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Abstract. We propose a new notion of declassification policy called lin-
ear declassification. Linear declassification controls not only which func-
tions may be applied to declassify high-security values, but also how
often the declassification functions may be applied. We present a lin-
ear type system which guarantees that well-typed programs never vio-
late linear declassification policies. To state a formal security property
guaranteed by the linear declassification, we also introduce linear re-
laxed non-interference as an extension of Li and Zdancewic’s relaxed
non-interference. An application of the linear relaxed non-interference to
quantitative information flow analysis is also discussed.

1 Introduction

There have been extensive studies on policies and verification methods for infor-
mation flow security [4, 6, 9, 10, 12, 14]. The standard policy for secure informa-
tion flow is the non-interference property, which means that low-security outputs
cannot be affected by high-security inputs. A little more formally, a program e
is secure if for any high inputs h1 and h2 and low input l, e(h1, l) and e(h2, l)
are equivalent for low-level observers. The standard non-interference property
is, however, too restricted in practice, since it does not allow any leakage of se-
cret information. For example, a login program does leak information about the
result of comparison of a string and a password.

To allow intentional release of secret information, a variety of notions of de-
classification have been proposed [6, 11, 12]. Sabelfeld and Myers [11] proposed
delimited information release, where e is secure if, roughly speaking, whenever
d(h1) = d(h2) for the declassification function d, e(h1, l) and e(h2, l) are equiva-
lent for low-level observers. As a similar criterion, Li and Zdancewic [6] proposed
a notion of relaxed non-interference, where e is secure (i.e., satisfies relaxed non-
interference) if e(h, l) is factorized into e′(dh), where d is a declassification func-
tion and e′ does not contain h. Both the frameworks guarantee that a program
leaks only partial information d(h) about the high-security value h. For example,
if d is the function λx.xmod 2, then only the parity information can be leaked.

The above criteria alone, however, do not always guarantee desirable secrecy
properties. For example, consider a declassification function d

4
= λx.λs.(s = x),

which takes a high-security value x, and returns a function that takes a string
and returns whether s and x are equal. Declassifications through such a function
often occur in practice, for instance, in a login program, which compares a user’s



password with an input string. Note that d(h)
4
= λs.(s = h) and h contain the

same quantity of information; In fact, h can be factorized into:

(λg.let test(s) = if g(s) then s else test(s + 1) in test(0)) (d(h)).

Thus, the above criteria guarantee nothing about the quantity of information
declassified through the function d.

To overcome the problem mentioned above, we propose a new notion of
declassification called linear declassification, which controls how often declassi-
fication functions can be applied to each high-security value, and how often a
value (which may be a function) obtained by declassification may be used. We
define a linear type system that ensures that any well-typed program satisfies a
given linear declassification policy.

To formalize the security property guaranteed by the linear declassification,
we also extend Li and Zdancewic’s relaxed non-interference [6] to linear relaxed
non-interference, which says that e is secure if e can be factorized into e′λux.(dh),
where e′ does not contain h and e′ can call the function λx.(dh) at most u times
to declassify the value of h. The linear relaxed non-interference is useful for
quantitative analysis of information flow [2, 3, 7]. For example, if a program e
containing an n-bit password satisfies the linear relaxed non-interference under
the policy that λx.λs.(x = s) is used at most once, we know that one has to run
e O(2n) times in average to get complete information about the password. On
the other hand, if the declassification function is replaced by λx.λs.(s > x), the
password may be leaked by only n runs of the program.

The rest of this paper is structured as follows. Section 2 introduces the lan-
guage of programs and linear declassification policies. Section 3 introduces a
linear type system which guarantees that a program adheres to linear declassifi-
cation policies. Section 4 defines linear relaxed non-interference as an extension
of Li and Zdancewic’s relaxed non-interference. Section 4 also discusses how lin-
ear relaxed non-interference can be used for quantitative analysis of information
flow. Section 5 discusses related work and Section 6 concludes.

2 Language

This section introduces the syntax and semantics of programs and declassifica-
tion policies.

2.1 Syntax

Definition 1 (expressions) The set of expressions, ranged over by e, is defined
by:

e (expressions) ::= x | n | σ | d〈〈e〉〉 | e1 ⊕ e2 | if e1 then e2 else e3

| λux.e | fix x(y) = e | e1e2 | 〈e1, . . . , en〉 | #i(e)
u (uses) ::= 0 | 1 | ω

⊕ (operators) ::= + | − |=| · · ·



Here, the meta-variables x and n range over the sets of variables and integers
respectively. The meta-variable σ ranges over the set of special integers, to which
secrecy policies (given below) are associated. For the sake of simplicity, we con-
sider only integers as primitive values, and assume that e1 = e2 returns 1 if the
values of e1 and e2 are the same, and returns 0 otherwise. if e1 then e2 else e3

returns the value of e3 if the value of e1 is 0, and returns the value of e2 other-
wise. The expression λux.e denotes a function that can be used at most u times.
If u is ω, the function can be used an arbitrary number of times.1 The expression
fix x(y) = e denotes a recursive function that can be used an arbitrary number
of times. The expression e1e2 is an ordinary function application. The expression
d〈〈e〉〉 is a special form of function application, where the meta-variable d ranges
over the set ND of special function variables (defined in a policy introduced
below). The expression 〈e1, . . . , en〉 returns a tuple consisting of the values of
e1, . . . , en. Note that n may be 0, in which case, the tuple is empty.

We write [e′/x]e for the (capture-avoiding) substitution of e′ for x in e. We
write SVar(e) for the set of security variables occurring in e.

Definition 2 (policies) The set of policies is defined by:

p (security levels) ::= L | H | {d1 7→ u1, · · · , dn 7→ un}
D (declassification environment) ::= {d1 7→ λωx.e1, · · · , dn 7→ λωx.e2}

Σ (policy) ::= {σ1 7→ p1, · · · , σn 7→ pn}

A security level p expresses the degree of confidentiality of each value. If p is L,
the value may be leaked to low-security principals. If p is H, no information about
the value may be leaked. If p is {d1 7→ u1, · · · , dn 7→ un}, then the value may be
leaked only through declassification functions d1, . . . , dn and each declassification
function di may be applied to the value at most ui times. For example, if the
security level of σ is {d1 7→ 1, d2 7→ ω, d3 7→ 0}, then d1〈〈σ〉〉+ d2〈〈σ〉〉+ d2〈〈σ〉〉 is
allowed, but neither d3〈〈σ〉〉 nor d1〈〈σ〉〉+ d1〈〈σ〉〉 is.

A declassification environment D defines declassification functions. A policy
Σ maps σi to its security level. Note that the use of D(di) is always ω. This is
because how often di can be used is described in Σ for each security variable σ.

Example 1. Let D = {d 7→ λωx.λ1y.x = y} and Σ = {σ 7→ {d 7→ 1}}. This pol-
icy specifies that information about σ can be leaked by at most one application
of d. Since the result of the application is a linear (use-once) function λ1y.σ = y,
the policy means that σ may be compared with another integer only once.

Note that if D(d) is λωx.λωy.x = y, then the declassification may be per-
formed only once, but the resulting value λωy.σ = y can be used an arbitrary
number of times. Therefore, an attacker can obtain complete information about
σ by applying the function to different values.

1 For the sake of simplicity, we consider only 0, 1, ω as uses. It is easy to extend the
language and the type system given in the next section to allow 2, 3, . . ..



2.2 Operational Semantics

This section introduces an operational semantics to define the meaning of ex-
pressions and policies formally.

A run-time state is modeled by a pair 〈H, e〉, where H is a heap given below.2

Definition 3 (heap)

H (heap) ::= {f1 7→ λu1x1.e1, . . . , fn 7→ λunxn.en,
σ1 7→ (n1, p1), . . . , σm 7→ (nm, pm)}

f (function pointer) ::= x | d
Here, f ranges over the set consisting of (ordinary) variables (x, y, z, . . . ) and
declassification function variables (d1, d2, . . . ,).

A heap H keeps information about how often each function may be applied and
how the value of each security variable may be declassified in the rest of the
computation. For example, H(σ) = (2, {d 7→ 1}) means that the value of σ is 2,
and the value can be declassified only once through the declassification function
d.

For a system (Σ, D, e), the initial heap is determined by Σ, D, and the actual
values of the security variables. Let g be a mapping from dom(Σ) to the set of
integers. We write HΣ,D,g for the initial heap D∪{σ1 7→ (g(σ1), Σ(σ1)), . . . , σk 7→
(g(σk), Σ(σk))} (where dom(Σ) = {σ1, . . . , σk}). We use evaluation contexts to
define the transition relation.

Definition 4 (evaluation context) The set of evaluation contexts, ranged
over by E, is given by:

E (evaluation context) ::= [ ] | [ ]e | x[ ] | d〈〈[ ]〉〉 | if [ ] then e1 else e2

| [ ]⊕ e | v ⊕ [ ] | 〈v1, . . . , vk−1, [ ], ek+1, . . . , en〉 | #i([ ])
v (values) ::= f | n | σ | 〈v1, . . . , vn〉

The relation 〈H, e〉 −→ 〈H ′, e′〉 is the least relation closed under the rules in
Figure 1. In the figure, F{x 7→ v} is the mapping F ′ such that F ′(x) = v, and
F ′(y) = F (y) for any y ∈ dom(F ) \ {x}. val(H, v) is defined to be n if v = n, or
v = σ and H(σ) = (n, p).

The key rules are E-App and E-Declassify. In E-App, the use of the
function y is decreased by one. Here, the subtraction u−1 is defined by: 1−1 = 0
and ω−1 = ω. Note that 0−1 is undefined, so that if H(y) = λ0x.e, the function
y can no longer be used (in other words, the evaluation of E[yv] get stuck).

In E-Declassify, the security level p for σ changes after the reduction. Here,
p− d is defined by:

{d1 7→ u1, . . . , dn 7→ un} − di = {d1 7→ u′1, . . . , dn 7→ u′n}
where u′j =

{
uj − 1 if j = i
uj otherwise

L− di = L

2 Note that unlike the usual heap-based semantics, tuples are not stored in a heap.



For example, if the security level p of σ is {d 7→ 1}, then after the declassification,
the security level becomes p−d = {d 7→ 0}, which means that the value of σ can
no longer be declassified. Note that H − di is undefined, so that an integer of
security level H can never be declassified. Rule E-Declassify2 is for the case
when a declassification function d is applied to an ordinary integer.

In rule E-Op, ⊕ is the binary operation on integers denoted by the operator
symbol ⊕. The remaining rules are standard.

y fresh

〈H, E[λux.e]〉 −→ 〈H{y 7→ λux.e}, E[y]〉 (E-Fun)

H(d) = λωx.e

〈H{σ 7→ (n, p)}, E[d〈〈σ〉〉]〉 −→ 〈H{σ 7→ (n, p− d)}, E[[n/x]e])〉
(E-Declassify)

H(d) = λωx.e v 6∈ dom(Σ)

〈H, E[d〈〈n〉〉]〉 −→ 〈H, E[[n/x]e]〉 (E-Declassify2)

〈H{y 7→ λux.e}, E[yv]〉 −→ 〈H{y 7→ λu−1x.e}, E[[v/x]e]〉 (E-App)

val(H, v) 6= 0

〈H, E[if v then e1 else e2]〉 −→ 〈H, E[e1]〉
(E-IfT)

val(H, v) = 0

〈H, E[if v then e1 else e2]〉 −→ 〈H, E[e2]〉
(E-IfF)

〈H, E[v1 ⊕ v2]〉 −→ 〈H, E[val(H, v1)⊕val(H, v2)]〉 (E-Op)

z fresh

〈H, E[fix x(y) = e]〉 −→ 〈H ∪ {z 7→ λωy.[z/x]e}, E[z]〉 (E-Fix)

〈H, E[#i〈v1, . . . , vn〉]〉 −→ 〈H, E[vi]〉 (E-Proj)

Fig. 1. Evaluation rules

Example 2. Recall the security policy in Example 1: D = {d 7→ λωx.λ1y.(x =
y)} and Σ = {σ 7→ {d 7→ 1}}.
〈HΣ,D,{σ 7→3}, d〈〈σ〉〉2〉 is reduced as follows.

〈D ∪ {σ 7→ (3, {d 7→ 1})}, d〈〈σ〉〉2〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0})}, (λ1y.(3 = y))2〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λ1y.(3 = y)}, z(2)〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λ0y.(3 = y)}, 3 = 2〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λ0y.(3 = y)}, 0〉



On the other hand, both 〈d〈〈σ〉〉, d〈〈σ〉〉〉 and (λωf.〈f(1), f(2)〉)(d〈〈σ〉〉) get stuck
as follows.

〈D ∪ {σ 7→ (3, {d 7→ 1})}, 〈d〈〈σ〉〉, d〈〈σ〉〉〉〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0})}, 〈λ1y.(3 = y), d〈〈σ〉〉〉〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λ1y.(3 = y)}, 〈z, d〈〈σ〉〉〉〉
6−→

〈D ∪ {σ 7→ (3, {d 7→ 1})}, (λωf.〈f(1), f(2)〉)(d〈〈σ〉〉)〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 1}), z 7→ λωf.〈f(1), f(2)〉}, z(d〈〈σ〉〉)〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λωf.〈f(1), f(2)〉}, z(λ1y.(3 = y))〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λωf.〈f(1), f(2)〉, w 7→ λ1y.(3 = y)}, z(w)〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λωf.〈f(1), f(2)〉, w 7→ λ1y.(3 = y)}, 〈w(1), w(2)〉〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λωf.〈f(1), f(2)〉, w 7→ λ0y.(3 = y)}, 〈3 = 1, w(2)〉〉
−→ 〈D ∪ {σ 7→ (3, {d 7→ 0}), z 7→ λωf.〈f(1), f(2)〉, w 7→ λ0y.(3 = y)}, 〈0, w(2)〉〉
6−→

ut

3 Type System

This section introduces a linear type system, which ensures that if 〈Σ, D, e〉 is
well-typed, then e satisfies the security policy specified by Σ and D.

3.1 Types

Definition 5 (types) The set of types, ranged over by τ , is defined by:

τ (types) ::= intp | τ1
ϕ→u τ2 | 〈τ1, . . . , τn〉

ϕ (effects) ::= t | nt

The integer type intp describes integers whose security level is p. For example,
int{d7→1} is the type of integers that can be declassified through the function d at
most once. The function type τ1

ϕ→u τ2 describes functions that can be used at
most u times and that take a value of type τ1 as an argument and return a value
of type τ2. The effect ϕ describes whether the function is terminating (when
ϕ = t) or it may not be terminating (when ϕ = nt). The effect will be used for
preventing leakage of information from the termination behavior of a program.
The type 〈τ1, . . . , τn〉 describes tuples consisting of values of types τ1, . . . , τn.

The sub-effect relation ≤ on effects is the partial order defined by t ≤ nt.
The sub-level relation v on security levels and the subtyping relation τ1 ≤ τ2 are
the least relations closed under the rules in Figure 2. For example, int{d 7→1}

t→ω

int{d7→ω} is a subtype of int{d 7→ω}
nt→1 int{d7→1}. We write ϕ1 ∨ ϕ2 for the least

upper bound of ϕ1 and ϕ2 (with respect to ≤), and p1 t p2 for the least upper
bound of p1 and p2 with respect to v.



L v p v H (PSub1)

u′i ≤ ui for each i ∈ {1, . . . , m}
{d1 7→ u1, . . . , dm 7→ um, . . .} v {d1 7→ u′1, . . . , dm 7→ u′m}

(PSub2)

p1 v p2

intp1 ≤ intp2

(S-Policies)

τ ′1 ≤ τ1 τ2 ≤ τ ′2 u′ ≤ u ϕ ≤ ϕ′

τ1
ϕ→u τ2 ≤ τ ′1

ϕ′→u′ τ ′2
(S-Fun)

Fig. 2. Subtyping rules

3.2 Typing

A type environment is a mapping from a finite set consisting of extended vari-
ables (ordinary variables, security variables, and declassification function names)
to types. We have two forms of type judgment: ` 〈Σ, D, e〉 for the whole system
(consisting of a policy, a declassification environment, and an expression), and
Γ ` e : τ & ϕ for expressions. The judgment ` 〈Σ, D, e〉 means that e satisfies
the security policy specified by Σ and D. Γ ` e : τ & ϕ means that e evaluates
to a value of type τ under an environment described by Γ . If ϕ = t, then eval-
uation of e must terminate. If ϕ = nt, then e may or may not terminate. For
example, σ : int{d 7→1}, f : int{d 7→1}

t→ω int{d 7→1} ` fσ : int{d 7→1}& t is a valid
judgment, but neither σ : int{d 7→1}, f : int{d7→ω}

t→ω int{d7→1} ` fσ : int{d7→1}& t

nor σ : int{d7→1}, f : int{d 7→1}
nt→ω int{d 7→1} ` fσ : int{d 7→1}& t is. (In the former,

the security level of σ does not match that of the argument required by f . In
the latter, the type of f says that f may not terminate, but the conclusion says
that fσ terminates.)

Figure 3 shows the typing rules. Two auxiliary judgments ` Σ : Γ and
` D : Γ are used for defining ` 〈Σ, D, e〉. The definitions of the operations used
in the typing rules are summarized in Figure 4.

We explain some key rules below.

– T-Op: Suppose e1 has type int{d 7→1}. Then, the value of e1 can be declassified
through the function d, but that does not necessarily imply that e1⊕ e2 can
be declassified through the function d. Therefore, we raise the security level
of e1 ⊕ e2 to H unless both of the security levels of e1 and e2 are L.

– T-If: Since information about the value of e0 indirectly flows to the value
of the if-expression, the security level of the if-expression should be greater
than or equal to the ceil of security level of e0. For the sake of simplicity, we
require that the values of if-expressions must be integers.

– T-Fun: The premise means that free variables are used according to Γ each
time the function is applied. Since the function may be applied u times, the
usage of free variables is expressed by u · Γ in total.

– T-Dcl: The premise ensures that e must have type intd7→1, so that e can
indeed be declassified through d.



Example 3. Let τd = intL
t→ω intL

t→1 intL. d〈〈σ〉〉2 is typed as follows.

σ : int{d 7→1} ` σ : int{d 7→1}& t

d : τd, σ : int{d7→1} ` d〈〈σ〉〉 : intL
t→1 intL & t ∅ ` 2 : intL & t

d : τd, σ : int{d 7→1} ` d〈〈σ〉〉2 : intL & t

Example 4. Let e be fix f(x) = if d〈〈σ〉〉x then x else f(x + 1). It is typed as
follows:

Γ2 ` d〈〈σ〉〉x : intL & t Γ3 ` x : intL & t Γ3 ` f(x + 1) : intL & nt

Γ2, f : intL
nt→ω intL,` if d〈〈σ〉〉x then x else f(x + 1) : intL & nt

Γ1 ` e : intL & nt

Here, Γ1, Γ2, and Γ3 are:

Γ1 = d : intL
t→ω intL

t→1 intL, σ : int{d 7→ω}
Γ2 = d : intL

t→1 intL
t→1 intL, σ : int{d 7→1}, x : intL

Γ3 = f : intL
nt→ω intL, x : intL

Let Σ1 = {σ 7→ {d 7→ ω}}, Σ2 = {σ 7→ {d 7→ 1}}, and D = {d 7→ λωx.λ1y.(x =
y)}. Then, ` 〈Σ1, D, e(0)〉 : intL holds but ` 〈Σ2, D, e(0)〉 : intL does not.

3.3 (Partial) Type Soundness

The following theorem means that evaluation of a well-typed program never gets
stuck. A proof is given in Appendix B.

Theorem 1. Suppose that dom(Σ) = {σ1, . . . , σk}.
If ` 〈Σ, D, e〉 and 〈HΣ,D,{σ1 7→n1,...,σk 7→nk}, e〉 −→∗ 〈H, e′〉 6−→, then e′ is a value.

Note that Theorem 1 only guarantees that evaluation does not get stuck be-
cause of invalid usage of declassification functions; The theorem alone does not
necessarily guarantee that e satisfies the security policy. In fact, the evaluation
of 〈H∅,∅,{σ 7→2}, σ + 1〉 does not get stuck (yields the value 3), but it does leak
information about σ. The security property satisfied by well-typed programs is
formalized in the next section.

4 Linear Relaxed Non-Interference

In this section, we define linear relaxed non-interference as a new criterion of
information flow security, and prove that well-typed programs of our type sys-
tem satisfy that criterion. Linear relaxed non-interference is an extension of
relaxed non-interference [6]. We first review relaxed non-interference and discuss
its weakness in Section 4.1. We then define linear relaxed non-interference in
Section 4.2. Section 4.3 shows that any programs well-typed in our type system
satisfy the linear relaxed non-interference. Section 4.4 discusses an application
of linear relaxed non-interference to quantitative information flow analysis.



Γ ` e : τ

Γ, x : τ ` x : τ & t (T-Var)

Γ ` n : intL & t (T-Const)

Γ, σ : intp ` σ : intp & t

(T-SVal)

Γ1 ` e1 : intp1 & ϕ Γ2 ` e2 : intp2 & ϕ

Γ1 + Γ2 ` e1 ⊕ e2 : intdp1etdp2e& ϕ
(T-Op)

Γ, x : τ1 ` e : τ2 & ϕ

u · Γ ` λux.e : τ1
ϕ→u τ2 & t

(T-Fun)

Γ, x : τ1
nt→ω τ2, y : τ1 ` e : τ2 & ϕ

ω · Γ ` fix x(y) = e : τ1
ϕ→ω τ2 & t

(T-Fix)

Γ1 ` e1 : τ1
ϕ0→1 τ2 & ϕ1

Γ2 ` e2 : τ1 & ϕ2

Γ1 + Γ2 ` e1 e2 : τ2 & ϕ0 ∨ ϕ1 ∨ ϕ2

(T-App)

Γ ` e : int{d7→1}& ϕ1

(d : intL
ϕ0→ω τ) + Γ ` d〈〈e〉〉 : τ & ϕ0 ∨ ϕ1

(T-Dcl)

Γ ` e : τ ′& ϕ′ τ ′ ≤ τ ϕ′ ≤ ϕ

Γ ` e : τ & ϕ
(T-Sub)

Γ1 ` e0 : intp0 & ϕ0 Γ2 ` e1 : intp1 & ϕ1 Γ2 ` e2 : intp2 & ϕ2

ϕ1 = ϕ2 = t if dp0e = H

Γ1 + Γ2 ` if e0 then e1 else e2 : intdpetp1tp2 & ϕ0 ∨ ϕ1 ∨ ϕ2

(T-If)

Γi ` ei : τi & ϕi (for each i ∈ {1, . . . , n})
Γ1 + · · ·+ Γn ` 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉& ϕ1 ∨ · · · ∨ ϕn

(T-Tuple)

` Σ : Γ

` {σ1 7→ p1, . . . , σn 7→ pn} : (σ1 : intp1 , . . . , σn : intpn) (T-Policy)

` D : Γ

∅ ` λωx.ei : τi & ϕi for each i ∈ {1, . . . , n}
` {d1 7→ λωx.e1, · · · , dn 7→ λωx.en} : (d1 : τ1, . . . , dn : τn)

(T-DEnv)

` 〈Σ, D, e〉

` Σ : Γ1 ` D : Γ2 Γ1, Γ2 ` e : τ & ϕ
all the security levels in Γ2 are L

` 〈Σ, D, e〉 : τ
(T-Sys)

Fig. 3. Typing rules



u1 + u2 =

8<: 0 if u1 = u2 = 0
1 if (u1, u2) ∈ {(0, 1), (1, 0)}
ω otherwise

intL + intL = intL intH + intH = intH
int{d1 7→u1,...,dn 7→un} + int{d1 7→u′1,...,dn 7→u′n} = int{d1 7→(u1+u′1),...,dn 7→(un+u′n)}
(τ1

ϕ→u τ2) + (τ1
ϕ→u′ τ2) = τ1

ϕ→(u+u′) τ2

(Γ1 + Γ2) (x) =

8<:Γ1 (x) if x ∈ dom(Γ1) \ dom(Γ2)
Γ2 (x) if x ∈ dom(Γ2) \ dom(Γ1)
Γ1 (x) + Γ2 (x) if x ∈ dom(Γ1) ∩ dom(Γ2)

u1 · u2 =

8<: 0 if u1 = 0 or u2 = 0
1 if u1 = u2 = 1
ω otherwise

u · intL = intL u · intH = intH

u · int{d1 7→u1,...,dn 7→un} = int{d1 7→u·u1,...,dn 7→u·un}
u · (τ1 →u′ τ2) = τ1 →u·u′ τ2

(u · Γ ) (x) = u · Γ (x)

dpe =

�
L if p = L
H otherwise

Fig. 4. Operations on policies, types, and type environments

4.1 Relaxed Non-Interference

Relaxed non-interference [6] is an extension of non-interference. Suppose that
Σ = {σ 7→ {d 7→ ω}}. Informally, an expression e satisfies relaxed non-interference
under the policy Σ if e can be factorized (up to a certain program equivalence)
into e′(dσ), where e′ does not contain σ. If d is a constant function λx.0, then
the relaxed non-interference degenerates into the standard non-interference.

As already discussed in Section 1, the relaxed non-interference does not al-
ways guarantee a desired secrecy property. For example, consider the case where
d = λx.λy.x = y. Then, any expression containing σ can be factorized into e′(dσ)
up to the standard contextual equivalence. In fact, σ is contextually-equivalent
to:3

(λωg.(fix test(s) = if g(s) then s else test(s + 1)) 0)(d〈〈σ〉〉)

4.2 Linear Relaxed Non-Interference

We first define the notion of (typed) contextual equivalence. For the sake of sim-
plicity, we consider only closed terms (thus, it suffices to consider only contexts
of the form e[ ]). We write 〈H, e〉 ⇓ n if 〈H, e〉 −→∗ 〈H ′, n〉 for some n.

3 Actually, Li and Zdancewic [6] uses a finer equivalence than the contextual equiva-
lence, so that the above factorization is not valid. However, if σ ranges over a finite
set, then a similar factorization is possible by unfolding the recursion.



Definition 6 (contextual equivalence) Suppose that ∅ ` e1 : τ & ϕ and ∅ `
e2 : τ & ϕ. e1 and e2 are contextually equivalent, written e1 ≈τ,ϕ e2, if, for any e

such that ∅ ` e : τ
nt→ω intL, 〈∅, ee1〉 ⇓ 0 if and only if 〈∅, ee2〉 ⇓ 0.

We now define the linear relaxed non-interference.

Definition 7 (Linear Relaxed Non-interference) Let Σ = {σ1 7→ {d1 7→
u11, . . . , dk 7→ u1k}, . . . , σm 7→ {d1 7→ um1, . . . , dk 7→ umk}}. Suppose also that
SVar(e) ⊆ {σ1, . . . , σm}. 〈Σ,D, e〉 satisfies linear relaxed non-interference at
τ if there exists e′ such that the following equivalence holds for any integers
n1, . . . , nm:

[n1/σ1, . . . , nm/σm]D(e) ≈τ,nt e′ 〈λu11x.(D(d1)n1), . . . , λu1kx.(D(dk)n1)〉
· · ·
〈λum1x.(D(d1)nm), . . . , λumkx.(D(dk)nm)〉

Here D(e) denotes the term obtained from e by replacing each occurrence of a
declassification expression d〈〈e〉〉 with D(d)e.

Intuitively, the above definition means that if 〈Σ, D, e〉 satisfies linear re-
laxed non-interference, then e can leak information about the security variables
σ1, . . . , σm only by calling declassification functions at most the number of times
specified by Σ. Note that in the above definition, e′ cannot depend on the values
of the security variables n1, . . . , nm.

4.3 Soundness of the Type System

We now show that well-typed programs satisfy linear relaxed non-interference.

Theorem 2. If ` 〈Σ, D, e〉 : τ and all the security levels in τ are L, then
〈Σ, D, e〉 satisfies the linear relaxed non-interference at τ .

A proof of the above theorem is given in Appendix C. We explain below an
outline of the proof. We shall introduce a transformation relation Γ ` e : τ ; e′,
which should be read “the term e that has type τ under Γ is transformed into
the term e′.” By the transformation, an integer n of type int{d1:u1,...,dm,um} is
replaced by a tuple 〈λu1x.(d1〈〈n〉〉), . . . , λumx.(dm〈〈n〉〉)〉, which consists of func-
tions for declassifying n. Thus, declassification dk〈〈e〉〉 is replaced by a projection
#k(e′)〈 〉, where e′ is the term obtained by transforming e. On the other hand, a
high-security integer n of type intH is replaced by the unit value 〈 〉. For example,
(λωx : int{d1 7→u1,...,dm 7→um}.dj〈〈x〉〉)n is transformed into:4

(λωx.#j(x)〈 〉)〈λu1x1.(d1〈〈n〉〉), . . . , λumxm.(dm〈〈n〉〉)〉.

The key features of the transformation are that the transformation preserves the
semantics of programs (i.e., a term of type intL is transformed into a term that
4 Here, we annotated x with its type since the actual transformation depends on the

type of x.



evaluates to the same integer), and that an integer n of type int{d1:u1,...,dm,um}
can appear only in the form (λu1x.(d1〈〈n〉〉), . . . , λumx.(dm〈〈n〉〉)) after the trans-
formation.

Given the transformation relation, the theorem can be proved as follows.
Suppose ` 〈Σ,D, e〉 : τ . Then there exist Γ1, Γ2 such that ` Σ : Γ1, ` D : Γ2,
and Γ1, Γ2 ` e : τ & ϕ. Let e′′ be a term such that

[x1/σ, . . . , xk/σk]Γ1, Γ2 ` [x1/σ, . . . , xk/σk]e : τ & ϕ ; e′′.

Then, the condition on the linear relaxed non-interference is satisfied for e′ =
λ1x1. · · ·λ1xk.D(e′′).

4.4 Application to Quantitative Information Flow Analysis

In this subsection, we discuss how linear relaxed non-interference can be applied
to quantitative information flow analysis [2, 7]. Unlike the classical information
flow analysis, which obtains binary information of whether or not a high-security
value is leaked to public, the quantitative analysis aims to estimate the quantity
of the information leakage based. Recently, definitions and methods of the quan-
titative information flow analysis have been extensively studied by Malacaria et
al. [2, 7], based on Shannon’s information theory [13]. The quantitative analysis
is generally more expensive than the classical information flow analysis, and has
not been fully automated. As discussed below, the linear relaxed non-interference
helps us reduce the cost of the quantitative analysis.

For the sake of simplicity, we consider below only a single high security
variable σ and the declassification environment D = {d 7→ λωx.λ1y.x⊕ y}, with
the fixed security policy Σ = {σ 7→ {d 7→ 1}}.

Suppose that 〈Σ, D, e〉 satisfies linear relaxed non-interference at intL. Let us
consider the quantity of information that flows from σ to the value of e. By Defi-
nition 7, there exists an e′ such that for any n and n1, 〈{σ 7→ (n, p)} ∪D, e〉 ⇓ n1

if and only if 〈{σ 7→ (n, p)} ∪D, e′〈λ1x.d〈〈σ〉〉〉〉 ⇓ n1, where e′ does not contain σ.
Moreover, since e′(λ1x.d〈〈σ〉〉) is well-typed, if 〈{σ 7→ (n, p)} ∪D, e′〈λ1x.d〈〈σ〉〉〉〉 −→∗

〈H, n1〉 and the value of σ is used during the reduction, then the reduction se-



quence must be of the following form:5

〈{σ 7→ (n, {d 7→ 1})} ∪D, e′〈λ1x.d〈〈σ〉〉〉〉
−→∗ 〈{σ 7→ (n, {d 7→ 1})} ∪H1, E1[λ1x.d〈〈σ〉〉]〉
−→ 〈{σ 7→ (n, {d 7→ 1}), z 7→ λ1x.d〈〈σ〉〉} ∪H1, E1[z]〉
−→∗ 〈{σ 7→ (n, {d 7→ 1}), z 7→ λ1x.d〈〈σ〉〉} ∪H2, E2[z〈 〉]〉
−→ 〈{σ 7→ (n, {d 7→ 1}), z 7→ λ0x.d〈〈σ〉〉} ∪H2, E2[d〈〈σ〉〉]〉
−→ 〈{σ 7→ (n, {d 7→ 0}), z 7→ λ0x.d〈〈σ〉〉} ∪H2, E2[λ1y.n⊕m]〉
−→ 〈{σ 7→ (n, {d 7→ 0}), z 7→ λ0x.d〈〈σ〉〉, w 7→ λ1y.n⊕ y} ∪H2, E2[w]〉
−→∗ 〈{σ 7→ (n, {d 7→ 0}), z 7→ λ0x.d〈〈σ〉〉, w 7→ λ1y.n⊕ y} ∪H3, E3[w(m)]〉
−→ 〈{σ 7→ (n, {d 7→ 0}), z 7→ λ0x.d〈〈σ〉〉, w 7→ λ0y.n⊕ y} ∪H3, E3[n⊕m]〉
−→ 〈{σ 7→ (n, {d 7→ 0}), z 7→ λ0x.d〈〈σ〉〉, w 7→ λ0y.n⊕ y} ∪H3, E3[m′]〉
−→∗ 〈{σ 7→ (n, {d 7→ 0}), z 7→ λ0x.d〈〈σ〉〉, w 7→ λ0y.n⊕ y} ∪H4, n1〉

Here, since e′ does not contain σ, Hi and Ei (i = 1, 2, 3) are independent of the
value n of σ.

Let L be a random variable representing e′ above, H be a random variable
representing the value n of σ, and O be a random variable representing the final
value n1. Then, by the reduction sequence above, O can be expressed as follows.

O = f0(f1(L), H⊕f2(L))

Here, f1(L) corresponds to the pair (H3, E3) and f2(L) corresponds to m in the
reduction step above. The function f0 represents the computation of n1 from
the configuration 〈{σ 7→ (n, {d 7→ 0}), . . .} ∪H3, E3[m′]〉.

According to [2, 7], the leakage of information is expressed by:6

I(O; H | L) = H(O | L) = H(O, L)−H(L)

Here, H( ~X) is defined as ΣxP ( ~X = ~x) log 1

P ( ~X=~x)
(and P ( ~X = ~x) denotes the

probability that the value of ~X is ~x).
Using O = f0(f1(L), H⊕f2(L)), I(O; H | L) is estimated as follows.

I(O; H | L) = H(O, L)−H(L)
= H(f0(f1(L), H⊕f2(L)), L)−H(L)
≤ H(f1(L), H⊕f2(L), L)−H(L) (by Appendix A, Lemma 1)
= H(H⊕f2(L), L)−H(L) (by the definition of H)
= H(H⊕f2(L) | L) (by the definition of H(X | Y))
≤ H(H⊕f2(L) | f2(L)) (by Appendix A, Lemma 2)

Thus, I(O; H | L) is bound by the maximum information leakage by the operation
⊕ (more precisely, the maximum value of H(H⊕X | X) obtained by changing the
distribution for X).
5 For the sake of simplicity, we consider only terminating programs. Non-terminating

programs can be treated in a similar manner, by introducing a special value ⊥ for
representing non-termination.

6 Note that we are considering deterministic programs. Note also that we do not
consider timing attacks. It is possible to hide timing attacks to some extent, by
using Agat’s technique, for instance [1].



If ⊕ is the equality test for k-bit integers, then

H(H⊕X | X) = P (H = X) log 1
P (H=X) + P (H 6= X) log 1

P (H 6=X)

= 1
2k log 2k + 2k−1

2k log 2k

2k−1

= 1
2k log 2k + 2k−1

2k log (1 + 1
2k−1

)
≤ k

2k + 2k−1
2k · 1

2k−1
(by log(1 + x) ≤ x)

= k+1
2k

Thus, the maximum leakage is bound by k+1
2k (which is considered safe if k is

sufficiently large).
On the other hand, if ⊕ is the inequality test <, then, the maximum value

of H(H⊕X | X) is obtained by letting P (X = 2k−1) = 1.

H(H⊕X | X) = P (H < 2k−1) log 1
P (H<2k−1)

+ P (H ≥ 2k−1) log 1
P (H≥2k−1)

= 1
2 log 2 + 1

2 log 2
= 1

Thus, we know that 1 bit of information about σ may be leaked by each run of
the program.

5 Related Work

There have been many studies on information flow security and declassifica-
tion policies: see [10, 12] for a general survey and comparison of declassification
policies. Most closely related to our work is Sabelfeld and Myers’ work on de-
limited information release [11], and Li and Zdancewic’s work on relaxed non-
interference [6]. They control what functions can be used for declassification,
but not how often the declassification functions may be used; thus, the relaxed
non-interference alone is not sufficient for bounding the quantity of information
leakage. Li and Zdancewic [6] allow more flexible declassification than ours; for
example, if a declassification function for σ is λx.((x+1) = 2), then declassifica-
tion can be performed in two steps, by first applying λx.x+1 and then λy.y = 2.
We think it is possible to extend our linear type system to allow such flexible
declassification, but we did not do so in this paper for the sake of simplicity.

Quantitative analysis of information flow has been recently studied by Malacaria
et al. [2, 3, 7] for imperative languages. As demonstrated in Section 4.4, the linear
relaxed non-interference allows us to apply quantitative analysis only to declassi-
fication functions instead of the whole program, by which enabling a combination
of traditional information flow analysis (with linearity analysis) and quantita-
tive information flow analysis. A limitation of our approach is that only 0, 1, ω
uses are considered, so that if a declassification is performed inside a recursive
function, the number of declassifications is always estimated as ω. To remove
that limitation, we need to generalize uses, possibly using dependent types (for
example, we can write Πn : intL.int{d 7→n} → intL for the type of functions that



takes an integer n and a high-security value x, and applies the declassification
function d to x, n times).

Our type system can be considered an instance of linear type systems [5, 8,
15]. In the usual linear type systems, the type of an integer is annotated with
how often the integer is accessed. In our type system, the type of an integer is
annotated with how often each declassification function may be applied to the
integer. We did not discuss a type inference algorithm in this paper, but a type
inference algorithm (that is quadratic in the program size, provided that the
number of declassification functions is constant) can be developed in a standard
manner [8].

6 Conclusion

We introduced a new notion of declassification called linear declassification,
which not only controls what functions can be used for declassifying high-security
values but also how often the declassification functions may be applied. We have
also introduced linear relaxed non-interference to formalize the property guar-
anteed by linear declassification. The linear relaxed non-interference enables in-
tegration of traditional type-based information flow analysis and quantitative
information flow analysis, by allowing us to apply quantitative analysis locally
to declassification functions.

References

1. J. Agat. Transforming out timing leaks. In Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages, pages 40–
53, 2000.

2. D. Clark, S. Hunt, and P. Malacaria. Quantitative information flow, relations and
polymorphic types. Journal of Logic and Computation, 15(2):181–199, 2005.

3. D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information
flow in a simple imperative language. Journal of Computer Security, 15(3):321–371,
2007.

4. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, 1977.

5. N. Kobayashi. Quasi-linear types. In Proceedings of ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, pages 29–42, 1999.

6. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Pro-
ceedings of ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, pages 158–170, 2005.

7. P. Malacaria. Assessing security threats of looping constructs. In Proceedings of
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages,
pages 225–235, 2007.

8. T. Mogensen. Types for 0, 1 or many uses. In Implementation of Functional
Languages, volume 1467 of Lecture Notes in Computer Science, pages 112–122,
1998.



9. F. Pottier and V. Simonet. Information flow inference for ML. In Proceedings of
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages,
pages 319–330, 2002.

10. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.
Selected Areas in Communications, 21(1):5–19, Jan. 2003.

11. A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Software Security - Theories and Systems, Second Mext-NSF-JSPS International
Symposium (ISSS 2003), volume 3233 of Lecture Notes in Computer Science, pages
174–191. Springer-Verlag, 2003.

12. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In 18th
IEEE Computer Security Foundations Workshop (CSFW-18 2005), pages 255–269.
IEEE Computer Society Press, 2005.

13. C. E. Shannon. A mathematical theory of communication. The Bell System Tech-
nical Journal, 27:379–423, 1948.

14. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. In Proceedings of ACM SIGPLAN/SIGACT Symposium on Principles
of Programming Languages, pages 355–364, 1998.

15. D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proceedings of
Functional Programming Languages and Computer Architecture, pages 1–11, San
Diego, California, 1995.



Appendix

A Properties of the entropy

Here, we prepare two lemmas about the entropy H(X). We write f, g for func-
tions, and X, Y for random variables. f(X) denotes the distribution of f(x),
when x changes according to the distribution of X.
(So, H(f(X)) = Σa∈codom(f)P (f(X) = a) log 1

P (f(X)=a) .)

Lemma 1. H(f(X)) ≤ H(X).
Proof.

H(X)−H(f(X))
= ΣxP (X = x) log 1

P (X=x) −Σa∈codom(f)P (f(X) = a) log 1
P (f(X)=a)

= Σa∈codom(f)((Σx∈{y|f(y)=a}P (X = x) log 1
P (X=x) )− P (f(X) = a) log 1

P (f(X)=a) )

Let {y | f(y) = a} be {x1, . . . , xk} and pi be P (X = xi). Then,

((Σx∈{y|f(y)=a}P (X = x) log 1
P (X=x) )− P (f(X) = a) log 1

P (f(X)=a) )
= (p1 log 1

p1
+ · · ·+ pk log 1

pk
)− (p1 + · · ·+ pk) log 1

p1+···+pk

= p1(log 1
p1
− log 1

p1+···+pk
) + · · ·+ pk(log 1

pk
− log 1

p1+···+pk
)

= p1 log p1+···+pk

p1
+ · · ·+ pk log p1+···+pk

pk

≥ 0

(Notice that p1+···+pk

pi
≥ 1, so that pi log p1+···+pk

pi
≥ 0.) Thus, we obtain H(X)−

H(f(X)) ≥ 0 as required. ut
Lemma 2. H(g(Y, f(X)) | X) ≤ H(g(Y, f(X)) | f(X)).

Proof. By the definition of H(A | B), we have:

H(g(Y, f(X)) | f(X))−H(g(Y, f(X)) | X)
= (H(g(Y, f(X)), f(X))−H(f(X)))− (H(g(Y, f(X)), X)−H(X))
= (H(X)−H(f(X)))− (H(g(Y, f(X)), X)−H(g(Y, f(X)), f(X)))

Let qa,b be P (g(Y, a) = b). Then, H(g(Y, f(X)), X) − H(g(Y, f(X)), f(X)) is
estimated as follows.
H(g(Y, f(X)), X)−H(g(Y, f(X)), f(X))

= Σx,bP (g(Y, f(x)) = b ∧X = x) log 1
P (g(Y,f(x))=b∧X=x)

−Σa,bP (g(Y, a) = b ∧ f(X) = a) log 1
P (g(Y,a)=b∧f(X)=a)

= Σa,b((Σx∈{y|f(y)=a}P (g(Y, f(a)) = b ∧X = x) log 1
P (g(Y,a)=b∧X=x) )

−P (g(Y, a) = b ∧ f(X) = a) log 1
P (g(Y,a)=b∧f(X)=a) )

= Σa,bqa,b((Σx∈{y|f(y)=a}P (X = x) log 1
qa,bP (X=x) )− P (f(X) = a) log 1

qa,bP (f(X)=a) )
= Σa,bqa,b((Σx∈{y|f(y)=a}P (X = x) log 1

P (X=x) )− P (f(X) = a) log 1
P (f(X)=a) )

= Σa(Σbqa,b)((Σx∈{y|f(y)=a}P (X = x) log 1
P (X=x) )− P (f(X) = a) log 1

P (f(X)=a) )
≤ Σa((Σx∈{y|f(y)=a}P (X = x) log 1

P (X=x) )− P (f(X) = a) log 1
P (f(X)=a) )

= H(X)−H(f(X))

Thus, we have H(g(Y, f(X)) | f(X))−H(g(Y, f(X)) | X) ≥ 0 as required.



B Proof of Theorem 1

We first define a type judgment `R 〈H, e〉 for run-time states. We write Γ1 ≤ Γ2

when dom(Γ2) ⊆ dom(Γ1) and Γ1(x) ≤ Γ2(x) for each x ∈ dom(Γ2).

Definition 8 We define `R H : Γ by:

Γ = f1 : τ1, . . . , fk : τk, σ1 : intp′1 , . . . , σm : intp′m
Γi ` λuixi.ei : τ ′i &ϕi(for each i ∈ {1, . . . , k})

f1 : τ ′1, . . . , fk : τ ′k, σ1 : intp1 , . . . , σm : intpm
≤ Γ + Γ1 + · · ·+ Γk

`R {f1 7→ λu1x1.e1, . . . , fk 7→ λukxk.ek, σ1 7→ (n1, p1), . . . , σm 7→ (nm, pm)} : Γ

We write `R 〈H, e〉 : τ when `R H : Γ and Γ ` e : τ & ϕ for some Γ and ϕ.

Theorem 1 follows from the three lemmas below. Lemma 3 says that if a
system 〈Σ, D, e〉 is well-typed, then the initial run-time state 〈HΣ,D,g, e〉 is also
well-typed. Lemma 4 says that if a run-time state is well-typed, it does not
get stuck immediately. Lemma 5 says that well-typedness of a run-time state is
preserved by reductions.

Lemma 3. Let g = {σ1 7→ n1, . . . , σm 7→ nm} and dom(Σ) = {σ1, . . . , σm}. If
` 〈Σ,D, e〉 : τ , then `R 〈HΣ,D,g, e〉 : τ .

Proof. Suppose ` 〈Σ, D, e〉 : τ . Then, there exist Γ ′1 and Γ ′2 such that ` Σ : Γ ′1
and ` D : Γ ′2 with Γ ′1, Γ

′
2 ` e : τ . Let Γ = Γ ′1, Γ

′
2. Then by Definition 8, we have

`R HΣ,D,g : Γ (let Γi be ∅ in the definition). Thus, we get `R 〈HΣ,D,g, e〉 : τ as
required.

Lemma 4 (progress). If `R 〈H, e〉 : τ , then either e is a value or there exist
H ′ and e′ such that 〈H, e〉 −→ 〈H ′, e′〉.
Proof. Suppose `R 〈H, e〉 : τ , 〈H, e〉 6−→, and e is not a value. Then, it must be
one of the following cases:

– e = E[d〈〈v〉〉] but v is neither a security variable σ nor an integer.
– e = E[d〈〈σ〉〉] and H(σ) = (n, p) but p(d) = 0 is undefined.
– e = E[yv] and H(y) is not a λ-abstraction.
– e = E[yv] and H(y) = λ0x.e′.
– e = E[if v then e1 else e2] but val(H, v) is undefined.
– e = E[v1 ⊕ v2] but val(H, v1) or val(H, v2) is undefined.
– e = E[#i(v)] but v is not of the form 〈v1, . . . , vn〉 where 1 ≤ i ≤ n.

By the assumption `R 〈H, e〉, none of the above cases cannot happen.

Lemma 5 (preservation). If `R 〈H, e〉 : τ and 〈H, e〉 −→ 〈H ′, e′〉, then `R

〈H ′, e′〉 : τ

Proof. See Section B.1.

Theorem 1 follows immeidately from the above lemmas.



Proof of S uppose dom(Σ) = {σ1, . . . , σk} and ` 〈Σ,D, e〉 with 〈HΣ,D,{σ1 7→n1,...,σk 7→nk}, e〉 −→∗

〈H, e′〉 6−→. By Lemmas 3 and 5, we have `R 〈H, e′〉. By Lemma 4, e′ must be a
value. ¤

B.1 Proof of Lemma 5

Lemma 6 (substitution). If Γ1, x : τ ′ ` e : τ &ϕ and Γ2 ` v : τ ′& t, then
Γ1 + Γ2 ` [v/x]e : τ & ϕ.

Proof. This follows by straightforward induction on derivation of Γ1, x : τ ′ ` e :
τ & ϕ. ut

We define the summation H1 + H2 of heaps. H1 + H2 is defined only if
whenever x ∈ dom(H1) ∩ dom(H2), H1(x) and H2(x) are identical except their
uses or security levels. In that case, H1 + H2 is defined by:

(H1 + H2)(v) = H1(v)if v ∈ dom(H1) \ dom(H2)
(H1 + H2)(v) = H2(v)if v ∈ dom(H2) \ dom(H1)
(H1 + H2)(σ) = (n, p1 ++ p2)if H1(σ) = (n, p1) and H2(σ) = (n, p2)
(H1 + H2)(f) = λu1++u2x.eif H1(f) = λu1x.e and H2(f) = λu2x.e

Here, ++ is a restriction of + such that 1++1, 1++ω, and ω++1 are undefined,
so that if u1 ++ u2 = ω then (u1, u2) ∈ {(0, ω), (ω, 0), (ω, ω)}.

Lemma 7 (heap decomposition). If `R H : Γ1 +Γ2, then there exist H1 and
H2 such that ` Hi : Γi (i = 1, 2) and H1 + H2 = H.

Proof. This follows from the definition of `R H : Γ . ut

Lemma 8. Suppose that H1 + H2 and Γ1 + Γ2 are well-defined. If `R H1 : Γ1

and `R H2 : Γ2, then `R H1 + H2 : Γ1 + Γ2.

Lemma 9. If Γ ` e : τ &ϕ and Γ ′ ≤ Γ , then Γ ′ ` e : τ & ϕ.

Proof. This follows by straightforward induction on the derivation of Γ ` e :
τ & ϕ.

We now prove Lemma 5.

Proof of Lemma 5 Suppose `R 〈H, e〉 : τ and 〈H, e〉 −→ 〈H ′, e′〉. By the defini-
tion of `R 〈H, e〉 : τ , we have `R H : Γ and Γ ` e : τ &ϕ for some Γ . We show
`R 〈H ′, e〉 by induction on the derivation of Γ ` e : τ &ϕ, with case analysis on
the last rule used. Since the whole proof is basically the same as the soundness
proof for other linear type systems, we show only the main cases below.

– Case T-App: In this case, e = e1e2, Γ1 ` e1 : τ ′
ϕ0→1 τ &ϕ1, and Γ2 ` e2 :

τ ′& ϕ2 with Γ = Γ1 + Γ2. By the assumption 〈H, e〉 −→ 〈H ′, e′〉, there are
three cases to consider.



• Case where 〈H, e1〉 −→ 〈H ′, e′1〉 and e′ = e′1e2.
By Lemmas 7 and 9, there exist H1 and H2 such that:

H1 + H2 = H `R Hi : Γi(i = 1, 2)

By Lemma 4, 〈H1, e1〉 cannot get stuck, so that there exists H ′
1 such that

〈H1, e1〉 −→ 〈H ′
1, e

′
1〉 and H ′ = H ′

1 + H2. By the induction hypothesis,
we have `R 〈H ′

1, e
′
1〉, so that there exists Γ ′1 such that `R H ′

1 : Γ ′1 and
Γ ′1 ` e′1 : τ ′

ϕ0→1 τ & ϕ1. Let Γ = Γ ′1 + Γ2. Then, we have `R H ′ : Γ ′ (by
Lemma 8 and Γ ′ ` e′ : τ &ϕ, from which `R 〈H ′, e′〉 : τ follows.

• Case where 〈H, e2〉 −→ 〈H ′, e′2〉 and e′ = e1e
′
2.

Similar to the above case.
• Case where e1 = y and H(y) = λux.e3. In this case, e2 is a value,

H ′ = H{y 7→ λu−1x.e3}, and e′ = [e2/x]e3.
Let H = {y 7→ λux.e3, f1 7→ v1, . . . , fk 7→ vk, σ1 7→ (n1, p1), . . . , σm 7→
(nm, pm)}. Then, by `R 〈H, ye2〉, we can assume without loss of gener-
ality:

Γ0 ` λux.e3 : τ ′
ϕ0→u τ

Γ ′i ` vi : τ ′i (for each i = 1, . . . , k)
y : τ ′

ϕ0→u τ, f1 : τ ′i , . . . , fk : τ ′k, σ1 : intp1 , . . . , σm : intpm ≤ Γ + Γ0 + Γ ′1 + · · ·+ Γ ′k
Γ = (y : τ ′

ϕ0→1 τ) + Γ2

Since u−1 is well-defined, it must be the case that u ≥ 1. Therefore, the
first condition impies that Γ0, x : τ ′ ` e3 : τ & ϕ0 (here, we use Lemma 9
when u = ω). By Lemma 6, we get

Γ0 + Γ2 ` [e2/x]e3 : τ &ϕ0.

Thus, the required result holds if we show `R H ′ : Γ0 + Γ2.
If u = ω, then Γ0 is of the form ω · Γ ′0, so that Γ0 + Γ0 = Γ0. Therefore,

y : τ ′
ϕ0→u τ, f1 : τ ′i , . . . , fk : τ ′k, σ1 : intp1 , . . . , σm : intpm

≤ Γ + Γ0 + Γ ′1 + · · ·+ Γ ′k
= (Γ0 + Γ ) + Γ0 + Γ ′1 + · · ·+ Γ ′k
≤ (Γ0 + Γ2) + Γ0 + Γ ′1 + · · ·+ Γ ′k

Thus, we have `R H ′(= H) : Γ0 + Γ2 as required.
If u = 1, then we have 0 · Γ0 ` λ0x.e3 : τ ′

ϕ0→0 τ . Therefore,

y : τ ′
ϕ0→0 τ, f1 : τ ′i , . . . , fk : τ ′k, σ1 : intp1 , . . . , σm : intpm

≤ Γ2 + Γ0 + Γ ′1 + · · ·+ Γ ′k
= (Γ0 + Γ2) + Γ ′1 + · · ·+ Γ ′k

Thus, we have `R H ′ : Γ0 + Γ2 as required.
– Case T-Dcl: In this case, e = d〈〈e1〉〉, with Γ (d) = intL

ϕ0→ω τ) and Γ ` e1 :
int{d7→1}& ϕ1. By the assumption 〈H, e〉 −→ 〈H ′, e′〉, there are three cases
to consider.



• Case where 〈H, e1〉 −→ 〈H ′, e′1〉 with e′ = d〈〈e′1〉〉.
This follows easily from the induction hypothesis.

• Case where e1 = σ. In this case, we have:

H(d) = λωx.ed e′ = [n/x]ed

H(σ) = (n, p) H ′ = H{σ 7→ (n, p− d)}

Let H be: {d 7→ λωx.ed, σ 7→ (n, p), f1 7→ v1, . . . , fk 7→ vk, σ1 7→ (n1, p1), . . . , σm 7→
(nm, pm)}. Then, by `R 〈H, d〈〈σ〉〉〉, we can assume without loss of gen-
erality:

∅ ` λωx.ed : intL
ϕ1→ω τ

Γ ′i ` vi : τ ′i (for each i = 1, . . . , k)
σ : intp, y : τ ′

ϕ0→u τ, f1 : τ ′i , . . . , fk : τ ′k, σ1 : intp1 , . . . , σm : intpm
≤ Γ + Γ ′1 + · · ·+ Γ ′k

Γ = σ : int{d7→1}, d : intL
ϕ1→ω τ

By the first condition and Lemma 6, we get ∅ ` [n/x]ed : τ & ϕ1. Thus,
the required result follows if we show `R H ′ : ∅.
Since

σ : intp−d, y : τ ′
ϕ0→u τ, f1 : τ ′i , . . . , fk : τ ′k, σ1 : intp1 , . . . , σm : intpm

≤ σ : int{d 7→0}, d : intL
ϕ1→ω τ) + Γ ′1 + · · ·+ Γ ′k

≤ d : intL
ϕ1→ω τ) + Γ ′1 + · · ·+ Γ ′k

we have `R H ′ : ∅ as required.
• Case where e1 = n. Similar to the above case.

ut
¤

C Proof of Theorem 2

In this section, we assume that all the security levels except L and H have the
same domain {d1, . . . , dk}. {dj 7→ uj} is identified with {d1 7→ 0, . . . , dj−1 7→
0, dj 7→ uj , dj+1 7→ 0, . . . .dk 7→ 0}. We first define the encoding of types and
type environments by:

[[intL]]Γ = int
[[intH]]Γ = 〈 〉
[[int{d1 7→u1,...,dk 7→uk}]]Γ = (〈 〉 →u1 τ1)× · · · × (〈 〉 →uk

τk)
where Γ (di) = intL

ϕ→ω τi

[[τ1
ϕ→u τ2]]Γ = [[τ1]]Γ

ϕ→u [[τ2]]Γ
[[x1 : τ1, . . . , xn : τn]] = x1 : [[τ1]]x1:τ1,...,xn:τn

, . . . , xn : [[τn]]x1:τ1,...,xn:τn

We say that a type environment Γ is valid if all the security levels in Γ (d) are
L for any declassification function variable d. We assume that type environments
are always valid below.



The set of extended values, ranged over by V , is defined by:

V ::= f | n | σ | 〈V1, . . . , Vn〉 | λux.e

We define term transformation relation Γ ` e : τ ; e′, so that if Γ ` e : τ
and Γ ` e : τ ; e′, then [[Γ ]] ` e′ : [[τ ]]Γ . The transformation rules are given in
Figure 5. In the figure, let x = e1 in e2 is an abbreviated form of (λ1x.e2)e1.
We do not define transformation for a security variable σ since it is unnecessary
in the proof.

We first prove properties of the above transformation.

Lemma 10. If Γ ` e : τ ; e′ and x 6∈ dom(Γ ), then Γ, x : τ ′ ` e : τ ; e′.

Proof. Straightforward induction on the derivation of Γ ` e : τ ; e′. ut
The following lemmas state that a well-typed term can be always transformed
into a well-typed term.

Lemma 11. If Γ ` e : τ and SVar(e) = ∅, then there exists e′ such that
Γ ` e : τ ; e′.

Proof. Straightforward induction on the derivation of Γ ` e : τ . Note that each
transformation rule is the same as the corresponding typing rule if the part
“; e′” is ignored. ut
In the above lemma, we can assume without loss of generality that Tr-SubV
and Tr-SubE are not applied consecutively, because if consecutive applications
of T-Sub in a type derivation can be always replaced by a single application of
T-Sub. Thus, in the rest of this section, we assume that Γ ` e : τ & ϕ ; e′ has
been derived without applying Tr-SubV or Tr-SubE consecutively.

Lemma 12. If Γ ` e : τ ; e′, then Γ ` e : τ and [[Γ ]] ` e′ : [[τ ]]Γ .

Proof. Suppose Γ ` e : τ ; e′. Γ ` e : τ follows immediately from the fact
that each transformation rule coincides with a typing rule if the part “; e′”
is ignored. [[Γ ]] ` e′ : [[τ ]]Γ also follows by straightforward induction on the
derivation of Γ ` e : τ ; e′.

The following lemma states that a term of low-security type can be transformed
into itself.

Lemma 13. If ∅ ` e : τ and if all the security levels in τ are L, then ∅ ` e :
τ ; e.

Proof. Let toL(Γ ) and toL(τ) be the type environment and type obtained from
Γ and τ respectively, by replacing all the security levels with L. The lemma
follows from the following more general lemma, which can be proved easily by
induction on derivation of Γ ` e : τ .

If Γ ` e : τ and if dom(Γ ) ∩ND = ∅, then toL(Γ ) ` e : toL(τ).



Γ, x : intp ` x : intp & t ; x
(Tr-Var)

Γ ` n : intL & t ; n
(Tr-Const)

Γ ` e : int{dj 7→1}& ϕ1 ; e′

(dj : intL
ϕ0→ω τ) + Γ ` dj〈〈e〉〉 : τ & ϕ0 ∨ ϕ1 ; #j(e

′) 〈 〉
(Tr-Dcl)

Γ, x : τ1 ` e : τ2 & ϕ ; e′

u · Γ ` λux.e : τ1
ϕ→u τ2 & t ; λux.e′

(Tr-Fun)

Γ, x : τ1
nt→ω τ2, y : τ1 ` e : τ2 & ϕ ; e′

ω · Γ ` fix x(y) = e : τ1
ϕ→ω τ2 & t ; fix x(y) = e′

(Tr-Fix)

Γ1 ` e1 : τ1
ϕ0→1 τ2 & ϕ1 ; e′1 Γ2 ` e2 : τ1 & ϕ2 ; e′2

Γ1 + Γ2 ` e1 e2 : τ2 & ϕ0 ∨ ϕ1 ∨ ϕ2 ; e′1 e′2
(Tr-App)

Γ1 ` e1 : intL & ϕ1 ; e′1 Γ2 ` e2 : intL & ϕ2 ; e′2
Γ1 + Γ2 ` e1 ⊕ e2 : intL & ϕ1 ∨ ϕ2 ; e′1 ⊕ e′2

(Tr-Op)

Γ1 ` e1 : intp1 & ϕ1 ; e′1 Γ2 ` e2 : intp2 & ϕ2 ; e′2 dp1e t dp2e = H

Γ1 + Γ2 ` e1 ⊕ e2 : intH & ϕ1 ∨ ϕ2 ; let x1 = e′1 in let x2 = e′2 in 〈 〉
(Tr-OpH1)

Γ1 ` V1 : intp1 & ϕ1 ; e′1 Γ2 ` e2 : intp2 & ϕ2 ; e′2 dp1e t dp2e = H

Γ1 + Γ2 ` V1 ⊕ e2 : intH & ϕ1 ∨ ϕ2 ; let x = e′2 in 〈 〉
(Tr-OpH2)

Γ1 ` e0 : intL & ϕ0 ; e′0 Γ2 ` e1 : intp1 & ϕ1 ; e′1 Γ2 ` e2 : intp2 & ϕ2 ; e′2
Γ1 + Γ2 ` if e0 then e1 else e2 : intp1tp2 & ϕ0 ∨ ϕ1 ∨ ϕ2 ; if e′0 then e′1 else e′2

(Tr-If)
Γ1 ` e0 : intp0 & ϕ ; e′0 Γ2 ` e1 : intp1 & t ; e′1

Γ2 ` e2 : intp2 & t ; e′2 dp0e = H

Γ1 + Γ2 ` if e0 then e1 else e2 : intH ; let x = e′0 in 〈 〉 (Tr-IfH)

Γi ` ei : τi & ϕi ; e′i (for each i ∈ {1, . . . , n})
Γ1 + · · ·+ Γn ` 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉& ϕ1 ∨ · · · ∨ ϕn ; 〈e′1, . . . , e′n〉

(Tr-Tuple)
Γ ` V : τ ′& ϕ′ ; e′ τ ′ ≤ τ ϕ′ ≤ ϕ

Γ ` V : τ & ϕ ; coerceτ ′;τ (e′)
(Tr-SubV)

Γ ` e : τ ′& ϕ′ ; e′ τ ′ ≤ τ ϕ′ ≤ ϕ
e is neither a value nor a variable

Γ ` e : τ & ϕ ; let x = e′ in coerceτ ′;τ (x)
(Tr-SubE)

coerceτ;τ ′(e) is defined by:

coerceintL;int{d1 7→u1,...,dk 7→uk}
(e) = 〈λu1x.(d1〈〈e〉〉), . . . , λukx.(dk〈〈e〉〉)〉

coerceint{d1 7→u1,...,dk 7→uk};int{d1 7→u′1,...,dk 7→u′
k
}(e) = e

coerceintp;intH(e) = 〈 〉
coerceτ1→uτ2;τ ′1→u′τ ′2(e) = λu′x.let y = e(coerceτ ′1;τ1(x)) in coerceτ2;τ ′2(y)

Fig. 5. Transformation Rules



ut
The following lemma states that the transformation preserves the semantics

of terms. We shall prove the lemma later, in Subsection C.1.

Lemma 14. Let D be a declassification environment. If ` D : Γ and Γ ` e :
intL & ϕ ; e′, then 〈D, e〉 ⇓ 0 if and only if 〈D, e′〉 ⇓ 0.

We are now ready to prove Theorem 2.

Proof of Theorem 2 Suppose that ` 〈Σ,D, e〉 : τ and all the security levels in
τ are L. Suppose also that Σ = {σ1 7→ {d1 7→ u11, . . . , dk 7→ u1k}, . . . , σm 7→
{d1 7→ um1, . . . , dk 7→ umk}}. Then there exist Γ1 and Γ2 such that:

` Σ : Γ1 ` D : Γ2 Γ1, Γ2 ` e : τ

Let Γ ′1 = x1 : Γ1(σ1), . . . , xm : Γ1(σm) and e0 = [x1/σ1, . . . , xm/σm]e. Then, we
have Γ ′1, Γ2 ` e0 : τ .

By Lemma 11, there exists e′0 such that Γ ′1, Γ2 ` e0 : τ ; e′0. Let e′ be
D(λ1x1. · · ·λ1xm.e′0). We shall show that e′ satisfies the condition in Definition 7.

By the transformation rules, we have:

Γ2 ` (λ1x1. · · ·λ1xm.e0)n1 · · ·nm : τ
; (λ1x1. · · ·λ1xm.e′0)

〈λu11x.(d1〈〈n1〉〉), . . . , λu1kx.(dk〈〈n1〉〉)〉 · · · 〈λum1x.(d1〈〈nm〉〉), . . . , λumkx.(dk〈〈nm〉〉)〉

Let e1 be any term such that ∅ ` e1 : τ
nt→ω intL. By Lemma 13 and the

assumption that all the security levels in τ are L, we have ∅ ` e1 : τ
nt→ω intL ;

e1. By using Tr-App, we obtain:

Γ2 ` e1((λ1x1. · · ·λ1xm.e0)n1 · · ·nm) : intL
; e1((λ1x1. · · ·λ1xm.e′0)

〈λu11x.(d1〈〈n1〉〉), . . . , λu1kx.(dk〈〈n1〉〉)〉 · · · 〈λum1x.(d1〈〈nm〉〉), . . . , λumkx.(dk〈〈nm〉〉)〉)
Thus, we obtain the following equivalence.

(∅, e1([n1/σ1, . . . , nm/σm]D(e))) ⇓ 0
⇐⇒ (∅, e1((λ1x1. · · ·λ1xm.D(e0))n1 · · ·nm)) ⇓ 0
⇐⇒ (D, e1((λ1x1. · · ·λ1xm.e0)n1 · · ·nm)) ⇓ 0
⇐⇒ (D, e1((λ1x1. · · ·λ1xm.e′0)

〈λu11x.(d1〈〈n1〉〉), . . . , λu1kx.(dk〈〈n1〉〉)〉 · · · 〈λum1x.(d1〈〈nm〉〉), . . . , λumkx.(dk〈〈nm〉〉)〉)) ⇓ 0
⇐⇒ (∅, e1(e′

〈λu11x.(D(d1)n1), . . . , λu1kx.(D(dk)n1)〉 · · · 〈λum1x.(D(d1)nm), . . . , λumkx.(D(dk)nm)〉)) ⇓ 0

Here, the third equivalence follows from Lemma 14. Therefore, we have:

[n1/σ1, . . . , nm/σm]D(e) ≈τ,nt e′ 〈λu11x.(D(d1)n1), . . . , λu1kx.(D(dk)n1)〉
· · ·
〈λum1x.(D(d1)nm), . . . , λumkx.(D(dk)nm)〉

as required. ¤



C.1 Proof of Lemma 14

To prove the lemma, we introduce a substitution-based reduction relation e −→D

e′, which is insensitive to the linearity information.

E[d〈〈n〉〉] −→D E[D(d)n] (R-Declassify)
E[(λux.e)V ] −→D E[[V/x]e] (R-App)

n 6= 0

E[if n then e1 else e2] −→D E[e1]
(R-IfT)

E[if 0 then e1 else e2] −→D E[e2] (R-IfF)

E[n1 ⊕ n2] −→D E[n1⊕n2] (R-Op)

E[fix x(y) = e] −→D E[λωy.[fix x(y) = e/x]e] (R-Fix)

E[#i(V1, . . . , Vm)] −→D E[Vi] (R-Proj)
Evaluation contexts:

E ::= [ ] | [ ]e | V [ ] | d〈〈[ ]〉〉 | if [ ] then e1 else e2 | [ ]⊕ e | v ⊕ [ ]
| 〈V1, . . . , Vk−1, [ ], ek+1, . . . , en〉 | #i([ ])

Fig. 6. Linearity-insensitive operational semantics

We also introduce a “linearity-insensitive” version of the transformation re-
lation Γ `ω e : τ & ϕ ; e′. The rules for Γ `ω e : τ &ϕ ; e′ are obtained as
a restriction of the rules for Γ ` e : τ & ϕ ; e′, where all the uses occuring
in expressions and types must be ω. Similarly, we also write `ω D : Γ for a
linearity-insensive version of type judgment, where all the uses in its derivation
must be ω.

Lemma 15 (substitution lemma for linearity-insensitive transforma-
tion). If Γ, x : τ ′ `ω e : τ & ϕ ; e′ and Γ `ω V : τ ′& t ; V ′, then
Γ `ω [V/x]e : τ & ϕ ; [V ′/x]e′

Proof. This follows by straightforward induction on the derivation of Γ, x : τ ′ `ω

e : τ &ϕ ; e′.

The following lemma states that −→∗
D is preserved by the linearity-insensitive

transformation relation.

Lemma 16. Let D be a declassification environment. If `ω D : Γ and Γ `ω

e0 : τ & ϕ ; e1, then the following conditions hold.

1. If e0 −→D e′′0 , then there exist e′0 and e′1 such that e′′0 −→∗
D e′0 and e1 −→∗

D e′1
with Γ `ω e′0 : τ &ϕ ; e′1 for some e′1.

2. If e1 −→D e′′1 , then there exist e′0 and e′1 such that e′′1 −→∗
D e′1 and e0 −→∗

D e′0
with Γ `ω e′0 : τ &ϕ ; e′1.



Γ, x : intp `ω x : intp & t ; x
(TrO-Var)

Γ `ω n : intL & t ; n
(TrO-Const)

Γ `ω e : int{dj 7→ω}& ϕ1 ; e′ Γ (dj) = intL
ϕ0→ω τ

Γ `ω dj〈〈e〉〉 : τ & ϕ0 ∨ ϕ1 ; #j(e
′) 〈 〉 (TrO-Dcl)

Γ, x : τ1 `ω e : τ2 & ϕ ; e′

Γ `ω λωx.e : τ1
ϕ→ω τ2 & t ; λωx.e′

(TrO-Fun)

Γ, x : τ1
nt→ω τ2, y : τ1 `ω e : τ2 & ϕ ; e′

Γ `ω fix x(y) = e : τ1
ϕ→ω τ2 & t ; fix x(y) = e′

(TrO-Fix)

Γ `ω e1 : τ1
ϕ0→ω τ2 & ϕ1 ; e′1 Γ `ω e2 : τ1 & ϕ2 ; e′2

Γ `ω e1 e2 : τ2 & ϕ0 ∨ ϕ1 ∨ ϕ2 ; e′1 e′2
(TrO-App)

Γ `ω e1 : intL & ϕ1 ; e′1 Γ `ω e2 : intL & ϕ2 ; e′2
Γ `ω e1 ⊕ e2 : intL & ϕ1 ∨ ϕ2 ; e′1 ⊕ e′2

(TrO-Op)

Γ `ω e1 : intp1 & ϕ1 ; e′1 Γ `ω e2 : intp2 & ϕ2 ; e′2 dp1e t dp2e = H
e1 is not a value or a variable

Γ `ω e1 ⊕ e2 : intH & ϕ1 ∨ ϕ2 ; let x1 = e′1 in let x2 = e′2 in 〈 〉
(TrO-OpH1)

Γ `ω V1 : intp1 & ϕ1 ; e′1 Γ `ω e2 : intp2 & ϕ2 ; e′2 dp1e t dp2e = H

Γ `ω V1 ⊕ e2 : intH & ϕ1 ∨ ϕ2 ; let x = e′2 in 〈 〉
(TrO-OpH2)

Γ `ω e0 : intL & ϕ0 ; e′0 Γ `ω e1 : intp1 & ϕ1 ; e′1 Γ `ω e2 : intp2 & ϕ2 ; e′2
Γ `ω if e0 then e1 else e2 : intp1tp2 & ϕ0 ∨ ϕ1 ∨ ϕ2 ; if e′0 then e′1 else e′2

(TrO-If)
Γ `ω e0 : intp0 & ϕ ; e′0 Γ `ω e1 : intp1 & t ; e′1

Γ `ω e2 : intp2 & t ; e′2 dp0e = H

Γ `ω if e0 then e1 else e2 : intH & ϕ ; let x = e′0 in 〈 〉 (TrO-IfH)

Γ `ω ei : τi & ϕi ; e′i (for each i ∈ {1, . . . , n})
Γ `ω 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉& ϕ1 ∨ · · · ∨ ϕn ; 〈e′1, . . . , e′n〉

(TrO-Tuple)
Γ `ω V : τ ′& ϕ′ ; e′ τ ′ ≤ τ ϕ′ ≤ ϕ

Γ `ω V : τ & ϕ ; coerceτ ′;τ (e′)
(TrO-SubV)

Γ `ω e : τ ′& ϕ′ ; e′ τ ′ ≤ τ ϕ′ ≤ ϕ
e is not a value or a variable

Γ `ω e : τ & ϕ ; let x = e′ in coerceτ ′;τ (x)
(TrO-SubE)

Fig. 7. Linearity-Insensitive Transformation Rules



Proof. In the proof below, we use the property that if `ω D : Γ and Γ ` e :
intp & t, then e −→∗

D n. The proof of this property is omited.

1. The proof proceeds by induction on the derivation of Γ `ω e0 : τ & ϕ ; e1,
with case analysis on the last rule used.

– Case TrO-Var: This case cannot happen since Γ can contain only de-
classification variables.

– Case TrO-Const: This case cannot happen, since e0 must be n, which
cannot be reduced.

– Case TrO-Dcl: In this case, e0 = dj〈〈e01〉〉 and e1 = #j(e11)〈 〉 with
Γ `ω e01 : int{dj 7→ω}& ϕ1 ; e11 and Γ (dj) = intL

ϕ0→ω τ . By the
assumption e0 −→D e′′0 , there are two cases to consider.

• Case where e′′0 = dj〈〈e′′01〉〉 and e01 −→D e′′01. By the induction
hypothesis, we get e′′01 −→∗

D e′01 and e11 −→∗
D e′11 with Γ `ω

e′01 : int{dj 7→ω}& ϕ1 ; e′11. Thus, the required result holds for
e′0 = dj〈〈e′01〉〉 and e′1 = #j(e′11)〈 〉.

• Case where e01 = n and e′′0 = [n/y]edj , with D(dj) = λωy.edj . In this
case, Γ `ω e01 : int{dj 7→ω}& ϕ1 ; e11 must have been derived by us-
ing TrO-SubV, so that e11 is of the form 〈λωx.d1〈〈n〉〉, . . . , λωx.dk〈〈n〉〉〉.
Let e′0 = e′1 = e′′0(= [n/y]edj ). Then, we have e1 −→D (λωx.dj〈〈n〉〉)〈 〉 −→D

dj〈〈n〉〉 −→D e′1. Moreover, since e′0 is a closed expression, by using
Lemma 13, we get ∅ `ω e′0 : τ &ϕ ; e′1. Thus, we have Γ `ω e′0 :
τ & ϕ ; e′1 as required.

– Cases TrO-Fun: This case cannot happen, since e0 must be a λ-abstraction,
which contradicts with e0 −→D e′′0 .

– Case TrO-Fix: In this case, e0 = fix x(y) = e01 and e1 = fix x(y) =
e11 with Γ, x : τ1

nt→ω τ2, y : τ1 `ω e01 : τ2 & ϕ ; e11. e′′0 must be
λωy.[fix x(y) = e01/x]e01. The required result holds for e′0 = e′′0 and
e′1 = λωy.[fix x(y) = e11/x]e11.

– Case TrO-App: In this case e0 = e01 e02 and e1 = e11 e12 with Γ `ω

e01 : τ1
ϕ0→ω τ2 & ϕ1 ; e11 and Γ `ω e02 : τ1 & ϕ2 ; e12.

By the assumption e0 −→D e′′0 , there are three cases to consider.

• Case where e′′0 = e′′01e02 and e01 −→D e′01. By the induction hypoth-
esis, there exist e′01 and e′11 such that e′′01 −→∗

D e′01 and e11 −→∗
D e′11

with Γ `ω e′01 : τ1
ϕ0→ω τ2 & ϕ2 ; e′11. The required result holds for

e′0 = e′01e02 and e′1 = e′11e12.
• Case where e′′0 = e01e

′′
02 and e02 −→D e′′02. Similar to the above case.

• Case where e01 = λωx.e03 and e′′0 = [e02/x]e03. In this case, e02 must
be an extended value. If Γ `ω e01 : τ1

ϕ0→ω τ2 &ϕ2 ; e11 is derived
by using TrO-Fun, then we have Γ, x : τ1 `ω e03 : τ2 & ϕ0 ; e13

with e11 = λωx.e13. Let e′0 = e′′0 ande′1 = [e′02/x]e13. Then, we
have e′′0 −→∗

D e′0 and e1 −→∗
D e′1. Moreover, by Lemma 15, we get

Γ `ω e1 : τ2 &ϕ ; e′1 as required.



If Γ `ω e01 : τ1
ϕ0→ω τ2 &ϕ1 ; e11 is derived by using TrO-SubV,

then we have:

Γ, x : τ ′1 `ω e03 : τ ′2 & ϕ′0 ; e13

e11 = λωx.let y = (λωx.e13)coerceτ1;τ ′1(x) in coerceτ ′2;τ2(y)
Γ `ω e02 : τ1 & ϕ2 ; coerceτ1;τ ′1(e12)
e02 and e12 are extended values

By applying Lemma 15 to the first and third conditions, we get:

Γ `ω e′1 : τ ′2 &ϕ′0 ; [coerceτ1;τ ′1(e12)/x]e13.

The required result holds for e′0 = e′′0 and
e′1 = let y = [coerceτ1;τ ′1(e12)/x]e13 in coerceτ ′2;τ2(y).

– Case TrO-Op: In this case, e0 = e01 ⊕ e02 and e1 = e11 ⊕ e12 with
Γ `ω e01 : intL & ϕ1 ; e11 and Γ `ω e02 : intL & ϕ2 ; e12. By the
assumption e0 −→D e′′0 , there are three cases to consider.
• Cases where e′′0 = e′′01⊕e02 with e01 −→D e′′01; or e′′0 = e01⊕e′′02 with

e02 −→D e′′02. These cases follow immediately from the induction
hypothesis.

• Case where e01 = n1 and e02 = n2 with e′′0 = n1⊕n2. By the trans-
formation rules, e1 must be n1⊕n2. So, the required result holds for
e′0 = e′′0 and e′1 = n1⊕n2.

– Case TrO-OpH1: In this case, e0 = e01 ⊕ e02 and e1 = let x1 =
e11 in let x2 = e12 in 〈 〉 with Γ `ω e01 : intp1 &ϕ2 ; e11 and Γ `ω

e02 : intp2 &ϕ2 ; e12. Moreover, dp1e t dp2e = H and e2 is not a value.
Since e2 is not a value, it must be the case that e′′0 = e′′01 ⊕ e02 with
e01 −→D e′′01. By the induction hypothesis, there exist e′01 and e′11 such
that e′′01 −→∗

D e′01 and e11 −→∗
D e′11 with Γ `ω e′01 : intp1 &ϕ1 ; e′11.

Let e′0 be e′01 ⊕ e02. Let us define e′1 by:

e′1 =
{

let x1 = e′11 in let x2 = e12 in 〈 〉 if e11 is not an extended value
let x2 = e12 in 〈 〉 otherwise

Then, we have e1 −→∗
D e′1 and Γ `ω e′0 : intH &ϕ ; e′1 as required.

– Case TrO-OpH2: In this case, e0 = n01⊕e02 and e1 = let x = e12 in 〈 〉
with Γ `ω n01 : intp1 & ϕ1 ; V ′

11 and Γ `ω e02 : intp2 & ϕ2 ; e12.
Moreover, dp1e t dp2e = H. By the assumption e0 −→D e′′0 , there are
two cases to consider.
• Case where e′′0 = n01 ⊕ e′′02 with and e02 −→D e′′02. By the induc-

tion hypothesis, there exist e′02 and e′12 such that e′′02 −→∗
D e′02 and

e12 −→∗
D e′12 with Γ `ω e′02 : intp2 & ϕ2 ; e′12. The required result

holds for e′0 = n01 ⊕ e′02 and e′1 = let x = e′12 in 〈 〉.
• Case where e02 = n02 and e′′0 = n01⊕n02. The required result holds

for e′0 = e′′0 and e′1 = 〈 〉.
– Case TrO-If: In this case, e0 = if e00 then e01 else e02 and e1 =

if e10 then e11 else e12 with Γ `ω e00 : intL & ϕ0 ; e10, Γ `ω e01 :
intp1 & ϕ1 ; e11 and Γ `ω e02 : intp2 & ϕ2 ; e12. By the assumption
e0 −→D e′′0 , there are three cases to consider.



• Case where e′′0 = if e′′00 then e01 else e02 and e00 −→D e′′00. By
the induction hypothesis, there exist e′00 and e′10 such that e′′00 −→∗

D

e′00 and e10 −→∗
D e′10 with Γ `ω e′00 : intL & ϕ0 ; e′10. The re-

quired result holds for e′0 = if e′00 then e01 else e02 and e′1 =
if e′10 then e11 else e12.

• Case where e00 = n(6= 0) and e′′0 = e01. By the transformation
rule, e10 must be n. Thus, the required result holds for e′0 = e′′0 and
e′1 = e11.

• Case where e00 = 0 and e′0 = e02. Similar to the above case.
– Case TrO-IfH: In this case, e0 = if e00 then e01 else e02 and e1 =

let x = e10 in 〈 〉 with Γ `ω e00 : intp0 & ϕ2 ; e10 and dpe = H. By the
assumption e0 −→D e′′0 , there are three cases to consider.
• Case where e′′0 = if e′′00 then e01 else e02 and e00 −→D e′′00.

By the induction hypothesis, there exist e′00 and e′10 such that e′′00 −→∗
D

e′00 and e10 −→∗
D e′10 with Γ `ω e′00 : intp0 & ϕ0 ; e′10. The required

result holds for e′0 = if e′00 then e01 else e02 and e′1 = let x =
e′10 in 〈 〉.

• Case where e00 = n(6= 0) and e′′0 = e01.
Since Γ `ω e01 : intp1 & t, it must be the case that e01 −→∗

D n01

for some n01. Let e′0 = n01 and e′1 = 〈 〉. Then, we have Γ `ω e′0 :
intH & t ; e′1 and e1 −→∗

D e′1 as required.
• Case where e00 = 0 and e′′0 = e02.

Similar to the above case.
– Case TrO-Tuple: This case follows immediately from the induction

hypothesis.
– Case TrO-SubV: This case cannot happen, since e0 must be a value,

which contradicts with e0 −→D e′0.
– Case TrO-SubE: In this case, e1 = let x = e11 in coerceτ ′;τ (x)

and Γ `ω e0 : τ ′& ϕ′ ; e11, By the induction hypothesis, there ex-
ists e′11 such that e11 −→∗

D e′11 and Γ `ω e′0τ
′& ϕ′ ; e′11. Let e′1 be

coerceτ ′;τ (e′11) if e′0 is a value, and be let x = e′11 in coerceτ ′;τ (x)
otherwise. Let e′0 be e′′0 . Then, we get e′′0 −→∗

D e′0 and e1 −→∗
D e′1 with

Γ `ω e′0 : τ & ϕ ; e′1 as required.
2. The proof proceeds by induction on the derivation of Γ `ω e0 : τ & ϕ ; e1,

with case analysis on the last rule used.
– Cases where the last rule is TrO-Var, TrO-Const, TrO-Fun, or

TrO-SubV: These cases cannot happen since e1 must be an extended
value, which contradicts with e1 −→D e′′1 .

– Case TrO-Dcl: In this case, e0 = dj〈〈e01〉〉 and e1 = #j(e11) 〈 〉 with
Γ `ω e01 : int{dj 7→ω}& ϕ1 ; e11 and Γ (dj) = intL

ϕ0→ω τ . By the
assumption e1 −→D e′′1 , there are two cases to consider.
• Case where e′′1 = #j(e′′11) 〈 〉 and e11 −→D e′′11. By the induction

hypothesis, there exist e′01 and e′11 such that e′′11 −→∗
D e′11 and

e01 −→D e′01 with Γ `ω e′01 : int{dj 7→ω}& ϕ1 ; e′11. Then, the
required result holds for e′0 = dj〈〈e′01〉〉 and e′1 = #j(e′11)〈 〉.



• Case where e01 = n and e11 = 〈λωx.d1〈〈n〉〉, . . . , λωx.dk〈〈n〉〉〉. In this
case, e′′1 = (λωx.dj〈〈n〉〉)〈 〉. Suppose D(dj) = λωy.edj . Then, the
required result holds for e′0 = e′1 = [n/y]edj

.
– Case TrO-Fix: In this case, e0 = fix x(y) = e01 and e1 = fix x(y) =

e11 with Γ, x : τ1
nt→ω τ2, y : τ1 `ω e01 : τ2 & ϕ ; e11. e′′1 must be

λωy.[fix x(y) = e11/x]e11. The required result holds for e′1 = e′′1 and
e′0 = λωy.[fix x(y) = e01/x]e01.

– Case TrO-App: In this case, e0 = e01e02 and e1 = e11 e12 with Γ `ω

e01 : τ1
ϕ0→ω τ & ϕ1 ; e11 and Γ `ω e02 : τ1 & ϕ2 ; e12. By the assump-

tion e1 −→D e′′1 , there are three cases to consider.
• Case where e′′1 = e′′11 e12 and e11 −→D e′′11. By the induction hypoth-

esis, tehre exist e′01 and e′11 suc that e01 −→∗
D e′01 and e′′11 −→D e′11

with Γ `ω e′01 : τ1
ϕ0→ω τ & ϕ1 ; e′11. The required result holds for

e′0 = e′01e02 and e′1 = e′11e12.
• Case where e′′1 = e11e

′′
12 and e12 −→D e′′12.

Similar to the above case.
• Case where e11 = λωx.e13 and e′′1 = [e12/x]e13.

In this case, e12 must be an extended value. By the transformation
rules, the last rule used for deriving Γ `ω e01 : τ1

ϕ0→ω τ & ϕ1 ; e11

must be either TrO-Abs or TrO-SubV.
If the rule is TrO-Abs, then e01 = λωx.e03 with Γ, x : τ1 `ω e03 :
τ & ϕ0 ; e13. Let e′0 = [e02/x]e03 and e′1 = e′′1 . Then, we have
e0 −→∗

D e′0 and e′′1 −→∗
D e′1. Moreover, by Lemma 15, we get Γ `ω

e′0 : τ & ϕ ; e′1 as required.
If the rule is TrO-SubV, then we have:

e13 = let y = (λωz.e14)coerceτ1;τ ′1(x) in coerceτ ′;τ (y)
e01 = λωz.e04

Γ, z : τ ′1 ` e04 : τ ′& ϕ0 ; e14

e′′1 = let y = (λωz.e14)coerceτ1;τ ′1(e12) in coerceτ ′;τ (y)

By Lemma 15, we have

Γ ` [e02/z]e04 : τ ′& ϕ0 ; [coerceτ1;τ ′1(e12)/z]e14.

Let e′0 = [e02/y]e04. Let e′1 be let y = [coerceτ1;τ ′1(e12)/z]e14 in coerceτ ′;τ (y)
if e′0 is a non-value, and coerceτ ′;τ ([coerceτ1;τ ′1(e12)/z]e14) oth-
erwise. Then, we have e0 −→∗

D e′0 and e′′1 −→∗
D e′1 with Γ ` e′0 :

τ & ϕ ; e′1 as required.
– Case TrO-Op: In this case, e0 = e01 ⊕ e02 and e1 = e11 ⊕ e12 with

Γ `ω e01 : intL & ϕ1 ; e11 and Γ `ω e02 : intL & ϕ2 ; e12. By the
assumption e1 −→D e′′1 , there are three cases to consider.
• Case where e′′1 = e′′11 ⊕ e12 and e11 −→D e′′11. By the induction

hypothesis, there exist e′01 and e′11 such that e01 −→∗
D e′01 and

e′′11 −→∗
D e′11 with Γ `ω e′01 : intL &ϕ1 ; e′11. The required re-

sult holds for e′0 = e′01 ⊕ e02 and e′1 = e′11 ⊕ e12.



• Case where e′′1 = e11 ⊕ e′′12 and e12 −→D e′′12.
Similar to the above case.

• Case where e1i = ni and e′′1 = n1⊕n2.
By the transformation rules, e01 = n1 and e02 = n2. The required
result holds for e′0 = e′1 = e′′1 .

– Case TrO-OpH1: In this case, e0 = e01 ⊕ e02 and e1 = let x1 =
e11 in let x2 = e12 in 〈 〉 with Γ `ω e01 : intp1 &ϕ1 ; e11 and Γ `ω

e02 : intp2 &ϕ2 ; e12. Morevoer, dp1e t dp2e = H and e01 is not a
value. Since e11 is not a value, it must be the case that e′′1 = let x1 =
e′′11 in let x2 = e12 in 〈 〉 and e11 −→D e′′11. By the induction hypothe-
sis, there exist e′01 and e′11 such that e′′11 −→∗

D e′11 and e01 −→∗
D e′01

with Γ `ω e′01 : intp1 & ϕ1 ; e′11. Let e′0 = e′01 ⊕ e02. Let e′1 be
let x1 = e′11 in let x2 = e12 in 〈 〉 if e′01 is a non-value, and let x2 =
e12 in 〈 〉 otherwise. Then, we have e0 −→∗

D e′0 and e′′1 −→∗
D e′1 with

Γ `ω e′0 : intH & ϕ ; e′1 as required.
– Case TrO-OpH2: In this case, e0 = n1⊕ e02 and e1 = let x = e12 in 〈 〉

with Γ `ω n1 : intp1 & ϕ1 ; e11 and Γ `ω e02 : intp2 & ϕ2 ; e12 where
dp1e t dp2e = H. By the assumption e1 −→D e′′1 , there are two cases to
consider.
• Case where e′′1 = let x = e′′12 in 〈 〉 and e12 −→D e′′12. By the induc-

tion hypothesis, there exist e′02 and e′12 such that e′′12 −→∗
D e′12 and

e02 −→D e′02 with Γ `ω e′02 : intp2 & ϕ2 ; e′12. The required result
holds for e′0 = n1 ⊕ e′02 and e′1 = let x = e′12 in 〈 〉.

• Case where e12 is a value and e′′1 = 〈 〉. By the transformation rules,
e02 must be an integer n2. Let e′0 = n1⊕n2 and e′1 = 〈 〉. Then, we
have e0 −→∗

D e′0 and e′′1 −→∗
D e′1. Moreover, by using TrO-Const

and Tr-SubV, we obtain Γ `ω e′0 : intH &ϕ ; e′1 as required.
– Case TrO-If: In this case, e0 = if e00 then e01 else e02 and e1 =

if e10 then e11 else e12 with Γ `ω e00 : intL &ϕ0 ; e10 and Γ `ω e0i :
intpi &ϕi ; e1i(i ∈ {1, 2}). By the assumption e1 −→D e′′1 , there three
cases to consider.
• Case where e′′1 = if e′′10 then e11 else e12 and e10 −→D e′′10. By

the induction hypothesis, there exist e′00 and e′10 such that e′′10 −→∗
D

e′10 and e00 −→D e′00 with Γ `ω e′00 : intL & ϕ0 ; e′10. The re-
quired result holds for e′0 = if e′00 then e01 else e02 and e′1 =
if e′10 then e11 else e12.

• Case where e10 = n(6= 0) and e′′1 = e11. By the transformation rule, it
must be the case that e00 = n. The required result holds for e′0 = e01

and e′1 = e′′1 .
• Case e10 = 0 and e′′1 = e12.

Similar to the above case.
– Case TrO-IfH: In this case, e0 = if e00 then e01 else e02 and e1 =

let x = e10 in 〈 〉 with Γ `ω e00 : intp0 & ϕ ; e10 and Γ `ω e0i :
intpi & t ; e1i(i ∈ {1, 2}), where dp0e = H. By the assumption e1 −→D

e′′1 , there are two cases to consider.



• Case where e10 −→D e′′10 and e′′1 = let x = e′′10 in 〈 〉.
By the induction hypothesis, there exist e′00 and e′10 such that e00 −→∗

D

e′00 and e′′10 −→∗
D e′10 with Γ `ω e′00 : intp &ϕ ; e′10. The required

result holds for e′0 = if e′00 then e01 else e02 and e′1 = let x =
e′10 in 〈 〉.

• Case where e10 = n and e′′1 = 〈 〉. By the transformation rules, e00

must be n. Since Γ `ω e0i : intpi & t, there exists ni such that
e0i −→∗

D ni. Let e′0 be n1 if n 6= 0 and n2 otherwise. Then, the
required result holds for e′1 = 〈 〉.

– Case TrO-Tuple: This case follows immediately from the induction
hypothesis.

– Case TrO-SubE: In this case, e1 = let x = e11 in coerceτ ′;τ (x) with
Γ `ω e0 : τ ′& ϕ′ ; e11. Since e0 is not an extended value, neither
is e11. Therefore, e′′1 = let x = e′′11 in coerceτ ′;τ (x) and e11 −→D

e′′11 for some e′11. By the induction hypothesis, there exist e′0 and e′11
such that e0 −→∗

D e′0 and e′′11 −→∗
D e′11 with Γ `ω e′0 : τ ′& ϕ′ ; e′11.

Let e′1 be let x = e′11 in coerceτ ′;τ (x) if e′0 is a non-value, and be
coerceτ ′;τ (e′11) otherwise. Then we have e′′1 −→∗

D e′1 and Γ ` e′0 :
τ & ϕ ; e′1 as required.

ut
Corollary 1. Let D be a declassification environment. If `ω D : Γ and Γ `ω

e0 : intL & ϕ ; e1, then e0 −→∗
D 0 if and only if e1 −→∗

D 0

Proof. Suppose e0 −→∗
D 0. By Lemma 16, there exists e′1 such that e1 −→∗

D e′1
and Γ `ω 0 : intL &ϕ ; e′1. By the transformation rule, e′1 must be 0.

The converse is similar.

We now prove Lemma 14.

Proof of Lemma 14 Let D be a declassification environment. Suppose also that
` D : Γ and Γ ` e : intL & ϕ ; e′. By Lemma 12, we have Γ ` e : intL and
[[Γ ]]` e′ : [[intL ]] & ϕ. Let Dω and eω be the declassification environment and
expression obtained by replacing all the uses in D and e with ω. By Theorem 1,
the reduction of 〈D, e〉 and 〈D, e′〉 cannot get stuck. So, −→ coincides with
the linearity-insensitive reduction relation −→Dω , i.e., 〈D, e〉 ⇓ 0 if and only if
eω −→∗

Dω 0; and 〈D, e′〉 ⇓ 0 if and only if e′ω −→∗
Dω 0. Therefore, we have:

〈D, e〉 ⇓ 0
⇐⇒ eω −→∗

Dω 0
⇐⇒ e′ω −→∗

Dω 0 (by Corollary 1)
⇐⇒ 〈D, e′〉 ⇓ 0
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