Asacorollary of the above lemma, we obtain the following property.

Lemmal5 If rel(I") and I' —*< A, then rel(A).

Proof Thisfollowsimmediately from Lemma 14. O

Lemmal6 If Iz:7H; Pandz & FV(P),then ob(7) = ccand I" ; P.
Proof Straightforward induction on derivationof I,z : 7 F; P. O
Lemmal7 If ' Pand P < Q,then ", Q.

Proof The proof proceeds by induction on derivation of P < . We show only main cases.
The other cases are trivial.

— Casefor S-NEw: There are two cases to consider.
— Casewhere P = (vz: &) Py | Poand Q = (vx: &) (P1 | P2): Suppose ' +; P. Then
thereexist I';, I'», and U such that:
Fl,x:f/U |_l P1
Ik Py
Ir<n|oy
rel(U)
We can assume without loss of generality that ©+ ¢ dom(I2). So, we have
(1] 1I32),2:£/U F P1| Pa, fromwhich I" ; @ follows.
— Casewhere P = (vx: &) (P1 | P2) and Q = (vz:§) Py | P2: Suppose I' ; P. Then
thereexist I'1, I'>, and U such that:
Ik P
Iok Py
I < (I | I2)\{«}
rel((I' [ I2)(x))
If x & dom(I%), then the result follows immediately. If I> = £/Us, then by
Lemmal16, I:\{z} F; P, and 0b(U2) = co. So, by Lemma 11, we can apply T-SuB
tol1 F; Prandobtan Iy |z:£/Us b Pi. By using T-NEw, T-PAR, and T-Sus, we
obtain I" F; () asrequired.
— Casefor S-IFT: Inthiscase, P = if true’ then Qelse Q. I -, Q followsimmediately
from the typing rules.
— Casefor S-REP: Inthiscase, P = «P; and Q = Py | Pi. If I' i; P, then there exists
Insuchthat It H; Pyand I < «I7%.Since I’ < I < «[7 | [, weobtan I" H; Q by
using T-REP, T-PAR, and T-SuB.

Lemmal8 If I' < A and [z +— v]I" iswell defined, then [x — v] A is also well defined and
[ — ]I < [z — v]A holds.

Proof [z +— v]A is well defined since for every y € dom(A), A(y) ~ I'(y) holds.
[z +— ] < [z + v]A follows from the fact that Uy < U7 and Us < Us imply Uy | Uz <
Ui | Us.

Lemma 19 (substitution lemma) If I',x:7 +; P and [z +— v]I" is well defined, then
[z +— v][" [z — v]P holds.

Proof This follows by induction on the structure of P. We show only the case where P is an
output process. The other cases are similar or trivial.
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Suppose P = g{w) P;. Then, the following conditions must hold:

ILy: (@)U by Py
IC T,
o' <1o
te=00=1; Cls
<

I < 0 (1 @257 |y 6)" 08U

From the last condition and Lemma 18, it follows that [z — v | [z — vy : (G)/U is
well defined. So, by the induction hypothesis, we have [z +— ]I | [z +— v]y: (3)1/U Iy,
[z +— v]Pr.

We perform case analysison [z — v]y. If [zt — v]y = v (i.e, y = z ory = v), thenv
must be avariable. We can assumewithout loss of generality that [z — v] I = I}, v: (5)"1/U’

(since we can add the binding z : (5)'*/0 or v: (5)'*/0 if v & [z +— v]I}). By using T-OUT,
we obtain:

et (| @' :5) vz (6)"/OF,.(U' |U) by [ v]P
where w’ = [z +— v]w. Weobtain [z +— v]I" b, [z — v]P by using T-SuB, since

o= 0l < fo o100 | 35 2 6)1OF, )
< UL (Y | 55) v 311 DT 08,.0)
< et (I 13 [v: G080 U)

The last relation is obtained by ettty 100 U < O .(1tetbtet Dy |U) <
Of .(U'|U), using Lemma 11.

If x—vly # v (e, y # x and y # wv, which dso imply [z — o]y =
y), we have [z v]l,y:(3)"1/U ki, [z~ v]Pi. By applying T-OuT, we obtain
pletbtet ) (g s o] | @ :6) |y: (6)1/0F. .U Fiy &+ v]P where @’ = [z — v]w.
By using T-SuB, we get [z — v]I" F; [z — v]P asrequired.

Proof of Theorem 1 The proof proceeds by induction on derivation of P — Q, with case
analysison the last rule used.
— Casefor R-CoMm: Inthiscase, P = T(v). P1 | z(y). P2 and Q = P | [y — ¥]P». By the
typing rules, it must be the case that:

F1,£B:<7A:>l1/U1 "l P1

FQ,CL’ : <?>l2/U2,§:? F[ P2

<17

< (@A p o7 |z (7108, .Uh)
| (pUt Bt 0 (7) 2/ 15, Us)

IC 1,

By the substitution lemma (Lemma 19), we have:

(I, (7)2/Us) |0:7 by [§ — )P

So, A" F; Q holds for A = (I |5:7 |z : (TY1/UL) | (I, = : (T)'2/Us). Moreover,
weobtain I' < (I |0:7 |x: (7)1/OF, .Ur) | (Ie, @ : (7)'2/1),.U2) — A’ by using
Lemma 11. By Lemma 13, there exists A such that ' — A and A < A’. So, we have
Ak Qand ' — A asrequired.

— Casefor R-PaR: Inthiscase, P = P | P> and Q = Q1| P> with PP — Q. By the
typing rules, there exist Iy and > such that I; -, P; and I < I'1 | I'». By theinduction
hypothesis, there exists Ay suchthat I't — Aj or Ay = I'h. Let A’ = Ay | I, Then,
A"+ Q,andeither I'y | Th — A’ or A’ = I'y | I, holds. In the latter case, the required
result holdsfor A = I'. In the former case, by Lemma 13, there exists A such that I" —
Aand A < A’. By using T-SuB, we obtain A ; Q as required.
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— Casefor R-NEwW: Inthiscase, P = (vz: &) Py and Q = (vz:§) Q1 with PL — Q.
By the typing rules, I,z : £/U +; Py with rel(U). By the induction hypothesis, either
Iz:£/U +; Q1 holds, or there exists A and U’ such that A, z:£/U’ + Q1 and
Iz:£/U — A,z:£/U' Intheformer case, A = I' satisfies the required condition. In
the latter case, by Lemma 14, rel(U’) holds, so that we can obtain A ; Q asrequired.

— Casefor R-SP: Thisfollowsimmediately from Lemma 17 and the induction hypothesis.

O

B Proof of Theorem 4

This section gives a proof of Theorem 4, which states that the erasure function preserves barbed
bisimilarity. We first introduce miscellaneous definitions needed for proving theorems in Sec-
tion B.1, and prove some basic properties about the reduction relation and the erasure functionin
Section B.2. We then show, in Section B.3, a key theorem about the lock-freedom (Theorem 5),
which states that any communication with afinite-level capability will eventually succeed. Using
the theorem, we show that aprocess P anditserasure Er - (P) simulate each other (SectionsB.4
and B.5), which proves Theorem 4 (Section B.6).

B.1 Miscellaneous definitions

We first define the relation ~ on types, Intuitively, 7 ~ 7" holds when 7 and 7" are identical
except for their outermost usages.

Definition 26 Therelation T ~ 7’ isthe least equivalence relation satisfying the rules: unit ~
unit, bool’ ~ bool' and (71, ..., 7.)/U ~ (71,...,1,)/U’ forl € {H,L}. Therelation
~ is extended to a relation on type environments by: I ~ I'" if and only if dom(I") =
dom(I") and I'(z) ~ I''(x) for every = € dom/(I").

Definition 27 ob (7) is defined by:

0be (unit) = ob,(bool') = co
0ba(§/U) = 0ba(U)
Definition 28 (size of process) The size of aprocess P, written #(P), is defined by:

#(0) =0

#(T0). P) = #(x(y). P) = #(P) + 1

#(xP) = #((ve:£) P) = #(P) + 1

#(P| Q) = #(if v then P else Q) = #(P) + #(Q) + 1

Definition 29 (strong barbs) The strong barbs of P, written SBarbs(P), is defined by:

SBarbs(P) = {7 | P < (vy) (7(v). Q| R), = & {y}}
Wz | P 2 (vy) (2(2). Q| R),x & {y}}

For the sake of technical convenience, we sometimes assume that each input/output process
is annotated with its security level and capability level:

P u=mv,. .o Pl a(ys,. .., yn)" P |-

The typing rules for annotated input/output processes are given as follows.

Dz (HYWUR, P 1Ch,ls te=cc=LCl
pletbletD (D |5:17) |21 (7)'1/OL .U b &v) 1t P

(T-OuT’)
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D (YU y: T, P 1Tl te=oco=1i Clo
pletbtet VP o (FY/I) U by a(g)ole. P

(T-IN")

The only change from T-OuT and T-IN is that the processes are annotated with a security level
and a capability level. Given a type derivation tree of an unannotated process term, we can
always recover annotations based on the above rules.

We aso annotate the reduction relation with a security level. Intuitively, P— ;) means
that P isreduced to (Q by communication on a channel whose security level is!.

Definition 30 Therelation —; is defined by:

)" Pla@m)?. Qq—P | [j — 1]Q (R-Com)
P‘UQ
7P\R—>1Q|R (R-PAR)
P—>1Q
(vx: &) P—i(vz:€)Q (R-NEW)
Py Ll =@ (R-SPCONG)

Notethat if aprocess P iswell-typed, P — @ holdsif and only if P—;@Q holds for some.
We refine the definition of contexts, so that a hole is annotated with a substitution and a set
of variables. The substitution is applied when a processis put into the hole.

Definition 31 (extended contexts) The set of extended contextsis given by:

C = ]o,s | f<1~1>l’t. C| x(ﬁ)“.(]

[(P|C)[(C|P)|*C | (va:€)C

| if v then C else P | if v then P else C'
Here, 6 ranges over the set of substitutions, and S ranges over the powerset of variables. If the
hole in the context C'is []s,5 and FV(P) C S, C[P)] is the process obtained by replacing
Hg’s with 0 P.

We extend therelations < and —; on processesto relations on contexts by defining F'V ([ ]o,s)
tobe S = {0z | * € S} N Var, and defining the substitution for the hole by:
01[]os,s = [Joyo00,,5 (Where 61 o 65 is the composition of substitutions). For example,
zw). Plz(y).-[lid,(yy — PIll—vi{yr Whereid is the identity substitution. Note that if
C—,C" and C[P] is well defined, then C[P]—;C’[P] holds. We aso define Er-(C') by
addingtheclause Err([o,s) = []gr,(0),s WhereErr([z1 = v1, ..., 20 = vn]) = [11 —
Err(vi),...,zn — Err(vy)].

We introduce two subsets of (extended) contexts: the set of finite-level contexts and the
set of evaluation contexts. A finite-level context is a context whose hole is guarded only by
input/output prefixes with finite capability levels. An evaluation context is a context whose hole
is not guarded by any input/output prefixes.

Definition 32 (finite-level context) The set of finite-level contextsis given by:

C == [lo.s | ZDH". C | z(G)H". C

[(P|C)[(C|P) | (vz:€)C

Here, n ranges over Nat.
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Definition 33 (depth of context, evaluation context) Let C' beafinitelevel context. The depth
of C, written depth(C'), is defined by:

depth([]o,s) = 0

depth(%v)". C') = depth(C) + 1

depth(z(y)". C) = depth(C) + 1

depth(P | C') = depth(C' | P) = depth((vz: &) C') = depth(C)

A finitelevel context whose depth is 0 is called an evaluation context.

A context with two holes is a term obtained from a process by replacing one sub-process
with []5") . and another sub-process with []§” s, . If C'is a context with two holes, we write
C[P1, P2] for the process obtained from C' by replacing [15)) s, and [152) 5. with 61 Py and

02 P respectively. Finite-level contexts with two holes and evaluation contexts with two holes
are defined in a similar manner.

Definition 34 Let C be an extended context. ext (I, C) isthe type environment defined by:

ext(I, [Jog) = I

ext (I, D). C) = ext(I, C)

ext(Ix(y)'. C) = eat((I,y:7),C) (if I'(x) = (7)/U)
ext(I, P|C) = ext(I',C | P) = ext(I,«C) = ext(I,C)
ext(I, (vz:£) C) = ext((L,2:£/0),C)

ext(I,if v then C else P) = ext(I,C)

ext(I,if v then P else C) = ext(I,C)

Intuitively, ext(I", C) is the type environment obtained by adding to I" bindings on the vari-
ables bound by C. Note that if the hole in C' is of the form []iq g, then Er(C[P]) =

Erp(C)[Era(P)] where A = ext(I,C). If C is a context with two holes, we write
ext™ (I, C) and ext® (I, C) for ext(I", C[[]o,s, 0]) and ext(I",C[0, []o.s]) respectively.

B.2 Basic Properties

Lenma20 If P — @, then P =< (vu)(@0).Pi|z(y). P|P;) and
(va) (P | [y — 0] P2 | P3) < Q for somew, z, v, P1, P2, Ps.

Proof Thisfollows by straightforward induction on derivation of P — Q. O
Lemma?2l If ' ~ A, then Err(P) = Era(P).
Proof Straightforward induction on the structure of P. O

Lemma22 If I'(v) ~ T
then ErVr ([z — v]v’) = [z — ErVr(v)|ErVrg. - (V).

Proof If * # ', then ErVr([z — v]v') = ErVp() = ErVrg..(v) =
[ — ErVr(v)]ErVrg. - (v). Suppose that = = o'. If High(7), then the result fol-
lows from ErVr(v) = ErVrz.-(z) = % Otherwise, ErVr..-(z) = . So, we have
ErVr([z — v]v') = ErVr(v) = [z — ErVr(v)]z = [z — ErVr(v)|ErVrg . - (x). O

Lemma23 If I'(v) ~ T,
then Erp([z — v]P) = [z — ErVp(v)]Erre. - (P).

Proof This follows by straightforward induction on the structure of P. We show only the case
for output processes. The other cases are similar or trivial.
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— Casewhere P isof theform {w). Q.

]

By the induction hypothesis, Err ([z — v]Q) = [z — ErVr(v)]Err.. -(Q). Note that
I'([z— v]y) ~ @0 if and only if (I',z:7)(y) ~ (7)%/0. So, if I'([z — v]y) #
(5)%/0, then the result follows from the following equations.

Err([z — v]P)
= Err([z — v]|Q)

[ — ErVr(v)]|Err..-(Q)
[:1’ — EI’VF (U)]EI‘F”—C . T(P)
Suppose that I'([z — v]y) ~ (7)%/0. Lety’ = [z +— v]y. Then, ¥/ = ErVr(y') =
z+— ErVr(W)|ErVre.-(y) = [z — ErVp(v)]y. (The second equality follows from
Lemma 22.) Thus, the result follows from the following equations.

Erp([z — v]P)

= y(ErVr([z — v]ﬁ)).Erp([xNH v]Q)
= y{[z — ErVr(v)]ErVrg. - (0)).

[t — ErVr(v)|Errz.-(Q)
= [Z’ — EI’VF(U)]EI‘FW—C . T(P)

Lemma24 If High(I'(z)), thenx & Erp(P).

Proof Straightforward induction on the structure of P. O

B.3 Lock-freedom Property

In this subsection, we show that input/output actions whose capability levels are finite succeed
eventualy.

We define 2 by: 2’ = z and z© = Z.

Lemma 25 Suppose that the following conditions hold.

1
2.
3.
4.

re P
AR Q
0bo(I'(z)) € Nat
rel(I"| A)

Then there exists R suchthat P | Q— 3 R and 2% € SBarbs(R).

Proof Let n be ob,(I'(x)). The proof proceeds by well-founded induction on (n, #(P)),
where the well-founded order is defined by (n,m) < (n’,m') <= (n < 7))V (n =
n' Am < m').Let U, bethe usage of type I"(x). Without loss of generality we assume below
that congz (U, ) holds; otherwise cap(U,) < n, from which we obtain 0b, (A(z)) < n using
the condition rel(I" | A). So, we can switch the role of P and @ and use induction hypothesis
to conclude P | @Q—¢; R and 2 € SBarbs(R) for some R.

We perform case analysison P. We will consider only the case for « = O below: The case

fora = I issimilar.

— Case P = 0: This case cannot happen.
— Case P = %v). P1. If y = x, then the result follows immediately. If y # x, then by the

rule T-OuT and T-WEAK, it must be the case that:

I,y (®YU Ry Py

7 <7

r< Dy |57,y (7)1/07.U

The third condition implies t < 0bo (11 (I |7:7") () < obo(I'(z)) = n
(which alsoimplies i1 = H by the well-formedness condition of types). Since rel(I"| A)
holds, Lemma 15 implies rel((1 4D (1 |7:77), y - (F)1/OP.U) | A), from which
we obtain rel((7)'1/0%.U | A(y)). So, it must be the case that ob;(A)(y) < t < n.
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By the induction hypothesis, it must be the case that Q—§; = (vu) (y(2). Q1] Q2).
By Lemma 17 and Theorem 1, A’ +; (v@) (y(2). Q1 | Q=) holds for some A’ such that
A —* A’. By thetyping rules, it must be the case that

ALy (DR V,Z2: 7, Qu
Agx ki Q2
A :e < (1T A gy (B ILV) | Ay

By the substitution lemma (Lemma 19), (A1, y: (D) V) |7:7 ki, [ — 7)Q1. So, we
have:

(I |07,y (O YU V) [ A1 As by Py [E - 3]Q1 | Q2

Moreover, rel(I"| A) and Lemma 14 imply rel((I't,y: (F)P/(U | V)) | A1 | As). The
condition I' < LD (1 |5:7), y: (F)1/OP.U implies obo (I |0:7)(x) <
0bo TNV |57 ) (@) < obo(I'(z)) = n, which implies either
()obo(I(z)) < n or (i)obo((¥:7)(x)) < n. In the former case, since
#P1 < #P holds, the induction hypothesis implies that there must exist R
such that P |[z+— v]Q1|Q2—uR and T € SBarbs(R). In the later case,
obo((v:7)(z)) < obo((@:7)(z)) < mn. So, by the induction hypothesis,
Py |[z— v]Q1|Qa—u * R with T € SBarbs(R). The required result follows,
since P | Qq—11(vi) (P | [ — Q1 | Q2).

— Casefor P = y(z). Pi: Similar to the above case.

— Casefor P = P | P>: Thereexist It and I suchthat I' < Iy | Iy and I; +; P;. By
Lemma 15, rel(I1 | I2 | A) holds. Since obo (I'(xz)) = n, either obo(I1(z)) < nor
obo(I2(x)) < n holds. In the former case, since #(P1) < #(P) holds, we can apply
induction hypothesisto obtain P | Q < P1 | (P2 | Q)—m * RwithZ € SBarbs(R). The
latter caseis similar.

— Casefor P = xP;: Thereexists Iy suchthat Iy b Py and I" < «I.Since” < I | T,
rel(I | (I'| A)) holds. So, by applying the induction hypothesis to P, we obtain R such
that P, | (P |Q)— 1R withZ € SBarbs(R). Therequired result follows, since P | Q =
P | (P|Q).

- Caﬁle(fo|r P = (vy:&) Pi: By the typing rules, we have I',y:£/U F; Pi. Since
rel(([,y:£/U)| Aand #(P1) < #(P) hold, we can apply induction hypothesis to ob-
tain R’ suchthat P, | Q—§; R and T € SBarbs(R'). Thus, the required result holds for
R=(vy:&)R.

— Casefor P = if bthen P else P,: By theassumption rel(I"), biseither true’ or false’ .
By thetyping rules, I" -; P; holds. So, by theinduction hypothesis, there exists R such that
P;|Q—fR and T € SBarbs(R). The required result follows, since P < P; fori = 1
or 2.

O

Theorem 5 Let C beafinite-level context. If I" -, C[P] and rel(I"), then C—§; E for some
evaluation context .

Proof The proof proceeds by induction on the depth of the holein C'. If the depth is 0, the result
follows immediately (since C isitself an evaluation context). If C'is of the form E [%(v) . C1],
then by Lemma 25, there exists R such that E[z(v). C1[P]]—1f1 R with z € Barbs(R). So,
E7[70). C1]— 11 E1[C1] for some evaluation context E7. By the induction hypothesis, there
exists F such that E1[C1]—1; E. Therefore, we have C— {5 E as required. The case where
C isof theform E1 [z(y). C1] issimilar. O

B.4 Simulation of P by Er(P)

In this section, we show that the behavior of P can be simulated by its erasure Er 1 (P).
Lemma26 If P < Q,thenErr(P) < Err(Q).
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Proof Thisfollows by straightforward induction on derivation of P < Q. The only non-trivia
isthe case where S-IFT or S-1FF isapplied.

— Case S-IFT: Inthis case, P = if trué’’ then Q else R. If I’ = L, then Er,(P) =
if true’’ then Err(Q) else Err(R), so that we have Er - (P) < Err(Q) asrequired.
If I’ = H, then Er(P) = 0. By the assumption I" I, if truet! then Q else R, it must
bethecasethat I" i Q. So, by Lemma4, wehave Er(P) = 0 < Erp(Q) asrequired.
— Case S-IFF: Similar to the case for R-1FT.

]

Lemma27 Suppose I' +; P. If P—uQ, then Erp(P) < Err(Q). If P—1Q,
EI‘F(P) — EI‘F(Q).

Proof Thisfollows by induction on derivation for P—, (Q with case analysis on the last rule
used.

— Case R-ComM: Inthiscase, P = H0) V. Py |z(@)V*2. P and Q = P | [§ — 7] Pa.
By the assumption I" +; P, I'(x) is of the form (7)!1/U. If 1 = L, then
Err(P) =Z0"). Erp(P1) | z(Y). Errg.7 (P2) wherev; = ErV., (v;). By Lenma23,
EI‘[‘([ﬂH mpg) = [gl—> ﬁl}EI‘F’g:;—(PQ). SO, we have EI‘[‘(P) — EI‘[‘(Q) asre-
quired.

If I = H, then EI‘F(P) = EI‘F(P1) |Erp7§;;(P2). EI‘F(Q) =
Err(P1) |Err([y — v]P2). By the condition on well-formed types, High(r;)
holds. By Lemmas 23 and 24, we have:

]‘Err([?j’—’ @11%)
=[y— ErVr(0)Errg.z(P2)
= Erpg.7(P2)

SO, EI‘F(P) = EI‘F(Q) holds.

— CaseR-PAR: Inthiscase, P = P | P and Q = Q1 | P> with P,—, Q1. By theassump-
tionI" ; P,theremust exist I'; suchthat Iy ; Py and I" ~ I'1. By theinduction hypoth-
ES.S, :EI‘[‘1 (Pl) — :EI‘F1 (Ql) holds if ll = L and ]E]I‘F1 (Pl) < :EI‘[‘1 (Ql) holds if
Iy, = H. So, ]531‘1“1 (P) — EI‘F1 (Q) holds if lh =L and EI‘[‘1 (P) =0 EI‘[‘1 (Q)
holds if Iy = H. Since I" ~ I3, Lemma 21 implies Erp, (P) = Erp(P) and
Err (Q) = Err(Q). Thus, we have the required result.

— Case R-NEw: Trivia by the induction hypothesis.

— Case R-SPCONG: Inthiscase, P < P', P'—,,Q’, and Q' < Q. By Lemma 26,
Err(P) < Erp(P') and Erp(Q') < Erp(Q) hold. By Lemma 17, I +; P’. So, by
the induction hypothesis, Err(P’) — Erp(Q’) holdsif 1 = L, and Err(P’) =o
Err(Q') holds if Iy = H. Therefore, Err(P) — Err(Q) holdsif I; = L and
Err(P) =o Erp(Q) holdsif ; = H.

]

Lemma28 If I' is a low-level type environment and I +; P, then SBarbs(P) C
SBarbs(Er(P)).

Proof Suppose that T € SBarbs(P). Then, P < (vy) (Zv). Q| R) with z ¢ {y}. By
Lemma 26, Err(P) < Err((vy) (mv).Q | R)) By the assumptions that I" is a low-level
type environment and that I" -; P, I'(z) isof the form (7)™/U. So, Err ((v7) (F?). Q| R))
isof theform (v7') (W2'). Q' | R'). ThusT € SBarbs(Er(P)) holds as required. Similarly,
x € SBarbs(P) impliesz € SBarbs(Er(P)). O

B.5 Simulation of Er(P) by P

In this subsection, we show that the behavior of Err(P) can be simulated by the origina
process P.
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Lemma 29 Supposethat rel(I") and I' +; Q hold. If P, < P{ and P | P> < Erp(Q), then
there exists Q' suchthat Q —*< Q" and P{ | P> < Err(Q’).

Proof The proof proceeds by induction on derivation of P; < P; with case analysis on the last
rule used.

— Casefor therule for reflexivity: Since P; = P, theresult followsfor Q' = Q.
— Casefor therulefor transitivity: Inthiscase, P, < P;’ < Pj. By theinduction hypothesis,

]

there exists Q" such that Q —*=< Q" and P{' | P, < Err(Q"). By Theorem 1 and
Lemmas 14 and 17, there exists I'” such that I'"" ; Q" and rel(I"") holds. By the induc-
tion hypothesis, there exists @’ such that Q" —*=< Q" and P{ | P> X Er/(Q’). By
Lemma?2l, wehave P| | P, < Erp(Q') asrequired.

Casesfor S-ZERO1, S-ZERO2, S-ZER03, S-COMMUT, S-Assoc, S-NEWw, and S-SWAP;
Trivid. (Let Q' = Q.)

Case for S-IFT: In thiscase, P; = if true“ then P{ else R. If P, | P> < Err(Q)
has been derived from P; < Pj, then Q' = @ satisfies the required condition. Otherwise,
Err(Q) = E[P1] and []pv(p,) | P2 < E for some evaluation context E. So, by the defi-
nition of Er, Q = C[if true“ then Q, else Q-] for some finite-level context C' and Q:
such that Er(C) = E, Era(Q:) = P{, and Era(Q:) = R where A = ext(I',C).
By Theorem 5, C—; E’ for some evaluation context F’. Let Q' = E’[Q1]. Then,

Q = CJif true® then Q; else Q-]
—; E'[if true™ then Q, else Q3]
= EQ]

/

Moreover, by Lemma 27, Err(C[Q1]) =< Err(E’'[Q1]) = Err(Q’) holds, which im-
plies P/ | P, < E[P]] = Err(C[Q1]) < Err(Q").

Casefor S-1FF: Similar to the case for S-IFT.

Case for S-ReP: Inthiscase, P1 = P and P = *Pyq | Pi1. If P | P < Erp(Q)
has been derived from xPi; < xPi1 | P11, then Q' = Q satisfies the required con-
dition. Otherwise, Err(Q) = E[P1] ad [|rv(p,) | P> = E for some evaluation
context E. So, Q@ = C[xQ1] for some context context C' and process )1, such that
EI‘F(C) = F and EI‘A(Ql) = Py for A = €$t(F,C). If Piin = 0, then
Q' = @ satisfies the required condition. Otherwise, by the definition of Er, C is a
finite-level context. By Theorem 5, C—};E’ holds for some evaluation context E’.
Let Q" = E'[xQ1|Q1]. Then, Q = C[xQ1] —*= E'[xQ1] < Q'. Moreover, by
Lemma 27, Err(C[xQ1 | Q1]) = Err(E'[*Q1]Q1]) = Err(Q") holds, which im-
Casefor S-PAR: Inthiscase, Py = P11 | P12 and P{ = P{; | P1> with P11 < P{;.Bythe
assumption P | P> = Erp(Q), we have Pi1 | (P12 | P2) =< Err(Q). By theinduction
hypothesis, there exists Q’ such that Q —*=< Q' and Py, | (P12 | P2) =< Err(Q’). The
required result follows, since P{ | P> < P{; | (P12 | P») <X Erpr(Q').

Case for S-CNEw: Inthiscase, P = (vx: &) Pip and P{ = (vz:€) P{; with Piy <
P{;. Let Q1 be a process obtained by removing the prefix (vz:€) from Q. Then, we
have P11 | P> < Err,.¢/0(Q1). By theinduction hypothesis, there exists Q' such that
Q1 — "= Q1adPjy | P> X Err,.¢/0(Q1). Let Q" = (vz: &) Q1. Then, we have
Q —*<X Q" and P; | P, <= Erp(Q") asrequired.

Corollary 2 Suppose rel(I") and I' +; Q. If P < Err(Q) and P < P, then there exists Q'
suchthat @ —* Q" and P’ < Err(Q").

Proof Let P, = P, Pl = P’,and P, = 0 in Lemma 29. Then, there exists Q' such
that Q —*=< Q" and P'|0 =< Err(Q'). From the second condition and S-ZERO1,
P’ <X Erp(Q') follows. O
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We write — ™ for the transitive closure of —.

Lemma 30 Suppose rel(I")and I" ; P.1f P’ < Erp(P) and P’ — Q’, then there exists
Qsuchthat P —* Qand Q' < Err(Q).

Proof By Lemma 20, we have P’ = (vu) (D). P |z(y). P3| P3) and
(vu) (Pl | [y~ 0]P3 | P3) < Q' for some Py, Py, P3. By Corollary 2, there exists R such
that P —*=< Rand (va) (H0"). P{ | z(y). Py | P3) <X Err(R). S0, Err(R) isof theform

E[Z©'). P{,z(7). P3] with (ua)([}fé?sl | []%352 | P}) < E where S, = FV(T(0'). P{)

and So = FV(x(3). P}). By the definition of Er, R = C[%(D). Py, z(5). P2 for afinite
level context C' with two holes such that Er-(C) = E with Era, (%0). P1) = ®v'). P{
and Era, (2(7). P2) = (). P5 where A; = ext™ (I, C). By Lemma 5, there exists an
evaluation context £ with two holes such that C —* E’. Let Q" = E'[Py, [y — 0] P].
Then R —™ Q" holds. Moreover, (v) (P] | [y — ¥'|Ps | P3) = E[P{,[j— v'|P}] =
EI‘F(C[Pl, [g*—> i)_]PQD j EI‘F(E/[Pl, [g»-» i)J]PQD = EI'F(QH). By CoroIIary 2 and
(va) (P{| [y — 0]P3 | P3) =X Q', thereexists Q such that Q' < Err(Q) and Q" —*=< Q.
Moreover, wehave P —*< R —*1 Q" —*=< Q, whichimpliesP —™ Q. O

Lemma3l If rel(I") and I" +; P, then SBarbs(Er(P)) C Barbs(P).

Proof Supposez € Barbs(Er,(P)). Then, Err(P) = E[z(?') Pi] for some evaluation
context E. By the definition of Er, P = C[z(v) P ] for somefinite-level context C' and process
Py. By Theorem 5, C —* E’ for some finite-level context. So, P —* E’[Z(v) P1], which
impliesT € Barbs(P). O

B.6 Proof of Theorem 4

Proof of Theorem 4 Let R bethe set:
{(P,Q)| I'+ Pand Q < Erp(P) for somelow-level, reliable I'}.

We show that R isabarbed bisimulation. Suppose (P, Q) € R,i.e, '+ Pand@ < Err(P)
for some low-level, reliable I". We check the three conditions of Definition 22.

— If P — P’, by Theorem 1, there exists A such that I' —* A and A +; P’. Moreover,
by Lemma 27, either Erp(P) < Erp(P’') or Erp(P) — Erp(P’) holds. In the
former casg, let Q' be Q. Then, Q" < Err(P) X Err(P') = Era(P’). In the latter
case, let Q' beErr(P')(= Era(P)).Q —* Q" and (P’,Q’) € R holdin either case.

- 1fQ — @', by Lemma30, there exists P’ suchthat P —* P’ and Q' < Err(P’). By
Theorem 1, there exists A suchthat I' —* Aand A +; P’. By Lenma2l, Erp(P’) =
Era(P'). Therefore, we have (P, Q") € R asrequired.

— Suppose that y € Barbs(P). Then there exists P’ such that P —* P’ and x €

SBarbs(P’). By the first condition of barbed bisimulation, there exists Q' such that
Q —* Q adQ’ = Err(P'). By Lemma?28, x € Barbs(Err(P’)) = SBarbs(Q’).
So, x € Barbs(Q) holds.
On the other hand, suppose that x € Barbs(Q) holds. Then there exists Q" such that
Q —* Q" and x € Barbs(Q'). By the second condition of barbed bisimulation, there
exists P’ suchthat P —* P’ and Q' < Erp(P’). By Lemma3l, x € Barbs(P’). So,
we have x € Barbs(P) asrequired. O



