
Acta Informatica manuscript No.
(will be inserted by the editor)

Naoki Kobayashi

Type-Based Information Flow Analysis for
the Pi-Calculus

Received: date / Revised: date

Abstract We propose a new type system for information flow analysis for the
π-calculus. As demonstrated by recent studies, information about whether each
communication succeeds is important for precise information flow analysis for
concurrent programs. By collecting such information using ideas of our previ-
ous type systems for deadlock/livelock-freedom, our type system can perform
more precise analysis for certain communication/synchronization patterns (like
synchronization using locks) than previous type systems. Our type system treats
a wide range of communication/synchronization primitives in a uniform manner,
which enabled development of a clear proof of type soundness and a sound and
complete type inference algorithm.

Keywords type system – information flow analysis – pi-calculus – secrecy

1 Introduction

Information flow analysis is a static program analysis to check that a program does
not leak information about secret data. Since Denning and Denning’s work [5], in-
formation flow analysis has been studied for various programming languages, in-
cluding imperative languages [5, 33], functional languages [7, 28], low-level lan-
guages [19, 35], and concurrent languages [10, 11, 27, 29, 31, 36].

Previous information flow analyses (especially, automated ones) for concur-
rent languages have not been quite satisfactory. Some of them [31] have shared
memory primitives as only the communication/synchronization primitives. Al-
though synchronization primitives can be expressed in terms of shared memory

Send offprint requests to: Naoki Kobayashi

N. Kobayashi
Graduate School of Information Sciences, Tohoku University, 6-3-9 Aoba, Aramaki, Aoba-ku,
Sendai-shi, Miyagi 980-8579, Japan
E-mail: koba@ecei.tohoku.ac.jp

2 Naoki Kobayashi

primitives by using, for example, Peterson’s algorithm, the resulting type-based
information flow analysis for such encoding is not precise enough. Honda and
Yoshida [10, 11], Pottier [27], Hennessy and Riely [8, 9], and Zdancewic and My-
ers [36] studied information flow analysis for the π-calculus and similar calculi,
so that various communication/synchronization primitives can be dealt with in a
uniform manner. Pottier’s type system [27] and Hennessy and Riely [8, 9] are,
however, not expressive enough: Let us consider a process x(). P , which waits
to receive a null tuple on channel x and then behaves like P . In Pottier’s type
system, if x is a secret (high-level) channel (a channel such that the communi-
cation behavior on it is kept secret; the precise meaning becomes clearer later in
the paper), then P can communicate via only secret channels (since if P performs
communication on non-secret channels, it may reveal information that someone
has sent a message on the secret channel x). So, once a process performs commu-
nication or synchronization on a secret channel, it can no longer perform commu-
nication on non-secret channels, which is too restrictive. Honda and Yoshida [11]
and Zdancewic and Myers [36] overcome this problem by allowing P to commu-
nicate via non-secret channels if the input on x always succeeds. For that purpose,
they introduced special kinds of communication channels, and constructed type
systems guaranteeing that communications on such channels always succeed, so
that x(). P is allowed as long as x is such a channel, even if x is secret and P com-
municates through non-secret channels. A problem of those type systems [11, 36]
is, however, that they can deal with only specific kinds of channels (such as lin-
ear channels). For example, they cannot properly deal with processes using locks.
Another problem of Honda and Yoshida’s type system [11] is that there seems to
be no reasonable type inference algorithm (which works as an algorithm for infor-
mation flow analysis) for their type system: Since they introduce a separate typing
rule for each kind of channel, a programmer at least needs to explicitly declare the
kind of each channel to enable type inference.

In this paper, we propose a type system for information flow analysis for the
π-calculus, which relaxes the above-mentioned limitations of information flow
analyses for concurrent languages. As indicated above, to enable precise anal-
ysis of information flow for concurrent languages, it is important to analyze
whether each communication/synchronization succeeds or not. While the previ-
ous work [11, 36] introduces specific kinds of channels to enable that analysis, our
type system can treat general usage patterns of communication channels, using the
ideas of our previous type system for lock-freedom [14]. One of the key ideas is
to extend channel types with channel usages, which express how each channel is
used for input/output and whether each input/output is guaranteed to succeed. Our
type system can deal with various communication/synchronization patterns in a
uniform manner, such as the cobegin/coend-style synchronization, locks (binary
semaphores), and communications through linear channels [17]. Such uniform
treatment of communication patterns also leads to a clear proof of the soundness
of the type system. More detailed technical comparisons with previous work is
found in Section 7.

The second main contribution of the present paper is the development of a
sound and complete type inference algorithm (which works as an automatic al-
gorithm for information flow analysis) for our type system for information flow
analysis. As mentioned above, the type system in the present paper borrows ideas

Type-Based Information Flow Analysis for the Pi-Calculus 3

from our previous type system for lock-freedom [14]. There was, however, no
type inference algorithm for the latter type system. Following our previous work
on type inference for a type system for deadlock-freedom [18] (which guaran-
tees a weaker property that certain communications eventually succeed unless the
whole process diverges), we extend channel usages of the previous type system
[14] with recursion and choice operators. The previous type inference algorithm
for deadlock-freedom [14] was sound but incomplete. Since the type system in
the present paper and its (sound and complete) type inference algorithm can also
be easily modified to obtain type systems and inference algorithms for deadlock-
freedom and lock-freedom, the present work can also be considered a refinement
of the previous work on deadlock-freedom and lock-freedom [14, 18]. Indeed, we
have already implemented a tool that can automatically analyze lock-freedom,
deadlock-freedom, and information flow for π-calculus processes, based on the
algorithm described in this paper [16].

The rest of this article is structured as follows. Section 2 introduces the tar-
get language of our type-based information flow analysis. Section 3 presents our
type system for information flow analysis, and Section 4 proves its soundness.
Section 5 describes a type inference algorithm. In this article, we make several
restrictions that are not present in the previous type systems for information flow
analysis, so that our type system does not completely subsume the previous type
systems (Honda and Yoshida’s type system [11], in particular). Some of the re-
strictions are imposed just to clarify the essence (e.g., absence of subtyping on
values) while others seem essential for the soundness of our type system. We dis-
cuss them in Section 6. Section 7 discusses related work, and Section 8 concludes.

2 Target Language

This section introduces the target language of our type-based information flow
analysis. The language is a subset of the polyadic π-calculus [23], extended with
booleans values and conditionals.1

2.1 Syntax

We first introduce secrecy levels, which denote the degree of secrecy of infor-
mation about data and processes. For the sake of simplicity, we only consider two
secrecy levels: H, which describes secret information (i.e., information that should
be kept to privileged principals), and L, which describes non-secret information
(i.e., information that can be revealed to any principal). As usual, if we need to
deal with more than two secrecy levels, we can classify secrecy levels into H and
L in many ways, and run the information flow analysis on the two levels for each
classification.

Definition 1 (secrecy levels) The set of secrecy levels is {H,L}. The binary re-
lation � on secrecy levels is the total order defined by L � H.

1 It is in principle possible to encode booleans and conditionals into the π-calculus, but a
more complex type machinery (such as those studied in [13]) is necessary to perform a sufficient
analysis for the encoding.

4 Naoki Kobayashi

We use a meta-variable l for a secrecy level.

Definition 2 (processes) The set of processes, ranged over by P , is defined by:

P ::= 0 | x〈v1, . . . , vn〉. P | x(y1, . . . , yn). P
| (P |Q) | ∗P | (νx : ξ)P | if v then P else Q

v ::= true l | falsel | � | x

Here, x and yi range over a countably infinite set Var of variables. ξ ranges over
the set of core channel types (which is defined later in Section 3).

Notation 1 The prefix x(y1, . . . , yn) binds variables y1, . . . , yn and (νx : ξ) binds
x. As usual, we identify processes up to α-conversions (renaming of bound vari-
ables), and assume that α-conversions are implicitly applied so that bound vari-
ables are always different from each other and from free variables. We write
[x1 �→ v1, . . . , xn �→ vn]P for the process obtained by replacing all the free occur-
rences of x1, . . . , xn in P with v1, . . . , vn. We write x̃ for a sequence of variables
x1, . . . , xn. We abbreviate [x1 �→ v1, . . . , xn �→ vn] and (νx1 : ξ1) · · · (νxn : ξn)
to [x̃ �→ ṽ] and (νx̃ : ξ̃) respectively. We often omit 0 and write x〈ṽ〉 and x(ỹ) for
x〈ṽ〉.0 and x(ỹ).0 respectively.

We assume that prefixes (x〈ṽ〉, x(ỹ), (νx) , and ∗) bind tighter than the parallel
composition operator | , so that x〈ỹ〉. P |Q means (x〈ỹ〉. P) |Q, not x〈ỹ〉. (P |Q).

Process 0 does nothing. Process x〈ṽ〉. P sends a tuple 〈ṽ〉 on x and then (af-
ter the tuple is received by some process) behaves like P . Each vi is a boolean
(truel or falsel), the unit value (�) (the element of a singleton set), or a variable.
A communication channel is represented by a free variable or a variable bound by
(νx : ξ) .

Process x(ỹ). P waits to receive a tuple 〈ṽ〉 on x and then behaves like
[ỹ �→ ṽ]P . P |Q represents concurrent execution of P and Q. ∗P represents in-
finitely many copies of the process P running in parallel, and (νx : ξ)P denotes
a process that creates a fresh communication channel x and then behaves like P .
The core channel type ξ is attached just for technical convenience (in proving
soundness of the type system); It does not affect the operational semantics. We
often omit ξ when it is not important. if v then P else Q behaves like P if v is
truel and behaves like Q if v is falsel; otherwise it is blocked forever.

The secrecy level l attached to a boolean value (truel or falsel) expresses the
degree of secrecy of the value. For example, information about trueH should not
be revealed to non-privileged principals. On the other hand, no secrecy level is at-
tached to �, since it carries no information. The secrecy level of a communication
channel may be specified in the core channel type ξ of (νx : ξ) . Those annotations
of secrecy levels (for values and channels) are only used for a programmer to
declare which value should be hidden to non-privileged principals. The program-
mer can omit them if they are unnecessary, since the type inference algorithm
described in Section 5 can recover them.

In examples given in the rest of this paper, we sometimes annotate variables
with their secrecy levels, just for the sake of readability.

Type-Based Information Flow Analysis for the Pi-Calculus 5

2.2 Operational Semantics

Following the standard reduction semantics for the π-calculus, we define the op-
erational semantics using a structural relation P � Q, and a reduction relation
P −→ Q. The former relation means that P can be restructured to Q by using the
commutativity and associativity laws on | , etc. The latter relation means that P is
reduced to Q by one communication on a channel. Differences from the standard
reduction semantics are that � is not symmetric, and that we include reductions on
if-expressions in � rather than in −→ (so that if truel then P else Q � P). The
idea of using a non-symmetric structural relation goes back to our previous type
system for deadlock-freedom [18]. That is necessary to make the type preservation
hold in our type system.

Definition 3 The structural preorder � is the least reflexive and transitive relation
closed under the following rules (P ≡ Q denotes (P � Q) ∧ (Q � P)):

P ≡ P |0 (S-ZERO1)

0 ≡ ∗0 (S-ZERO2)

0 ≡ (νx : ξ)0 (S-ZERO3)

P |Q ≡ Q |P (S-COMMUT)

P | (Q |R) ≡ (P |Q) |R (S-ASSOC)

(νx : ξ)P |Q ≡ (νx : ξ) (P |Q) (if x is not free in Q) (S-NEW)

(νx : ξ1) (νy : ξ2)P ≡ (νy : ξ2) (νx : ξ1)P (S-SWAP)

if truel then P else Q � P (S-IFT)

if falsel then P else Q � Q (S-IFF)

∗P � ∗P |P (S-REP)

P � P ′

P |Q � P ′ |Q (S-PAR)

P � Q

(νx : ξ)P � (νx : ξ)Q
(S-CNEW)

Definition 4 The reduction relation −→ is the least relation closed under the fol-
lowing rules:

x〈ṽ〉. P |x(ỹ). Q −→ P | [ỹ �→ ṽ]Q (R-COM)

6 Naoki Kobayashi

P −→ Q

P |R −→ Q |R (R-PAR)

P −→ Q

(νx : ξ)P −→ (νx : ξ)Q
(R-NEW)

P � P ′ P ′ −→ Q′ Q′ � Q

P −→ Q
(R-SP)

We write −→∗ for the reflexive and transitive closure of −→.

2.3 Examples

As given above, the basic π-calculus has only a few primitives, but various mech-
anisms present in real programming languages can be easily encoded [24, 30].

We give below some examples of such encodings, which will be used after-
wards.2 Note that our analysis described later does not always give best possible
analyses for those encodings; please consult Section 6 for such situations.

For the sake of clarity, we regard integers and operations on them as primitives
below.

Example 1 The process ∗succ(n, r). r〈n + 1〉 works as a function server comput-
ing the successor of an integer. It receives a pair consisting of an integer n and a
channel r, and sends n + 1 on channel r. �

Example 2 (locks) A lock (a binary semaphore) can be implemented by using a
channel that holds at most one value at any moment. We can regard the presence
of a value in the channel as the unlocked state, and the absence of a value as
the locked state. Then, creation of a new lock let x=newlock() in P is
encoded into a process: (νx) (x〈 〉 |P). Lock/unlock operations lock(x);P and
unlock(x);P can be encoded into processes x(). P and x〈 〉 |P respectively.
(Note that the unlock operation is encoded into an asynchronous output since the
unlock operation is a non-blocking operation.) �

Example 3 (shared variables) Shared variables can also be implemented by us-
ing a channel that holds at most one value at any moment. Creation of a shared
variable let x=newref v in P, the read operation let y=!x in P, and
the write operation x:=v; P can be encoded respectively into: (νx) (x〈v〉 |P),
x(y). (x〈y〉 |P), and x(y). (x〈v〉 |P). Another way for encoding shared vari-
ables [22] would be to represent a variable as a concurrent object with two meth-
ods: read and write. See Example 7 for how to encode a concurrent object. �

Example 4 (sequencing) A sequential execution P;Q can also be easily encoded
by using the idea of continuation-passing. Let P be a process that simulates P and
signals its termination to a channel c, and Q be a process that simulates Q. Then,
P;Q is encoded into (νc) (P | c(). Q). �

2 We give below only one encoding for each construct; interested readers can consult other
encodings in the literature.

Type-Based Information Flow Analysis for the Pi-Calculus 7

Thread A

if(!secret)
{lock(x);
unlock(x)};

public := true

Thread B

lock(x);
lock(y);
unlock(y);
unlock(x);

Thread C

lock(y);
lock(x);
unlock(x);
unlock(y);

Thread D

lock(x);
unlock(x);
public := false

Fig. 1 Threads using lock-primitives

Example 5 Let us consider the four threads in Figure 1, which use the above three
features (locks, shared variables, and sequencing). Thread A first reads the value
of the shared variable secret, and if it is true, acquires and releases the lock x,
and then updates the value of the shared variable public. Thread B and C both
acquire and release locks x and y, but in a different order. Thread D acquires and
releases the lock x, and then updates the value of the shared variable public.
Here, we assume that the shared variable public and the lock y can be accessed
by anyone (who may be untrusted), while the shared variable secret and the
lock x can be accessed by only privileged principals.

The threads are encoded into the π-calculus as follows.

A
�
= (νcH) secretH(bH). (secretH〈bH〉

| if bH then xH(). (xH〈 〉 | cH〈 〉) else cH〈 〉
| cH(). public(z) . public〈trueL〉)

B
�
= xH(). yL(). (yL〈 〉 |xH〈 〉)

C
�
= yL(). xH(). (xH〈 〉 | yL〈 〉)

D
�
= xH(). (xH〈 〉 | publicL(z) . publicL〈falseL〉)

The channel c in the process A is used to signal the termination of the if-
expression. We have annotated variables with their secrecy levels to clarify the
assumption.

Note that none of the above processes is well-typed in Pottier’s type sys-
tem [27]; all the processes try to perform communication on low-level channels
after receiving values on high-level channels. Some combinations of those pro-
cesses should, however, still be considered safe (if we ignore timing leaks). For
example, A|C and A|D are safe provided that other privileged principals use locks
x properly, without holding lock x forever. Although A,C and D perform com-
munication on public after communicating over a high-level channel c or x, the
communication on c or x always succeeds, so that no secret information is leaked.
On the other hand, A|B is (arguably) unsafe, on the assumption that low-level
processes may maliciously lock y forever. In that case, Thread B may be blocked
forever at the statement lock(y) and fail to release the lock x, which would
cause A to get blocked only if the value of secret is true. Thus, a low-level
process can guess the value of secret by reading the value of public. We will
later show that A|C and A|D are indeed well-typed in our type system, while A|B
is not. �

Example 6 The cobegin/coend statement:
cobegin P1 | ... | Pn coend (which executes P1,. . . , Pn concur-
rently) can also be easily encoded. Let Pi be a process that simulates Pi and

8 Naoki Kobayashi

signals its termination to ci. Then, cobegin P1 | ... | Pn coend; Q
can be encoded into a process: (νc1) · · · (νcn) (P1 | · · · |Pn | c1(). · · · cn(). Q).

This construct can be freely combined with other communication or synchro-
nization primitives. Consider the following program:

cobegin
(x:=true; send(c, nil))

| let _=receive(c) in y:=!x
coend;
w := false

Here, send and receive are commands to synchronously send/receive values.
The first thread of the cobegin is a producer, which writes true to the variable
x and notify that it is ready, and the second one waits for the notification and reads
the variable x. It can be encoded into:

(νc1) (νc2) (x(z). (x〈trueH〉 | c〈 〉. c1〈 〉)
| c(). x(z). (x〈z〉 | y(u). (y〈z〉 | c2〈 〉))
| c1(). c2(). w(z) . w〈falseL〉)

�

Example 7 Concurrent objects can be easily expressed in the π-calculus [20, 26].
The following process implements a bank account object:

(νs) (s〈100H〉
| ∗withdrawH(amount, r). s(x).

if x ≥ amount then (r〈trueH〉 | s〈x − amount〉)
else (r〈falseH〉 | s〈x〉)

| ∗getBalanceH(r). s(x). (r〈x〉 | s〈x〉)
| ∗depositL(amount, r). s(x). (r〈 〉 | s〈x + amount〉))

Here, we follow Pierce and Turner’s encoding of concurrent objects [26], where
concurrent objects are realized as a set of processes, each of which realizes each
method. The above process stores the current balance in the channel s, and handles
three kinds of requests through channels withdraw, getBalance, and deposit. Upon
receiving a request on withdraw, the process checks whether the current balance
is enough and replies whether the withdraw operation has succeeded or not. Upon
receiving a request on getBalance, the process sends the current balance to the
client. Upon receiving a request on deposit (for depositing the specified amount
of money to this account), the process updates the current balance and sends an
acknowledgment on r. The channels withdraw and getBalance are secret, so that
only a privileged person can send requests, while the channel deposit (for sending
a request for transferring money to this account) can be accessed by anyone. The
current balance should also be kept secret, so that 100 is annotated with H.

The type system presented in the next section can guarantee that one can-
not obtain any information about the current balance through the public channel
deposit (see Example 17). Note that the previous type systems for information
flow-analysis for the π-calculus and similar calculi [10, 11, 27, 36] cannot accept
the process above, since the sub-process ∗deposit(amount, r). · · · sends a message
through a non-secret channel r after receiving a value through the secret channel

Type-Based Information Flow Analysis for the Pi-Calculus 9

s. (One may, however, use other encodings so that a process having the same func-
tionality is well-typed in previous type systems [11]. So, the point here is rather
about the synchronization between multiple threads inside the same object; in the
above process, synchronization occurs through channel s. The type system should
be able to infer that the synchronization succeeds to conclude that information
about the current balance is not leaked.)

Channels withdraw, getBalance, and deposit can be passed around through
other channels as identities of the bank account object above. The following pro-
cess stores the channel withdraw in the shared variable y, reads it, invokes the
withdraw method, and then waits for a reply on a new channel r (recall the encod-
ing of shared variables in Example 3):

yH(x). (yH〈withdraw〉| store withdraw in variable y

yH(m). (yH〈m〉 | read the channel stored in y
(νr)m〈10, r〉. r(b).0)) invoke the method

and wait for a reply

�

3 Type System for Information Flow Analysis

This section introduces a type system for information flow analysis. The type sys-
tem guarantees that any well-typed process does not leak secret information, so
that the problem of checking whether a process leaks secret information is reduced
to the problem of type inference. We first explain main ideas of the type system in
Subsection 3.1, and then introduce formal definitions in later subsections.

3.1 Overview

We explain ideas of the type system informally in three steps.

3.1.1 Extending types with secrecy levels

As in other type systems for information flow analysis, we extend the usual types
with secrecy levels. For example, the type bool of booleans is refined to boolH

and boolL: The former is the type of secret booleans and the latter is the type of
non-secret booleans.

Since information about values may be propagated through the behavior of
processes, we also need to consider secrecy levels of channels and processes. For
example, if a process if trueH then x〈 〉 else 0 is executed, information about the
boolean trueH is propagated through information about whether a message is sent
on x or not. Moreover, if a process x(). P is executed in parallel, the information is
further propagated through information about whether the process P is executed.
To keep track of this kind of information flow, we let the secrecy level of a channel
express the degree of secrecy of information about what communication takes
place on the channel (e.g., whether some message is sent on the channel), and let
the secrecy level of a process express the degree of secrecy of information about

10 Naoki Kobayashi

whether the process is executed. (The latter corresponds to the secrecy level of
a program counter in information flow analysis for imperative languages [5].) In
the example above, we consider that the secrecy levels of the channel x and the
process P are also H.

We write 〈τ〉l for the type of a channel of secrecy level l that is used for trans-
mitting values of type τ . The secrecy level of a channel should not be confused
with the secrecy level of values sent on the channel. For example, if a channel
has type 〈boolH〉L, then a non-privileged principal may obtain information about
whether some message is sent along the channel although he or she cannot obtain
information about the contents of the message.

A type judgment for a process is of the form x1 : τ1, . . . , xn : τn �l P , where
τ1, . . . , τn are extended types and l denotes the secrecy level of the behavior of
P . The secrecy level l corresponds to “pc” found in analyses for sequential lan-
guages [5]. If l is H, the behavior of P is only observable to privileged principals.
For example, x : 〈boolH〉H �H x〈trueH〉 is valid, but x : 〈boolL〉L �H x〈trueL〉
is invalid, since the latter process sends a value on a non-secret channel, so that its
behavior is observable to any principals.

Based on the intuition above, it would not be difficult to understand the fol-
lowing rule for if-expressions:

Γ � v : booll1 Γ �l2 P Γ �l2 Q l1 � l2

Γ �l2 if v then P else Q

Since one can infer the value of v by observing whether P or Q is executed, the
secrecy level l2 of P and Q must be greater than or equal to the secrecy level l1 of
v.

Based on a similar intuition, we can obtain the following rule for an input
process x(y). P :

Γ, x : 〈τ〉l1 , y : τ �l2 P l � l1 � l2

Γ, x : 〈τ〉l1 �l x(y). P
(IN-NAIVE)

Since one can infer whether some process sends a value on x by observing whether
P is executed or not, the rule imposes the condition l1 � l2.

3.1.2 Extending channels types with usage expressions

The rule IN-NAIVE given above is actually too naive. Because of the condition
l1 � l2, once a process performs an input on a secret channel, it can no longer
perform communications on non-secret channels. For example, the process A in
Example 5 cannot be typed: Since b is a secret value, both channels x and c must be
secret, so that c(). public(z) . public〈trueL〉 cannot be typed. Actually, however,
as long as the input on x always succeeds, the input on c also succeeds, so that the
process does not leak any information about n.

Based on the above observation, we want to replace rule IN-NAIVE with some-
thing like:3

3 Actually, additional subtle conditions are required in order for this rule to be valid: See the
paragraph on well-formedness conditions in Section 6.

Type-Based Information Flow Analysis for the Pi-Calculus 11

Γ, x : 〈τ〉l1 , y : τ �l2 P l � l1, l2
l1 � l2 if the input on x may not succeed

Γ, x : 〈τ〉l1 �l x(y). P
(IN-IDEAL)

What remains to do is to replace the sentence “if the input on x may not suc-
ceed” with a well-defined and statically verifiable condition. For this purpose, we
use the idea of type systems for lock-freedom [14, 18, 32]. The idea is to extend
channel types with usage expressions (usages, in short) [14, 18, 32], which specify
how each channel should be used by each process.

Usages are constructed from I , denoting an input action, and O, denoting an
output action, by using sequential composition (.), parallel composition (|), etc.
For example, usage I.O describes a channel that should be first used once for input
and then used once for output. So, if x has usage I.O, the process x(). x〈 〉 is valid
but the processes x〈 〉. x() and x(). (x〈 〉 |x〈 〉) are invalid. Usage I |O describes
a channel that should be used once for input and once for output in parallel. So, if
x has usage I |O, then the process x() |x〈 〉 is valid. A channel type is annotated
with a usage and written 〈τ〉l/U , which describes a channel that is used according
to usage U .

Typing rules are extended to take into account usage information by using the
idea of linear types [17]. For example, the rule for parallel composition is:

Γ1 �l P1 Γ2 �l P2

Γ1 |Γ2 �l P1 |P2

Here, Γ1 |Γ2 is the type environment obtained by combining usages of each
variable in Γ1 and Γ2 with | . For example, from x : 〈boolH〉H/I �H P1 and
x : 〈boolH〉H/O �H P2 (which mean that x is used once for input in P1 and once
for output in P2), we can derive x : 〈boolH〉H/(I |O) �H P1 |P2, which means
that x is used once for input and once for output in parallel. The rule for input
processes would be replaced by (for the moment, we forget conditions on secrecy
levels and omit them):

Γ, x : 〈τ〉/U, y : τ � P

Γ, x : 〈τ〉/I.U � x(y). P
(IN-WITH-USAGE)

Here, the usage of x in the conclusion captures the fact that x is first used for input
and then used according to U in P .

Similarly, the rule for output processes would be:

Γ, x : 〈τ〉/U � P

Γ, x : 〈τ〉/O.U, y : τ � x〈y〉 (OUT-WITH-USAGE)

Using the above rules, we obtain the following type derivation for
x(y). y〈1〉 |x〈z〉:
x : 〈〈int〉/O〉/0, y : 〈int〉/O � y〈1〉

x : 〈〈int〉/O〉/I � x(y). y〈1〉 x : 〈〈int〉/O〉/O, z : 〈int〉/O � x〈z〉
x : 〈〈int〉/O〉/(I|O), z : 〈int〉/O � x(y). y〈1〉 |x〈z〉

12 Naoki Kobayashi

From the conclusion, we can deduce that x is used once for input and output, and
z is used once for output.

From the usage part of a channel type, we can obtain some information
about whether communications succeed or not. For example, in the process
(νx)x(). y〈 〉, the usage of x is expressed by I . So, we know that x is used once
for input but never used for output, so that the input never succeeds.

3.1.3 Refining usages with obligation/capability levels

Usage expressions explained above are not sufficient for the purpose of checking
that certain communications must succeed, since they can express only channel-
wise communication behavior of processes, not inter-channel dependencies. For
example consider the process x(). y〈 〉 | y(). x〈 〉. Usage of x and y can be ex-
pressed by I |O, but communications on x and y never succeed because of a dead-
lock. The problem of the above process can be explained as follows: In order for
the input on x to succeed, the righthand process has an obligation to do an output
on x. Before fulfilling the obligation, however, the righthand process is claiming
a capability to successfully complete the input on y. In order for the input on y to
succeed, the lefthand process has an obligation to do an output on y, but before
fulfilling the obligation, the lefthand process is claiming a capability to success-
fully complete the output on x. Thus, both processes claim their capabilities before
fulfilling the obligations, so that a deadlock occurs.

In order to avoid this kind of circular dependency, we associate each I and
O in usages with an obligation level to and a capability level tc, and write Ito

tc

and Oto
tc

. Obligation levels and capability levels range over the set consisting of
natural numbers and ∞. The obligation level expresses the degree of an obligation
to do an action, while the capability level expresses the degree of a capability to
successfully complete an action. More precisely, obligation and capability levels
control the behavior of processes through the following rules:

Rule A If a process holds an obligation of level n to do some action, then the
process can exercise only a finite number of capabilities whose levels are less
than n before fulfilling the obligation. As a special case, if a process holds an
obligation of level 0 to do some action, then the process must do the action
immediately; no prefix is allowed. On the other hand, if a process holds an
obligation of level ∞, then the process need not do the action at all. For ex-
ample, if the usage of x is O1

3 and the usage of y is O2
0 , the process y〈 〉. x〈 〉 is

allowed since the process tries to use the capability of level 0 to send a value
on y before fulfilling the obligation of level 1 to send a value on x. On the
other hand, x〈 〉. y〈 〉 is not allowed since the process tries to use the capability
of level 3 to send a value on x before fulfilling the obligation of level 2, which
is less than 3.

Rule B If a process holds a capability of level n to perform an action, there must
exist another process that holds an obligation to do its co-action whose level
is less than or equal to n. For example, if a process holds a channel of usage
O∞

0 , then there must be another process that uses the channel according to I0
n

(where n can be any level), so that the capability of level 0 to send a value by
the former process is guaranteed by the second process’s obligation to receive
the value.

Type-Based Information Flow Analysis for the Pi-Calculus 13

These rules ensure that every action of a finite capability level will eventually
succeed. For example, consider the process x(). y〈 〉 | y() |x〈 〉. We can assign
usages I0

0 |O0
0 and I0

1 |O1
0 to x and y, so that the above rules are satisfied. Since

the capability levels are finite, we can conclude that the communications on x and
y succeed.

On the other hand, for the deadlocked process x(). y〈 〉 | y(). x〈 〉, there is no
way to assign a finite capability level to the input on x: Let usages of x and y be
It1
t2 |Ot3

t4 and It5
t6 |Ot7

t8 . Rule A requires t2 < t7 and t6 < t3. On the other hand,
Rule B requires the following conditions:

t1 ≤ t4 t3 ≤ t2 t5 ≤ t8 t7 ≤ t6.

So, we obtain the constraint t2 < t7 ≤ t6 < t3 ≤ t2, so that the capability level t2
cannot be finite.

The typing rule for input processes is now refined as follows.

Γ, x : 〈τ〉l1/U, y : τ �l2 P l � l1, l2 tc = ∞ ⇒ l1 � l2

↑(tc+1,tc+1)Γ, x : 〈τ〉l1/Ito
tc

.U �l x(y). P
(IN-REFINED)

↑(tc+1,tc+1)Γ lifts the obligations whose levels are less than or equal to tc up to
tc + 1, to enforce Rule A. The statement “if the input on x may not succeed” has
now been replaced by a statically verifiable condition tc = ∞.

Rule B is enforced by the following typing rule for ν-prefix:

Γ, x : 〈τ〉l1/U �l2 P rel(U)
Γ �l2 (νx)P

(NEW)

The condition rel(U) means that for any usage of the form Ito
tc

.U1 in U where

tc is finite, there is a corresponding usage of the form O
t′o
t′c

.U2 such that t′o ≤ tc

(and a similar condition for Oto
tc

.U1 in U) and that the same condition must hold
for any U ′ obtained by discharging a matching I and O in U . For example, in
order for rel(It1

t2 |Ot3
t4) to hold, it must be the case that t1 ≤ t4 and t3 ≤ t2.

rel(O0
∞ | I∞0 .O0

∞) holds but rel(O0
∞ | I∞0 .O0

0) does not, since discharging a pair
of I and O in the latter usage yields O0

0 , which has a finite capability level but
there is no corresponding usage of the form I0

n.U .
A part of the requirement of Rule A, that only a finite number of capabilities

can be exercised before an obligation is fulfilled, is enforced by the following rule
for output processes (we omit the continuation part for the sake of simplicity):

l � l1

x : 〈τ〉l1/Oto
tc

.U, y : ↑(tc+1,tc+1)↑τ �l x〈y〉 (OUT)

Like in IN-REFINED, we apply ↑(tc+1,tc+1) to the type of x to enforce Rule A.
In addition, we apply an operator ↑ to increase obligation levels of τ by one.
For example, ↑(〈boolH〉H/O1

2) = 〈boolH〉H/O2
2 . This enforces that when an

obligation is delegated to another process (by sending it through a channel), the
level of the delegated obligation is less than the current obligation level, so that

14 Naoki Kobayashi

Usages Interpretation
0 Cannot be used at all
Ito

tc
.U Used once for input, and then used according to U

Oto
tc

.U Used once for output, and then used according to U
U1 |U2 Used according to U1 and U2, possibly in parallel
∗U Used according to U by infinitely many processes
↑(t1,t2)U The same as U , except that input and output obligation levels are raised

to t1 and t2 respectively.
U1 & U2 Used according to either U1 or U2

ρ Usage variable (used in combination with recursive usages below)
µρ.U Recursively used according to [ρ �→ µρ.U]U .

Table 1 Meaning of Usage Expressions

an obligation of a finite level cannot be infinitely delegated (since the level of the
obligation eventually reaches 0). For example, consider the process

x1〈y〉 |x1(z). x2〈z〉 |x2(z). P.

Suppose that the sub-process x1〈y〉 initially holds an obligation of level 2 to do an
output on y. When y is sent through x1, the obligation level becomes 1, and when
it is further sent through x2, the obligation level becomes 0, so that the process
P must use y immediately. In the process ∗x(z). x〈z〉 |x〈y〉, which forwards y
forever, y’s obligation level must be ∞.

3.2 Usages

3.2.1 Syntax

Now we introduce the formal syntax of usages.

Definition 5 (usages) The set U of usages, ranged over by U , is given by the
following syntax.

U ::= 0 | αt1
t2 .U | (U1 |U2) | ∗U | ↑(t1,t2)U | U1 & U2 | ρ | µρ.U

α ::= I | O
t1, t2 ∈ Nat ∪ {∞}
Here, Nat is the set of natural numbers.

We often omit 0 and write αt1
t2 for αt1

t2 .0. We extend the usual binary rela-
tion ≤ on Nat to that on Nat ∪ {∞} by ∀t ∈ Nat ∪ {∞}.t ≤ ∞. We write
min(x1, . . . , xn) for the least element of {x1, . . . , xn} (∞ if n = 0) with respect
to ≤ and write max(x1, . . . , xn) for the greatest element of {x1, . . . , xn} (0 if
n = 0). We assume that µρ binds ρ. We write [ρ �→ U1]U2 for the usage obtained
by replacing the free occurrences of ρ in U2 with U1. We write FV (U) for the set
of free usage variables. A usage is closed if FV (U) = ∅.

Intuitive meaning of usages is summarized in Table 1. Additional explanation
is in order. If to is finite, a channel of usage αto

tc
.U must be used for the action α,

while if to is ∞, the channel need not be used. If tc is finite, whenever the action α

Type-Based Information Flow Analysis for the Pi-Calculus 15

is tried on a channel of usage αto
tc

.U , the action will eventually succeed. If tc is ∞,
there is no such guarantee. A channel of usage αto

tc
.U must be used according to U

only when it has been used for the action α and the action succeeds. For example,
a channel of usage I∞0 .O0

∞ can be used for input (but need not be used), and if it
has been used for input and the input has succeeded, it must be used for output.
Usage ↑(t1,t2)U lifts the obligation levels occurring in U (except for those guarded
by I or O) so that the input obligations and output obligations become greater than
or equal to t1 and t2 respectively. For example, ↑(1,2)(I0

0 .O0
∞ |O3

0 |O0
3) is the same

as I1
0 .O0

∞ |O3
0 |O2

3 .4

Choice U1 &U2 and recursive usages µρ.U are only required to enable type in-
ference [18], so that they can be skipped at first reading. Usage µρ.O∞

0 .ρ describes
a channel that can be used for output infinitely often.5

Notation 2 We give a higher precedence to prefixes (αto
tc

and ∗) than to | . So,
Ito
tc

.U1 |U2 means (Ito
tc

.U1) |U2, not Ito
tc

.(U1 |U2). We write α for the co-action of
α (I = O and O = I).

Example 8 Linear channels (channels that are used once for input and once for
output) [17] are given a usage of the form It1

t2 |Ot3
t4 . For example, the channel c in

Example 4 is given a usage I1
1 |O1

1 . The usage of channels used for client-server
connection (like succ in Example 1) is expressed as ∗I0

∞ | ∗O∞
0 . The part ∗I0

∞
means that a server must wait for requests forever, and the part ∗O∞

0 means that
clients can send an infinite number of requests, and that it is guaranteed that the
requests are received by a server.

Example 9 The usage of a lock channel (i.e., a channel used as a lock: recall
Example 2) is expressed by On

∞ | ∗I∞n .On
∞ for some n ∈ Nat. The part On

∞ says
that a value must be first put into the channel (to initialize the lock), and the part
I∞n .On

∞ says that the lock can be eventually acquired, and after the lock has been
acquired, then the lock must be released. The natural number n can be used to
control in which order locks are acquired. Suppose that lock channels x and y
have usages ∗I∞nx

.Onx∞ and ∗I∞ny
.O

ny∞ respectively and ny < nx holds. Then, the
process x(). y(). (y〈 〉 |x〈 〉), which locks x and y in this order, is allowed, but
the process y(). x(). (x〈 〉 | y〈 〉) is not allowed. Note that the latter process tries
to exercise the capability of level nx to lock x before fulfilling the obligation of
level ny to release the lock y. �

Example 10 The usage of a channel implementing a shared variable (recall Ex-
ample 3) is expressed as O0

∞ | ∗I∞0 .O0
∞. It is a special case of the usage of lock

channels. The capability level of an input action being 0 captures the fact that
read/write operations always succeed, and the obligation level of an output action

4 Readers who are familiar with our previous type system for lock-freedom[14] find ↑(t1,t2)U

to be similar to t U . The readers should not, however confuse between them. While t Ot′
∞

is Ot+t′
∞ , ↑(t,t)Ot′

∞ expresses O
max(t,t′)
∞ . Please also note that t U was an operation, while

↑(t1,t2) is a constructor. ↑(t1,t2) cannot be defined as an operation because of the presence of
usage variables.

5 A careful reader may think that ∗U can be represented by µρ.(ρ |U). The formal semantics
of ∗U and µρ.(ρ |U), given later, are different in a subtle way.

16 Naoki Kobayashi

being 0 captures the fact that a value must be immediately written back when a
value is extracted from the channel. �

Example 11 (choice and recursion)
The process if b then x〈 〉 else (x〈 〉 |x〈 〉) uses the channel x according to O0

∞&
(O0

∞ |O0
∞). The usage µρ.O∞

∞.ρ describes channels that can be used for output
repeatedly. For example, the process repeat〈x〉 | ∗repeat(y). y〈 〉. repeat〈y〉 uses
the channel x according to that usage. �

3.2.2 Semantics

The formal meaning of a usage is determined by its obligation/capability levels
of a usage, which represent what capabilities/obligations currently exist, and its
reduction, which expresses how the usage changes during reduction of processes.

We first define capability/obligation levels of a usage.

Definition 6 (capabilities) The input and output capability levels of usage U ,
written capI(U) and capO(U), are defined by:

capα(0) = capα(αto
tc

.U) = capα(ρ) = ∞
capα(αto

tc
.U) = tc

capα(∗U) = capα(↑(t1,t2)U) = capα(µρ.U) = capα(U)
capα(U1 |U2) = capα(U1 & U2) = min(capα(U1), capα(U2))

Definition 7 (obligations) The input and output obligation levels of a closed us-
age U , written obI(U) and obO(U), are defined by:

obα(U) = ob∅α(U)
obF

α (0) = obF
α (αto

tc
.U) = ∞

obF
α (ρ) = F (ρ)

obF
α (αto

tc
.U) = to

obF
α (U1 |U2) = min(obF

α (U1), obF
α (U2))

obF
α (↑(tI ,tO)U) = max(tα, obF

α (U))
obF

α (U1 & U2) = max(obF
α (U1), obF

α (U2))
obF

α (∗U) = obF
α (U)

obF
α (µρ.U) = lfp(λx.obF [ρ�→x]

α (U))

Here, lfp denotes the least fixed-point operator. We write ob(U) for
min(obI(U), obO(U)).

The above definition uses a sub-function obF
α , where F is a mapping

from usage variables to obligation levels. For example, obO(µρ.(ρ |O1
2)) =

lfp(λx.min(x, 1)) = 0. On the other hand, obO(∗O1
2) = 1. (So, ∗U is not the

same as µρ.(ρ |U).)
The following lemma guarantees that obα(U) defined for any U .

Lemma 1 Suppose that f is a function from Nat∪ {∞} to Nat∪ {∞} and that
f is monotonic with respect to ≤. Then, f has a least fixed-point.

Type-Based Information Flow Analysis for the Pi-Calculus 17

Proof The monotonicity of f implies that 0, f(0), f(f(0)), ..., fn(0), . . . is an in-
creasing sequence. If fn(0) = f (n+1) holds for some n, fn(0) is the least fixed-
point of f . Otherwise, 0, f(0), f(f(0)), ..., fn(0), . . . is unbounded. Since f is
monotonic, fn(0) ≤ f(∞) for any n, which implies f(∞) = ∞. Therefore,
∞ is the least fixed-point. �

The usage of a channel describes how the channel should be used afterwards,
so the usage changes during reduction of processes. For example, if x has usage
I∞∞ .O0

0 |O∞
∞.I0

0 , after a communication on x occurs, x should be used according to
O0

0 | I0
0 . This change of usage is expressed by the usage reduction relation defined

below. Intuitively, U −→ U ′ means that if a channel of usage U has been used
for a communication, then it should be used according to U ′ afterwards. As in the
definition of the process reduction relation, we use a structural relation � as an
auxiliary relation.

Definition 8 � is the least reflexive and transitive relation on usages satisfying
the following rules:

U1 |U2 � U2 |U1 (UP-COMMUT)

(U1 |U2) |U3 � U1 | (U2 |U3) (UP-ASSOC)

U1 � U ′
1 U2 � U ′

2

U1 |U2 � U ′
1 |U ′

2

(UP-CONGP)

∗U � ∗U |U (UP-REP)

↑(tI ,tO)αt1
t2 .U � α

max(t1,tα)
t2 .U (UP-↑)

↑(t1,t2)(U1 |U2) � (↑(t1,t2)U1) | (↑(t1,t2)U2) (UP-DIST)

U1 & U2 � Ui (i ∈ {1, 2}) (UP-OR)

µρ.U � [ρ �→ µρ.U]U (UP-REC)

U � U ′

↑(t1,t2)U � ↑(t1,t2)U ′ (UP-CONG↑)

Definition 9 (usage reduction) The binary relation −→ on usages is the least
relation closed under the following rules:

Ito
tc

.U1 |Ot′o
t′c

.U2 −→ U1 |U2

U1 −→ U ′
1

U1 |U2 −→ U ′
1 |U2

U1 � U ′
1 U ′

1 −→ U ′
2 U ′

2 � U2

U1 −→ U2

18 Naoki Kobayashi

3.2.3 Relations and operations on usages

The relation rel(U) explained in Section 3.1 is formally defined below. It ensures
that whenever there is a capability of level n to successfully perform some action,
there exists an obligation of the same or lower level to do its co-action.

Definition 10 (reliability) We write conα(U) when obα(U) ≤ capα(U). We
write con(U) when both conI(U) and conO(U) hold. A usage U is reliable, writ-
ten rel(U), if con(U ′) holds for any U ′ such that U −→∗ U ′.

For example, rel(O1
∞ | ∗I∞1 .O1

∞) holds but rel(O1
∞ | ∗I∞1 .O2

∞) does not. The lat-
ter usage is reduced to O2

∞ | ∗I∞1 .O2
∞, of which the input capability level is 1 but

the output obligation level is 2.
The subusage relation U1 ≤ U2 defined below means that U1 expresses more

liberal usage of channels than U2, so that a channel of usage U1 may be used as
that of usage U2. For example, U1 &U2 ≤ U1 and I2

2 ≤ I1
3 hold. (The latter comes

from the intuition that an obligation can be replaced by a stronger one, while a
capability can be replaced by a weaker one.) We define the subusage relation co-
inductively, by using the idea of process simulation relations.

Definition 11 (subusage) The subusage relation ≤ on closed usages is the largest
binary relation on usages such that the following conditions hold whenever U1 ≤
U2.

1. [ρ �→ U1]U ≤ [ρ �→ U2]U for any usage U such that FV (U) = {ρ}.
2. If U2 −→ U ′

2, then there exists U ′
1 such that U1 −→ U ′

1 and U ′
1 ≤ U ′

2.
3. For each α ∈ {I,O}, capα(U1) ≤ capα(U2) holds
4. For each α ∈ {I,O}, if conα(U1), then obα(U1) ≥ obα(U2).

The first and second conditions require that the subusage relation is closed under
contexts and reduction. The third condition disallows capabilities to be strength-
ened, while the fourth condition disallows obligations to be weakened when
conα(U1) holds.

We first prove some important properties of the subusage relation.

Lemma 2 1. If U1 ≤ U2 and conα(U1), then conα(U2).
2. If U1 ≤ U2 and rel(U1), then rel(U2).
3. The subusage relation ≤ is reflexive and transitive.

Proof The first property immediately follow from the assumptions and the
third and fourth conditions of the subusage relation: obα(U2) ≤ obα(U1) ≤
capα(U1) ≤ capα(U2).

To show the second property, suppose U1 ≤ U2, rel(U1), and U2 −→∗ U ′
2.

By the second condition of Definition 11, there exists U ′
1 such that U1 −→∗ U ′

1

and U ′
1 ≤ U ′

2. The assumption rel(U1) implies con(U ′
1), from which we obtain

con(U ′
2) by using the first property of this lemma.

The last property follows from the fact that the identity relation and the com-
position of ≤ satisfies all the conditions of Definition 11. The transitivity of the
fourth condition of Definition 11 follows from the first property of this lemma. �

We list some useful laws about the subusage relation. These are part of laws
given in Lemma 11 in Appendix A.

Type-Based Information Flow Analysis for the Pi-Calculus 19

Lemma 3 1. If U � U ′, then U ≤ U ′.
2. If ob(U) = ∞, then U ≤ 0.

3. If t′o ≤ to and tc ≤ t′c, then αto
tc

.U ≤ α
t′o
t′c

.U .
4. If U1 ≤ [ρ �→ U1]U , then U1 ≤ µρ.U .

↑U defined below is the usage obtained by increasing the input and obligation
levels of U by one. As explained in Section 3.1, it will be used in the typing rule
for output processes.

Definition 12 The operation ↑ on usages is defined by: ↑U = ↑(t1+1,t2+1)(U)
where t1 = obI(U) and t2 = obO(U).

For example, ↑(O1
0 |O0

1) = ↑(∞,1)(O1
0 |O0

1), which is equivalent to O1
0 |O1

1 . (For-
mally, ↑(O1

0 |O0
1) ≤ O1

0 |O1
1 and O1

0 |O1
1 ≤ ↑(O1

0 |O0
1).)

3.3 Types

Definition 13 (types) The set of types is given by:

τ (types) ::= booll | unit | ξ/U
ξ (core channel types) ::= 〈τ1, . . . , τn〉l

Type booll is the type of booleans whose secrecy level is l. Type unit is the type
of the unit value �. A channel type 〈τ̃〉l/U describes a channel that have secrecy
level l and should be used according to U for communicating tuples of values of
types τ̃ .

Throughout this paper, we assume that channel types always satisfy the fol-
lowing well-formedness conditions.

Definition 14 A channel type 〈τ̃〉l/U is well-formed if it satisfies the following
two conditions:

– If l = H, then all the secrecy annotations in τ̃ are H.
– If l = L, then all the capability level annotations in U are ∞.

The well-formedness condition allows 〈boolH〉L/O0
∞ but neither 〈boolL〉H/O0

∞
nor 〈boolL〉L/O0

0: the second usage violates the first condition while the third us-
age violates the second condition. The well-formedness conditions are introduced
to simplify the typing rules and the proof of type soundness; how to remove the
above conditions is discussed in Section 6. We think that the first condition above
is not too restrictive in the presence of subtyping based on secrecy levels (see Sec-
tion 6). Although the first condition rules out a channel of type 〈boolL〉H/O0

∞, it
is often (not always, however) the case that one can instead assign 〈boolH〉H/O0

∞
to the channel, and coerce a low-level boolean to a high-level boolean before send-
ing it. The second condition is reasonable, since, for the purpose of information
flow analysis, analyzing whether communications succeed is important only for
secret channels.

We extend relations and operations on usages to those on types.

20 Naoki Kobayashi

Definition 15 (subtyping) A subtyping relation ≤ is the least reflexive relation
closed under the following rule:

U ≤ U ′

ξ/U ≤ ξ/U ′ (SUBT-CHAN)

For the sake of simplicity, we do not consider subtyping based on secrecy levels
(e.g. boolL ≤ boolH) and input/output modes [25]. Extension to allow such
subtyping is discussed in Section 6.

Definition 16 The obligation level of type τ , written ob(τ), is defined by:
ob(unit) = ob(booll) = ∞ and ob(ξ/U) = ob(U).

Definition 17 Unary operations ∗ and ↑ on types is defined by: ↑unit = unit,
↑booll = booll, ↑(ξ/U) = ξ/↑U , ∗unit = unit, ∗booll = booll, and
∗(ξ/U) = ξ/∗U .

Definition 18 A (partial) binary operation | on types is defined by: unit |unit =
unit, booll |booll = booll, and (ξ/U1) | (ξ/U2) = ξ/(U1 |U2). τ1 | τ2 is unde-
fined if it does not match any of the above rules.

3.4 Type Environment

A type environment is a mapping from a finite set of variables to types. We use
metavariables Γ and ∆ for type environments. We write ∅ for the type environment
whose domain is empty. When x �∈ dom(Γ), we write Γ, x : τ for the type envi-
ronment Γ ′ such that dom(Γ ′) = dom(Γ) ∪ {x}, Γ ′(x) = τ , and Γ ′(y) = Γ (y)
for all y ∈ dom(Γ).

A type environment Γ is extended to a mapping from a finite set of variables
and constants to types, by Γ (truel) = Γ (falsel) = booll and Γ (�) = unit. When
v is a constant, Γ, v : τ is defined to be Γ only when Γ (v) = τ . We abbreviate
∅, v1 : τ1, . . . , vn : τn to v1 : τ1, . . . , vn : τn.

The operations and relations on types are pointwise extended to those on type
environments below.

The subtyping relation is extended to a relation on type environments. Γ1 ≤ Γ2

means that Γ1 represents more liberal usage of free variables than Γ2.

Definition 19 A binary relation ≤ on type environments is defined by: Γ1 ≤ Γ2

if and only if (i) dom(Γ1) ⊇ dom(Γ2), (ii) Γ1(x) ≤ Γ2(x) for each x ∈ dom(Γ2),
and (iii) ob(Γ1(x)) = ∞ for each x ∈ dom(Γ1)\dom(Γ2).

Definition 20 The operations | and ∗ on type environments are defined by:

(Γ1 |Γ2)(x) =




Γ1(x) |Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)

(∗Γ)(x) = ∗(Γ (x))

Type-Based Information Flow Analysis for the Pi-Calculus 21

∅ �l 0 (T-ZERO)

Γ, x : 〈τ̃〉l1/U �l2 P l 	 l1, l2
tc = ∞ ⇒ l1 	 l2

↑(tc+1,tc+1)(Γ | ṽ : ↑τ̃) |x : 〈τ̃〉l1/O0
tc

.U �l x〈ṽ〉. P
(T-OUT)

Γ, x : 〈τ̃〉l1/U, ỹ : τ̃ �l2 P l 	 l1, l2
tc = ∞ ⇒ l1 	 l2

↑(tc+1,tc+1)Γ, x : 〈τ̃〉l1/I0
tc

.U �l x(ỹ). P
(T-IN)

Γ1 �l P1 Γ2 �l P2

Γ1 |Γ2 �l P1 |P2
(T-PAR)

Γ, x : ξ/U �l P rel(U)

Γ �l (νx : ξ) P
(T-NEW)

Γ �l P

∗Γ �l ∗P (T-REP)

Γ �l P Γ �l Q

Γ | v :booll �l if v then P else Q
(T-IF)

Γ ′ �l′ P Γ ≤ Γ ′ l 	 l′

Γ �l P
(T-WEAK)

Fig. 2 Typing Rules

3.5 Typing Rules

A type judgment is of the form Γ �l P , which should be read “P is well
typed under Γ and has secrecy level l.” It means that P uses free variables
as specified by Γ , and the secrecy level of information about its behavior is
l. The typing rules for deriving valid type judgments are given in Figure 2. In
the rules, “Γ, x̃ : τ̃” and “Γ | x̃ : τ̃” are abbreviations for “Γ, x1 : τ1, . . . , xn : τn”
and “Γ |x1 : τ1 | · · · |xn : τn” respectively. τ̃ ′ ≤ τ̃ is an abbreviation for τ ′

1 ≤
τ1, . . . , τ

′
n ≤ τn. We explain some rules below. Rules T-IN, T-PAR, and T-NEW

have already been explained in Section 3.1.
T-OUT: The operation ↑(tc+1,tc+1) enforces Rule A given in Section 3.1. It

ensures that the level of obligations held by the output process is greater than the
level of the capability of the output on x being used. Note that the types of ṽ
in the type environment of the conclusion must be subtypes of ↑τ̃ rather than τ̃ :
As explained in Section 3.1, it prevents infinite delegations of obligations. The
obligation level of the output on x is 0, since it is fulfilled immediately.

T-IF: In combination with T-WEAK, the rule ensures that the secrecy level
of the boolean is less than or equal to the secrecy levels of the then-part and the
else-part. Note that the type environment Γ | v :booll in the conclusion implicitly
assumes that Γ | v :booll is well defined; so, the process cannot be typed if v = �.
The rule can actually be replaced by the following, less restrictive rule:

Γ �l P Γ �l Q l′ � l

Γ | v :booll
′ �l if v then P else Q

This rule avoids propagation of the secrecy level of the boolean to the if-
expression. If we extend the subtyping relation based on the secrecy level (as
discussed in Section 6), the two rules become equivalent.

T-WEAK: This rule allows the type environment to be replaced by a type en-
vironment expressing more liberal uses of channels, and the secrecy level of the
process to be replaced by a lower one. For example, from x : ξ/O0

∞ �H P , we can
obtain x : ξ/O∞

0 �L P .

22 Naoki Kobayashi

3.6 Examples

Example 12 The process (νx : 〈 〉H) (x(). y〈 〉 |x〈 〉) is typed as follows:

x : 〈 〉H/0, y : 〈 〉L/O∞
∞ �L y〈 〉

x : 〈 〉H/I0
0 , y : 〈 〉L/↑(1,1)O∞

∞ �L x(). y〈 〉 T-IN

x : 〈 〉H/I0
0 , y : 〈 〉L/O∞

∞ �L x(). y〈 〉 T-WEAK
x : 〈 〉H/O0

0 �H x〈 〉
x : 〈 〉H/O0

0 �L x〈 〉 T-WEAK

x : 〈 〉H/(I0
0 |O0

0), y : 〈 〉L/O∞
∞ �L x(). y〈 〉 |x〈 〉 T-PAR

y : 〈 〉L/O∞
∞ �L (νx : 〈 〉H) (x(). y〈 〉 |x〈 〉) T-NEW

The secrecy level of y can be L, although that of x is declared as H.

Example 13 Let us consider the following process P :

∗s(r). r〈 〉 | s〈x〉 |x(). y〈 〉
It is well typed under the following type environment:

s : 〈〈 〉H/O0
∞〉H/(∗I0

∞ |O∞
0), x : 〈 〉H/(O1

∞ | I∞1), y : 〈 〉L/O∞
∞

Note that the type system can infer that the input on x succeeds, so that y is
assigned level L although the secrecy level of x is H.

Example 14 Suppose that x has type 〈 〉H/∗I∞nx
.Onx∞ and y has type 〈 〉H/∗I∞ny

.O
ny∞

with ny < nx. Then, as mentioned in Example 9, the process x(). y(). (y〈 〉 |x〈 〉)
is allowed which locks x and y in this order, but the process y(). x(). (x〈 〉 | y〈 〉)
is not. In fact, x(). y(). (y〈 〉 |x〈 〉) is typed as follows.

· · ·
x : 〈 〉H/Onx∞ , y : 〈 〉H/O

ny∞ �H y〈 〉 |x〈 〉
x : 〈 〉H/↑(ny+1,ny+1)Onx∞ , y : 〈 〉H/I0

ny
.O

ny∞ �H y(). (y〈 〉 |x〈 〉) T-IN

x : 〈 〉H/Onx∞ , y : 〈 〉H/I∞
ny

.O
ny∞ �H y(). (y〈 〉 |x〈 〉) T-WEAK

x : 〈 〉H/I0
nx

.Onx∞ , y : 〈 〉H/↑(nx+1,nx+1)I∞
ny

.O
ny∞ �H x(). y(). (y〈 〉 |x〈 〉) T-IN

x : 〈 〉H/∗I∞
nx

.Onx∞ , y : 〈 〉H/∗I∞
ny

.O
ny∞ �H x(). y(). (y〈 〉 |x〈 〉) T-WEAK

Here, we use the fact U ≤ ↑(tI ,tO)U when tO ≤ obO(U) and tI ≤ obI(U) in
the applications of T-WEAK.

On the other hand,

x : 〈 〉H/∗I∞nx
.Onx∞ , y : 〈 〉H/∗I∞ny

.Ony∞ �H y(). x(). (x〈 〉 | y〈 〉)
is not derivable. By applying T-IN to x : 〈 〉H/Onx∞ , y : 〈 〉H/O

ny∞ �H y〈 〉 |x〈 〉, we
obtain

x : 〈 〉H/I0
nx

.Onx∞ , y : 〈 〉H/↑(nx+1,nx+1)Ony∞ �H x(). (y〈 〉 |x〈 〉)
Since ny < nx, we cannot obtain

x : 〈 〉H/I0
nx

.Onx∞ , y : 〈 〉H/Ony∞ �H x(). (y〈 〉 |x〈 〉)
from the above judgment.

Type-Based Information Flow Analysis for the Pi-Calculus 23

Example 15 The process A in Example 4 has the secrecy level L under the fol-
lowing type environment:

secret : 〈boolH〉H/∗I∞0 O0
∞, public : 〈boolL〉L/∗I∞∞ .O∞

∞,
x : 〈 〉H/∗I∞0 .O0

∞
(The bound channel c is assigned a type 〈 〉H/(O1

1 | I1
1).)

The process C = y(). x(). (x〈 〉 | y〈 〉) is well typed under:

x : 〈 〉H/∗I∞0 .O0
∞, y : 〈 〉L/∗I∞∞ .O∞

∞.

So, the process (νx) (νsecret) (A |C |x〈 〉 | secret〈b〉) is well typed where b is
trueH or falseH. (Here, x〈 〉 | secret〈b〉 initializes the lock x and the shared vari-
able secret .) So, we know that the concurrent execution of threads A and C in
Figure 1 is safe.

On the other hand, the process B = x(). y(). (y〈 〉 |x〈 〉) is well-typed
not under the type environment x : 〈 〉H/∗I∞0 .O0

∞, y : 〈 〉L/∗I∞∞ .O∞
∞ but under

x : 〈 〉H/∗I∞∞ .O∞
∞, y : 〈 〉L/∗I∞∞ .O∞

∞ . So, (νx) (νsecret) (A |B |x〈 〉 | secret〈b〉) is
not well typed (since the whole usage of x: ∗I∞

∞ .O∞
∞ | ∗I∞0 .O0

∞ |O0
∞ is not reli-

able), which implies that the concurrent execution of threads A and B may leak
secret information.

Example 16 Let us consider the process given at the end of Example 6. Suppose
that Γ1, Γ2 and Γ3 are given as follows.

Γ1 = x : 〈boolH〉H/∗I∞0 .O0
∞, c : 〈 〉H/O1

0, c1 : 〈 〉H/O1
∞

Γ2 = x : 〈boolH〉H/∗I∞0 .O0
∞, y : 〈boolH〉H/∗I∞0 .O0

∞,
c : 〈 〉H/I0

1 , c2 : 〈 〉H/O2
∞

Γ3 = c1 : 〈 〉H/I0
1 , c2 : 〈 〉H/I2

2 , w : 〈boolL〉L/∗I∞∞ .O∞
∞

Then, we have:

Γ1 �H x(z). (x〈trueH〉 | c〈 〉. c1〈 〉)
Γ2 �H c(y). x(z). (x〈z〉 | y(u). (y〈z〉 | c2〈 〉))
Γ3 �L c1(). c2(). w(z) . w〈falseL〉
The whole process is well-typed under the type environment:

x : 〈boolH〉H/∗I∞0 .O0
∞, y : 〈boolH〉H/∗I∞0 .O0

∞, c : 〈 〉H/(O1
0 | I0

1),
w : 〈boolL〉L/∗I∞∞ .O∞

∞
So, although the part cobegin ... coend performs synchronization on high-
level channels, our type system can correctly infer that it does not affect the exe-
cution of the part w := false.

Example 17 Let us reconsider the process in Example 7. Subprocesses
∗withdraw(amount, r). · · ·, ∗getBalance(r). · · ·, and ∗deposit(amount, r). · · · are
typed as follows. (Here, we assume that the type system is extended with integer
types.)

withdraw : 〈intH, 〈boolH〉H/O1
∞〉H/∗I0

∞, s : 〈intH〉H/∗I∞0 .O0
∞

�H ∗withdraw(amount, r). · · ·
getBalance : 〈〈intH〉H/O1

∞〉H/∗I0
∞, s : 〈intH〉H/∗I∞0 .O0

∞
�H ∗getBalance(r). · · ·

deposit : 〈intL, 〈 〉L/O1
∞〉L/∗I0

∞, s : 〈intH〉H/∗I∞0 .O0
∞

�L ∗deposit(amount, r). · · ·

24 Naoki Kobayashi

The key is the typing for the last sub-process. Although it performs communi-
cation on a high-level channel s, it is allowed to send a message on a low-level
channel r, since our type system guarantees that the input on s always succeeds.
(Note that the capability level of an input on s is 0.) The bank object is well-typed
under:

withdraw : 〈intH, 〈boolH〉H/O1
∞〉H/∗I0

∞,
getBalance : 〈〈intH〉H/O1

∞〉H/∗I0
∞,

deposit : 〈intL, 〈 〉L/O1
∞〉L/∗I0

∞
This implies that information about the current balance is not leaked through the
public channel deposit.

Let us now consider the client process given at the end of Example 7. The part
m〈10, r〉. r(b).0 is typed under:

m : 〈intH, 〈boolH〉H/O1
∞〉H/∗O∞

0 ,

r : 〈boolH〉H/(O1
∞ | I∞1).

So, the whole client process is typed under:

withdraw : 〈intH, 〈boolH〉H/O1
∞〉H/∗O∞

0 ,

y : 〈〈intH, 〈boolH〉H/O1
∞〉H/∗O∞

0 〉H/∗I∞0 .O0
∞.

Example 18 The following process implements the parallel-or:

P
�
= ∗por(f1, f2, r).

(νx) (f1〈x〉 | f2〈x〉 |x(b1). if b1 then r〈true〉 else x(b2). r〈b2〉)
It receives a triple [f1, f2, r], where f1 and f2 are the locations of processes that
return booleans, and r is a channel that should be used for returning the result.
Upon receiving [f1, f2, r], P creates a new channel x and sends them to f1 and f2.
It then waits for a reply on channel x. Two booleans are expected to arrive on x,
but if the value received first is true, the process returns true without waiting for
the second value.

For example, consider the following process Q. Q sends on por the locations
t and f of servers that always answer true and false respectively, and then waits
for the result.

Q
�
= ∗t(r). r〈true〉 | ∗f(r). r〈false〉 | (νy) (por〈t, f, y〉 | y(b). succ〈 〉)

P |Q is well-typed under the following type environment:

t, f : 〈〈boolH〉H/O0
∞〉H/(∗I0

∞ | ∗O∞
0),

por : 〈τ, τ, 〈boolH〉H/O2
∞〉H/(∗I0

∞ | ∗O∞
0),

succ : 〈 〉L/O4
∞

where τ
�
= 〈〈boolH〉H/O0

∞〉H/O∞
0 .

The bound variable x in P is given the following type:

〈boolH〉H/(O1
∞ |O1

∞ | I0
1 .(0 & I0

1)).

The usage indicates that while outputs on x may not succeed (the capability level
is ∞), the inputs on x always succeed.

Type-Based Information Flow Analysis for the Pi-Calculus 25

4 Soundness of the Type System

In this section, we show that well-typed processes satisfy a so-called non-
interference property, which says that high-level values and processes (i.e., values
and processes of the secrecy level H) do not affect the behavior of low-level pro-
cesses. The property implies that information about high-level values or processes
cannot be observed by low-level processes.

Before proving the non-interference property, we show a subject reduction the-
orem. As in other linear type systems for process calculi [17], type environments
may change during reduction. We write Γ −→ Γ ′ when Γ = Γ1, x : ξ/U and
Γ ′ = Γ1, x : ξ/U ′ with U −→ U ′ for some Γ1, x, ξ, U , and U ′.

Theorem 1 (subject reduction) If Γ �l P and P −→ Q, then ∆ �l Q holds for
some ∆ such that Γ = ∆ or Γ −→ ∆.

Proof See Appendix A.

In order to formally state the non-interference property, we define a process
equivalence relation based on the notion of barbed congruence. The idea of barbed
congruence is to put two processes into various contexts and check whether they
exhibit the same observational behavior. The set of observables, called barbs, is
defined as follows.

Definition 21 (barbs) The barbs of P , written Barbs(P), is defined by:

Barbs(P) = {x | P −→∗� (νỹ) (x〈ṽ〉. Q |R), x �∈ {ỹ}}
∪{x | P −→∗� (νỹ) (x(z̃). Q |R), x �∈ {ỹ}}

The two processes put into the same context are compared by using the following
barbed bisimulation.

Definition 22 (barbed bisimulation) A binary relation R on processes is a
barbed bisimulation if the following conditions hold for every (P,Q) ∈ R:

– If P −→ P ′, then there exists Q′ such that Q −→∗ Q′ and (P ′, Q′) ∈ R,
– If Q −→ Q′, then there exists P ′ such that P −→∗ P ′ and (P ′, Q′) ∈ R, and
– Barbs(P) = Barbs(Q).

P and Q are barbed bisimilar, written P
•≈ Q, if (P,Q) ∈ R holds for some

barbed bisimulation.

The definition of contexts is given as follows.

Definition 23 (context) A context is a term obtained from a process by replacing
a sub-process with []. We write C[P] for the process obtained by replacing [] in
C with P . A context C is a (Γ, l)-(∆, l′)-context if ∆ �l′ C is derivable from
Γ �l [].

We introduce some terminology about type environments. A type environment
Γ is low-level if all the secrecy level annotations appearing in Γ are L. A type
environment Γ is closed [30] if Γ (x) is a channel type for any x ∈ dom(Γ). Γ
is reliable, written rel(Γ), if for any x ∈ dom(Γ), Γ (x) is a channel type of the
form ξ/U and rel(U) holds.

26 Naoki Kobayashi

Now we can define the barbed congruence. Basically, two processes P and
Q are barbed congruent if C[P] and C[Q] are barbed bisimilar for an arbitrary
context C. Here, since we are dealing with well-typed processes, we consider
only “well-typed” contexts.

Definition 24 (barbed congruence) P and Q are barbed (Γ, l)-congruent, writ-
ten P ≈Γ,l Q, if (i) Γ �l P , (ii) Γ �l Q, and (iii) for any closed ∆ and secrecy

level l′, C[P]
•≈ C[Q] holds for any (Γ, l)-(∆, l′)-context C.

We can now state the non-interference property as the following theorems.
The first one says that the difference between high-level values is not observ-
able to low-level processes, and the second one says that the difference between
high-level processes is not observable to low-level processes. The second one is
required to prevent leakage of information about complex data structures, which
are represented as processes in the π-calculus [30].

Theorem 2 (non-interference (1)) Suppose that Γ is a low-level type environ-
ment. If Γ �l [x �→ trueH]P holds, then [x �→ trueH]P ≈Γ,l [x �→ falseH]P .

Theorem 3 (non-interference (2)) Suppose that Γ is a low-level type environ-
ment, and that C1 is a (Θ,H)-(Γ, l)-context. If Θ �H Pi holds for i = 1, 2, then
C1[P1] ≈Γ,l C1[P2].

The rest of this section is devoted to proofs of Theorems 2 and 3. The central
idea of the proofs is that if ∆ �l P holds (with a certain condition on ∆), then
P and the process Er(P) obtained from P by eliminating all the high-level val-
ues and processes are barbed bisimilar (Theorem 4). In the case of Theorem 2,
for any (Γ, l) − (∆, l′) context C, C[[x �→ trueH]P] and C[[x �→ falseH]P] are

erased to the same process (up to a structural relation), so that C[[x �→ trueH]P]
•≈

Er(C[[x �→ trueH]P])
•≈ Er(C[[x �→ falseH]P])

•≈ C[[x �→ falseH]P] holds.
Below we define Er formally and then prove the non-interference theorems.
We write High(τ) if τ is unit, boolH, or a channel type of the form 〈τ̃〉H/U .

Definition 25 ErΓ (P) is defined by:

ErVΓ (v) =
{

� if High(Γ (v))
v otherwise

ErΓ (0) = 0

ErΓ (x〈ṽ〉. P) =




x〈ṽ′〉.ErΓ (P)
if Γ (x) = 〈τ̃〉L/U and v′

i = ErVΓ (vi)
ErΓ (P) otherwise

ErΓ (x(ỹ). P) =




x(ỹ).ErΓ,ỹ : τ̃ (P) if Γ (x) = 〈τ̃〉L/U
ErΓ,ỹ : τ̃ (P) if Γ (x) = 〈τ̃〉H/U
Er

Γ,ỹ : ũnit
(P) otherwise

ErΓ (P |Q) = ErΓ (P) |ErΓ (Q)
ErΓ (∗P) = ∗ErΓ (P)

ErΓ ((νx : ξ)P) =
{

(νx : ξ)ErΓ,x : ξ/0(P) if ξ = 〈τ̃〉L
ErΓ,x : ξ/0(P) otherwise

ErΓ (if v then P else Q) =




if v then ErΓ (P) else ErΓ (Q)
if Γ (v) = boolL

0 otherwise

Type-Based Information Flow Analysis for the Pi-Calculus 27

The following lemma shows that all high-level processes are erased to 0. (Re-
call that P ≡ Q means P � Q and Q � P .)

Lemma 4 If Γ �H P , then ErΓ (P) ≡ 0.

Proof Straightforward induction on derivation of Γ �H P .

The following is a key theorem, which states that the erasure function pre-
serves barbed bisimilarity.

Theorem 4 Suppose that Γ is a low-level, reliable type environment. If Γ �l P ,

then P
•≈ ErΓ (P).

The proof the above theorem is given in Appendix B. Here, we explain informally
why the above theorem holds. The difference between P and ErΓ (P) is that all
the input and output prefixes on high-level channels of P are removed in ErΓ (P).
The behavior of P can be simulated by ErΓ (P) can be simulated as follows.

– Any reduction of P on a low-level channel is matched by the corresponding
reduction of ErΓ (P).

– Any reduction of P on a high-level channel is matched by the skip
ErΓ (P) −→∗ ErΓ (P).

For example, let us consider a process P = (νx : 〈 〉H) (x(). y〈 〉 |x〈 〉. y()) and
a type environment Γ = y : 〈 〉L/(O∞

∞ | I∞∞). ErΓ (P) = y〈 〉 | y(). The reduction
P −→ (νx : 〈 〉H) (y〈 〉 | y()) is matched by the skip y〈 〉 | y() −→∗ y〈 〉 | y().

The simulation of ErΓ (P) by P needs more attention. Since some prefixes of
P have been removed in ErΓ (P), some communications enabled in ErΓ (P) may
not be enabled in P . In the example above, the communication on y is enabled
in ErΓ (P), but not in P . However, because of the typing rules T-OUT and T-IN
(the condition tc = ∞ ⇒ l1 � l2), all the input/output prefixes that are blocking
communications that are enabled in ErΓ (P) but not in P have capabilities of finite
level (that is, tc is finite in T-OUT and T-IN). Since those input/output operations
eventually succeed (see Theorem 5 in Appendix B), the communications that are
enabled in ErΓ (P) are also eventually enabled in P . For example, in the case of
the above example, the reduction ErΓ (P) = y〈 〉 | y() −→ 0 can be simulated by
P = (νx : 〈 〉H) (x(). y〈 〉 |x〈 〉. y()) −→ (νx : 〈 〉H) (y〈 〉 | y()) −→ (νx : 〈 〉H)0.
See Appendix B for a more detailed proof.

We now move on to prepare for the proofs of the non-interference theo-
rems. We write low(Γ) for the type environment obtained from Γ by replac-
ing all the secrecy annotations with L and all the capability level annotations
with ∞. We also write low(C) for the context obtained from C by replac-
ing all the secrecy annotations with L and all the capability level annotations
with ∞. For example, low((νx : 〈〈 〉H/O0

1〉L) (if trueH then x〈y〉 else [])) =
(νx : 〈〈 〉L/O0

∞〉L) (if trueL then x〈y〉 else []).

Lemma 5 Suppose that Γ is a low-level type environment. If C is a (Γ, l)-(∆, l′)-
context, then low(C) is a (Γ, l)-(low(∆),L)-context.

Proof This follows by straightforward induction on the derivation of ∆ �l′ C.

The erasure function is extended to that on contexts by ErΓ ([]) = []. The follow-
ing lemma follows by straightforward induction on the structure of C.

28 Naoki Kobayashi

Lemma 6 Suppose that Γ �l P and that C is a (Γ, l) − (∆, l′) context. Then,
Er∆(C[P]) = Er∆(C)[ErΓ (P)].

Now we can prove the non-interference theorems.

Proof of Theorem 2 Suppose that ∆ is closed. Then low(∆) is a low-
level, reliable type environment (since all the capability level annotations
have been replaced by ∞). Let C be a (Γ, l)-(∆, l′)-context, and C ′ be
low(C). By Lemma 5, C′ is a (Γ, l)-(low(∆),L)-context. By Lemma 4

and Theorem 4, C ′[[x �→ trueH]P]
•≈ Erlow(∆)(C ′[[x �→ trueH]P]) =

Erlow(∆)(C ′)[ErΓ ([x �→ trueH]P)] = Erlow(∆)(C ′)[ErΓ ([x �→ falseH]P)] =

Erlow(∆)(C ′[[x �→ falseH]P])
•≈ C ′[[x �→ falseH]P]. Since

•≈ does not depend

on type annotation, C[[x �→ trueH]P]
•≈ C[[x �→ falseH]P] holds. �

Proof of Theorem 3 Suppose that ∆ is closed. Then low(∆) is a low-level, reli-
able type environment. Let C be a (Γ, l)-(∆, l′)-context, and C ′ be low(C). By
Lemma 5, C ′ is a (Γ, l)-(low(∆),L)-context. By Lemma 4 and Theorem 4,

C ′[C1[P1]]
•≈ Erlow(∆′)(C ′[C1[P1]])
= Erlow(∆)(C ′[C1])[ErΘ(P1)]
•≈ Erlow(∆)(C ′[C1])[0]
•≈ Erlow(∆)(C ′[C1])[ErΘ(P2)]
= Erlow(∆)(C ′[C1[P2]])
•≈ C ′[C1[P2]].

Since
•≈ does not depend on type annotation, C[C1[P1]]

•≈ C[C1[P2]] holds. �

5 Type Inference Algorithm

This section describes a type inference algorithm. By the soundness of the type
system, the type inference algorithm can be used to check that processes do not
leak secret information. An input of the algorithm is a triple (Γ, P, l), where types
and secrecy levels appearing in the triple may contain variables (to represent un-
known types, secrecy levels, etc.), and all the usages in the triple must be variables.
The algorithm answers whether there exists a substitution θ such that θΓ �θl θP .
(The algorithm can be modified to also output a set of constraints that contain all
the correct substitutions.) The algorithm is sound and complete with respect to
the type system, in the sense that it always terminates and gives a correct yes/no-
answer.

Thanks to the type inference algorithm, programmers only need to put annota-
tions only when they want to explicitly specify values that should be regarded as
secret or assumptions about the behavior of the environment (by specifying a part
of information about Γ). Since the input Γ, P, l of the type inference algorithm
may contain variables, programmers are not obliged to provide any annotation.
In the extreme case, a programmer can write an ordinary pi-calculus term (with-
out annotations on ν-prefixes and truth values in Definition 2). Then, a system can

Type-Based Information Flow Analysis for the Pi-Calculus 29

automatically insert variables in the places where annotations are required accord-
ing to the syntax of Definition 2, and use the annotated process as an input to the
inference algorithm, along with a dummy type environment x1 : α1, . . . , xn : αn,
where x1, . . . , xn are the free variables of the process and α1, . . . , αn are unknown
type variables. Then, the inference algorithm tries to assign H to as many values
as possible.

The overall structure of the type inference algorithm is similar to other
constraint-based type inference algorithms for the π-calculus [12, 13, 18]: Given
an input (Γ, P, l), we can first obtain a set C of constraints on type variables, usage
variables, etc. such that θC holds if and only if θΓ �θl θP holds. Then, we can
reduce C step by step to decide whether C is satisfiable.

In the rest of this section, we first show an algorithm to extract constraints
in Section 5.1, and then explain how to solve the constraints in Section 5.2. Sec-
tion 5.3 gives some examples to illustrate how the type inference algorithm works,
and Section 5.4 briefly explains our prototype implementation of the type infer-
ence algorithm.

5.1 Step 1: Extracting constraints based on syntax-directed rules

We can convert the typing rules to syntax-directed ones, by combining each typing
rule with T-WEAK. For example, the rule for parallel composition becomes:

Γ1 �SD
l1

P1 Γ2 �SD
l2

P2 l � l1, l2

Γ1 |Γ2 �SD
l P1 |P2

The whole set of syntax-directed rules is given in Figure 3. It is equivalent to the
original typing rules in the following sense.

Lemma 7 If Γ �l P , then there exist Γ ′ and l′ such that Γ ′ �SD
l′ P with Γ ≤ Γ ′

and l � l′. If Γ �SD
l P , then Γ �l P .

Proof Straightforward induction on derivations of Γ �l P and Γ �SD
l P . �

An algorithm Tinf for extracting constraints is shown in Figure 4. In the fig-
ure, C≤(Γ1, Γ2) denotes the set {Γ1(x) ≤ Γ2(x) | x ∈ dom(Γ2)}∪{noob(Γ1(x)) |
x �∈ dom(Γ2)} of constraints on types. The constraint noob(τ) in ST-IN denotes
the same constraint as ob(τ) = ∞, but noob(〈τ̃〉l/U) should be reduced to U ≤ 0
rather than ob(U) = ∞ (since we want to generate only restricted forms of con-
straints to simplify the reduction of constraints in the next step). The constraint
WF (Γ) means that Γ (x) is well-formed for every x ∈ dom(Γ). WF (τ) means
that τ is well-formed. Meta-variables β, δ, and η represent variables denoting un-
known types, secrecy levels, and capability/obligation levels respectively.

The sub-algorithm PT takes P as an input, and outputs a triple (Γ ′, l′, C′) that
satisfies: (i) θΓ ′ �θl′ θP holds for any substitution θ such that θC′ holds, and (ii) if
Γ ′′ �l′′ θ′′P , then there exists a substitution θ such that θC′, Γ ′′ ≤ θΓ ′, l′′ � θl′,
and θ′′P = θP . Since PT (P) collects the premises of each syntax-directed rule,
the following corollary immediately follows from Lemma 7.

Corollary 1 Let Tinf (Γ, l, P) = C. Then, θC holds if and only if θΓ �θl θP
holds.

30 Naoki Kobayashi

∅ �SD
l 0 (ST-ZERO)

Γ �SD
l2 P l 	 l1, l2

Γ (x) = 〈τ̃〉l1/U or (x
∈ dom(Γ) and U ≤ 0) tc = ∞ ⇒ l1 	 l2

↑(tc+1,tc+1)(Γ\{x} | ṽ : ↑τ̃) |x : 〈τ̃〉l1/O0
tc

.U �SD
l x〈ṽ〉. P (ST-OUT)

Γ �SD
l2 P l 	 l1, l2 tc = ∞ ⇒ l1 	 l2

Γ (x) = 〈τ̃〉l1/U or (x
∈ dom(Γ) and U ≤ 0)
τi ≤ Γ (yi) or (yi
∈ dom(Γ) and ob(τi) = ∞) (for each τi ∈ {τ̃})

↑(tc+1,tc+1)Γ\{x}, x : 〈τ̃〉l1/I0
tc

.U �SD
l x(ỹ). P

(ST-IN)

Γ1 �SD
l1 P1 Γ2 �SD

l2 P2 l 	 l1, l2

Γ1 |Γ2 �SD
l P1 |P2

(ST-PAR)

Γ �SD
l P (Γ (x) = ξ/U ∧ rel(U)) if x ∈ dom(Γ)

Γ\x �SD
l (νx : ξ) P

(ST-NEW)

Γi �SD
li

Pi (for i = 1, 2) Γ ≤ Γi l 	 li (for i = 1, 2)

Γ | v :booll �SD
l if v then P1 else P2

(ST-IF)

Γ �SD
l P

∗Γ �SD
l ∗P (ST-REP)

Fig. 3 Syntax-Directed Typing Rules

5.2 Reducing constraints

By reducing the constraints on types generated by the algorithm in the previous
step, we obtain constraints on usages and secrecy/capability/obligation levels of
the following forms:

ρ ≤ U l1 � l2 rel(U)
η = ∞ ⇒ l1 � l2 l = L ⇒ Cap∞(U)

Here, Cap∞(U) in the last constraint means that all the capability levels ap-
pearing in U are ∞. The constraint comes from the well-formedness condition
on types (recall Definition 14). The meta-variable l represents L, H, or a vari-
able (called secrecy variables) representing an unknown secrecy level. The meta-
variable η represents a variable (called level variables) representing an unknown
obligation/capability level. Usage U in constraints may contain the operation ↑ (in
addition to usage constructors), and all the capability level annotations in U are
level variables.

Constraints can be further reduced step by step as described below.

5.2.1 Solving subusage constraints

A set of subusage constraints {ρ1 ≤ U1, . . . , ρn ≤ Un} is solved in the following
two steps:

1. Transform the constraints so that each usage variable appears exactly once
in the lefthand side of the inequalities. This is achieved by replacing {ρ ≤

Type-Based Information Flow Analysis for the Pi-Calculus 31

Tinf (Γ, l, P) =
let (Γ ′, l′, C′) = PT (P)
in C′ ∪ C≤(Γ, Γ ′) ∪ {l 	 l′} ∪ WF (Γ)

PT (0) =(∅, δ, ∅)
(where δ is fresh)

PT (x〈v1, . . . , vn〉. P0) =
let (Γ0, l0, C0) = PT (P0)

C1 = if x ∈ dom(Γ0) then {Γ0(x) = 〈β1, . . . , βn〉δ1/ρ} else {ρ ≤ 0}
C = C0 ∪ C1 ∪ {δ 	 δ1, δ 	 l0, η = ∞ ⇒ δ1 	 l0}
in (↑(η+1,η+1)(Γ0\{x} | v1 : ↑β1 | · · · | vn : ↑βn) |x : 〈β̃〉δ1/O0

η.ρ, δ,

C ∪ {WF (〈β̃〉δ1/O0
η.ρ)})

(where β1, . . . , βn, δ, δ1, η, ρ are fresh)

PT (x(y1, . . . , yn). P0) =
let (Γ0, l0, C0) = PT (P0)

C1 = if x ∈ dom(Γ0) then {Γ0(x) = 〈β1, . . . , βn〉δ1/ρ} else {ρ ≤ 0}
C =C0 ∪ C1 ∪ {δ 	 δ1, δ 	 l0, η = ∞ ⇒ δ1 	 l0}

∪{βi ≤ Γ0(yi) | yi ∈ {y1, . . . , yn} ∩ dom(Γ0)}
∪{noob(βi) | yi ∈ {y1, . . . , yn}\dom(Γ0)}

in ((↑(η+1,η+1)Γ0\{x, y1, . . . , yn}, x : 〈β̃〉δ1/I0
η .ρ), δ, C ∪ {WF (〈β̃〉δ1/I0

η .ρ)})
(where β1, . . . , βn, δ, δ1, η, ρ are fresh)

PT (P1 |P2) =
let (Γ1, l1, C1) = PT (P1)

(Γ2, l2, C2) = PT (P2)
in (Γ1 |Γ2, δ, C1 ∪ C2 ∪ {δ 	 l1, δ 	 l2})

PT ((νx : ξ) P0) =
let (Γ0, l0, C0) = PT (P0)

C1 = if x ∈ dom(Γ0) then {Γ0(x) = ξ/ρ, rel(ρ)} else ∅
in (Γ0\{x}, l0, C0 ∪ C1 ∪ {WF (ξ/0)})
(where ρ is fresh)

PT (if v then P1 else P2) =
let (Γ1, l1, C1) = PT (P1)

(Γ2, l2, C2) = PT (P2)
Γ = x1 : β1, . . . , xn : βn

where {x1, . . . , xn} = dom(Γ1) ∪ dom(Γ2) and β1, . . . , βn are fresh
in (Γ | v :boolδ, δ, C1 ∪ C2 ∪ {δ 	 l1, δ 	 l2} ∪ C≤(Γ, Γ1) ∪ C≤(Γ, Γ2))
(where δ is fresh)

PT (∗P0) =
let (Γ0, l0, C0) = PT (P0)
in (∗Γ0, l0, C0)

Fig. 4 A Type Inference Algorithm

32 Naoki Kobayashi

U1, ρ ≤ U2} with {ρ ≤ U1 & U2}, and add ρ ≤ ρ for each usage variable ρ
that does not appear in the lefthand side.

2. Eliminate subusage constraints by repeatedly applying the rule: C ∪ {ρ ≤
U} −→ [ρ �→ µρ.U]C.

The set of reduced constraints is satisfiable if and only if the original set of con-
straints is satisfiable, since by Lemma 3, ρ = µρ.U is the greatest (with respect to
≤) solution for ρ ≤ U . Note that the constraints other than subusage constraints
are monotonic with respect to ≤ in the sense that if U1 ≤ U2, then [ρ �→ U1]C
implies [ρ �→ U2]C.

5.2.2 Removing the operator ↑

Usages in the set of constraints obtained so far may contain the operator ↑. ↑U can
be replaced by ↑(obI(U)+1,obO(U)+1)U . We can show by induction on the structure
of U that obα(U) is expressed in terms of min, max, constants (in Nat∪ {∞}),
and expressions of the form η + n where η is a level variable. The non-trivial
is the case where U is of the form µρ.U1. By the definition of obα, obα(U) =
lfp(λx.ob{ρ�→x}

α (U1)). By induction hypothesis, ob{ρ�→x}
α (U1) can be normalized

to:

max(e1, . . . , en)

where each ei is of the form ci or min(x + ni, ci). Here, ni ∈ Nat and ci is an
expression not containing x. If n > 0, then

lfp(λx.max(min(x + n, c), e)) = lfp(λx.max(c, e))

(Note that max(min(x + n, c), e) and max(c, e) can differ only in the range
0 ≤ x < c − n, and that there is no fixpoint in that range.) So, we can assume
without loss of generality that ob{ρ�→x}

α (U1) is of the form max(c,min(x, c′)) or
c. In either case, obα(U) = c.

Example 19 obα(µρ.↑ρ) = lfp(λx.x + 1) = lfp(λx.max(min(x + 1,∞))) =
lfp(λx.max(∞)) = ∞.

5.2.3 Reducing rel(U)

Next, we eliminate constraints of the form rel(U).
By definition, rel(U) holds if and only if con(U ′) holds for every U ′ such that

U −→∗ U ′. The set of such U ′ can be infinite, but we can normalize U ′ by using
the lemma below. We write ∼= for the least equivalence relation on usages that sat-
isfies the monoid laws on | (where 0 is the unit) and the laws ↑(t1,t2)(↑(t′1,t′2)U) ∼=
↑(max(t1,t′1),max(t2,t′2))U and ↑(t1,t2)(U1 |U2) ∼= ↑(t1,t2)U1 | ↑(t1,t2)U2. We write
nU for parallel composition of n occurrences of U . 0U is 0. We say that a usage
U is atomic if the outermost constructor of U is neither 0, | nor ↑(t1,t2).

Lemma 8 For any U , there exists a finite set of usages {U1, . . . , Un} such that
for any U ′ such that U −→∗ U ′, there exist k1, . . . , kn ∈ Nat such that U ′ ∼=
k1U1 | · · · | knUn.

Type-Based Information Flow Analysis for the Pi-Calculus 33

Proof Investigation of each rule for U � U ′ and U −→ U ′ shows that each
atomic usage in U ′ are introduced by each reduction is either a subformula of U
or those obtained by expanding recursion (by UP-REC) or raising the capability
level of input prefixes (by UP-↑). Let Atoms(U) be the set of atomic usages that
are sub-expressions of usages obtained by finitely expanding U and do not contain
“redundant unfolding” of the form [ρ �→ µρ.U1]U1 as a proper sub-expression (i.e.,
a sub-expression which is not the expression itself). Atoms(U) is a finite set. Let
EAtoms(U) be the set:

Atoms(U) ∪ {αmax(t11,...,t1n)
t2 .U1 | αt1

t2 .U1 ∈ Atoms(U)}
∪ {↑(max(t11,...,t1m),max(t21,...,t2n))U1

| U1 ∈ Atoms(U)and U1 is not of the form αt1
t2 .U}

Here, t11, . . . , t1n, t21, . . . , t2n ranges over the set of level expressions that occur
in U . EAtoms(U) is also a finite set. By the above observation, the required prop-
erty holds for EAtoms(U) = {U1, . . . , Un}. �

For example, if U is ↑(3,2)µρ.(I1
1 .ρ |O2

2), EAtoms(U) is the set:

{↑(t1,t2)µρ.(I1
1 .ρ |O2

2) | t1, t2 ∈ {1, 2, 3}}
∪{It1

t2 .µρ.(I1
1 .ρ |O2

2) | t1, t2 ∈ {1, 2, 3}}
∪{Ot1

t2 | t1, t2 ∈ {1, 2, 3}}
The following lemma ensures that whether con(U ′) holds depends only on

whether the indices k1, . . . , kn are 0 or not, so that we need to check only a finite
number of cases.

Lemma 9 If U ′ ∼= k1U1 | · · · | knUn with k1, . . . , kn > 0, then con(U ′) if and
only if con(U1 | · · · |Un).

Proof By the definitions of obα, capα, and ∼=, (i) if U ∼= U ′ then obα(U) = obαU ′
and capα(U) = capα(U ′), and (ii) for any k > 0, obα(kU) = obα(U) and
capα(kU) = capα(U). The required property follows immediately follow from
those properties. �

By the decidability of the reachability problem of Petri nets [21], we have the
following lemma.

Lemma 10 Let {U1, . . . , Um} be a subset of the set of usages in Lemma 8.
Then, it is decidable whether there exist k1, . . . , km > 0 such that U −→∗∼=
k1U1 | · · · | kmUm.

Proof We can reduce the problem into the reachability problem of Petri nets as
follows. For each usage expression U1 in EAtoms(U), we prepare two places XU1

and YU1 of a Petri net. Intuitively, a usage expression k1U1 | · · · knUn is encoded
into a state of the Petri net k1XU1 | · · · |knXUn

(which expresses the state where
there are ki markings in each place XUi

). The place YU1 is used for testing whether
U1 occurs at the top level.

We prepare the following transitions of the Petri net.

– For each U1 in EAtoms(U), the transitions XU1 −→ YU1 and XU1 |YU1 −→
YU1 .

34 Naoki Kobayashi

– Transitions that correspond to each rule for � and −→.

For example, for each It1
t2 .U1 and O

t′1
t′2

.U ′
1 in EAtoms(U), we add the transition

X
I

t1
t2

.U1
|X

O
t1
t2

.U ′
1
−→ k1XV1 | · · · |knXVn

,

where k1V1 | · · · | knVn
∼= U1 |U ′

1 and V1, . . . , Vn ∈ EAtoms(U).

For each U1 & U2 ∈ EAtoms(U), we add the transitions:

XU1&U2 −→ k1XV1 | · · · |knXVn

where k1V1 | · · · | knVn
∼= U1 and V1, . . . , Vn ∈ EAtoms(U)

XU1&U2 −→ k1XV1 | · · · |knXVn

where k1V1 | · · · | knVn
∼= U2 and V1, . . . , Vn ∈ EAtoms(U)

Let U ∼= k′
1V1 | · · · | k′

nVn and V1, . . . , Vn, U1, . . . , Um ∈ EAtoms(U). Then,
by the above construction of the Petri net, U −→∗ k1U1 | kmUm for some
k1, . . . , km > 0 if and only if the marking YU1 | · · · |YUm

is reachable from the
initial marking k′

1XV1 | · · · |k′
nXVn

. Thus, the problem is decidable [21]. �

Thus, the constraint rel(U) is replaced by the conjunction of constraints of the
form obα(U1 | · · · |Um) ≤ capα(U1 | · · · |Um). By the result of the previous
subsection, such a constraint can be further reduced to a constraint of the form
t1 ≤ t2. Moreover, by the definition of capα(U), t2 can be expressed in the form
min(η1, . . . , ηn) where η1, . . . , ηn are level variables. So, t1 ≤ t2 can be further
reduced to t1 ≤ η1, . . . , t1 ≤ ηn.

5.2.4 Final step

Now the resulting constraint is a set of constraints of the form:

t ≤ η l1 � l2 η = ∞ ⇒ l1 � l2 l = L ⇒ η = ∞
Constraints of the first and fourth forms can be solved by a symbolic method.
The constraint l = L ⇒ η = ∞ can be first converted into a constraint
IF(l = L,∞, 0) ≤ η of the first form, where IF(e1, e2, e3) is e2 if e1 holds
and it is e3 otherwise. In each constraint of the first form, t can be normalized to
max(e1, . . . , en), where each ei is of the form min(η + n, c) or c, and c does not
contain the variable η. Notice that max(min(η, c), e) ≤ η if and only if e ≤ η,
and that for n > 0, max(min(η + n, c), e) ≤ η if and only if max(c, e) ≤ η. So,
we can remove η from t in t ≤ η. Thus, we can eliminate the level variable η by
substituting t for the occurrences of η in the other constraints.

After all the level variables have been eliminated, the remaining constraints
can be normalized to the following set of constraints:

{δ1 � F1(δ1, . . . , δn), · · · δn � Fn(δ1, . . . , δn),
l1 � G1(δ1, . . . , δn), · · · , lm � Gm(δ1, . . . , δn)}

Here, δi is a secrecy variable, and lj is a constant L or H. Fi and Gj are monotonic
functions on δ1, . . . , δn, constructed from H, L, secrecy variables, and IF(t =
∞, l,H) (where l is a secrecy variable or a constant). Note that each constraint of
the form t = ∞ ⇒ l1 � l2 has been normalized to l1 � IF(t = ∞, l2,H). Here,
t is anti-monotonic with respect to secrecy variables, hence IF(t = ∞, l2,H) is
monotonic on secrecy variables.

Type-Based Information Flow Analysis for the Pi-Calculus 35

Let us abbreviate the above constraints to {δ̃ � F̃ (δ̃), l̃ � G̃(δ̃)}. Since F̃ is
monotonic, we have:

H̃ � F̃ (H̃) � F̃ 2(H̃) � · · ·
So, we can find k ∈ Nat such that δ̃ = F̃ k(H̃) is the greatest solution for δ̃ �
F̃ (δ̃). For such k, the constraint {δ̃ � F̃ (δ̃), l̃ � G̃(δ̃)} is satisfiable if and only if
l̃ � G̃(F̃ k(H̃)) holds.

5.3 Examples

Example 20 Let us consider the following process P :

(νs : 〈β〉H) (νz : 〈 〉δz) (∗s(y) . (y〈 〉 | s〈y〉) | s〈z〉 | z(). x〈 〉)
To check that x : 〈 〉L/ρx �L P holds for some β and δz , it suffices to compute
Tinf (Γ,L, P) for Γ = x : 〈 〉L/ρx and check whether it is satisfiable. We list the
output of PT for some of the sub-expressions of P .

PT (∗s(y) . (y〈 〉 | s〈y〉) =
(s : 〈β1〉δs/∗I0

η1
.O0

η2
, δ0, {β1 ≤ 〈 〉δy/O0

η4
| ↑(η2+1,η2+1)↑β1,

δ0 � δs, δ0 � δy, η1 = ∞ ⇒ δs � δy}
PT (s〈z〉) = ((z : ↑(η3+1,η3+1)↑β2, s : 〈β2〉δs/O0

η3
), δ1, {δ1 � δs})

PT (z(). x〈 〉) =
((x : ↑(η5+1,η5+1)〈 〉δx/O0

η6
, z : 〈 〉δz/I0

η5
), δ2,

{δ2 � δx, δ2 � δz, η5 = ∞ ⇒ δz � δx})
Here, we have omitted unimportant constraints and those of the form WF (τ): in
particular, we have substituted 0 for usage variables ρ that can be constrained by
only ρ ≤ 0.

Tinf (Γ,L, P) produces the following constraints in addition to the constraints
generated for sub-expressions.

{〈 〉δ/ρz = ↑(η3+1,η3+1)↑β1 | 〈 〉δz/I0
η5

, rel(ρz),
〈β〉H/ρs = 〈β1〉δs/∗I0

η1
.O0

η2
| 〈β2〉δs/O0

η3
, rel(ρs),

〈 〉L/ρx ≤ ↑(η5+1,η5+1)〈 〉δx/O0
η6

,
L � δ0, δ1, δ2,

WF (〈β〉H/ρs),WF (↑(η5+1,η5+1)〈 〉δx/O0
η6

)}
By reducing constraints on types, we obtain the following constraints (trivial

constraints have been removed):

β = β1 = β2 = 〈 〉δz/ρy

ρz = (↑(η3+1,η3+1)↑ρy) | I0
η5

ρs = (∗I0
η1

.O0
η2

) |O0
η3

ρx ≤ ↑(η5+1,η5+1)O0
η6

(= Oη5+1
η6

)
ρy ≤ O0

η4
| ↑(η2+1,η2+1)↑ρy

rel(ρz) rel(ρs)
δs = H δx = L η5 = ∞ ⇒ δz � δx η1 = ∞ ⇒ H � δz

H � δz η6 = ∞

36 Naoki Kobayashi

Here, ρs, ρx, ρy, ρz are usages of s, x, y, and z respectively. Constraints on the
last line come from the conditions on well-formed types. By solving the subusage
constraints, we obtain the following solutions for ρs, ρx, ρy, ρz:

ρs = (∗I0
η1

.O0
η2

) |O0
η3

ρx = Oη5+1
η6

ρy = µρ.(O0
η4

| ↑(η2+1,η2+1)↑ρ)
ρz = (↑(η3+1,η3+1)↑ρy) | I0

η5

= (↑(η3+1,η3+1)↑µρ.(O0
η4

| ↑(η2+1,η2+1)↑ρ)) | I0
η5

To remove ↑, we compute obI(ρy) and obO(ρy).

obI(ρy) = lfp(λx.min(∞,max(η2 + 1, x + 1)))
= lfp(λx.max(η2 + 1,min(x + 1,∞))
= lfp(λx.max(η2 + 1,∞)) = ∞

obO(ρy) = lfp(λx.min(0,max(η2 + 1, x + 1)))
= lfp(λx.0) = 0

So, ρy and ρz are: µρ.(O0
η4

| ↑(∞,η2+1)ρ) and (↑(∞,η3+1)ρy) | I0
η5

. Since ρs −→
ρs −→ · · ·, capI(ρs) = η1 and capO(ρs) = min(η2, η3), rel(ρ1) is reduced to
the constraints 0 ≤ min(η2, η3) and 0 ≤ η1 (which are tautologies). On the other
hand, ρz can be reduced to U1 = ↑(∞,max(η3+1,η2+1))ρ3 or U2 = Oη3+1

η4
|U1. So,

rel(ρz) can be reduced to

obI(ρz) ≤ capO(ρz) obO(ρz) ≤ capI(ρz)
obI(Ui) ≤ capO(Ui) obO(Ui) ≤ capI(Ui) (i = 1, 2),

from which we obtain η3 + 1 ≤ η5 and ∞ ≤ η4. (We have omitted tautology). So,
the remaining constraints are:

∞ ≤ η6 η3 + 1 ≤ η5 ∞ ≤ η4

H � δz l � IF(η5 = ∞,L,H)

The least solution for constraints on level variables is: η1 = η2 = η3 = 0, η5 =
η3 + 1 = 1, η4 = η6 = ∞. So, we obtain the constraints {H � δz, δz � H},
which hold for δz = H.

Example 21 Let P be the process:

(νx : 〈 〉H) (νsecret : 〈boolH〉H) (A |C |x〈 〉 | secret〈b〉)

Type-Based Information Flow Analysis for the Pi-Calculus 37

in Example 15 and Γ be public : 〈boolL〉L/ρ1, x : 〈 〉L/ρ2. By computing
Tinf (Γ,L, P) and reducing constraints on types, we obtain the following con-
straints.

ρ1 ≤ ↑(η5+1,η5+1)↑(η15+1,η15+1)I0
η1

.O0
η2

ρ2 ≤ I0
η3

.↑(η10+1,η10+1)O0
η4

ρ3 ≤ I0
η5

.O0
η6

|O0
η7

ρ4 ≤ ↑(η5+1,η5+1)(I0
η8

.O0
η9

& 0) | ↑(η3+1,η3+1)I0
η10

.O0
η11

|O0
η12

ρ5 ≤ ↑(η5+1,η5+1)((↑(η8+1,η8+1)O0
η13

& O0
η14

) | I0
η15

)
rel(ρ3) rel(ρ4) rel(ρ5)
Cap∞(ρ1) Cap∞(ρ2) δ = L ⇒ Cap∞(ρ5)
η5 = ∞ ⇒ H � L
η8 = ∞ ⇒ H � δ
η15 = ∞ ⇒ δ � L
η10 = ∞ ⇒ H � L
H � δ

Here, ρ3, ρ4, ρ5 are usages of channels secret , x, and c respectively, and δ is the
secrecy level of c.

By solving the subusage constraints, we obtain:

ρ1 = I
max(η5+1,η15+1)
η1 .O0

η2

ρ2 = I0
η3

.Oη10+1
η4

ρ3 = I0
η5

.O0
η6

|O0
η7

ρ4 = (Iη5+1
η8

.O0
η9

& 0) | Iη3+1
η10

.O0
η11

|O0
η12

ρ5 = (Omax(η5+1,η8+1)
η13 & Oη5+1

η14
) | Iη5+1

η15

Therefore, the constraints:

rel(ρ3) rel(ρ4) rel(ρ5)
Cap∞(ρ1) Cap∞(ρ2) δ = L ⇒ Cap∞(ρ5)

are reduced to:

∞ ≤ η6

η3 + 1 ≤ η12 ∞ ≤ η11 ∞ ≤ η9

η5 + 1 ≤ η13 η5 + 1 ≤ η14 max(η5 + 1, η8 + 1) ≤ η15

∞ ≤ η1, η2, η3, η4

IF(δ = L,∞, 0) ≤ η13, η14, η15

By solving them, we obtain the following solution for level variables:

η1 = η2 = η3 = η4 = η6 = η9 = η11 = η12 = ∞
η5 = η7 = η8 = η10 = 0
η13 = η14 = η15 = max(1, IF(δ = L,∞, 0))

By substituting it for the constraints on secrecy levels, we obtain:

0 = ∞ ⇒ H � L
0 = ∞ ⇒ H � δ
max(1, IF(δ = L,∞, 0)) = ∞ ⇒ δ � L
0 = ∞ ⇒ H � L
H � δ

38 Naoki Kobayashi

They are normalized to the following constraints:

H � IF(0 = ∞,L,H)
H � IF(0 = ∞, δ,H)
δ � IF(max(1, IF(δ = L,∞, 0)) = ∞,L,H)
H � IF(0 = ∞,L,H)
H � δ

The constraint is satisfied for δ = H.

5.4 Implementation

We have implemented an information flow analyzer TyPiCal, which is avail-
able from http://www.kb.ecei.tohoku.ac.jp/˜koba/typical/.
The implementation is mostly based on the algorithm described above, but there
are the following discrepancies between the above algorithm and the current im-
plementation of TyPiCal.

– TyPiCal allows no annotation on secrecy levels. TyPiCal simply tries to
assign the level H to as many values as possible.

– TyPiCalTyPiCal allows no declaration on the environment.
TyPiCalTyPiCal assumes that all the free channels are low-level channels.

– TyPiCal allows subtyping on base types and pair type constructors (see Sec-
tion 6) to enhance the analysis.

– TyPiCal uses a sound but incomplete algorithm for the Petri net reachability
problem, so the current implementation is not complete with respect to the
type system described in this paper.

The first and second are just limitations of the current interface, not those of the
core of the implemented algorithm. The last one is inevitable as no complete,
efficient algorithm for the Petri net reachability problem is known. To obtain an
approximated solution for the Petri net reachability problem, we abstract a Petri
net into a finite state machine, and then solve the reachability problem for the finite
state machine by using boolean decision diagrams. The detail will be described in
a separate technical report.

Figure 5 shows a sample input for TyPiCal. The code is based on the bank
account example given in Example 7. The current balance (100) is kept in the
message balance!100 on the second line. The last but two lines expresses the
client process given at the end of Example 7 (where we have removed the first
input from y so that y!withdraw serves as an initializer for the shared variable).
The last two lines simulate high-level client processes which may access withdraw
and deposit methods an arbitrary number of times. The only free name is transfer.
So, low-level processes are assumed to access only through that name. Figure 6
shows a sample session for the sample code.6 As the figure shows, TyPiCal
outputs the code whose base values (booleans and integers) are annotated with
secrecy levels. Note that the current balance (100) is annotated with /*H*/, which

6 TyPiCal can also perform other kinds of analyses; the option -i specifies that the infor-
mation flow analyzer should be invoked. We have modified indentations and line breaks of the
actual output for the clarity.

Type-Based Information Flow Analysis for the Pi-Calculus 39

new balance in new withdraw in new getBalance in new y in
balance!100 |
*withdraw?z.(let amount=fst(z) in let r = snd(z) in

balance?x.
if x>=amount then (r!true | balance!(x-amount))
else (r!false | balance!x)) |

*getBalance?r.balance?x.(r!x | balance!x) |
*deposit?z.(let amount=fst(z) in let r = snd(z) in

if amount>=0
then balance?x.(r!true | balance!(x+amount))
else r!false) |

y!withdraw | y?m.(y!m | new r in m!(1,r)) |
*(if true then (new r in getBalance!r) else O) |
*(if true then (new r in withdraw!(1,r)) else O)

Fig. 5 A sample input for TyPiCal: account.pi

% typical -i account.pi
TyPiCal 1.0.2: A Type-based static analyzer for the Pi-...
analyzing account.pi...
new balance in new withdraw in new getBalance in new y in

balance!100/*H*/ |
*withdraw?z.(let amount=fst(z) in let r = snd(z) in

balance?x.
if x>=amount then (r!true/*H*/ | balance!(x-amount))
else (r!false/*H*/ | balance!x)) |

*getBalance?r.balance?x.(r!x | balance!x) |
*deposit?z.(let amount=fst(z) in let r = snd(z) in

if amount>=0/*L*/
then balance?x.(r!true/*L*/ | balance!(x+amount))
else r!false/*L*/) |

y!withdraw | y?m.(y!m | new r in m!(1/*H*/,r)) |
*(if true/*H*/ then (new r in getBalance!r) else O) |
*(if true/*H*/ then (new r in withdraw!(1/*H*/,r)) else O)

Elapsed Time: 0.16sec

Fig. 6 The output of TyPiCal for account.pi

means that the balance is kept secret to the environment, which can access the
account only through transfer.

Figure 7 shows an unsafe version of the account code. Here, the current bal-
ance is returned as the result of the transfer method. TyPiCal annotates the
current balance 100 with /*L*/ for this example, which means that information
about the current balance may be leaked to the environment.

6 Discussions

In Section 3, we have imposed several restrictions on the type system for the sake
of simplicity. In this section, we discuss those restrictions and how to remove
them.

Conditions on well-formed typesIn Section 3.1, we have presented IN-IDEAL as
an ideal rule for input processes. Actually, however, we also need some subtle,

40 Naoki Kobayashi

new balance in new withdraw in new getBalance in new y in
balance!100 |
*withdraw?z.(let amount=fst(z) in let r = snd(z) in

balance?x.
if x>=amount then (r!true | balance!(x-amount))
else (r!false | balance!x)) |

*getBalance?r.balance?x.(r!x | balance!x) |
*transfer?z.(let amount=fst(z) in let r = snd(z) in

if amount>=0
then balance?x.(r!(x+amount) | balance!(x+amount))
else r!0) |

*(if true then (new r in getBalance!r) else O) |
*(if true then (new r in withdraw!(1,r)) else O)

Fig. 7 An unsafe account

extra conditions, which are implicitly enforced by the conditions on well-formed
types (Definition 14): If x is a high-level channel and P is a low-level process,
x(y). P is safe only if the success of x is guaranteed by only communications on
high-level channels and if y is not used as a low-level value in P . Indeed, without
the assumption about well-formed types, the typing rules in Section 3 are unsound.
For example, consider the following process (which violates the first condition on
well-formed types):

(νx : 〈boolL〉H)
(if secret then x〈trueL〉 else x〈falseL〉
|x(y). non secret〈y〉)

It is well-typed under the type environment:

secret :boolH,non secret : 〈boolL〉L/O∞
∞

if we remove the first condition on well-formed types, but it leaks the value of
secret .

Let us also consider the following process:

(νx : 〈 〉H) (νy : 〈intL〉L)
(if secret then x〈 〉 else 0
| y〈trueL〉 |x(). y〈falseL〉
| y(z). (x〈 〉 |non secret〈z〉))

It is well typed under the type environment:

secret :boolH, non secret : 〈boolL〉L/O∞
∞

if we remove the second condition on well-formed types. (Let the usage of y be
O0

0 |O∞
∞ | I0

0 and the usage of x be (O∞
∞ & 0) | I∞1 |O1

∞.) The process, however,
leaks information about secret , since falseL can be sent on non secret only if
secret is trueH.

One way to remove the first condition on well-formed types would be to re-
place the condition tc = ∞ ⇒ l1 � l2 in rule T-IN with (tc = ∞∨SL(τ̃) = L) ⇒
l1 � l2, where SL(τ̃) is the least secrecy level annotation that appears in τ̃ . (We
have not yet checked whether this is a sufficient condition.) Then, in the first ex-
ample above, x must be low-level, so that if secret then x〈trueL〉 else x〈falseL〉

Type-Based Information Flow Analysis for the Pi-Calculus 41

is ill-typed. The erasure function Er must be redefined, so that a high-level com-
munication is not erased if it carries low-level values.

The second condition on well-formed types can be removed by changing the
operation ↑(tc+1,tc+1) in T-OUT and T-IN so that if the channel x is low-level, then
obligation levels of high-level channels are raised to ∞. Note that the problem of
the second example above was that the output on the high-level channel x on the
last line being executed depended on the input capability on the low-level channel
y.

SubtypingOur type system does not allow subtyping based on secrecy levels (e.g.,
boolL �≤ boolH). Allowing the relation boolL ≤ boolH does not cause any
problem: we only need to redefine the erasure function ErΓ (P), so that, for ex-
ample, trueL is also replaced by � if it is used as a value of type boolH. On
the other hand, introducing subtyping on channel types is tricky. In fact, allowing
〈τ̃〉L/U ≤ 〈τ̃〉H/U for an arbitrary U makes the type system unsound [27]. Honda
and Yoshida’s type system [11] allows subtyping based on secrecy levels for cer-
tain kinds of channels. It is left for future work to find a general condition on U
for 〈τ̃〉L/U ≤ 〈τ̃〉H/U to be valid.

Introducing subtyping based on input/output modes [25] does not cause any
problem and the type inference algorithm can be developed along the lines of
[12].

Other data structuresThe formalization in this paper deals with only booleans as
primitive values. We believe that it is straightforward to extend our analysis to deal
with other data structures such as integers, pairs, variants, and lists. Indeed, the
current implementation of TyPiCal already supports integers and pairs (recall
Section 5.4).

Encoding of functionsUnlike Honda and Yoshida’s type system [11], there are
certain terms of the simply-typed λ-calculus whose termination property can-
not be captured in our type system. (For example, our type system cannot
guarantee that the process obtained by the call-by-value encoding of let g =
λf.f(1) in g(λy.g(λx.x)), which calls g inside g, will eventually return a result.)
To remove the limitation, we need to introduce some form of polymorphism on
capability/obligation levels. Alternatively, we can treat functions as primitives and
give typing rules for them directly.

Treatment of shared variablesAs discussed in Example 4, we can encode opera-
tions on shared variables into communication primitives, but the resulting anal-
ysis is not precise enough. For example, consider the following command [10]:
if secret>0 then secret := non_secret. Since reading from the
non-secret variable non_secret does not leak any information, the command
should be safe. However, its encoding into the π-calculus performs communica-
tions on non-secret channels, so that it is judged to be unsafe. To overcome this
limitation, it seems necessary to take x(y). (x〈y〉 |P) as a primitive, and give a

42 Naoki Kobayashi

special typing rule for it.7 With such special treatment, we believe that our analy-
sis for shared variables is comparable to other analyses [10, 11].

Timing leaksOur type system does not prevent leakage of secret information from
the timing behavior. To prevent such leakage, we can use the type system for
time-boundedness [14], which can statically guarantee that each communication
succeeds in a certain number of reduction steps. An alternative way to avoid timing
leaks would be to impose a restriction that programs must be confluent [36].

Ill-typed contextsIn Section 4, we considered only well-typed contexts as ob-
servers (recall Definition 24). In practice, however, we may not be able to assume
that malicious processes respect types. To make the non-interference property hold
also in the presence of ill-typed processes, we need to extend our type system with
a special type for describing untyped values [1, 4, 15].

More precise analysis for dependencies between different channelsIn the type sys-
tem presented in this paper, dependencies between different channels are con-
trolled only through capabilities/obligations, which is sometimes too restrictive.
As discussed elsewhere [14], we can extend our type system using the idea of
generic types [13] or graph types [34].

7 Related Work

We have already discussed previous studies on information flow analysis for con-
current programs in Section 1. We discuss some of them in more detail below.
Mantel and Sabelfeld [29] have also proposed a type-based information flow anal-
ysis for a multi-threaded language with communication primitives. Their analysis
suffers from the same problem as Pottier’s type system [27] discussed in Sec-
tion 1. To improve the expressive power, they instead introduced encrypted chan-
nels (in addition to high-level/low-level channels) and more communication prim-
itives (such as a primitive for non-blocking receive). Such a solution is orthogonal
to our approach, so that we can combine them to obtain a more expressive secure
concurrent language. Hennessy and Riely [8, 9] have also studied a type system
for the asynchronous π-calculus. Their type system also suffers from the same
problem as Pottier’s one.

The idea of refining secrecy analysis based on information about the suc-
cess of synchronization seems to go back to the idea of linear continuations of
Zdancewic and Myers for a sequential language with continuations [35]. Along
that line of work, Zdancewic and Myers [36] have recently proposed a type sys-
tem for a concurrent language having (a restricted form) of join-patterns [6] as
synchronization primitives. To overcome the problem discussed in Section 1,
their type system introduce linear (use-once) channels and control the tempo-
ral ordering on communications on linear channels (which are controlled in our

7 This is against our goal to uniformly treat various concurrency primitives, but it is inevitable
since there is no way to distinguish between x(n). (x〈n〉 |P) and x(n). (x〈n + 1〉 |P) at the
type-level: Note that if x is a non-secret channel, the former does not leak any information in
the asynchronous π-calculus, while the latter does.

Type-Based Information Flow Analysis for the Pi-Calculus 43

type system through capability/obligation levels) in a syntactic manner. It seems
fairly easy to encode their typed calculus into our typed calculus (although exten-
sions with subtyping discussed in Section 6 are necessary). In fact, a join-pattern
let c1(x̃1)| · · · |cn(x̃n) � P in Q can be encoded into

(νc1) · · · (νcn) (∗c1(x̃1). · · · cn(x̃n). P |Q)

and a linear join-pattern let c1(x̃1)| · · · |cn(x̃n) −◦ P in Q can be encoded into

(νc1) · · · (νcn) (c1(x̃1). · · · cn(x̃n). P |Q)

On the other hand, it is not clear how to extend Zdancewic and Myers [36]’s type
system to encode our calculus into their calculus. For example, since the success of
communications is guaranteed only on linear channels, their type system cannot
deal with the example given in Section 1. Moreover, their type system impose
restrictions that linear channels cannot be passed through linear channels, etc. (The
type system of Honda et al. [10] also imposes similar restrictions.)

Some of the ideas found in Honda and Yoshida’s work [11] (such as subtyping
on channel types discussed in the previous section) are missing in our type system,
so that our type system does not completely subsume their type system. It would
be interesting to study how the missing features can be integrated into our type
system.

Our type system has been obtained by simplifying and refining our previous
type system for lock-freedom [14]. The most important technical contribution with
respect to the previous work (besides the extension to deal with secrecy) is the
development of a sound and complete type inference algorithm (and refinement
of the type system to enable the type inference). The algorithm has been inspired
from our type inference algorithm for a deadlock-free π-calculus [18]. The latter
algorithm was, however, incomplete (see [18] for details). The completeness of
the type inference algorithm in this paper has been obtained by careful definitions
of the semantics of recursive usages: The key property of recursive usages is that
µρ.U is the greatest usage that satisfies ρ ≤ U .

Our technique for proving non-interference using the erasure function has been
inspired from our recent work on type-based useless-code elimination for the π-
calculus [15] and is probably also related with Pottier’s proof technique [27]. The
proof in the present paper is, however, more sophisticated since we need a lock-
freedom property to show the correspondence between P and ErΓ (P).

8 Conclusion

We have presented a type system for information flow analysis for the pi-calculus
and proved its soundness. Like recent type systems for information flow anal-
ysis [11, 36], our type system takes into account information that certain com-
munications eventually succeed. Thanks to the uniform treatment of communica-
tion/synchronization patterns, our type system can perform more precise analysis
than previous type systems for certain communication/synchronization patterns
(like synchronization using locks). The uniform treatment also enabled develop-
ment of a sound and complete type inference algorithm. The result on the sound
and complete type inference algorithm also serves as a refinement of our previous

44 Naoki Kobayashi

work on deadlock/livelock-freedom [14, 18, 32] We have implented a prototype
analysis tool TyPiCal [16] based on the result described in this article.

Our type system in this paper can also be used for program slicing and useless-
code elimination for concurrent programs, since both information flow analysis
and program slicing are instances of dependency analysis [2]. Our previous type
system for slicing and useless-code elimination for the π-calculus [15] did not
take the lock-freedom property into account, so that it was not so effective. We
can refine it by using the type system in the present paper.

Extending our type-based information flow analysis to deal with encryp-
tion/decryption primitives [3] is also interesting future work.

Acknowledgements We would like to thank Steve Zdancewic, Martı́n Abadi, Eijiro Sumii,
Lucian Wischik for useful comments and discussions on an earlier version of the paper. We
would also like to thank anonymous referees for a number of useful comments.

References

1. Abadi, M.: Secrecy by typing in security protocols. Journal of the Association for Comput-
ing Machinery (JACM) 46(5), 749–786 (1999)

2. Abadi, M., Banerjee, A., Heintze, N., Rieck, J.G.: A core calculus of dependency. In:
Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Lan-
guages, pp. 147–169 (1999)

3. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus. In-
formation and Computation 148(1), 1–70 (1999)

4. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. In: Proceedings of
CONCUR 2000, Lecture Notes in Computer Science, vol. 1877, pp. 365–379. Springer-
Verlag (2000)

5. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Com-
munications of the ACM 20(7), 504–513 (1977)

6. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proceedings of
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages, pp. 372–
385 (1996)

7. Heintze, N., Riecke, J.: The slam calculus: programming with secrecy and integrity. In:
Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Lan-
guages, pp. 365–377 (1998)

8. Hennessy, M.: The security picalculus and non-interference. Journal of Logic and Algebraic
Programming (2003). To appear

9. Hennessy, M., Riely, J.: Information flow vs. resource access in the information asyn-
chronous pi-calculus. In: Proceedings of ICALP 2000, Lecture Notes in Computer Science,
vol. 1853. Springer-Verlag (2000)

10. Honda, K., Vasconcelos, V., Yoshida, N.: Secure information flow as typed process be-
haviour. In: Proc. of European Symposium on Programming (ESOP) 2000, Lecture Notes
in Computer Science, vol. 1782, pp. 180–199. Springer-Verlag (2000)

11. Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In: Proceed-
ings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages,
pp. 81–92 (2002)

12. Igarashi, A., Kobayashi, N.: Type reconstruction for linear pi-calculus with I/O subtyping.
Information and Computation 161, 1–44 (2000)

13. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theoretical Com-
puter Science 311(1-3), 121–163 (2004)

14. Kobayashi, N.: A type system for lock-free processes. Information and Computation 177,
122–159 (2002)

15. Kobayashi, N.: Useless-code elimination and program slicing for the pi-calculus. In:
Proceedings of The First Asian Symposium on Programming Languages and Systems
(APLAS’03), Lecture Notes in Computer Science, vol. 2895, pp. 55–72 (2003)

Type-Based Information Flow Analysis for the Pi-Calculus 45

16. Kobayashi, N.: TyPiCal: A Type-Based Analyzer for the Pi-Calculus (2004). http:/
/www.kb.ecei.tohoku.ac.jp/˜koba/typical/

17. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Transactions
on Programming Languages and Systems 21(5), 914–947 (1999)

18. Kobayashi, N., Saito, S., Sumii, E.: An implicitly-typed deadlock-free process calculus.
Tech. Rep. TR00-01, Dept. Info. Sci., Univ. of Tokyo (2000). Available from http:/
/www.kb.cs.titech.ac.jp/˜kobayasi/. A summary has appeared in Proceed-
ings of CONCUR 2000, Springer LNCS1877, pp.489-503, 2000

19. Kobayashi, N., Shirane, K.: Type-based information flow analysis for a low-level language.
Computer Software 20(2), 2–21 (2003). In Japanese. A summary written in English is
available from http://www.kb.cs.titech.ac.jp/˜kobayasi/

20. Kobayashi, N., Yonezawa, A.: Towards foundations for concurrent object-oriented program-
ming – types and language design. Theory and Practice of Object Systems 1(4), 243–268
(1995)

21. Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM Journal on
Computing 13(3), 441–461 (1984)

22. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
23. Milner, R.: The polyadic π-calculus: a tutorial. In: F.L. Bauer, W. Brauer, H. Schwichten-

berg (eds.) Logic and Algebra of Specification. Springer-Verlag (1993)
24. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University

Press (1999)
25. Pierce, B., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathematical Struc-

tures in Computer Science 6(5), 409–454 (1996)
26. Pierce, B.C., Turner, D.N.: Concurrent objects in a process calculus. In: Theory and Practice

of Parallel Programming (TPPP), Sendai, Japan (Nov. 1994), Lecture Notes in Computer
Science, vol. 907, pp. 187–215. Springer-Verlag (1995)

27. Pottier, F.: A simple view of type-secure information flow in the π-calculus. In: Proceedings
of the 15th IEEE Computer Security Foundations Workshop, pp. 320–330 (2002)

28. Pottier, F., Simonet, V.: Information flow inference for ML. In: Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages, pp. 319–330 (2002)

29. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed programs. In:
Proceedings of the 9th International Static Analysis Symposium, LNCS 2477, pp. 376–394.
Springer-Verlag, Madrid, Spain (2002)

30. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press (2001)

31. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language.
In: Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, pp. 355–364 (1998)

32. Sumii, E., Kobayashi, N.: A generalized deadlock-free process calculus. In: Proc. of
Workshop on High-Level Concurrent Language (HLCL’98), ENTCS, vol. 16(3), pp. 55–
77 (1998)

33. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. Journal
of Computer Security 4(3), 167–187 (1996)

34. Yoshida, N.: Graph types for monadic mobile processes. In: FST/TCS’16, Lecture Notes in
Computer Science, vol. 1180, pp. 371–387. Springer-Verlag (1996)

35. Zdancewic, S., Myers, A.C.: Secure information flow via linear continuations. Higher-Order
and Symbolic Computation 15(2/3), 209–234 (2002)

36. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program security.
In: Proceedings of the 16th IEEE Computer Security Foundations Workshop (2003)

A Proof of Theorem 1

Lemma 11 1. If U � U ′, then U ≤ U ′.
2. U |0 ≤ U .
3. If ob(U) = ∞, then U ≤ 0.
4. If to < ob(U2) and tc < ob(U2), then αto

tc
.U1 |U2 ≤ αto

tc
.(U1 |U2).

5. If ob(U) = ∞, then U ′ |U ≤ U ′ for any U ′.

46 Naoki Kobayashi

6. If t′o ≤ to and tc ≤ t′c, then αto
tc

.U ≤ α
t′o
t′c

.U holds.

7. If U1 ≤ [ρ �→ U1]U , then U1 ≤ µρ.U .
8. ↑(t1,t2)U ≤ U .

Before proving the above lemma, we introduce an “up-to” technique which is often used for
proving simulation/bisimulation of processes.

Lemma 12 Let R be a binary relation on usages. If the following conditions are satisfied for
every pair (U1, U2) ∈ R, R ⊆≤.

1. [ρ �→ U1]UR[ρ �→ U2]U for any usage U such that FV (U) = {ρ}.
2. If U2 −→ U ′

2, then there exists U ′
1 such that U1 −→ U ′

1 and U ′
1 ≤ R ≤ U ′

2.
3. For each α ∈ {I, O}, capα(U1) ≤ capα(U2) holds.
4. For each α ∈ {I, O}, if conα(U1), then obα(U1) ≥ obα(U2).

Proof It suffices to show that R∪ ≤ R ≤ satisfies the four conditions in Definition 11. We
only show the second condition, as the other conditions are trivial.

Suppose that (U1, U2) ∈≤ R ≤ and U2 −→ U ′
2. Then there exists U3 and U4 such

that U1 ≤ U3RU4 ≤ U2. By the definition of ≤, there exists U ′
4 such that U ′

4 ≤ U ′
2 and

U4 −→ U ′
4. By the condition on R, there exists U ′

3 such that U ′
3 ≤ R ≤ U ′

4 and U3 −→ U ′
3.

Again by the definition of ≤, we have U ′
1 such that U ′

1 ≤ U ′
3 and U1 −→ U ′

1. Therefore, we
have U ′

1 ≤≤ R ≤≤ U ′
2. Since ≤ is transitive, U ′

1 ≤ R ≤ U ′
2 holds as required.

We now prove Lemma 11.

Proof of Lemma 11 We show only the seventh law, as it is most complex and important. The
other laws can be proved in a similar manner. The fifth law follows from the first and second
laws by: U ′ |U ≤ U ′ |0 ≤ U ′.

Suppose U1 ≤ [ρ �→ U1]U and let R be {([ρ′ �→ U1]U0, [ρ
′ �→ µρ.U]U0) | {ρ′} =

FV (U0)}. It suffices to show that R satisfies the conditions of Lemma 12. The first condition
is trivial.

To show the second condition, suppose that [ρ′ �→ µρ.U]U0 −→ U ′. We show that there
exists U ′′ such that [ρ′ �→ U1]U0 −→ U ′′ and U ′′ ≤ R ≤ U ′ by induction on the number n of
applications of the expansion rule µρ.U � [ρ �→ µρ.U]U before the reduction in the derivation
of [ρ′ �→ µρ.U]U0 −→ U ′. If n = 0 (i.e., µρ.U is never expanded before the reduction), then
there exists U ′

0 such that [ρ′ �→ µρ.U]U ′
0 � U ′ (which also implies [ρ′ �→ µρ.U]U ′

0 ≤ U ′

by the first law of Lemma 11.) and U0 −→ U ′
0. Therefore, U ′′ = [ρ′ �→ U1]U

′
0 satisfies the

required conditions. If n = k+1, then there exists U ′
0 such that [ρ′ �→ µρ.U]U0 � U ′

0 −→ U ′,
where the expansion rule is used k times before the reduction in U ′

0 −→ U ′ and U ′
0 is obtained

from by replacing one occurrence of µρ.U in [ρ′ �→ µρ.U]U0 with [ρ �→ µρ.U]U . Let U ′′
0

be the usage obtained from [ρ′ �→ U1]U0 by replacing the corresponding occurrence of U1

with [ρ �→ U1]U . By the induction hypothesis, there exists U ′′′ such that U ′′
0 −→ U ′′′ and

U ′′′ ≤ R ≤ U ′. Moreover, by the condition U1 ≤ [ρ �→ U1]U , we have [ρ′ �→ U1]U0 ≤
U ′′

0 . So, by the condition [ρ′ �→ U1]U0 ≤ U ′′
0 and U ′′

0 −→ U ′′′, there exists U ′′ such that
[ρ′ �→ U1]U0 −→ U ′′ and U ′′ ≤ U ′′′. Therefore, we obtain U ′′ ≤ U ′′′ ≤ R ≤ U ′ as
required.

The fourth condition follows from the fact that obα(µρ.U) is the least fixed-point for

λx.obρ �→x
α (U) and obα(U1) ≥ ob

{ρ �→obα(U1)}
α (U), which implies obα(U1) ≥ obα(µρ.U).

(This is the very reason why we defined the obligation level of a recursive usage as the least
fixed-point.)

Similar observation for the capability level yields the third condition capα(U1) ≤
capα(µρ.U). �

Lemma 13 If Γ ≤ Γ ′ and Γ ′ −→ ∆′, then there exists ∆ such that Γ −→ ∆ and ∆ ≤ ∆′.

Proof By the definition of the subusage relation, if U ≤ U ′ and U ′ −→ V ′, then there exists
V such that U −→ V and V ≤ V ′. So, the lemma follows immediately. �

Type-Based Information Flow Analysis for the Pi-Calculus 47

Lemma 14 If rel(U) and U −→ U ′, then rel(U ′). If rel(U) and U ≤ U ′, then rel(U ′).

Proof The first property follows immediately from the definition of rel . The second one follows
immediately from Lemma 2. �

As a corollary of the above lemma, we obtain the following property.

Lemma 15 If rel(Γ) and Γ −→∗≤ ∆, then rel(∆).

Proof This follows immediately from Lemma 14. �

Lemma 16 If Γ, x : τ �l P and x
∈ FV (P), then ob(τ) = ∞ and Γ �l P .

Proof Straightforward induction on derivation of Γ, x : τ �l P . �

Lemma 17 If Γ �l P and P � Q, then Γ �l Q.

Proof The proof proceeds by induction on derivation of P � Q. We show only main cases.
The other cases are trivial.

– Case for S-NEW: There are two cases to consider.
– Case where P = (νx : ξ) P1 |P2 and Q = (νx : ξ) (P1 |P2): Suppose Γ �l P . Then

there exist Γ1, Γ2, and U such that:
Γ1, x : ξ/U �l P1

Γ2 �l P2

Γ ≤ Γ1 |Γ2

rel(U)
We can assume without loss of generality that x
∈ dom(Γ2). So, we have
(Γ1 |Γ2), x : ξ/U �l P1 |P2, from which Γ �l Q follows.

– Case where P = (νx : ξ) (P1 |P2) and Q = (νx : ξ) P1 |P2: Suppose Γ �l P . Then
there exist Γ1, Γ2, and U such that:
Γ1 �l P1

Γ2 �l P2

Γ ≤ (Γ1 |Γ2)\{x}
rel((Γ1 |Γ2)(x))
If x
∈ dom(Γ2), then the result follows immediately. If Γ2 = ξ/U2, then by
Lemma 16, Γ2\{x} �l P2 and ob(U2) = ∞. So, by Lemma 11, we can apply T-SUB
to Γ1 �l P1 and obtain Γ1 |x : ξ/U2 �l P1. By using T-NEW, T-PAR, and T-SUB, we
obtain Γ �l Q as required.

– Case for S-IFT: In this case, P = if truel′ then Q else Q′. Γ �l Q follows immediately
from the typing rules.

– Case for S-REP: In this case, P = ∗P1 and Q = ∗P1 |P1. If Γ �l P , then there exists
Γ1 such that Γ1 �l P1 and Γ ≤ ∗Γ1. Since Γ ≤ ∗Γ1 ≤ ∗Γ1 |Γ1, we obtain Γ �l Q by
using T-REP, T-PAR, and T-SUB.

Lemma 18 If Γ ≤ ∆ and [x �→ v]Γ is well defined, then [x �→ v]∆ is also well defined and
[x �→ v]Γ ≤ [x �→ v]∆ holds.

Proof [x �→ v]∆ is well defined since for every y ∈ dom(∆), ∆(y) ∼ Γ (y) holds.
[x �→ v]Γ ≤ [x �→ v]∆ follows from the fact that U1 ≤ U ′

1 and U2 ≤ U ′
2 imply U1 |U2 ≤

U ′
1 |U ′

2.

Lemma 19 (substitution lemma) If Γ, x : τ �l P and [x �→ v]Γ is well defined, then
[x �→ v]Γ �l [x �→ v]P holds.

Proof This follows by induction on the structure of P . We show only the case where P is an
output process. The other cases are similar or trivial.

48 Naoki Kobayashi

Suppose P = y〈w̃〉P1. Then, the following conditions must hold:

Γ1, y : 〈σ̃〉l1/U �l2 P1

l 	 l1, l2
σ̃′ ≤ ↑σ̃
tc = ∞ ⇒ l1 	 l2
Γ ≤ ↑(tc+1,tc+1)(Γ1 | w̃ : σ̃′) | y : 〈σ̃〉l1/O0

tc
.U

From the last condition and Lemma 18, it follows that [x �→ v]Γ1 | [x �→ v]y : 〈σ̃〉l1/U is
well defined. So, by the induction hypothesis, we have [x �→ v]Γ1 | [x �→ v]y : 〈σ̃〉l1/U �l2
[x �→ v]P1.

We perform case analysis on [x �→ v]y. If [x �→ v]y = v (i.e., y = x or y = v), then v
must be a variable. We can assume without loss of generality that [x �→ v]Γ1 = Γ ′

1, v : 〈σ̃〉l1/U ′

(since we can add the binding x : 〈σ̃〉l1/0 or v : 〈σ̃〉l1/0 if v
∈ [x �→ v]Γ1). By using T-OUT,
we obtain:

↑(tc+1,tc+1)(Γ ′
1 | w̃′ : σ̃′) | v : 〈σ̃〉l1/O0

tc
.(U ′ |U) �l2 [x �→ v]P

where w̃′ = [x �→ v]w̃. We obtain [x �→ v]Γ �l [x �→ v]P by using T-SUB, since

[x �→ v]Γ ≤ [x �→ v](↑(tc+1,tc+1)(Γ1 | w̃ : σ̃′) | y : 〈σ̃〉l1/O0
tc

.U)

≤ ↑(tc+1,tc+1)(Γ ′
1 | w̃′ : σ̃′) | v : 〈σ̃〉l1/(↑(tc+1,tc+1)U ′ |O0

tc
.U)

≤ ↑(tc+1,tc+1)(Γ ′
1 | w̃′ : σ̃′) | v : 〈σ̃〉l1/O0

tc
.(U ′ |U)

The last relation is obtained by ↑(tc+1,tc+1)U ′ |O0
tc

.U ≤ O0
tc

.(↑(tc+1,tc+1)U ′ |U) ≤
O0

tc
.(U ′ |U), using Lemma 11.
If [x �→ v]y
= v (i.e., y
= x and y
= v, which also imply [x �→ v]y =

y), we have [x �→ v]Γ1, y : 〈σ̃〉l1/U �l2 [x �→ v]P1. By applying T-OUT, we obtain
↑(tc+1,tc+1)([x �→ v]Γ1 | w̃′ : σ̃′) | y : 〈σ̃〉l1/O0

tc
.U �l2 [x �→ v]P where w̃′ = [x �→ v]w̃.

By using T-SUB, we get [x �→ v]Γ �l [x �→ v]P as required.

Proof of Theorem 1 The proof proceeds by induction on derivation of P −→ Q, with case
analysis on the last rule used.

– Case for R-COM: In this case, P = x〈ṽ〉. P1 |x(ỹ). P2 and Q = P1 | [ỹ �→ ṽ]P2. By the
typing rules, it must be the case that:

Γ1, x : 〈τ̃〉l1/U1 �l P1

Γ2, x : 〈τ̃〉l2/U2, ỹ : τ̃ �l P2

τ̃ ′ ≤ ↑τ̃
Γ ≤ (↑(t1+1,t1+1)(Γ1 | ṽ : τ̃ ′) |x : 〈τ̃〉l1/O0

t1 .U1)
| (↑(t2+1,t2+1)Γ2, x : 〈τ̃〉l2/I0

t2 .U2)
l 	 l1, l2

By the substitution lemma (Lemma 19), we have:

(Γ2, x : 〈τ̃〉l2/U2) | ṽ : τ̃ �l [ỹ �→ ṽ]P2.

So, ∆′ �l Q holds for ∆′ = (Γ1 | ṽ : τ̃ |x : 〈τ̃〉l1/U1) | (Γ2, x : 〈τ̃〉l2/U2). Moreover,
we obtain Γ ≤ (Γ1 | ṽ : τ̃ |x : 〈τ̃〉l1/O0

t1 .U1) | (Γ2, x : 〈τ̃〉l2/I0
t2 .U2) −→ ∆′ by using

Lemma 11. By Lemma 13, there exists ∆ such that Γ −→ ∆ and ∆ ≤ ∆′. So, we have
∆ �l Q and Γ −→ ∆ as required.

– Case for R-PAR: In this case, P = P1 |P2 and Q = Q1 |P2 with P1 −→ Q1. By the
typing rules, there exist Γ1 and Γ2 such that Γi �l Pi and Γ ≤ Γ1 |Γ2. By the induction
hypothesis, there exists ∆1 such that Γ1 −→ ∆1 or ∆1 = Γ1. Let ∆′ = ∆1 |Γ2. Then,
∆′ �l Q, and either Γ1 |Γ2 −→ ∆′ or ∆′ = Γ1 |Γ2 holds. In the latter case, the required
result holds for ∆ = Γ . In the former case, by Lemma 13, there exists ∆ such that Γ −→
∆ and ∆ ≤ ∆′. By using T-SUB, we obtain ∆ �l Q as required.

Type-Based Information Flow Analysis for the Pi-Calculus 49

– Case for R-NEW: In this case, P = (νx : ξ) P1 and Q = (νx : ξ) Q1 with P1 −→ Q1.
By the typing rules, Γ, x : ξ/U �l P1 with rel(U). By the induction hypothesis, either
Γ, x : ξ/U �l Q1 holds, or there exists ∆ and U ′ such that ∆, x : ξ/U ′ �l Q1 and
Γ, x : ξ/U −→ ∆, x : ξ/U ′. In the former case, ∆ = Γ satisfies the required condition. In
the latter case, by Lemma 14, rel(U ′) holds, so that we can obtain ∆ �l Q as required.

– Case for R-SP: This follows immediately from Lemma 17 and the induction hypothesis.

�

B Proof of Theorem 4

This section gives a proof of Theorem 4, which states that the erasure function preserves barbed
bisimilarity. We first introduce miscellaneous definitions needed for proving theorems in Sec-
tion B.1, and prove some basic properties about the reduction relation and the erasure function in
Section B.2. We then show, in Section B.3, a key theorem about the lock-freedom (Theorem 5),
which states that any communication with a finite-level capability will eventually succeed. Using
the theorem, we show that a process P and its erasure ErΓ (P) simulate each other (Sections B.4
and B.5), which proves Theorem 4 (Section B.6).

B.1 Miscellaneous definitions

We first define the relation ∼ on types, Intuitively, τ ∼ τ ′ holds when τ and τ ′ are identical
except for their outermost usages.

Definition 26 The relation τ ∼ τ ′ is the least equivalence relation satisfying the rules: unit ∼
unit, booll ∼ booll and 〈τ1, . . . , τn〉l/U ∼ 〈τ1, . . . , τn〉l/U ′ for l ∈ {H,L}. The relation
∼ is extended to a relation on type environments by: Γ ∼ Γ ′ if and only if dom(Γ) =
dom(Γ ′) and Γ (x) ∼ Γ ′(x) for every x ∈ dom(Γ).

Definition 27 obα(τ) is defined by:

obα(unit) = obα(booll) = ∞
obα(ξ/U) = obα(U)

Definition 28 (size of process) The size of a process P , written #(P), is defined by:

#(0) = 0
#(x〈ṽ〉. P) = #(x(ỹ). P) = #(P) + 1
#(∗P) = #((νx : ξ) P) = #(P) + 1
#(P |Q) = #(if v then P else Q) = #(P) + #(Q) + 1

Definition 29 (strong barbs) The strong barbs of P , written SBarbs(P), is defined by:

SBarbs(P) = {x | P � (νỹ) (x〈ṽ〉. Q |R), x
∈ {ỹ}}
∪{x | P � (νỹ) (x(z̃). Q |R), x
∈ {ỹ}}

For the sake of technical convenience, we sometimes assume that each input/output process
is annotated with its security level and capability level:

P ::= x〈v1, . . . , vn〉l,t. P | x(y1, . . . , yn)l,t. P | · · ·
The typing rules for annotated input/output processes are given as follows.

Γ, x : 〈τ̃〉l1/U �l2 P l 	 l1, l2 tc = ∞ ⇒ l1 	 l2

↑(tc+1,tc+1)(Γ | ṽ : ↑τ̃) |x : 〈τ̃〉l1/O0
tc

.U �l x〈ṽ〉l1,tc . P
(T-OUT’)

50 Naoki Kobayashi

Γ, x : 〈τ̃〉l1/U, ỹ : τ̃ �l2 P l 	 l1, l2 tc = ∞ ⇒ l1 	 l2

↑(tc+1,tc+1)Γ, x : 〈τ̃〉l1/I0
tc

.U �l x(ỹ)l1,tc . P
(T-IN’)

The only change from T-OUT and T-IN is that the processes are annotated with a security level
and a capability level. Given a type derivation tree of an unannotated process term, we can
always recover annotations based on the above rules.

We also annotate the reduction relation with a security level. Intuitively, P−→lQ means
that P is reduced to Q by communication on a channel whose security level is l.

Definition 30 The relation −→l is defined by:

x〈ṽ〉l,t1 . P |x(ỹ)l,t2 . Q−→lP | [ỹ �→ ṽ]Q (R-COM)

P−→lQ

P |R−→lQ |R (R-PAR)

P−→lQ

(νx : ξ) P−→l(νx : ξ) Q
(R-NEW)

P � P ′ P ′−→lQ
′ Q′ � Q

P−→lQ
(R-SPCONG)

Note that if a process P is well-typed, P −→ Q holds if and only if P−→lQ holds for some l.
We refine the definition of contexts, so that a hole is annotated with a substitution and a set

of variables. The substitution is applied when a process is put into the hole.

Definition 31 (extended contexts) The set of extended contexts is given by:

C ::= []θ,S | x〈ṽ〉l,t. C | x(ỹ)l,t. C
| (P |C) | (C |P) | ∗C | (νx : ξ) C
| if v then C else P | if v then P else C

Here, θ ranges over the set of substitutions, and S ranges over the powerset of variables. If the
hole in the context C is []θ,S and FV (P) ⊆ S, C[P] is the process obtained by replacing
[]θ,S with θP .

We extend the relations � and −→l on processes to relations on contexts by defining FV ([]θ,S)
to be θS = {θx | x ∈ S} ∩ Var, and defining the substitution for the hole by:
θ1[]θ2,S = []θ1◦θ2,S (where θ1 ◦ θ2 is the composition of substitutions). For example,
x〈v〉. P |x(y). []id,{y} −→ P | [][y �→v]{y} where id is the identity substitution. Note that if

C−→lC
′ and C[P] is well defined, then C[P]−→lC

′[P] holds. We also define ErΓ (C) by
adding the clause ErΓ ([]θ,S) = []ErΓ (θ),S where ErΓ ([x1 �→ v1, . . . , xn �→ vn]) = [x1 �→
ErΓ (v1), . . . , xn �→ ErΓ (vn)].

We introduce two subsets of (extended) contexts: the set of finite-level contexts and the
set of evaluation contexts. A finite-level context is a context whose hole is guarded only by
input/output prefixes with finite capability levels. An evaluation context is a context whose hole
is not guarded by any input/output prefixes.

Definition 32 (finite-level context) The set of finite-level contexts is given by:

C ::= []θ,S | x〈ṽ〉H,n. C | x(ỹ)H,n. C
| (P |C) | (C |P) | (νx : ξ) C

Here, n ranges over Nat.

Type-Based Information Flow Analysis for the Pi-Calculus 51

Definition 33 (depth of context, evaluation context) Let C be a finite level context. The depth
of C, written depth(C), is defined by:

depth([]θ,S) = 0
depth(x〈ṽ〉n. C) = depth(C) + 1
depth(x(ỹ)n. C) = depth(C) + 1
depth(P |C) = depth(C |P) = depth((νx : ξ) C) = depth(C)

A finite level context whose depth is 0 is called an evaluation context.

A context with two holes is a term obtained from a process by replacing one sub-process
with []

(1)
θ1,S1

and another sub-process with []
(2)
θ2,S2

. If C is a context with two holes, we write

C[P1, P2] for the process obtained from C by replacing []
(1)
θ1,S1

and []
(2)
θ2,S2

with θ1P1 and
θ2P2 respectively. Finite-level contexts with two holes and evaluation contexts with two holes
are defined in a similar manner.

Definition 34 Let C be an extended context. ext(Γ, C) is the type environment defined by:

ext(Γ, []θS) = Γ
ext(Γ, x〈ṽ〉t. C) = ext(Γ, C)
ext(Γ, x(ỹ)t. C) = ext((Γ, ỹ : τ̃), C) (if Γ (x) = 〈τ̃〉l/U)
ext(Γ, P |C) = ext(Γ, C |P) = ext(Γ, ∗C) = ext(Γ, C)
ext(Γ, (νx : ξ) C) = ext((Γ, x : ξ/0), C)
ext(Γ, if v then C else P) = ext(Γ, C)
ext(Γ, if v then P else C) = ext(Γ, C)

Intuitively, ext(Γ, C) is the type environment obtained by adding to Γ bindings on the vari-
ables bound by C. Note that if the hole in C is of the form []id,S , then ErΓ (C[P]) =

ErΓ (C)[Er∆(P)] where ∆ = ext(Γ, C). If C is a context with two holes, we write
ext(1)(Γ, C) and ext(2)(Γ, C) for ext(Γ, C[[]θ,S ,0]) and ext(Γ, C[0, []θ,S]) respectively.

B.2 Basic Properties

Lemma 20 If P −→ Q, then P � (νũ) (x〈ṽ〉. P1 |x(ỹ). P2 |P3) and
(νũ) (P1 | [ỹ �→ ṽ]P2 |P3) � Q for some ũ, x, ṽ, P1, P2, P3.

Proof This follows by straightforward induction on derivation of P −→ Q. �

Lemma 21 If Γ ∼ ∆, then ErΓ (P) = Er∆(P).

Proof Straightforward induction on the structure of P . �

Lemma 22 If Γ (v) ∼ τ ,
then ErVΓ ([x �→ v]v′) = [x �→ ErVΓ (v)]ErVΓ,x : τ (v′).

Proof If x
= v′, then ErVΓ ([x �→ v]v′) = ErVΓ (v′) = ErVΓ,x : τ (v′) =
[x �→ ErVΓ (v)]ErVΓ,x : τ (v′). Suppose that x = v′. If High(τ), then the result fol-
lows from ErVΓ (v) = ErVΓ,x : τ (x) = �. Otherwise, ErVΓ,x : τ (x) = x. So, we have
ErVΓ ([x �→ v]v′) = ErVΓ (v) = [x �→ ErVΓ (v)]x = [x �→ ErVΓ (v)]ErVΓ,x : τ (x). �

Lemma 23 If Γ (v) ∼ τ ,
then ErΓ ([x �→ v]P) = [x �→ ErVΓ (v)]ErΓ,x : τ (P).

Proof This follows by straightforward induction on the structure of P . We show only the case
for output processes. The other cases are similar or trivial.

52 Naoki Kobayashi

– Case where P is of the form y〈w̃〉. Q.
By the induction hypothesis, ErΓ ([x �→ v]Q) = [x �→ ErVΓ (v)]ErΓ,x : τ (Q). Note that
Γ ([x �→ v]y) ∼ 〈σ̃〉L/0 if and only if (Γ, x : τ)(y) ∼ 〈σ̃〉L/0. So, if Γ ([x �→ v]y)
∼
〈σ̃〉L/0, then the result follows from the following equations.

ErΓ ([x �→ v]P)
= ErΓ ([x �→ v]Q)
= [x �→ ErVΓ (v)]ErΓ,x : τ (Q)
= [x �→ ErVΓ (v)]ErΓ,x : τ (P)

Suppose that Γ ([x �→ v]y) ∼ 〈σ̃〉L/0. Let y′ = [x �→ v]y. Then, y′ = ErVΓ (y′) =
[x �→ ErVΓ (v)]ErVΓ,x : τ (y) = [x �→ ErVΓ (v)]y. (The second equality follows from
Lemma 22.) Thus, the result follows from the following equations.

ErΓ ([x �→ v]P)
= y′〈ErVΓ ([x �→ v]w̃)〉.ErΓ ([x �→ v]Q)
= y′〈[x �→ ErVΓ (v)]ErVΓ,x : τ (w̃)〉.

[x �→ ErVΓ (v)]ErΓ,x : τ (Q)
= [x �→ ErVΓ (v)]ErΓ,x : τ (P)

�

Lemma 24 If High(Γ (x)), then x
∈ ErΓ (P).

Proof Straightforward induction on the structure of P . �

B.3 Lock-freedom Property

In this subsection, we show that input/output actions whose capability levels are finite succeed
eventually.

We define xα by: xI = x and xO = x.

Lemma 25 Suppose that the following conditions hold.

1. Γ �l P
2. ∆ �l Q
3. obα(Γ (x)) ∈ Nat
4. rel(Γ |∆)

Then there exists R such that P |Q−→∗
HR and xα ∈ SBarbs(R).

Proof Let n be obα(Γ (x)). The proof proceeds by well-founded induction on (n, #(P)),
where the well-founded order is defined by (n, m) < (n′, m′) ⇐⇒ (n < n′) ∨ (n =
n′ ∧m < m′). Let Ux be the usage of type Γ (x). Without loss of generality we assume below
that conα(Ux) holds; otherwise capα(Ux) < n, from which we obtain obα(∆(x)) < n using
the condition rel(Γ |∆). So, we can switch the role of P and Q and use induction hypothesis
to conclude P |Q−→∗

HR and xα ∈ SBarbs(R) for some R.
We perform case analysis on P . We will consider only the case for α = O below: The case

for α = I is similar.

– Case P = 0: This case cannot happen.
– Case P = y〈ṽ〉. P1. If y = x, then the result follows immediately. If y
= x, then by the

rule T-OUT and T-WEAK, it must be the case that:

Γ1, y : 〈τ̃〉l1/U �l′ P1

τ̃ ′ ≤ ↑τ̃
Γ ≤ ↑(t+1,t+1)(Γ1 | ṽ : τ̃ ′), y : 〈τ̃〉l1/O0

t .U

The third condition implies t < obO(↑(t+1,t+1)(Γ1 | ṽ : τ̃ ′)(x)) ≤ obO(Γ (x)) = n
(which also implies l1 = H by the well-formedness condition of types). Since rel(Γ |∆)

holds, Lemma 15 implies rel((↑(t+1,t+1)(Γ1 | ṽ : τ̃ ′), y : 〈τ̃〉l1/O0
t .U) |∆), from which

we obtain rel(〈τ̃〉l1/O0
t .U |∆(y)). So, it must be the case that obI(∆)(y) ≤ t < n.

Type-Based Information Flow Analysis for the Pi-Calculus 53

By the induction hypothesis, it must be the case that Q−→∗
H � (νũ) (y(z̃). Q1 |Q2).

By Lemma 17 and Theorem 1, ∆′ �l (νũ) (y(z̃). Q1 |Q2) holds for some ∆′ such that
∆ −→∗ ∆′. By the typing rules, it must be the case that

∆1, y : 〈τ̃〉H/V, z̃ : τ̃ �l1 Q1

∆2 �l Q2

∆′, ũ : σ̃ ≤ (↑(t2+1,t2+1)∆1, y : 〈τ̃〉H/It1
t2

.V) |∆2

By the substitution lemma (Lemma 19), (∆1, y : 〈τ̃〉H/V) | ṽ : τ̃ �l1 [z̃ �→ ṽ]Q1. So, we
have:

(Γ1 | ṽ : τ̃ , y : 〈τ̃〉H/U |V) |∆1 |∆2 �l P1 | [z̃ �→ ṽ]Q1 |Q2

Moreover, rel(Γ |∆) and Lemma 14 imply rel((Γ1, y : 〈τ̃〉H/(U |V)) |∆1 |∆2). The
condition Γ ≤ ↑(t+1,t+1)(Γ1 | ṽ : τ̃ ′), y : 〈τ̃〉l1/O0

t .U implies obO(Γ1 | ṽ : τ̃ ′)(x) ≤
obO↑(t+1,t+1)(Γ1 | ṽ : τ̃ ′)(x) ≤ obO(Γ (x)) = n, which implies either
(i)obO(Γ1(x)) ≤ n or (ii)obO((ṽ : τ̃ ′)(x)) ≤ n. In the former case, since
#P1 < #P holds, the induction hypothesis implies that there must exist R
such that P1 | [z̃ �→ ṽ]Q1 |Q2−→∗

HR and x ∈ SBarbs(R). In the latter case,
obO((ṽ : τ̃)(x)) < obO((ṽ : τ̃ ′)(x)) ≤ n. So, by the induction hypothesis,
P1 | [z̃ �→ ṽ]Q1 |Q2−→H ∗ R with x ∈ SBarbs(R). The required result follows,
since P |Q−→∗

H(νũ) (P1 | [z̃ �→ ṽ]Q1 |Q2).
– Case for P = y(z̃). P1: Similar to the above case.
– Case for P = P1 |P2: There exist Γ1 and Γ2 such that Γ ≤ Γ1 |Γ2 and Γi �l Pi. By

Lemma 15, rel(Γ1 |Γ2 |∆) holds. Since obO(Γ (x)) = n, either obO(Γ1(x)) ≤ n or
obO(Γ2(x)) ≤ n holds. In the former case, since #(P1) < #(P) holds, we can apply
induction hypothesis to obtain P |Q � P1 | (P2 |Q)−→H ∗ R with x ∈ SBarbs(R). The
latter case is similar.

– Case for P = ∗P1: There exists Γ1 such that Γ1 �l P1 and Γ ≤ ∗Γ1. Since Γ ≤ Γ1 |Γ ,
rel(Γ1 | (Γ |∆)) holds. So, by applying the induction hypothesis to P1, we obtain R such
that P1 | (P |Q)−→∗

HR with x ∈ SBarbs(R). The required result follows, since P |Q �
P1 | (P |Q).

– Case for P = (νy : ξ) P1: By the typing rules, we have Γ, y : ξ/U �l P1. Since
rel((Γ, y : ξ/U) |∆ and #(P1) < #(P) hold, we can apply induction hypothesis to ob-
tain R′ such that P1 |Q−→∗

HR′ and x ∈ SBarbs(R′). Thus, the required result holds for
R = (νy : ξ) R′.

– Case for P = if b then P1 else P2: By the assumption rel(Γ), b is either truel′ or falsel′ .
By the typing rules, Γ �l Pi holds. So, by the induction hypothesis, there exists R such that
Pi |Q−→∗

HR and x ∈ SBarbs(R). The required result follows, since P � Pi for i = 1
or 2.

�

Theorem 5 Let C be a finite-level context. If Γ �l C[P] and rel(Γ), then C−→∗
HE for some

evaluation context E.

Proof The proof proceeds by induction on the depth of the hole in C. If the depth is 0, the result
follows immediately (since C is itself an evaluation context). If C is of the form E1[x〈ṽ〉. C1],
then by Lemma 25, there exists R such that E[x〈ṽ〉. C1[P]]−→∗

HR with x ∈ Barbs(R). So,
E1[x〈ṽ〉. C1]−→∗

HE′
1[C1] for some evaluation context E′

1. By the induction hypothesis, there
exists E such that E′

1[C1]−→∗
HE. Therefore, we have C−→∗

HE as required. The case where
C is of the form E1[x(ỹ). C1] is similar. �

B.4 Simulation of P by ErΓ (P)

In this section, we show that the behavior of P can be simulated by its erasure ErΓ (P).

Lemma 26 If P � Q, then ErΓ (P) � ErΓ (Q).

54 Naoki Kobayashi

Proof This follows by straightforward induction on derivation of P � Q. The only non-trivial
is the case where S-IFT or S-IFF is applied.

– Case S-IFT: In this case, P = if truel′ then Q else R. If l′ = L, then ErΓ (P) =

if truel′ then ErΓ (Q) else ErΓ (R), so that we have ErΓ (P) � ErΓ (Q) as required.
If l′ = H, then ErΓ (P) = 0. By the assumption Γ �l if trueH then Q else R, it must
be the case that Γ �H Q. So, by Lemma 4, we have ErΓ (P) = 0 � ErΓ (Q) as required.

– Case S-IFF: Similar to the case for R-IFT.

�

Lemma 27 Suppose Γ �l P . If P−→HQ, then ErΓ (P) � ErΓ (Q). If P−→LQ,
ErΓ (P) −→ ErΓ (Q).

Proof This follows by induction on derivation for P−→l1Q with case analysis on the last rule
used.

– Case R-COM: In this case, P = x〈ṽ〉l1,t1 . P1 |x(ỹ)l1,t2 . P2 and Q = P1 | [ỹ �→ ṽ]P2.
By the assumption Γ �l P , Γ (x) is of the form 〈τ̃〉l1/U . If l1 = L, then
ErΓ (P) = x〈ṽ′〉.ErΓ (P1) |x(ỹ).ErΓ,ỹ : τ̃ (P2) where v′

i = ErVτi(vi). By Lemma 23,
ErΓ ([ỹ �→ ṽ]P2) = [ỹ �→ ṽ′]ErΓ,ỹ : τ̃ (P2). So, we have ErΓ (P) −→ ErΓ (Q) as re-
quired.
If l1 = H, then ErΓ (P) = ErΓ (P1) |ErΓ,ỹ : τ̃ (P2). ErΓ (Q) =
ErΓ (P1) |ErΓ ([ỹ �→ ṽ]P2). By the condition on well-formed types, High(τi)
holds. By Lemmas 23 and 24, we have:

ErΓ ([ỹ �→ ṽ]P2)
= [ỹ �→ ErVΓ (ṽ)]ErΓ,ỹ : τ̃ (P2)
= ErΓ,ỹ : τ̃ (P2)

So, ErΓ (P) = ErΓ (Q) holds.
– Case R-PAR: In this case, P = P1 |P2 and Q = Q1 |P2 with P1−→l1Q1. By the assump-

tion Γ �l P , there must exist Γ1 such that Γ1 �l P1 and Γ ∼ Γ1. By the induction hypoth-
esis, ErΓ1(P1) −→ ErΓ1(Q1) holds if l1 = L and ErΓ1(P1) � ErΓ1(Q1) holds if
l1 = H. So, ErΓ1(P) −→ ErΓ1(Q) holds if l1 = L and ErΓ1(P) ≡0 ErΓ1(Q)
holds if l1 = H. Since Γ ∼ Γ1, Lemma 21 implies ErΓ1(P) = ErΓ (P) and
ErΓ1(Q) = ErΓ (Q). Thus, we have the required result.

– Case R-NEW: Trivial by the induction hypothesis.
– Case R-SPCONG: In this case, P � P ′, P ′−→l1Q′, and Q′ � Q. By Lemma 26,

ErΓ (P) � ErΓ (P ′) and ErΓ (Q′) � ErΓ (Q) hold. By Lemma 17, Γ �l P ′. So, by
the induction hypothesis, ErΓ (P ′) −→ ErΓ (Q′) holds if l1 = L, and ErΓ (P ′) ≡0

ErΓ (Q′) holds if l1 = H. Therefore, ErΓ (P) −→ ErΓ (Q) holds if l1 = L and
ErΓ (P) ≡0 ErΓ (Q) holds if l1 = H.

�

Lemma 28 If Γ is a low-level type environment and Γ �l P , then SBarbs(P) ⊆
SBarbs(ErΓ (P)).

Proof Suppose that x ∈ SBarbs(P). Then, P � (νỹ) (x〈ṽ〉. Q |R) with x
∈ {ỹ}. By
Lemma 26, ErΓ (P) � ErΓ ((νỹ) (x〈ṽ〉. Q |R)) By the assumptions that Γ is a low-level
type environment and that Γ �l P , Γ (x) is of the form 〈τ̃〉L/U . So, ErΓ ((νỹ) (x〈ṽ〉. Q |R))
is of the form (νỹ′) (x〈ṽ′〉. Q′ |R′). Thus x ∈ SBarbs(ErΓ (P)) holds as required. Similarly,
x ∈ SBarbs(P) implies x ∈ SBarbs(ErΓ (P)). �

B.5 Simulation of ErΓ (P) by P

In this subsection, we show that the behavior of ErΓ (P) can be simulated by the original
process P .

Type-Based Information Flow Analysis for the Pi-Calculus 55

Lemma 29 Suppose that rel(Γ) and Γ �l Q hold. If P1 � P ′
1 and P1 |P2 � ErΓ (Q), then

there exists Q′ such that Q −→∗� Q′ and P ′
1 |P2 � ErΓ (Q′).

Proof The proof proceeds by induction on derivation of P1 � P ′
1 with case analysis on the last

rule used.

– Case for the rule for reflexivity: Since P ′
1 = P1, the result follows for Q′ = Q.

– Case for the rule for transitivity: In this case, P1 � P ′′
1 � P ′

1. By the induction hypothesis,
there exists Q′′ such that Q −→∗� Q′′ and P ′′

1 |P2 � ErΓ (Q′′). By Theorem 1 and
Lemmas 14 and 17, there exists Γ ′ such that Γ ′ �l Q′′ and rel(Γ ′) holds. By the induc-
tion hypothesis, there exists Q′ such that Q′′ −→∗� Q′ and P ′

1 |P2 � ErΓ ′(Q′). By
Lemma 21, we have P ′

1 |P2 � ErΓ (Q′) as required.
– Cases for S-ZERO1, S-ZERO2, S-ZERO3, S-COMMUT, S-ASSOC, S-NEW, and S-SWAP:

Trivial. (Let Q′ = Q.)
– Case for S-IFT: In this case, P1 = if trueL then P ′

1 else R. If P1 |P2 � ErΓ (Q)
has been derived from P1 � P ′

1, then Q′ = Q satisfies the required condition. Otherwise,
ErΓ (Q) = E[P1] and []FV (P1) |P2 � E for some evaluation context E. So, by the defi-
nition of Er, Q = C[if trueL then Q1 else Q2] for some finite-level context C and Q1

such that ErΓ (C) = E, Er∆(Q1) = P ′
1, and Er∆(Q2) = R where ∆ = ext(Γ, C).

By Theorem 5, C−→∗
HE′ for some evaluation context E′. Let Q′ = E′[Q1]. Then,

Q = C[if trueL then Q1 else Q2]
−→∗

H E′[if trueL then Q1 else Q2]
� E′[Q1]
= Q′

Moreover, by Lemma 27, ErΓ (C[Q1]) � ErΓ (E′[Q1]) = ErΓ (Q′) holds, which im-
plies P ′

1 |P2 � E[P ′
1] = ErΓ (C[Q1]) � ErΓ (Q′).

– Case for S-IFF: Similar to the case for S-IFT.
– Case for S-REP: In this case, P1 = ∗P11 and P ′

1 = ∗P11 |P11. If P1 |P2 � ErΓ (Q)
has been derived from ∗P11 � ∗P11 |P11, then Q′ = Q satisfies the required con-
dition. Otherwise, ErΓ (Q) = E[P1] and []FV (P1) |P2 � E for some evaluation
context E. So, Q = C[∗Q1] for some context context C and process Q1, such that
ErΓ (C) = E and Er∆(Q1) = P11 for ∆ = ext(Γ, C). If P11 ≡ 0, then
Q′ = Q satisfies the required condition. Otherwise, by the definition of Er, C is a
finite-level context. By Theorem 5, C−→∗

HE′ holds for some evaluation context E′.
Let Q′ = E′[∗Q1 |Q1]. Then, Q = C[∗Q1] −→∗� E′[∗Q1] � Q′. Moreover, by
Lemma 27, ErΓ (C[∗Q1 |Q1]) � ErΓ (E′[∗Q1 |Q1]) = ErΓ (Q′) holds, which im-
plies P ′

1 |P2 � E[P ′
1] = ErΓ (C[∗Q1 |Q1]) � ErΓ (Q′).

– Case for S-PAR: In this case, P1 = P11 |P12 and P ′
1 = P ′

11 |P12 with P11 � P ′
11. By the

assumption P1 |P2 � ErΓ (Q), we have P11 | (P12 |P2) � ErΓ (Q). By the induction
hypothesis, there exists Q′ such that Q −→∗� Q′ and P ′

11 | (P12 |P2) � ErΓ (Q′). The
required result follows, since P ′

1 |P2 � P ′
11 | (P12 |P2) � ErΓ (Q′).

– Case for S-CNEW: In this case, P1 = (νx : ξ) P11 and P ′
1 = (νx : ξ) P ′

11 with P11 �
P ′

11. Let Q1 be a process obtained by removing the prefix (νx : ξ) from Q. Then, we
have P11 |P2 � ErΓ,x : ξ/0(Q1). By the induction hypothesis, there exists Q′

1 such that
Q1 −→∗� Q′

1 and P ′
11 |P2 � ErΓ,x : ξ/0(Q′

1). Let Q′ = (νx : ξ) Q1. Then, we have
Q −→∗� Q′ and P ′

1 |P2 � ErΓ (Q′) as required.

�

Corollary 2 Suppose rel(Γ) and Γ �l Q. If P � ErΓ (Q) and P � P ′, then there exists Q′

such that Q −→∗ Q′ and P ′ � ErΓ (Q′).

Proof Let P1 = P , P ′
1 = P ′, and P2 = 0 in Lemma 29. Then, there exists Q′ such

that Q −→∗� Q′ and P ′ |0 � ErΓ (Q′). From the second condition and S-ZERO1,
P ′ � ErΓ (Q′) follows. �

56 Naoki Kobayashi

We write −→+ for the transitive closure of −→.

Lemma 30 Suppose rel(Γ) and Γ �l P . If P ′ � ErΓ (P) and P ′ −→ Q′, then there exists
Q such that P −→+ Q and Q′ � ErΓ (Q).

Proof By Lemma 20, we have P ′ � (νũ) (x〈ṽ〉. P ′
1 |x(ỹ). P ′

2 |P ′
3) and

(νũ) (P ′
1 | [ỹ �→ ṽ]P ′

2 |P ′
3) � Q′ for some P ′

1, P
′
2, P

′
3. By Corollary 2, there exists R such

that P −→∗� R and (νũ) (x〈ṽ′〉. P ′
1 |x(ỹ). P ′

2 |P ′
3) � ErΓ (R). So, ErΓ (R) is of the form

E[x〈ṽ′〉. P ′
1, x(ỹ). P ′

2] with (νũ) ([]
(1)

id,S1
| [](2)id,S2

|P ′
3) � E where S1 = FV (x〈ṽ′〉. P ′

1)

and S2 = FV (x(ỹ). P ′
2). By the definition of Er, R = C[x〈ṽ〉. P1, x(ỹ). P2] for a finite-

level context C with two holes such that ErΓ (C) = E with Er∆1(x〈ṽ〉. P1) = x〈ṽ′〉. P ′
1

and Er∆2(x(ỹ). P2) = x(ỹ). P ′
2 where ∆i = ext(i)(Γ, C). By Lemma 5, there exists an

evaluation context E′ with two holes such that C −→∗ E′. Let Q′′ = E′[P1, [ỹ �→ ṽ]P2].
Then R −→+ Q′′ holds. Moreover, (νũ) (P ′

1 | [ỹ �→ ṽ′]P ′
2 |P ′

3) � E[P ′
1, [ỹ �→ ṽ′]P ′

2] =
ErΓ (C[P1, [ỹ �→ ṽ]P2]) � ErΓ (E′[P1, [ỹ �→ ṽ]P2]) = ErΓ (Q′′). By Corollary 2 and
(νũ) (P ′

1 | [ỹ �→ ṽ]P ′
2 |P ′

3) � Q′, there exists Q such that Q′ � ErΓ (Q) and Q′′ −→∗� Q.
Moreover, we have P −→∗� R −→+ Q′′ −→∗� Q, which implies P −→+ Q. �

Lemma 31 If rel(Γ) and Γ �l P , then SBarbs(ErΓ (P)) ⊆ Barbs(P).

Proof Suppose x ∈ SBarbs(ErΓ (P)). Then, ErΓ (P) = E[x〈ṽ′〉P ′
1] for some evaluation

context E. By the definition of Er, P = C[x〈ṽ〉P1] for some finite-level context C and process
P1. By Theorem 5, C −→∗ E′ for some finite-level context. So, P −→∗ E′[x〈ṽ〉P1], which
implies x ∈ Barbs(P). �

B.6 Proof of Theorem 4

Proof of Theorem 4 Let R be the set:

{(P, Q) | Γ �l P and Q � ErΓ (P) for some low-level, reliable Γ}.
We show that R is a barbed bisimulation. Suppose (P, Q) ∈ R, i.e., Γ �l P and Q � ErΓ (P)
for some low-level, reliable Γ . We check the three conditions of Definition 22.

– If P −→ P ′, by Theorem 1, there exists ∆ such that Γ −→∗ ∆ and ∆ �l P ′. Moreover,
by Lemma 27, either ErΓ (P) � ErΓ (P ′) or ErΓ (P) −→ ErΓ (P ′) holds. In the
former case, let Q′ be Q. Then, Q′ � ErΓ (P) � ErΓ (P ′) = Er∆(P ′). In the latter
case, let Q′ be ErΓ (P ′)(= Er∆(P ′)). Q −→∗ Q′ and (P ′, Q′) ∈ R hold in either case.

– If Q −→ Q′, by Lemma 30, there exists P ′ such that P −→+ P ′ and Q′ � ErΓ (P ′). By
Theorem 1, there exists ∆ such that Γ −→∗ ∆ and ∆ �l P ′. By Lemma 21, ErΓ (P ′) =
Er∆(P ′). Therefore, we have (P ′, Q′) ∈ R as required.

– Suppose that χ ∈ Barbs(P). Then there exists P ′ such that P −→∗ P ′ and χ ∈
SBarbs(P ′). By the first condition of barbed bisimulation, there exists Q′ such that
Q −→∗ Q′ and Q′ � ErΓ (P ′). By Lemma 28, χ ∈ Barbs(ErΓ (P ′)) = SBarbs(Q′).
So, χ ∈ Barbs(Q) holds.
On the other hand, suppose that χ ∈ Barbs(Q) holds. Then there exists Q′ such that
Q −→∗ Q′ and χ ∈ SBarbs(Q′). By the second condition of barbed bisimulation, there
exists P ′ such that P −→∗ P ′ and Q′ � ErΓ (P ′). By Lemma 31, χ ∈ Barbs(P ′). So,
we have χ ∈ Barbs(P) as required. �

