Linear Declassification

Yita Kaneko Naoki Kobayashi

Tohoku University
{kaneko,koba}@kb.ecei.tohoku.ac.jp

Abstract. We propose a new notion of declassification policy called lin-
ear declassification. Linear declassification controls not only which func-
tions may be applied to declassify high-security values, but also how
often the declassification functions may be applied. We present a lin-
ear type system which guarantees that well-typed programs never vio-
late linear declassification policies. To state a formal security property
guaranteed by the linear declassification, we also introduce linear re-
laxed non-interference as an extension of Li and Zdancewic’s relaxed
non-interference. An application of the linear relaxed non-interference to
quantitative information flow analysis is also discussed.

1 Introduction

There have been extensive studies on policies and verification methods for infor-
mation flow security [4,6,9, 10,12, 14]. The standard policy for secure informa-
tion flow is the non-interference property, which means that low-security outputs
cannot be affected by high-security inputs. A little more formally, a program e
is secure if for any high inputs h; and hy and low input I, e(hy,1) and e(ho,1)
are equivalent for low-level observers. The standard non-interference property
is, however, too restricted in practice, since it does not allow any leakage of se-
cret information. For example, a login program does leak information about the
result of comparison of a string and a password.

To allow intentional release of secret information, a variety of notions of de-
classification have been proposed [6,11,12]. Sabelfeld and Myers [11] proposed
delimited information release, where e is secure if, roughly speaking, whenever
d(h1) = d(hs) for the declassification function d, e(hy,!) and e(hg,!) are equiva-
lent for low-level observers. As a similar criterion, Li and Zdancewic [6] proposed
a notion of relaxed non-interference, where e is secure (i.e., satisfies relaxed non-
interference) if e(h, 1) is factorized into e’(dh), where d is a declassification func-
tion and e’ does not contain h. Both the frameworks guarantee that a program
leaks only partial information d(h) about the high-security value h. For example,
if d is the function Az.xz mod 2, then only the parity information can be leaked.

The above criteria alone, however, do not always guarantee desirable secrecy

properties. For example, consider a declassification function d 2 Az As.(s = x),
which takes a high-security value z, and returns a function that takes a string
and returns whether s and x are equal. Declassifications through such a function
often occur in practice, for instance, in a login program, which compares a user’s

. . . A .
password with an input string. Note that d(h) = As.(s = h) and h contain the
same quantity of information; In fact, h can be factorized into:

(Ag.let test(s) = if g(s) then s else test(s+ 1) in test(0)) (d(h)).

Thus, the above criteria guarantee nothing about the quantity of information
declassified through the function d.

To overcome the problem mentioned above, we propose a new notion of
declassification called linear declassification, which controls how often declassi-
fication functions can be applied to each high-security value, and how often a
value (which may be a function) obtained by declassification may be used. We
define a linear type system that ensures that any well-typed program satisfies a
given linear declassification policy.

To formalize the security property guaranteed by the linear declassification,
we also extend Li and Zdancewic’s relaxed non-interference [6] to linear relazed
non-interference, which says that e is secure if e can be factorized into e’ *z.(dh),
where e’ does not contain h and e’ can call the function Ax.(dh) at most u times
to declassify the value of h. The linear relaxed non-interference is useful for
quantitative analysis of information flow [2,3,7]. For example, if a program e
containing an n-bit password satisfies the linear relaxed non-interference under
the policy that Ax.As.(z = s) is used at most once, we know that one has to run
e O(2™) times in average to get complete information about the password. On
the other hand, if the declassification function is replaced by Ax.As.(s > x), the
password may be leaked by only n runs of the program.

The rest of this paper is structured as follows. Section 2 introduces the lan-
guage of programs and linear declassification policies. Section 3 introduces a
linear type system which guarantees that a program adheres to linear declassifi-
cation policies. Section 4 defines linear relaxed non-interference as an extension
of Li and Zdancewic’s relaxed non-interference. Section 4 also discusses how lin-
ear relaxed non-interference can be used for quantitative analysis of information
flow. Section 5 discusses related work and Section 6 concludes.

2 Language

This section introduces the syntax and semantics of programs and declassifica-
tion policies.

2.1 Syntax

Definition 1 (expressions) The set of expressions, ranged over by e, is defined
by:

e (expressions) :=x | n| o | d{{e)) | e; ® es | if e; then es else e;
| Nz.e | fix x(y) = e | erez | (e1,...,en) | #ile)
u (uses) =01 w

@ (operators) =+ | — |=| -+~

Here, the meta-variables x and n range over the sets of variables and integers
respectively. The meta-variable o ranges over the set of special integers, to which
secrecy policies (given below) are associated. For the sake of simplicity, we con-
sider only integers as primitive values, and assume that e; = e returns 1 if the
values of e; and ey are the same, and returns 0 otherwise. if e; then e; else e3
returns the value of e3 if the value of e; is 0, and returns the value of es other-
wise. The expression A*x.e denotes a function that can be used at most u times.
If u is w, the function can be used an arbitrary number of times.! The expression
fix z(y) = e denotes a recursive function that can be used an arbitrary number
of times. The expression ejes is an ordinary function application. The expression
d{(e)) is a special form of function application, where the meta-variable d ranges
over the set Np of special function variables (defined in a policy introduced
below). The expression (ej,...,e,) returns a tuple consisting of the values of
e1,...,en. Note that n may be 0, in which case, the tuple is empty.

We write [¢’/z]e for the (capture-avoiding) substitution of ¢’ for z in e. We
write SVar(e) for the set of security variables occurring in e.

Definition 2 (policies) The set of policies is defined by:

p (security levels) :=L | H | {d; — u1, -, dp — u,}
D (declassification environment) ::= {d; — A“z.eq, -+ ,d,, — A“z.€2}
X (pOhCY) n= {01 = P17, 0n = pn}

A security level p expresses the degree of confidentiality of each value. If p is L,
the value may be leaked to low-security principals. If p is H, no information about
the value may be leaked. If p is {d; — u1,---,d, — uy}, then the value may be
leaked only through declassification functions dy, . . ., d, and each declassification
function d; may be applied to the value at most u; times. For example, if the
security level of o is {dy — 1,dy — w,d3 — 0}, then dy (o)) + d2((o)) + d2{(o)) is
allowed, but neither ds((o)) nor dy{(o)) + di (o)) is.

A declassification environment D defines declassification functions. A policy
XY maps o; to its security level. Note that the use of D(d;) is always w. This is
because how often d; can be used is described in X' for each security variable o.

Example 1. Let D = {d — M 2z.\y.x =y} and ¥ = {0 — {d — 1}}. This pol-
icy specifies that information about ¢ can be leaked by at most one application
of d. Since the result of the application is a linear (use-once) function A\y.c = v,
the policy means that o may be compared with another integer only once.

Note that if D(d) is Ax.\“y.x = y, then the declassification may be per-
formed only once, but the resulting value A“y.c = y can be used an arbitrary
number of times. Therefore, an attacker can obtain complete information about
o by applying the function to different values.

! For the sake of simplicity, we consider only 0, 1,w as uses. It is easy to extend the
language and the type system given in the next section to allow 2,3,

2.2 Operational Semantics

This section introduces an operational semantics to define the meaning of ex-
pressions and policies formally.
A run-time state is modeled by a pair (H, e), where H is a heap given below.2

Definition 3 (heap)

H (heap) ::={f1 — A\"xy.e1,..., fn = An2y.€h,

g1 — (n17p1)7 ceey Om (nmypm)}
f (function pointer) ::= x| d
Here, f ranges over the set consisting of (ordinary) variables (z,y,z,...) and
declassification function variables (di,da, ... ,).

A heap H keeps information about how often each function may be applied and
how the value of each security variable may be declassified in the rest of the
computation. For example, H (o) = (2, {d — 1}) means that the value of o is 2,
and the value can be declassified only once through the declassification function
d.

For a system (X, D, e), the initial heap is determined by X, D, and the actual
values of the security variables. Let g be a mapping from dom(X) to the set of
integers. We write Hx; p 4 for the initial heap DU{o1 +— (g(01), X(01)),...,0% —
(9(ok), X(ok))} (where dom(X) = {o1,...,01}). We use evaluation contexts to
define the transition relation.

Definition 4 (evaluation context) The set of evaluation contexts, ranged
over by E, is given by:

E (evaluation context) =[] | [le | z[] | d{[]) | if [] then e; else e,
] EB|e | |v<69 (11 <v1,->~-,Uk—1,[]7€k+1,-~-7 en) | #:([])

|
v (values) ::= f |
(H

The relation (H,e) — e’) is the least relation closed under the rules in
Figure 1. In the ﬁgure, F{x — v} is the mapping F’ such that F’(x) = v, and
F'(y) = F(y) for any y € dom(F)\ {z}. val(H,v) is defined to be n if v = n, or
v=ocand H(c) = (n,p).

The key rules are E-APP and E-DECLASSIFY. In E-APP, the use of the
function y is decreased by one. Here, the subtraction u—1 is defined by: 1—1 =0
and w—1 = w. Note that 0—1 is undefined, so that if H(y) = A\°z.e, the function
y can no longer be used (in other words, the evaluation of Efyv] get stuck).

In E-DECLASSIFY, the security level p for o changes after the reduction. Here,
p — d is defined by:

{di—u1,....,dp —up}t—di={dy —ul,...,d, —ul}
s fuy—1ifj =i
where u; = {uj otherwise
L-d,=L

2 Note that unlike the usual heap-based semantics, tuples are not stored in a heap.

For example, if the security level p of o is {d — 1}, then after the declassification,
the security level becomes p—d = {d — 0}, which means that the value of o can
no longer be declassified. Note that H — d; is undefined, so that an integer of
security level H can never be declassified. Rule E-DECLASSIFY2 is for the case
when a declassification function d is applied to an ordinary integer.

In rule E-OP, @ is the binary operation on integers denoted by the operator
symbol &. The remaining rules are standard.

y fresh
(H, E[\'z.¢]) — (H{y — X"z.e}, E[y])
H(d) = Xz.e
(H{o = (n,p)}, E[d(o)]) — (H{o — (n,p — d)}, E[[n/z]e]))

(E-DECLASSIFY)

(E-Fun)

H(d) = Xz.e v & dom(X)
(H, Eld(n)]) — (H, E[[n/z]e])
(H{y — Na.e}, Elyv]) — (H{y — X" 'z.e}, El[v/zle]) (E-App)

(E-DECLASSIFY2)

val(H,v) #0
(H, E[if v then e; else es]) — (H, Ele1]) (E-I¥T)
val(H,v) = 0
(H, E[if v then e, else e]) — (H, Eles]) (E-TFF)
(H, E[v1 ® v2]) — (H, E[val(H,v1)®val(H,v2)]) (E-Op)
z fresh
(H,E[fix z(y) = e]) — (HU{z — \y.[z/z]e}, E[z]) (E-Fx)
(H. Bl#:{vn, ... on))) — (H, Evi)) (E-Proy)

Fig. 1. Evaluation rules

Ezample 2. Recall the security policy in Example 1: D = {d — M\ z.\y.(x =
y)} and X = {o— {d— 1}}.
(Hs D {03}, d{(0))2) is reduced as follows.

(Dufo— (3,{d—1})}, <<)2)
— (DU{o = (3,{d— 0P}, (My.(3=1))2)
— (DU{o— (3,{d—0}),2 HAl (3=9)},2(2)
— (DU{o— (3,{d—0}),2 = Ny.(3=y)},3=2)
— (DU{o— (3,{d—0}),z— Ny.(3 =y)},0)

Onfthe other hand, both (d{(o)),d{(c)) and (N f.(f(1), f(2)))(d{o))) get stuck
as follows.

(DU{o— (3,{d—1})}, (d <<<7>> d(o)
— (DU{o— (3,{d—0})}, (A

— (DU{o— (3,{d—0}),z 1y- 3=y)}, (zd(o))
7@
(DU{o = (3,{d—1}}, (A F.(f(1), F(2))(d(a)))
— (DU{o = (3,{d—1}),2 = A [.(f(1), [(2))}, 2(d((o)))
— (DU{o = (3,{d—0}),2 = A [f(f(1), f(2)}, 2(Ay.(3 =1)))
— (DU{o = (3,{d—0}), 2= A [f(f(1), f(2)),wr— Ay.(3 =)}, 2(w))
— (DU{o— (3,{d— 0}),z = A f.(f(1), £(2), w = Xy.(3 =)}, (w(1), w(2)))
— (DU{o— (3,{d— 0}),z = M [.(f(1), f(2), w = XNy.(3 = y)}, (3 = L, w(2)))
— (DU{o— (3,{d— 0}),z = A f.(f(1), £(2)), w = X.(3 =)}, (0, w(2)))

7@

3 Type System

This section introduces a linear type system, which ensures that if (¥, D,e) is
well-typed, then e satisfies the security policy specified by X~ and D.

3.1 Types

Definition 5 (types) The set of types, ranged over by 7, is defined by:

7 (types) == int, | 71 2w To | (T1,..,Tn)
o (effects) :=t | nt

The integer type int, describes integers whose security level is p. For example,
int (41} is the type of integers that can be declassified through the function d at

most once. The function type 71 ﬁu 7o describes functions that can be used at
most u times and that take a value of type 7 as an argument and return a value
of type 5. The effect ¢ describes whether the function is terminating (when
¢ =t) or it may not be terminating (when ¢ = nt). The effect will be used for
preventing leakage of information from the termination behavior of a program.
The type (1, ...,7,) describes tuples consisting of values of types 71,...,7,.
The sub-effect relation < on effects is the partial order defined by t < nt.
The sub-level relation C on security levels and the subtyping relation 7 < 75 are

the least relations closed under the rules in Figure 2. For example, int g1} Lw
int{gw.y is a subtype of intyg ..} = intyq1y- We write 1 V o for the least

upper bound of ¢ and ¢y (with respect to <), and p; U ps for the least upper
bound of p; and po with respect to C.

LCpCH (PSuBl)

u; < w; for each i € {1,...,m}
7 ; (PSuB2)
{di = u1,...,dm — Um,...} C{d1—ul,...,dm — up,}
p1 & p2

_— (S-PoOLICIES)
ntp, < intp,

/

71 <7 T2 <75 u <u <y

(S-Fun)

P ’ W/ /
T1 = T2 ST =/ T2

Fig. 2. Subtyping rules

3.2 Typing

A type environment is a mapping from a finite set consisting of extended vari-
ables (ordinary variables, security variables, and declassification function names)
to types. We have two forms of type judgment: - (X, D, e) for the whole system
(consisting of a policy, a declassification environment, and an expression), and
I' e : 7& p for expressions. The judgment - (X D, e) means that e satisfies
the security policy specified by X and D. I' F e : 7 & ¢ means that e evaluates
to a value of type 7 under an environment described by I'. If ¢ = t, then eval-
uation of e must terminate. If ¢ = nt, then e may or may not terminate. For
example, o : intyg .1y, f 1 intia1y S int{g1y = fo 1 intgg.y &t is a valid
judgment, but neither o :int g .1y, f:int g} Lw int{g1y b fointgy &t
nor o :int g1y, f:int{g1) = intg—1y & fo:intgg_1y &t is. (In the former,
the security level of o does not match that of the argument required by f. In
the latter, the type of f says that f may not terminate, but the conclusion says
that fo terminates.)

Figure 3 shows the typing rules. Two auxiliary judgments - X : I' and
F D : I are used for defining - (X', D, e). The definitions of the operations used
in the typing rules are summarized in Figure 4.

We explain some key rules below.

— T-OP: Suppose e; has type int 4 .1y. Then, the value of e; can be declassified
through the function d, but that does not necessarily imply that e; @ ey can
be declassified through the function d. Therefore, we raise the security level
of e; @ ey to H unless both of the security levels of e; and e; are L.

— T-IF: Since information about the value of e indirectly flows to the value
of the if-expression, the security level of the if-expression should be greater
than or equal to the ceil of security level of ey. For the sake of simplicity, we
require that the values of if-expressions must be integers.

— T-FUN: The premise means that free variables are used according to I" each
time the function is applied. Since the function may be applied u times, the
usage of free variables is expressed by « - I" in total.

— T-DoL: The premise ensures that e must have type int4 1, so that e can
indeed be declassified through d.

Ezample 3. Let 74 = inty, S intr, -1 inty. d{(o)2 is typed as follows.

ointigo1y o intgoy &t

d:7q,0:intgg 1y b d{(o)) : inty, Sintp &t OF2:intL &t
d:7q,0:intgg 1y d(o)2:inty &t

Ezample 4. Let e be fix f(x) = if d{o)x then z else f(xz +1). It is typed as
follows:

obFd{o)z:intp &t IskFx:intp&t Isk f(x+1):inty &nt

Iy, f :inty, 35, inty, - if d{o)x then z else f(x + 1) : inty, &nt
It Fe:inty, &nt

Here, I'1, I3, and I3 are:

. t . t . .

Il =d:inty, =, inty, —1 inty,, o0 : int{dw)
. t . t . . .

Is =d:inty, —1 inty, —1 inty,o: intig1y,:inty
. t . .

Iy = f:inty, 55, inty, : inty,

Let Xy = {o—{d— w}}, Yo ={o— {d— 1}}, and D = {d — Xz \y.(z =
y)}. Then, F (X1, D,e(0)) : inty, holds but - (X5, D, e(0)) : intr, does not.

3.3 (Partial) Type Soundness

The following theorem means that evaluation of a well-typed program never gets
stuck. A proof is given in Appendix B.

Theorem 1. Suppose that dom(X) = {o1,...,0%}.
IfE(X,D,e) and (Hs p {o)n,,....cnsnp} €) — (H,€') 7=, then €’ is a value.

Note that Theorem 1 only guarantees that evaluation does not get stuck be-
cause of invalid usage of declassification functions; The theorem alone does not
necessarily guarantee that e satisfies the security policy. In fact, the evaluation
of (Hy g (o2},0 4 1) does not get stuck (yields the value 3), but it does leak
information about o. The security property satisfied by well-typed programs is
formalized in the next section.

4 Linear Relaxed Non-Interference

In this section, we define linear relaxed non-interference as a new criterion of
information flow security, and prove that well-typed programs of our type sys-
tem satisfy that criterion. Linear relaxed non-interference is an extension of
relaxed non-interference [6]. We first review relaxed non-interference and discuss
its weakness in Section 4.1. We then define linear relaxed non-interference in
Section 4.2. Section 4.3 shows that any programs well-typed in our type system
satisfy the linear relaxed non-interference. Section 4.4 discusses an application
of linear relaxed non-interference to quantitative information flow analysis.

I'Fe:7

Ne:thax:7&t (T-VAR) Niber:n 5 n&er
FQ'_EQZTl&(PQ

I'n+1IckFe 621T2&g00Vg01Vg02
Io:int, -o:int, &t (T-App)
(T-SVAL)

I'tn:inty &t (T-CONST)

I'-e:intyg.1y & 1

Nierzinty, &y obextinty, &g (d:intL@wT)—i—FFd((e)):T&gooVs&l
N+ Toker@er:intrpup, &¢ (T-Dcw)
(T-Op)

L ’ ’ ’
Nr:mbFe:mn&kyp I'te:m&y TST pse

I'kFe:T7&
w-T'FXze:m S, &t eTey (T-Su)
(T-Fun)
F,x:nnﬂtum,yznl—e:m&gp
w-FI—ﬁxm(y):e:ﬁi@Tz&t
(T-Fix)
I Feg:intp, & o Iy ke :inty, &1 IoFeo:intp, &po
=g =t if =H
st (T-18)
It + I, = if eg then e else ez : int[p1up,up, & 00V @1V 2
Ik e & ¢; (for each i € {1,...,n}) (T-Turie)
N+ +Ink{e,...,en) : (11, ..,) &1 V- Vo
=X I
F{oi—pi,...;on—=pn}:(o1:intp,,...,onintp,) (T-PoLiCY)
ED: I
D+ Xz.e;: 1 & p; foreach i € {1,...,n
z.ei:7i&pi for cach i € {) (T-DENV)
F{di— Xzer, - ,dn— X2en}:(di:71,...,dn:Tn)
F<27D76>
FE:Fl |—D:F2 Fl,FQ"@ZT&QD
all the security levels in [are L
(T-Svs)

F(X,D,e): T

Fig. 3. Typing rules

0ifur =u2=0
up +uz =< 1 if (U17U2) € {(0,].)7 (170)}
w otherwise
inty, + intt, = intL intg + it = ntu
N dy sy, dpoun} T 0 gl dy ol = Ay (g ul) di i () }
(11 L T2) + (71 R To) =T &(u+u/) T2
In (x) if x € dom(I) \ dom(I%)
(In+I3) (x) =< Io (x) if x € dom(I%) \ dom(I")
I (z) 4+ I3 (z) if x € dom(I1) N dom (%)

0ifur =0o0rus =0
Uy - U2 = 1ifu1:uQ:1
w otherwise
u-intp, = intyg, w-wnty = inty
u - int{leul condpoun b T int{dlv—»u<u1,m,dn>—>u~un}
U (T1 =y T2) = T1 = T2

(w-I') (z) =u-I'(x)

_[Lifp=L
[Pl = {Hotherwise

Fig. 4. Operations on policies, types, and type environments

4.1 Relaxed Non-Interference

Relaxed non-interference [6] is an extension of non-interference. Suppose that
Y = {0 — {d — w}}. Informally, an expression e satisfies relaxed non-interference
under the policy X' if e can be factorized (up to a certain program equivalence)
into €'(do), where €’ does not contain o. If d is a constant function Az.0, then
the relaxed non-interference degenerates into the standard non-interference.

As already discussed in Section 1, the relaxed non-interference does not al-
ways guarantee a desired secrecy property. For example, consider the case where
d = Ax.My.xz = y. Then, any expression containing o can be factorized into e’(do)
up to the standard contextual equivalence. In fact, o is contextually-equivalent
to:3

(A\¥g.(fix test(s) = if g(s) then s else test(s + 1)) 0)(d{o)))

4.2 Linear Relaxed Non-Interference

We first define the notion of (typed) contextual equivalence. For the sake of sim-
plicity, we consider only closed terms (thus, it suffices to consider only contexts
of the form e[]). We write (H,e) | n if (H,e) —* (H',n) for some n.

3 Actually, Li and Zdancewic [6] uses a finer equivalence than the contextual equiva-
lence, so that the above factorization is not valid. However, if o ranges over a finite
set, then a similar factorization is possible by unfolding the recursion.

Definition 6 (contextual equivalence) Suppose that) ey : 7& ¢ and 0
ez : T& . e1 and ey are contextually equivalent, written ey =, , eg, if, for any e

such that 0 e : 7 55, inty, (0, ee1) | 0 if and only if (0, ees) | 0.
‘We now define the linear relaxed non-interference.

Definition 7 (Linear Relaxed Non-interference) Let ¥ = {01 — {d; —
Ully -y dl > Uk Sy e oy Om = {d1 — U1, ..., di — Umgi}}. Suppose also that
SVar(e) C {o1,...,0m}. (¥, D,e) satisfies linear relazed non-interference at
7 if there exists ¢ such that the following equivalence holds for any integers
Nyy.oo Nyt

n1/o1,. . snm/om]D(e) Rrne € (A2 (D(d1)ny), ..., A% x.(D(dg)n1))

<)\u7”1$.(D(d1)nm)’) Aumkm'(D(dk)nm»

Here D(e) denotes the term obtained from e by replacing each occurrence of a
declassification expression d{(e)) with D(d)e.

Intuitively, the above definition means that if (¥, D, e) satisfies linear re-
laxzed non-interference, then e can leak information about the security variables
01,...,0m, only by calling declassification functions at most the number of times
specified by Y. Note that in the above definition, ¢’ cannot depend on the values
of the security variables ny,...,npy,.

4.3 Soundness of the Type System
We now show that well-typed programs satisfy linear relaxed non-interference.

Theorem 2. If - (¥, D.e) : 7 and all the security levels in 7 are L, then
(X, D, e) satisfies the linear relaxed non-interference at 7.

A proof of the above theorem is given in Appendix C. We explain below an
outline of the proof. We shall introduce a transformation relation I' e : 7~ €/,
which should be read “the term e that has type 7 under I" is transformed into
the term €’.” By the transformation, an integer n of type int(.u, ...y un} 19
replaced by a tuple (A\“x.(d1{(n),..., \4"z.(dy{n))), which consists of func-
tions for declassifying n. Thus, declassification dj((e)) is replaced by a projection
#r(e)(), where €’ is the term obtained by transforming e. On the other hand, a
high-security integer n of type intg is replaced by the unit value (). For example,
(A2 it gy uy,... dpoun }-d5 ())10 is transformed into:*

(At (2) () A . (di((n)), - A 2 (d (1))

The key features of the transformation are that the transformation preserves the
semantics of programs (i.e., a term of type inty, is transformed into a term that

4 Here, we annotated & with its type since the actual transformation depends on the
type of z.

evaluates to the same integer), and that an integer n of type int 4, .u,,. ...y, um}
can appear only in the form (A**z.(dy{(n)),..., A¥mz.(dn{(n)))) after the trans-
formation.

Given the transformation relation, the theorem can be proved as follows.
Suppose F (¥, D,e) : 7. Then there exist I, such that F X : I, = D : Iy,
and I'1,I5 Fe:7& p. Let €’ be a term such that

[x1/0, ... xx /oKy, Ta b (210, ... xp/okle: T& @~ €.

Then, the condition on the linear relaxed non-interference is satisfied for e/ =
/\1$1. tee All‘k.D(e/l).

4.4 Application to Quantitative Information Flow Analysis

In this subsection, we discuss how linear relaxed non-interference can be applied
to quantitative information flow analysis [2,7]. Unlike the classical information
flow analysis, which obtains binary information of whether or not a high-security
value is leaked to public, the quantitative analysis aims to estimate the quantity
of the information leakage based. Recently, definitions and methods of the quan-
titative information flow analysis have been extensively studied by Malacaria et
al. [2,7], based on Shannon’s information theory [13]. The quantitative analysis
is generally more expensive than the classical information flow analysis, and has
not been fully automated. As discussed below, the linear relaxed non-interference
helps us reduce the cost of the quantitative analysis.

For the sake of simplicity, we consider below only a single high security
variable o and the declassification environment D = {d — \“z.\y.x ® y}, with
the fixed security policy X' = {o +— {d — 1}}.

Suppose that (X, D, e) satisfies linear relaxed non-interference at inty,. Let us
consider the quantity of information that flows from o to the value of e. By Defi-
nition 7, there exists an e’ such that for any n and ny, ({o — (n,p)} U D,e) | ny
if and only if ({o — (n,p)} U D, e'(\a.d{(o)) I ni, where €’ does not contain o.
Moreover, since ¢/ (A\tx.d((o))) is well-typed, if ({o +— (n,p)} U D, e’ (A\tx.d{o))) —*
(H,n1) and the value of ¢ is used during the reduction, then the reduction se-

quence must be of the following form:®

({o = (n,{d — 1} U D, e'(\a.d{(o)))

({o = (n,{d — 1)} U Hy, By [Ma.d(o))])

((n,{d—1}),2 = Ma.d{(o)} U Hy, Er[2])

({o = (n{d—1}), 2 = Ma.d(o) } U Hy, Ex[2()])

({o = (n,{d—1}), 2 = N2.d{(o) } U Ha, Ea[d{(o))])

{o = (n,{d— 0}), 2 — Xz.d{o)} U Ha, Ex[Ay.n & m])

({o = (n,{d — 0}), 2 = XNz.d(o),w — Ny.n ©y} U Hy, Es[w])
{o — (n,{d — 0}, (o) — Nyn &y} U Hy, Eafuw(m)))
({o = (n, {d = 0,z > Xo.d{{o), w = Ay.n ® y} U Hy, Byfn & m))
{o— (n,{d— 0}), 2 — X\z.d{(o),w — \y.n @&y} U Hz, E3[m
{o = (n,{d— 0}), 2 — Nz.d{o),w — \y.n @y} U Hy,n)

gl

LELLpprLrd

Here, since e’ does not contain o, H; and E; (i = 1,2, 3) are independent of the
value n of o.

Let L be a random variable representing ¢’ above, H be a random variable
representing the value n of o, and 0 be a random variable representing the final
value ni. Then, by the reduction sequence above, 0 can be expressed as follows.

0= fo(f1(L),HS f2(L))

Here, f1(L) corresponds to the pair (Hs, F3) and f2(L) corresponds to m in the

reduction step above. The function fy represents the computation of n; from

the configuration ({o — (n,{d — 0}),...} U Hs, E5[m/]).
According to [2,7], the leakage of information is expressed by:

Z(0;H| L) = H(0 | L) = H(0,L) — H(L)

6

—

Here, H(X) is defined as X, P(X = Z)log ——— (and P(X = &) denotes the

probability that the value of X is z).
Using 0 = fo(f1(L),H® f2(L)), Z(0;H | L) is estimated as follows.

Z(0;H| L) = H(O L) — H(L)

P(X)

H{folf1 (L), BES(1),L) — H(L)
H(f1(L),HD f2(L),L) — H(L) (by Appendix A, Lemma 1)
H(H@ f2(L),L) — H(L) (by the definition of H)
=H(HSf2(L) | L) (by the definition of H(X | Y))
< HHDf2(L) | f2(L)) (by Appendix A, Lemma 2)

Thus, Z(0;H | L) is bound by the maximum information leakage by the operation
@ (more precisely, the maximum value of H(H®X | X) obtained by changing the
distribution for X).

5 For the sake of simplicity, we consider only terminating programs. Non-terminating
programs can be treated in a similar manner, by introducing a special value L for
representing non-termination.

5 Note that we are considering deterministic programs. Note also that we do not
consider timing attacks. It is possible to hide timing attacks to some extent, by
using Agat’s technique, for instance [1].

If & is the equality test for k-bit integers, then

H(HDX | X) = P(H =X) logkﬁ + f(H # X) 1og sz
2% log 2% + 22;1 log 2371
7 log %k + Lt log (14 3)
<o+ 5t gy (by log(l+2) <)

_ k+1
= 3%

A

Thus, the maximum leakage is bound by % (which is considered safe if k is
sufficiently large).

On the other hand, if @ is the inequality test <, then, the maximum value
of H(HDX | X) is obtained by letting P(X = 2F~1) = 1.

H(HEX | X) = P(H < 2" 1) log przgrry + P(H > 257" log psgey
= %logQ + %logQ
=1

Thus, we know that 1 bit of information about ¢ may be leaked by each run of
the program.

5 Related Work

There have been many studies on information flow security and declassifica-
tion policies: see [10,12] for a general survey and comparison of declassification
policies. Most closely related to our work is Sabelfeld and Myers’ work on de-
limited information release [11], and Li and Zdancewic’s work on relaxed non-
interference [6]. They control what functions can be used for declassification,
but not how often the declassification functions may be used; thus, the relaxed
non-interference alone is not sufficient for bounding the quantity of information
leakage. Li and Zdancewic [6] allow more flexible declassification than ours; for
example, if a declassification function for ¢ is Az.((z + 1) = 2), then declassifica-
tion can be performed in two steps, by first applying Az.x+1 and then \y.y = 2.
We think it is possible to extend our linear type system to allow such flexible
declassification, but we did not do so in this paper for the sake of simplicity.
Quantitative analysis of information flow has been recently studied by Malacaria

et al. [2, 3, 7] for imperative languages. As demonstrated in Section 4.4, the linear
relaxed non-interference allows us to apply quantitative analysis only to declassi-
fication functions instead of the whole program, by which enabling a combination
of traditional information flow analysis (with linearity analysis) and quantita-
tive information flow analysis. A limitation of our approach is that only 0,1,w
uses are considered, so that if a declassification is performed inside a recursive
function, the number of declassifications is always estimated as w. To remove
that limitation, we need to generalize uses, possibly using dependent types (for
example, we can write IIn : inty.int (4 .,) — inty, for the type of functions that

takes an integer n and a high-security value x, and applies the declassification
function d to x, n times).

Our type system can be considered an instance of linear type systems [5, 8,
15]. In the usual linear type systems, the type of an integer is annotated with
how often the integer is accessed. In our type system, the type of an integer is
annotated with how often each declassification function may be applied to the
integer. We did not discuss a type inference algorithm in this paper, but a type
inference algorithm (that is quadratic in the program size, provided that the
number of declassification functions is constant) can be developed in a standard
manner [8].

6 Conclusion

We introduced a new notion of declassification called linear declassification,
which not only controls what functions can be used for declassifying high-security
values but also how often the declassification functions may be applied. We have
also introduced linear relazed non-interference to formalize the property guar-
anteed by linear declassification. The linear relaxed non-interference enables in-
tegration of traditional type-based information flow analysis and quantitative
information flow analysis, by allowing us to apply quantitative analysis locally
to declassification functions.

References

1. J. Agat. Transforming out timing leaks. In Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages, pages 40—
53, 2000.

2. D. Clark, S. Hunt, and P. Malacaria. Quantitative information flow, relations and
polymorphic types. Journal of Logic and Computation, 15(2):181-199, 2005.

3. D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information
flow in a simple imperative language. Journal of Computer Security, 15(3):321-371,
2007.

4. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504-513, 1977.

5. N. Kobayashi. Quasi-linear types. In Proceedings of ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, pages 29-42, 1999.

6. P. Liand S. Zdancewic. Downgrading policies and relaxed noninterference. In Pro-
ceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, pages 158-170, 2005.

7. P. Malacaria. Assessing security threats of looping constructs. In Proceedings of
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages,
pages 225-235, 2007.

8. T. Mogensen. Types for 0, 1 or many uses. In Implementation of Functional
Languages, volume 1467 of Lecture Notes in Computer Science, pages 112-122,
1998.

10.

11.

12.

13.

14.

15.

F. Pottier and V. Simonet. Information flow inference for ML. In Proceedings of
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages,
pages 319-330, 2002.

A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.
Selected Areas in Communications, 21(1):5-19, Jan. 2003.

A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Software Security - Theories and Systems, Second Mext-NSF-JSPS International
Symposium (I1SSS 2008), volume 3233 of Lecture Notes in Computer Science, pages
174-191. Springer-Verlag, 2003.

A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In 18th
IEEE Computer Security Foundations Workshop (CSFW-18 2005), pages 255-269.
IEEE Computer Society Press, 2005.

C. E. Shannon. A mathematical theory of communication. The Bell System Tech-
nical Journal, 27:379-423, 1948.

G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles
of Programming Languages, pages 355-364, 1998.

D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proceedings of
Functional Programming Languages and Computer Architecture, pages 1-11, San
Diego, California, 1995.

Appendix
A Properties of the entropy

Here, we prepare two lemmas about the entropy H(X). We write f, g for func-
tions, and X,Y for random variables. f(X) denotes the distribution of f(z),
when z changes according to the distribution of X.

(807 H(f(X)) = 2a€cod0m(f)P(f(X) = CL) IOg m)
Lemma 1. H(f(X)) < H(X).

Proof.
H(X) = H(f(X)) 1
=2, P(X =x)log p(X) — Yaccodom(f)P(f(X) = a)log PF(X)=a)
= “a€ccodom(f ((ze{y|f(y) a}P(X:x) log ﬁ) _P(f(X) :a)log m)

Let {y| f(y) = a} be {z1,...,2;} and p; be P(X = z;). Then,

(% ve(u)s)= a}P(= I) log P(X1=3;)) P(f(X) = a)log prrmo=ay)
(p1 log o T +pk log)= (P14 + Pk) log m
= pl(log —log :01+ +pk) + -+ pr (log = —log

pllogthr 4Dk +. +pk10g101+ 4Dk

Pt +Pk
>0

(Notice that pl"'pﬁ > 1, so that p; log w > 0.) Thus, we obtain H(X)—
H(f(X)) > 0 as required. O

Lemma 2. H(g(Y, f(X)) | X) < H(g(Y, f(X)) | f(X)).
Proof. By the definition of H(A |

H(g(Y, (X)) | (X)) —H(g(Y, (X)) | X)
= (H(g (Y f(X), f(X)) = H(f(X))) — (H(g(Y, f(X)), X) —
= (H(X) = H(f(X))) — (H(g(Y, (X)), X) = H(g(Y, f(X
Let gap be P(g(Y,a) = b). Then, H(g(Y, f(X)), X) — H(g(Y,
estimated as follows.
H(g(Y, f(X)), X) = H(g(Y, f(X)), f(X))
= Yo P(g(Y, f(z)) =bA X =1x)log P(Q(Yf(m)l) —bAX=x)
~ZasP(g(Y,a) = bA F(X) = a)log pryrymparo=a)
= Zap(Zrefylfm)=ar P(9(Y: f(a)) = bA X = 2)10g pryvartinz=s))
—P(g(Y,a) =bA f(X) = ;

B), we have:

H(X))
), fF(X)))
f(X)), £(X)) is

@) 108 prsrva=pAgx) —a>)
= a,an,b((Exe{ylf(y)za}P(= z)log m) f(X) =a)log W)
= Lo pdap(Zreiyif(y)=ay P(X = 2) log prx= x)) P(f(X) = a)log pr00=a)

= Za(Zoa,p) (Zrefy|f()=ay P(X = JL“) log prx=y) — P(f(X) = a)log 5rr7=a)
< Sa((Zoetylfm)=ay P(X = 2)l0g prz=y) — P(f(X) = a) X

= H(X) - H(f(X))

Thus, we have H(g(Y, f(X)) | f(X)) — H(g(Y, f(X)) | X) > 0 as required.

log prrr=ay)

B Proof of Theorem 1

We first define a type judgment g (H,e) for run-time states. We write I7 < I
when dom () C dom(I) and I'y(z) < I'y(x) for each x € dom(I3).

Definition 8 We define -p H : I by:

I'=fiim,o 0 fro i T o1 vinty oo 0 tinty,
I - XNig,.e; 7/ & @i(for each i € {1,...,k})
fi:7i, oo feiT o vinty, o o sinty,,, < T+ T 4o+ T
'_R {fl =)\ulxl-ela .. -afk = /\ukxk~ekaal = (n1,p1)7~ ey Om (nmapm)} : I

We write Fr (H,e) : 7 when Fr H : I' and I' - e : 7 & ¢ for some I" and .

Theorem 1 follows from the three lemmas below. Lemma 3 says that if a
system (X, D, e) is well-typed, then the initial run-time state (Hx p 4, €) is also
well-typed. Lemma 4 says that if a run-time state is well-typed, it does not
get stuck immediately. Lemma 5 says that well-typedness of a run-time state is
preserved by reductions.

Lemma 3. Let g = {01 — n1,...,0m — Ny} and dom(X) = {o1,...,0m}. If
F(X,D,e): 7, thentgr (Hs pg,€):T.

Proof. Suppose b (¥, D, e) : 7. Then, there exist I'] and I} such that - X' : I
and - D : I} with I, I's - e: 7. Let I' = I'], I';. Then by Definition 8, we have
Fr Hx,p,g: I' (let I be 0 in the definition). Thus, we get Fg (Hx,p g,€) : T as
required.

Lemma 4 (progress). If kg (H,e) : 7, then either e is a value or there exist
H' and ¢’ such that (H,e) — (H',¢€’).

Proof. Suppose Fr (H,e) : 7, (H,e) #/—, and e is not a value. Then, it must be
one of the following cases:

E
E

= FE[yv] and H(y) is not a A-abstraction.

e = E[d{(v))] but v is neither a security variable ¢ nor an integer.
e=E|
e=E|
— e = E[yv] and H(y) = \x.€.
e=E|
e=E|
e=E|

d
d{(o)] and H(c) = (n,p) but p(d) = 0 is undefined.

E[if v then e; else es] but val(H,v) is undefined.
= FE[v1 ® ve] but val(H,v1) or val(H,vs) is undefined.
= E[#;(v)] but v is not of the form (vq,...,v,) where 1 <i <mn.
By the assumption Fg (H,), none of the above cases cannot happen.

Lemma 5 (preservation). If Fr (H,e) : 7 and (H,e) — (H', €'}, then Fp
(H',e'y: T

Proof. See Section B.1.

Theorem 1 follows immeidately from the above lemmas.

Proof of S uppose dom(X) = {o1,...,0r} and = (¥, D, e) with (Hs p {o,—n1,....00—ni}> €) —

(H,e'y #—. By Lemmas 3 and 5, we have b (H,¢'). By Lemma 4, ¢/ must be a
value. O

B.1 Proof of Lemma 5

Lemma 6 (substitution). If I,z : 7/ F e : 7&p and It - v : 7/ &t, then
N+ vk v/zle:T&p.

Proof. This follows by straightforward induction on derivation of I'1,z : 7/ e :
T& . O

We define the summation H; + Hs of heaps. H; + Hs is defined only if
whenever x € dom(Hy) N dom(Hs), Hy(x) and Hy(x) are identical except their
uses or security levels. In that case, H; + Hs is defined by:

(Hy + Hz)(v) = Hy(v)if v € dom(Hy) \ dom(Hs)

(H1 + Hz)(v) = Ha(v)if v € dom(Hz) \ dom(H,)

(Hl + HQ)(U) = (77/7;01 "|—|—p2)if Hl(O') = (n,pl) and HQ(O’) = (n,pg)
(Hy + Ho)(f) = \nttuzgeif Hi(f) = \x.e and Ha(f) = \“2x.e

Here, 4+ is a restriction of + such that 14++1, 1 4++w, and w++ 1 are undefined,
so that if u; ++ us = w then (u1,uq) € {(0,w), (w,0), (W,w)}.

Lemma 7 (heap decomposition). IfFr H : It + Iy, then there exist Hy and
Hy such thatt H; : T; (i=1,2) and H + Hy = H.

Proof. This follows from the definition of Fr H : I a

Lemma 8. Suppose that Hy + Hy and I} + Iy are well-defined. If Fr Hy : I
andtr Hy : Iy, thentr Hi + Hy : [+ I5.

Lemma 9. If 'te:7&p and I < T, then I'"tFe:7& .

Proof. This follows by straightforward induction on the derivation of I' - e :
T& .

We now prove Lemma 5.

Proof of Lemma 5 Suppose Fr (H,e) : 7 and (H,e) — (H' ¢'). By the defini-
tion of Fr (H,e) : 7, we have br H : I and I' F e : 7 & ¢ for some I'. We show
Fr (H',e) by induction on the derivation of I' - e : 7 & ¢, with case analysis on
the last rule used. Since the whole proof is basically the same as the soundness
proof for other linear type systems, we show only the main cases below.

— Case T-APp: In this case, e = ejeq, [1 F ey : 7/ L T& 1, and Ih F eg :
7' & @9 with I' = I} + I'». By the assumption (H,e) — (H',¢’), there are
three cases to consider.

*

e Case where (H,e1) — (H',€}) and ¢’ = ¢fes.
By Lemmas 7 and 9, there exist H; and H, such that:

H1+H2:H }_RHZFZ(Z:1,2)

By Lemma 4, (Hy,e1) cannot get stuck, so that there exists H such that
(Hy,e1) — (Hj,e}) and H = H{ + Hy. By the induction hypothesis,
we have b (Hj,e}), so that there exists I'] such that g Hi : I'| and
Ie 7 8 7& 1. Let I' = I' + I',. Then, we have Fr H' : I (by
Lemma 8 and IV €’ : 7 & ¢, from which Fr (H', €'} : 7 follows.

e Case where (H,e3) — (H',eh) and €’ = eyé).
Similar to the above case.

e Case where e; = y and H(y) = A"z.e3. In this case, ez is a value,
H' = H{y— *"lz.e3}, and €’ = [ea/2]es.
Let H = {y — A‘x.e3, f1 — v1,..., fx — v, 01 — (N1,D1)s. -, Om —
(Nm, Pm)} Then, by Fr (H,yes), we can assume without loss of gener-
ality:

ToF Nexeg i 7' 28,

I''Fwv; 7] (foreach i =1,...,k)

Y BT T e T O ity O ity < T A To+ T+ -+ I
IF=y:7" 8.7+

Since u — 1 is well-defined, it must be the case that v > 1. Therefore, the

first condition impies that Iy, z: 7' F eg : 7 & ¢p (here, we use Lemma 9
when v = w). By Lemma 6, we get

FO +F2 F [62/%]63 : ’T&(po.
Thus, the required result holds if we show Fr H' : I + I5.
If u = w, then I is of the form w - I}, so that Iy + I'y = I'y. Therefore,

.1 P9 . L L .
Yy Su T T, fe T o ity o Ny,

= Lo+ D)+ Lo+ I+ +17
<o+ 12)+To+ 11+ + 1

Thus, we have br H'(= H) : Iy + I» as required.
If uw = 1, then we have 0- Iy - \z.e5 : 7/ 23 7. Therefore,

y:rm B, T fetl o fe T, oty Oy 0y,
<y+Io+I1+---+1]
=(Lo+Dp) + I} +- +1I7

Thus, we have Fr H' : I'y + I'; as required.
— Case T-DcL: In this case, e = d{(e1)), with I'(d) = inty, 23, 7) and ' F e :
int (g1} & p1. By the assumption (H,e) — (H',¢’), there are three cases
to consider.

e Case where (H,e1) — (H',¢}) with ¢/ = d{(¢})).
This follows easily from the induction hypothesis.
e Case where e; = ¢. In this case, we have:

H(d) = \x.eq e’ =[n/x]eq
H(o) = (n,p) H' = H{ow (n,p—d)}
Let H be: {d — X\ z.eq,0 — (n,p), f1 — v1,..., [k —= Uk, 01— (N1,D1),. .., Om —

(N, Pm) }- Then, by bFr (H,d{(c))), we can assume without loss of gen-
erality:

0k Nez.ey:inty, 2, 7
I''Fuw; 7] (foreachi=1,...,k)

. .1 P9 /
orinty,y: T Su T 1T, fe T o ity o tinty, KT AT+

I'=0:intg.1y,d:inty BT

By the first condition and Lemma 6, we get 0 - [n/z]eq : 7 & 1. Thus,
the required result follows if we show Fr H' : ().
Since

g .1 PO o o . .
oiinty_q,y:T Sy T, f1iT . i T, O iy, Oy Ny,

§U:mt{dHO},d:intLﬂwT)+F{+~~+Fé
<d:int, B, T)+ T+ 4T}

we have Fr H' : () as required.
e Case where e; = n. Similar to the above case.

O

C Proof of Theorem 2

In this section, we assume that all the security levels except L and H have the
same domain {dy,...,dp}. {d; — u;} is identified with {d; — 0,...,d;—1 —
0,d; — uj,dj+1 — 0,....dy — 0}. We first define the encoding of types and
type environments by:

[intL] = int
[inta]r = ()
[[int{dlo—»ul,“.,dk'—*uk}]][‘ = (<> uy Tl) X X (<> up Tk)
where I'(d;) = inty, L T
[5o nlp = [n]r 2 [p
[e1:71, T Tn] = 1 [[Tl]]xlzn,...,xn:rn’ e T [[T”]]:clzﬁ,m,xn:m

We say that a type environment I" is valid if all the security levels in I'(d) are
L for any declassification function variable d. We assume that type environments
are always valid below.

+1I

The set of extended values, ranged over by V', is defined by:
Vi=flnlo| (Vi,....,Va) | Ax.e

We define term transformation relation I' e : 7~ €, so that if 'Fe: 7
and I'Fe: 7~ ¢, then [I'] F e : [7] . The transformation rules are given in
Figure 5. In the figure, let © = e; in ey is an abbreviated form of (Az.es)e;.
We do not define transformation for a security variable o since it is unnecessary
in the proof.

We first prove properties of the above transformation.

Lemma 10. If I'te: 7~ ¢ and ¢ & dom(I"), then I'x: 7' Fe: 7~ €.
Proof. Straightforward induction on the derivation of I' F e : 7~ €’ ad

The following lemmas state that a well-typed term can be always transformed
into a well-typed term.

Lemma 11. If I' - e : 7 and SVar(e) = 0, then there exists € such that
I'te:T~¢.

Proof. Straightforward induction on the derivation of I' I e : 7. Note that each
transformation rule is the same as the corresponding typing rule if the part

“~» €' is ignored. O

In the above lemma, we can assume without loss of generality that TR-SUBV
and TR-SUBE are not applied consecutively, because if consecutive applications
of T-SUB in a type derivation can be always replaced by a single application of
T-SuB. Thus, in the rest of this section, we assume that I" e : 7 & @ ~» €’ has
been derived without applying TR-SUBV or TR-SUBE consecutively.

Lemma 12. IfI'te:7~ €, then 't e: 7 and [I'| € : [7] .

Proof. Suppose I' e : 7 ~ €. I' - e : 7 follows immediately from the fact
that each transformation rule coincides with a typing rule if the part “~» e’
is ignored. [I'] F €' : [r], also follows by straightforward induction on the
derivation of I' e : 7~ €.

The following lemma states that a term of low-security type can be transformed
into itself.

Lemma 13. If 0 - e : 7 and if all the security levels in T are L, then) e :
T~ €.

Proof. Let toL(I") and toL(7) be the type environment and type obtained from
I' and T respectively, by replacing all the security levels with L. The lemma
follows from the following more general lemma, which can be proved easily by
induction on derivation of I'F e : 7.

If I'e:7and if dom(I")NNp =0, then toL(I') - e : toL(r).

(TR-VAR)

Ia:intpFaint, &t~

I'Fn:mmt,&t~n (Tr-Const)
I'Eeintig, iy &pr~ e (Tr-Dew)

(dj:intL By 1)+ T die) : T& po V1 ~ #;(€') ()
Ne:nke:mn&kp~eé (Tr-Fux)

w-T'FXNze:m Sy T2 &t~ \a.e
Ir:n n—t>w T, y:mbFe:n&p~eé (Tr-FIx)
w-NFfixa(y) =e: 71 Su &t~ fix x(y) =€
Ntel:n Bin&ke ~ ¢ Inkes: 1 & o~ e (Tr-App)
IN+Ivkerea:m&poV 1 Vs~ el e

In ey :intn & o1~ € In b es :intr & o2 ~ € (Tr-Op)

F1—|—F2|—61®62:intL&cpl\/cpzve'l@e'g
I ey :inty, &1~ e Ik es:inty, & 2~ e [p1]U[p2] =H

N+ ke @ex:intu&pr Vs~ let 11 =€) in let 22 = €5 in ()
(Tr-OPH1)
I = Vycanty,, & @1~ €] I b oestinty, & p2 ~ eh [p11U[p2] =H
N+ Vider inta&pr Vs ~ let x = e in ()

(Tr-OPH2)
I - eo :intr & po ~ € Ik eqcinty, &1~ €] I b oes:intp, & pa ~ €h
I + I - if eg then e; else e : intp,1ip, & o V 1 V o2 ~ if ¢) then €] else ¢
(Tr-IF)
I oot intp, & o~ e Inboep:anty, &t~ el
Ioboes:inty, &t~ el =H
o 2 e 2 [pol (Tr-TrH)

It + I = if ep then e else ez : intg ~ let = ¢j in ()
ke :mi& @i~ e (for each i € {1,...,n})
Fl+..-+FnF<el7,,,7€n>:<T1,...,Tn>&(,01\/"'\/80n’\’><6,17"'7e’ln>

(TrR-TUPLE)
FFV 7 &p ~ ¢ T <r F <
L4 = L,p =7 (Tr-SUBV)
I'tV :7& ¢~ coerce, .. (e)
F'ke:7'&yg ~¢€ T <r o <
e is neither a value nor a variable
— (Tr-SUBE)
I'te:7&p~let x =€ in coerce, . . ()
coerce, .,/ (e) is defined by:
COTCCInty~int {4y, s ...y } (e) = A“'z.(di{e)), ..., N\ z.(dr{e))

COerceint y ., .. kI il e) (e)=e

COEICeint,~sintyy (e)=1{)

7
coerce,, ~(€) =A" zlet y =e(coerce . (z)) in coerce,, ., (y)

Fig. 5. Transformation Rules

O

The following lemma states that the transformation preserves the semantics
of terms. We shall prove the lemma later, in Subsection C.1.

Lemma 14. Let D be a declassification environment. If = D : I" and I' F e :
inty, & @ ~ €, then (D,e) | 0 if and only if (D,€’) | 0.

We are now ready to prove Theorem 2.

Proof of Theorem 2 Suppose that - (X, D,e) : 7 and all the security levels in
7 are L. Suppose also that ¥ = {01 — {d1 — u11,...,dx — wig},...,o0m —
{d1 — um1,...,dk — Ui }}. Then there exist I'] and I such that:

X Iy FD: Iy In,Iske:r

Let Il = z1: 1 (01), ..., Zm : I (om) and ey = [x1/01, ..., Zm/om]e. Then, we
have I'{, I3 Feq: 7.
By Lemma 11, there exists ef, such that I'7,T5 F eg : 7 ~ e[. Let € be
D(Mzy.-- - Ma,,.ef,). We shall show that e’ satisfies the condition in Definition 7.
By the transformation rules, we have:

Do Moy Mag,eo)ng - ong o 7
~ Aoy Mag,.e)
Az (difn)), ..., Az (din)) - Az (di(nm), - - AU F e (di(nm)

Let e; be any term such that § - e; : 7 Ew inty,. By Lemma 13 and the

assumption that all the security levels in 7 are L, we have) e : 7 2 inty, ~
e1. By using TR-APP, we obtain:

Dobe(May. - Mag,.e0)ng - np) : intr,
~ e (M. Alag,.ef)

Az (di(na)), - A (di(na))) - A0z (da (), - Atrra(dy (nm)

Thus, we obtain the following equivalence.

(0, e1([n1 /o1, .. nm/om]D(e))) 40

@, e1((Mzy. - May,.D(eg))ny - num)) 40

(D,er (M. - /\1xm eo)ny -+ npy)) Y0

(D, er((May. - Aay,.ef)

G () 0) () N))) 0
A1z (D(dy)ny), ..., A%z (D(dg)ny)) - - - (A" 1z (D(d1)nm)y -« o, Az (D(dg)nm)))) 4 0

Here, the third equivalence follows from Lemma 14. Therefore, we have:

[n1/o1, . snm/om]D(€) ~pne € (A1 2.(D(d1)n1), ..., X% x.(D(dg)ny))

A1z (D(dy)nm), -y Xmbz (D(dg)nm))

as required. [J

C.1 Proof of Lemma 14

To prove the lemma, we introduce a substitution-based reduction relation e —p
e/, which is insensitive to the linearity information.

E[d{{n))] — b E[D(d)n| (R-DECLASSIFY)
E[(\'z.e)V] —p E[[V/z]e] (R-APp)
n#0
E[if n then e; e;lése e2] —p Ele1] (R-IFT)
E[if 0 then e; else es] —p Eles] (R-IFF)
E[ni @ n2] —p E[ni@ns] (R-OpP)
Elfix z(y) = e] —p E[Xy.[fix z(y) = e/x]e] (R-FI1x)
E[#:(V1,..., V)] — b E[Vi] (R-PRrOJ)
Evaluation contexts:
Ex=][[le| VI] 1 d{[]) [if [] then e, else ez [[[@e|v &[]
(Vi Vet [bt - en) | #4(1))

Fig. 6. Linearity-insensitive operational semantics

We also introduce a “linearity-insensitive” version of the transformation re-
lation I' b, e : 7& ¢ ~» ¢€’. The rules for I' b, e : T& p ~ ¢’ are obtained as
a restriction of the rules for I' e : T& ¢ ~» €/, where all the uses occuring
in expressions and types must be w. Similarly, we also write k-, D : I" for a
linearity-insensive version of type judgment, where all the uses in its derivation
must be w.

Lemma 15 (substitution lemma for linearity-insensitive transforma-
tion). If e : 7 F, e : 7&p ~ € and ' F, V : 77&t ~ V', then
', [V/zle:1& @~ [V /x]e

Proof. This follows by straightforward induction on the derivation of I',z : 7 k-,
e:T& o~ e

The following lemma states that —7, is preserved by the linearity-insensitive
transformation relation.

Lemma 16. Let D be a declassification environment. If b, D : I" and ' F,
e : T& p ~ ey, then the following conditions hold.

1 . / !/ 1" * / * /
1. Ifeg —p e, then there exist e;, and €] such that ey —7, e; ande; —7, €]
with T't, e : T& @ ~ €] for some €].
2. Ifeyr —p €Y, then there exist e, and €} such that €] —7, €| and eg —7, €,
with I' F,, e : T & o ~ €.

- - (TRO-VAR)
Ix:intp by xintp &t~

TRO-CONST
I'Fon:mmt,&t~n ()

Ibgetintigwy &p1~ e I'(d;) = intL N7

T dy{e) s 7 &0V g1~ #(@)) (no-bey)
Nr:mbye:m&p~e (TRO-FUN)
Tho Mre:m 2o &t~ \a.e
x:m n—t>w72,y:7'1|—we:7'2&<p'\»e’ (TRO-FIX)
Ik, fixz(y)=e:m A T &t~ fix z(y) =€

Thoer:m B m & 1~ €} Il ez : 11 & o~ €h (TRO-APP)

I'iue1ea: & poV o1V ~sel e
I'ty, e :intL & 1 ~ €} I'ty, ez intL & o ~ b (TRO-OP)

Ik, er®es:inty &1 Vs~ e @ e
Tk, er:inty, &1~ €] Tk, e2:intp, & pa ~ €h ;U [p2]=H
e1 is not a value or a variable

Iboeir®es:intu&pr Vs~ let 11 =€) in let 22 = €5 in ()
(TRO-OPH1)
Tk, Vitinty, &1~ €] Tk, ea:intp, & pa ~ €h [p1]U[p2] =H
I, Vides:intu& @1 Vs~ let z=eh in ()

(TRO-OPH2)
I\, eo : intr & o ~ €f Ty er:inty, &p1~ €] Tk, ea:intp, & pa ~ €h

'k, if e then e; else e : inty,p, & o V o1 V 2 ~ if ¢j then €] else ¢)
(TRO-IF)

Iy eo i intp, &~ e I'byoentinty, &t~ e

'k, eatintp, &t~ €h [po] =H
'k, if eg then e; else es : intu & ¢ ~ let x = ¢ in ()
'k e & i~ e; (for each i € {1,...,n})

Thy (e, en) i (T, oo, Ta) &1 Voo Vpn ~ (e, ... en)
(TRO-TUPLE)

(TrRO-IFH)

F}_WV:T/&()O/’\’)E/ TIST ISQD
; (TRO-SUBV)
I't, V:7& ¢~ coerce, ... ()
I'kpe:7T &g ~ ¢ ' <r o <o
e is not a value or a variable
(TRO-SUBE)

I'kFye:7& @~ let x =€ in coerce, . . ()

Fig. 7. Linearity-Insensitive Transformation Rules

Proof. In the proof below, we use the property that if -, D : I'and ' - e :
intp & t, then e —7, n. The proof of this property is omited.

1. The proof proceeds by induction on the derivation of I' k-, eg : 7 & ¢ ~ ey,
with case analysis on the last rule used.

— Case TRO-VAR: This case cannot happen since I" can contain only de-
classification variables.

— Case TRO-CoNST: This case cannot happen, since eg must be n, which
cannot be reduced.

— Case TRO-DcL: In this case, eg = d;j{{eo1)) and e1 = #;(e11)() with
I' Fy, eor @ intyg,0y &1 ~ e and I'(d;) = inty N, T By the
assumption eg — p e, there are two cases to consider.

e Case where ef = d;{(ep,)) and ey —p eg;. By the induction
hypothesis, we get ej; —7%, ej; and e;; —5 €y with I' F,
eo1 ¢ Mtiq,w) &1 ~» e}y, Thus, the required result holds for
ep = d;{(ep1)) and 3 = #;(e;)().

e Case where eg; = n and e = [n/yleq,, with D(d;) = A“y.eq,. In this
case, I' F, ep1 : int{q;w) & 1 ~ €11 must have been derived by us-
ing TRO-SUBV, so that e;; is of the form (A“z.dy (n)), ..., \z.dg{(n)).
Let ey = €} = ej(= [n/yleq;). Then, we have e; —p (A*x.d;{(n)))() — >
d;{(n)) —p €}. Moreover, since e, is a closed expression, by using
Lemma 13, we get) -, e : 7& ¢ ~ €}. Thus, we have I" I, ¢ :

7 & ¢ ~ €} as required.

— Cases TRO-FUN: This case cannot happen, since ey must be a A-abstraction,
which contradicts with eg —p €.

— Case TRO-F1x: In this case, eg = fix x(y) = ep1 and e; = fix x(y) =
e1n with Iz : 7 =, To,y : 71 Fw €01 1 To&p ~ e11. e must be
Ay.[fix z(y) = ep1/x]eo1. The required result holds for e[= e and
el = My [fix z(y) = e11/x]er.

— Case TRO-APP: In this case €p = €01 €02 and €1 = €11 €12 with I” Fw
€01 - T1 ﬂ)}w TQ&(pl ~ €11 and F '_u.) €02 + T1 &(pg ~> €12.

By the assumption ey —p e, there are three cases to consider.

e Case where €] = e();e02 and eg; —p e(;. By the induction hypoth-
esis, there exist ef); and e}, such that e{; —7%, e(; and e;; —7, €/
. ©o .
with I" b, €, : 71 S T2 & 2 ~ €/;. The required result holds for
! / !/ /
ep = €preo2 and €] = e ea.
e Case where e = eg1€()y and eg2 — p €(jo. Similar to the above case.
e Case where eg; = A“x.ep3 and e = [eg2/x]eps. In this case, egy must
) . .
be an extended value. If I" -, egy : 71 5w T2 & o ~+ €11 is derived
by using TRO-FUN, then we have Iz : 71 F, eg3 : 2 & g ~ €13
with e;7 = Az.e13. Let e = ej ande] = [eps/z]e1s. Then, we
have ej —%, e and e; —7%, €}. Moreover, by Lemma 15, we get
I't, e : 12 & @~ €] as required.

by, e :m 27 & 1 ~ eq1 is derived by using TRO-SUBV,
then we have:
a7 by, eos: & @) ~ e13
enn = \z.let y = (\“z.e13)coerce,, ../ (7) in coerce s .., (y)
'y, eo2 : 71 & 2 ~» coerce,, ../ (e12)
eg2 and eqs are extended values
By applying Lemma 15 to the first and third conditions, we get:

L'ty €)1y &gy~ [coerce,, 1 (e12)/T]ers.

The required result holds for ef, = e and
e) = let y = [coerce, .,/ (e12)/z]e13 in coerce ., (y).

— Case TRO-OpP: In this case, eg = eg1 D ep2 and e; = ej; @ ey with

b, e : int, &1 ~ eq1 and I' b, ego @ inty, & o ~» e12. By the
assumption eg — p ef, there are three cases to consider.

o Cases where e = efj; @ eg2 with eg1 —p €ey; or efj = eg1 P €y with
€02 — D €)o. These cases follow immediately from the induction
hypothesis.

e Case where eg; = n1 and eg2 = ng with e = n;@no. By the trans-
formation rules, e; must be ny @ no. So, the required result holds for
ey = ej and €} = n1®no.

Case TRO-OPHI1: In this case, eg = eg1 ® ego and e; = let 1 =
e11 in let xo = ey in () with I" k-, eg1 : int,, &2 ~ e1; and I' F,
ez © intp, & pa ~> e12. Moreover, [p1] U [p2] = H and es is not a value.
Since es is not a value, it must be the case that e = ef; © eg2 with
eo1 —p €p;. By the induction hypothesis, there exist ef); and e}; such
that eg; —% e(; and e11 —%5 €y with I' b, el : inty,, & o1 ~ €l;.
Let e}, be e)); @ eg2. Let us define €} by:

o let x1 = e}, in let x5 = e15 in () if €17 is not an extended value
L7\ let 23 = e1o in () otherwise

Then, we have e; —7, €} and I' I, e : inty & ¢ ~ €] as required.
Case TRO-OPH2: In this case, eg = ng1 Pege and e; = let © = e15 in ()
with I' b, ne1 : inty, &1 ~ Vi and I' by, ega : intp, & 2 ~ e12.
Moreover, [p1] U [p2] = H. By the assumption eg —p €, there are
two cases to consider.

e Case where ef = ng; @ e, with and egs —p efj,. By the induc-
tion hypothesis, there exist e, and e}, such that ej, —%, e(, and
e1a — 7 €1y with I' b, €y 1 intp, & pa ~» €5. The required result
holds for e{, = ng1 @ (), and €} =let x = €}, in ().

e Case where eg2 = ng2 and e = ng1®ng2. The required result holds
for e, = ej and €} = ().

Case TRO-IF: In this case, ¢g = if egg then ey, else epo and e; =
if €10 then €11 else €12 with I” l_w €00 - intL&goo ~ €10, r l_w €01 -
intp, &1 ~ e11 and I' b, ega : intp, & pa ~ e12. By the assumption
ep —p €j, there are three cases to consider.

o Case where e = if efj; then ey else epy and eyy —p €effy. By
the induction hypothesis, there exist ef, and e, such that ef, —7
epo and erg —75 ehg with I' 'y, ep @ intr & po ~ €)y. The re-
quired result holds for e{, = if e}, then ey else epy and €] =
if €], then e;; else ejs.

e Case where egg = n(# 0) and ej = ep;. By the transformation
rule, e;g must be n. Thus, the required result holds for ef, = e and
el =ej.

e Case where egp = 0 and e(; = ep2. Similar to the above case.

— Case TRO-IFH: In this case, eg = if egg then ey, else ego and e; =
let © = ey in () with I" k-, egp : intp, & g2 ~ €10 and [p] = H. By the
assumption eg —p eg , there are three cases to consider.

e Case where e = if ¢, then eg; else ey and egy —p €fp-

By the induction hypothesis, there exist e(, and e}, such that e, —7,
epo and ejg — 7 €y with I' b, efy : inty, & o ~ €}. The required
result holds for e = if e}, then eg; else egy and €] = let x =
o in ().

e Case where egg = n(# 0) and e = ep.

Since I' -, e : intp, &t, it must be the case that ey —7 no1
for some ngy. Let e = ng1 and €] = (). Then, we have I" k-, e, :
intg &t ~ e} and ey —7, €] as required.

e Case where egp = 0 and efj = ega.

Similar to the above case.

— Case TRO-TuPLE: This case follows immediately from the induction
hypothesis.

— Case TRO-SUBV: This case cannot happen, since ey must be a value,
which contradicts with eg —p €.

— Case TRO-SUBE: In this case, e; = let © = e1; in coerce, ()
and I' , ey : 7' & ¢’ ~» e11, By the induction hypothesis, there ex-
ists e}, such that e;; —7% ejy and I' F,, ey’ & ¢’ ~ €. Let €] be
coerce, ... (€ei1) if e} is a value, and be let © = €}, in coerce, ..., (x)
otherwise. Let ej be efj. Then, we get e —%, e(and e; —7%, e} with
I'k, e : 7& ¢ ~ €] as required.

2. The proof proceeds by induction on the derivation of I" b, ey : 7 & p ~ e,
with case analysis on the last rule used.

— Cases where the last rule is TRO-VAR, TRO-ConsT, TRO-FUN, or
TRO-SUBV: These cases cannot happen since e¢; must be an extended
value, which contradicts with e; —p ef.

— Case TRO-DcL: In this case, eg = d;{ep1)) and ex = #;(e11) () with

I, eor & intyg,mwy &1 ~ e and I'(dj) = inty, 2, 7. By the

assumption e; —p e'l’ , there are two cases to consider.

e Case where ef = #;(ef;) () and e;1 —p €f;. By the induction
hypothesis, there exist ef; and ej; such that ef; —7, €}; and
eo1 —p ey Wwith I' =, egy @ intyg,wy &1 ~ €j;. Then, the
required result holds for ey = d; (e,)) and e} = #;(el1)().

e Case where eg; = n and e1; = (A\z.di{(n)),..., \z.di{(n)). In this
case, ¢f = (Az.d;((n))(). Suppose D(d;) = X“y.eq,. Then, the
required result holds for e = €| = [n/yleq;.

— Case TRO-Fix: In this case, ¢y = fix z(y) = eg1 and e; = fix x(y) =
enn with Iz : 71 By, 7,y : 71 Fo €01 : & ~ ery. e/ must be
Ay.[fix z(y) = e11/x]er1. The required result holds for] = ef and
ep = Ay [fix z(y) = eo1/x]eor.

— Case TRO-APP: In this case, eg = eg1eg2 and e; = e11 e1o with I
eo1 : T1 2, T& o1~ e11 and 'k, e : 71 & g ~ e12. By the assump-
tion e; —p €Y, there are three cases to consider.

e Case where ef = ¢!} e12 and e;; —p ef;. By the induction hypoth-
esis, tehre exist efy; and e/ suc that egy —7%, ef; and ef; —p e
with I b, €}, : 71 23, 7& ¢1 ~ €. The required result holds for
ey = ejreo2 and €] = efje1a.

e Case where ¢ = ej1efy and e19 —p €.

Similar to the above case.

e Case where e1; = \“z.e13 and e = [e12/z]eqs.

In this case, e;o must be an extended value. By the transformation
rules, the last rule used for deriving I' -, eg1 : 71 ﬂw T& p1 ~ e1n
must be either TRO-ABS or TRO-SUBV.

If the rule is TRO-ABS, then eg; = Ax.eg3 with I,z : 71 b, ep3 :
T& o ~ e13. Let e = [eg2/x]eps and €] = ef. Then, we have
eo — 7, €y and ef —7, €. Moreover, by Lemma 15, we get I" I,
ey : T& ¢~ €] as required.

If the rule is TRO-SUBV, then we have:

e13 = let y = (\“z.e14)coerce, ../ (z) in coerce, .. (y)
€o1 — /\w2.604

Iiz:7m{Fegy: 7 &po~ €14

ef =let y = (A\”z.e14)coerce,, .,/ (e12) in coerce, . (y)

By Lemma 15, we have
I'F [eoz2/z]eos : T/ & o ~ [coerce,, .1 (e12)/2]e1.

Let ey = [eo2/y]eos- Let €] be let y = [coerce,, ./ (e12)/z]e14 in coerce, .- (y)
if ey is a non-value, and coerce, ., ([coerce . ./(e12)/z]e1s) oth-
3 / 1! / 3 /.
erwise. Then, we have eg —7, e; and ef —7, €] with I' - ¢ :
7 & @ ~ €] as required.

— Case TRO-OpP: In this case, eg = eg1 D eg2 and e; = ej; @ ey with
I'bF, e : int, &1 ~ ey1 and I' b, ego @ inty, & o ~ e12. By the
assumption e; —p e, there are three cases to consider.

e Case where ef = e, ® e;2 and e;; —p ef;. By the induction
hypothesis, there exist ef; and ej; such that eg; —7, ef; and
efy —5 ey with I' F,, ejy : inty, &1 ~ €};. The required re-
sult holds for ef, = ef); ® ep2 and €} = e}; B e1a.

e Case where ef = e11 @ e}, and e13 —p €fs.
Similar to the above case.

e Case where e;; = n; and e} = n;@ns.

By the transformation rules, eg; = n; and eps = ns. The required
result holds for e, = e} = €.

— Case TRO-OPH1: In this case, ¢g = eg1 D eg2 and e = let 1 =
e11 in let xo = ey in () with I" k-, eg1 : int,, &1 ~ e1; and 'k,
ep2 : intp, & pa ~ e1z. Morevoer, [p1| U [p2] = H and ep; is not a
value. Since ej; is not a value, it must be the case that e¢] = let x; =
e/, in let 29 = e in () and e;; —p ef;. By the induction hypothe-
sis, there exist ef; and ej; such that ef;, —%, €j; and ep1 —7 €p;
with I" b, ey @ int,, &1 ~ €j;. Let ey = ej; & ega. Let €] be
let ©1 = €} in let x5 = e in () if €] is a non-value, and let x5 =
e12 in () otherwise. Then, we have eg —7, ¢ and e —7%, ¢} with
'k, ef :inta & ¢ ~ €] as required.

— Case TRO-OPH2: In this case, eg = n; egy and e; = let © = e in ()
with I' b, ny @ intp, & @1~ err and I' bk, ep2 @ intp, & 2 ~> e12 where
[p1] U [p2] = H. By the assumption e; —p €Y, there are two cases to
consider.

e Case where] =let x =€/, in () and e;2 —p €f5. By the induc-
tion hypothesis, there exist ey, and e}, such that ey —%, €}, and
€02 — D €py With I' -, €fy @ int,, & 2 ~> €],5. The required result
holds for e{, = n; ® e, and) =let = e}, in ().

e Case where ejo is a value and e} = (). By the transformation rules,
eo2 must be an integer no. Let e = n1@ng and €] = (). Then, we
have eg —%, ¢, and e —%, €}. Moreover, by using TRO-CONST
and TR-SUBV, we obtain I' F, ¢ : intg & ¢ ~ €] as required.

— Case TRO-IF: In this case, eg = if egg then eg; else epy and e =
if e1g then e else ejx with I' F, eqg : inty, & g ~ e1p and I, eq; :
intp, & ; ~ e1;(i € {1,2}). By the assumption e; —p e, there three
cases to consider.

e Case where e¢f = if e}, then e;; else e13 and e;9 —p €fy. By
the induction hypothesis, there exist ef, and e, such that e}, —%
€lo and egqg —p €4y with I' b, efy, : intr, &g ~ €}y. The re-
quired result holds for e{, = if e}, then ey else epy and €] =
if €], then e;; else ejs.

e Case where e;g = n(# 0) and e/ = e11. By the transformation rule, it
must be the case that egg = n. The required result holds for e, = ep;
and e} =ef.

e Case ejp =0 and e} = eqs.

Similar to the above case.

— Case TRO-IFH: In this case, eg = if egg then ey else ey and e =
let © = ey in () with I' Fy, ego : intp, & ~ e and I' F,, ey; :
inty, &t~ e1;(i € {1,2}), where [pg] = H. By the assumption e; —p
ef, there are two cases to consider.

e Case where e;9 —p €y and ef =let x =€/, in ().

By the induction hypothesis, there exist e(, and e}, such that egg —7,
epo and efy —5 el with I' =, ep : int, & ¢ ~ ejy. The required
result holds for ef, = if e}, then ey else egy and €] = let & =
ey in ().

e Case where e;gp = n and e] = (). By the transformation rules, eg
must be n. Since I' k-, eg; : int,, &t, there exists n; such that
eoi —5 n;. Let e be ny if n # 0 and ng otherwise. Then, the
required result holds for e} = ().

— Case TRO-TuPLE: This case follows immediately from the induction
hypothesis.

— Case TRO-SUBE: In this case, e; = let = e1; in coerce, ..., (z) with
I'' by oeg @ &' ~ eq1. Since eg is not an extended value, neither
is e11. Therefore, e/ = let © = ¢ef; in coerce,...(z) and e;; —p
ey, for some e};. By the induction hypothesis, there exist e}, and e},
such that e —7, e and e} —7, eiy with I' k-, ef : 7/ & ¢ ~ €l;.
Let €] be let z = €/, in coerce. ., () if ¢ is a non-value, and be
coerce; .. (¢};) otherwise. Then we have e¢f —% €] and I' - ¢ :
T & ¢~ €] as required.

O

Corollary 1. Let D be a declassification environment. If =, D : I" and I" F,
eo : inty, & p ~> ey, then eg —7, 0 if and only if ey —7, 0

Proof. Suppose eg —7, 0. By Lemma 16, there exists e} such that e; —7, €]
and I' b, 0 : inty, & ¢ ~ €. By the transformation rule, ¢} must be 0.
The converse is similar.

We now prove Lemma 14.

Proof of Lemma 14 Let D be a declassification environment. Suppose also that
FD:I'and I'* e : inty, & o ~ €. By Lemma 12, we have I' - e : inty, and
[I']. € : [intL] &¢. Let D¥ and e¥ be the declassification environment and
expression obtained by replacing all the uses in D and e with w. By Theorem 1,
the reduction of (D,e) and (D,e’) cannot get stuck. So, — coincides with
the linearity-insensitive reduction relation — pw, i.e., (D,e) | 0 if and only if
e¥ —%. 0; and (D, e’y | 0 if and only if ¢’ —%,., 0. Therefore, we have:

= e —hH. 0
<= € —7. 0 (by Corollary 1)
< (D)0

