
Model-Checking Higher-Order Functions

Naoki Kobayashi
Tohoku University

koba@ecei.tohoku.ac.jp

1

Abstract
We propose a novel type-based model checking algorithm for
higher-order recursion schemes. As shown by Kobayashi, verifi-
cation problems of higher-order functional programs can easily
be translated into model checking problems of recursion schemes.
Thus, the model checking algorithm serves as a basis for verifica-
tion of higher-order functional programs. To our knowledge, this is
the first practical algorithm for model checking recursion schemes:
all the previous algorithms always suffer from the n-EXPTIME
bottleneck, not only in the worst case, and there was no implemen-
tation of the algorithms. We have implemented a model checker for
recursion schemes based on the proposed algorithm, and applied
it to verification of functional programs, including reachability,
flow analysis and resource usage verification problems. Accord-
ing to our experiments, the model checker is surprisingly fast: it
could automatically verify a number of small but tricky higher-
order functional programs in less than a second.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
We propose a new model-checking algorithm for higher-order
recursion schemes. A higher-order recursion scheme (recursion
scheme, for short) is a grammar for generating a (possibly infinite)
tree. It is known that the modal μ-calculus model checking of re-
cursion schemes (i.e. the problem “given a recursion scheme G
and a modal μ-calculus formula ψ, does the tree generated by G
satisfy ψ?”) is decidable [24]. Kobayashi [18] has recently shown
that verification problems of higher-order functional programs can
be reduced to model checking problems of recursion schemes. The
idea was to transform a functional program into a recursion scheme
that generates all the possible event sequences of the program,
so that the temporal properties of the program can be verified by
model-checking the recursion scheme. Thus, the model-checking
algorithm for recursion schemes can be used as a verification algo-
rithm for higher-order functional programs.

The verification method based on recursion schemes has a
number of attractive features. First, the verification method can
be fully automated. Secondly, unlike other automated verifica-
tion/analysis methods for functional programs, the method is sound
and complete for an extension of the simply-typed λ-calculus

1 c© ACM, 2009. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in Proceedings of PPDP’09.

with recursion and finite data domains (such as booleans): in fact,
Kobayashi [18] developed a sound and complete algorithm for the
resource usage verification problem (i.e. the problem “given a pro-
gram of the simply-typed λ-calculus with recursion and resource
creation/access primitives, decide whether the program accesses
each resource according to the resource specification”; other verifi-
cation problems such as the reachability and the flow analysis can
be regarded as instances of the resource usage verification) [12].
Thirdly, the verification method can be nicely integrated with soft-
ware model checking techniques, such as predicate abstractions and
CEGAR (counter-example-guided abstraction refinement), as out-
lined in [18]. Thus, for the verification of higher-order programs,
the model-checking of recursion schemes can play the same role
as finite-state model checking for verification of while-programs,
and pushdown model checking for verification of programs with
first-order, recursive procedures: See Table 1.

A major obstacle in applying recursion schemes to program
verification has been its high time complexity. Ong [24] has shown
that the model checking problem of order-n recursion schemes
(where n is, roughly, the same as the largest order of types in
functional programs; see Section 2 for a precise definition) is n-
EXPTIME complete. Although Kobayashi [18] has shown that, for
a fragment of the modal μ-calculus (describing safety properties),
the problem is linear under the assumption that the sizes of types
and properties are bounded above by a constant (which means that
n is also a constant), the constant factor is huge: it is n-exponential
in the sizes of arities (of higher-order functions) and properties.
Furthermore, all the known model-checking algorithms, including
Ong’s algorithm [24] and Kobayashi’s one [18], suffer from this n-
exponential time bottleneck not only in the worst case, but also in
the best case. Thus, despite wide theoretical interests in the model
checking of recursion schemes [2, 3, 11, 15, 16, 24], there has been
no implementation of a model-checker for recursion schemes, to
our knowledge.

To remedy the problem above, we propose a novel algorithm
for model-checking recursion schemes, which is expected to run
much faster for realistic inputs than the previous algorithms.2 The
new algorithm works only for the properties described by a cer-
tain subclass of the modal μ-calculus, but the subclass is suffi-
cient for the verification of temporal safety properties of functional
programs.3 A basic idea behind the new algorithm is as follows.
Kobayashi’s previous algorithm [18] is based on intersection types,
and the reason for the n-exponential blow-up of the complexity of
model checking recursion schemes is that the number of intersec-
tion types blows up exponentially with an increase of the order by
1. Kobayashi’s algorithm tries to find a type derivation for a recur-

2 Readers who are not familiar with recursion schemes may wish to consult
Section 2 before reading the following paragraphs.
3 Our algorithm can actually be extended to deal with the full modal μ-
calculus, although it is unclear whether the extended algorithm has reason-
able efficiency.

Programs Models
while-programs finite-state machines
procedural programs pushdown systems
higher-order programs higher-order recursion schemes

Table 1. Programs and models

Step 1: Expand
the configuration graph

Recursion scheme G
Property A (automaton)

Property violated?

yes

The property is not satisfied.
(Error path)

Step 2:
Compute a set of
intersection types

Step 3:
Is G typable

using ?

no

no

yes

The property is satisfied.
(Type information)

Figure 1. The overview of the verification algorithm

sion scheme from such a huge set of intersection types (by a fixed-
point computation). The key observation behind our new algorithm
is that, in typical programs (or recursion schemes), we can expect
that higher-order functions behave in a “uniform” manner, so that
the number of intersection types that are actually assigned to the
functions should be much smaller. Thus, given a recursion scheme,
if we can effectively find candidates of the intersection types that
are actually required for typing the recursion scheme, then the re-
cursion scheme can be type-checked more efficiently.

To find candidates of intersection types, we extract an idea
from the proof of the completeness of Kobayashi and Ong’s type
system for recursion schemes [20] (that is equivalent to the modal
μ-calculus model checking of recursion schemes in the sense that
the tree generated by a recursion scheme satisfies a given property
if, and only if, the recursion scheme is well-typed). The proof
of the completeness gives a kind of procedure to compute the
intersection types of each function from an “infinite” configuration
tree of a recursion scheme. (Here, the configuration tree shows
how the recursion scheme is reduced.) As the configuration tree
is infinite (and non-regular), the “procedure” is not actually an
algorithm. We can, however, modify it to obtain an algorithm to
compute candidates of intersection types from a finite subtree of
the infinite configuration tree. Moreover, given a sufficiently large
finite subtree, the set of candidates generated by the algorithm
contains all the intersection types needed for typing the recursion
scheme.

The overall structure of the algorithm is shown in Figure 1.
First, (the initial symbol of) the recursion scheme is reduced a finite
number of steps and a configuration graph is constructed (Step 1
in Figure 1). If a property violation is found during the reduction,
then an error path is reported. Otherwise, a set Γ of type bindings
is computed from the configuration graph (Step 2). As mentioned
above, such an algorithm is obtained by modifying the “procedure”
described in the completeness proof of Kobayashi and Ong’s type
system [20]. In Step 3, it is checked whether the recursion scheme
is typed by using only the intersection types in Γ. Such a type-
checking algorithm is obtained by modifying Kobayashi’s fixed-
point-based type checking algorithm [18]. If the recursion scheme

is well-typed, then the property is satisfied (by the soundness of
the type system [18]). Otherwise, go back to Step 1 and expand the
configuration graph to get a larger set of intersection types. As we
show later, the procedure eventually terminates and either proves
or disproves the property. In the former case, a type environment
for the recursion scheme is output as a certificate of the property
satisfaction, while in the latter case, an error path is output as a
witness of the property violation.

We have implemented a model checker for recursion schemes
based on the algorithm described above. To our knowledge, this is
the first implementation of a model checker for recursion schemes.
We have tested it for a number of small but tricky examples, many
of which have been obtained from verification problems of func-
tional programs by using Kobayashi’s translation [18]. According
to the experimental results, the model checker is surprisingly fast,
considering that the model checking problem is (n−1)-EXPTIME
complete in general.4

The rest of this paper is structured as follows. Section 2 reviews
the definition of recursion schemes and our previous work [18], in
particular, the type system for recursion schemes and the transla-
tion of the resource usage verification problem into a model check-
ing problem for recursion schemes. Section 3 describes the model
checking algorithm and proves its correctness. Section 4 reports im-
plementation and experimental results. Section 5 discusses a limi-
tation of the current model checking algorithm. Section 6 discusses
related work and Section 7 concludes.

2. Preliminaries
This section reviews the definition of higher-order recursion schemes
and its relationship with program verification.

2.1 Higher-Order Recursion Schemes

A higher-order recursion scheme (recursion scheme, for short) is a
grammar for generating a (possibly infinite) tree. From a program-
ming language point of view, a recursion scheme is a term of the
simply-typed λ-calculus with recursion and tree constructors (but
without destructors).

We define the set of sorts, ranged over by κ, by:

κ ::= o | κ1 → κ2

The sort o describes trees. The sort κ1 → κ2 describes a function
that takes a value of sort κ1 and returns a value of κ2. The order and
arity of κ, written order(κ) and arity(κ) respectively, are defined
by:

order (o) := 0
order (κ1 → κ2) := max (order(κ1) + 1, order(κ2))
arity(o) := 0 arity(κ1 → κ2) := arity(κ2) + 1

A (deterministic) higher-order recursion scheme is a quadruple
(Σ,N ,R, S), where

• Σ is a ranked alphabet i.e. a map from a finite set of symbols
called terminals to sorts of order 0 or 1. We write arity(a) for
arity(Σ(a)).

• N is a map from a finite set of symbols called non-terminals
to sorts. We require that N (S) = o.

• R is a map from the set of non-terminals (i.e. dom(N))
to terms of the form λx̃.t, where x̃ abbreviates a sequence of
variables, and t is a term of sort o. Here, the set of terms is defined
as follows. A symbol (i.e., a terminal, non-terminal, or variable) of
sort κ is a term of sort κ. If terms t1 and t2 have sorts κ1 → κ2 and
κ1 respectively, then t1 t2 is a term of sort κ2. If R(F) = λx̃.t,

4 The modal μ-calculus model checking of recursion schemes is n-
EXPTIME, but as we discuss in Section 2, the model checking is (n − 1)-
EXPTIME complete for the class of properties considered in this paper.

then F x̃ must be a term of sort o. (Thus, the sorts of the variables
x̃ are uniquely determined from that of F .)

• S is a non-terminal called the start symbol.
The order of a recursion scheme is the highest order of its non-
terminals.

For a recursion scheme G, the rewriting relation −→G is defined
inductively by:

• F s̃ −→G [s̃/x̃]t if R(F) = λx̃.t.

• If t −→G t′, then t s −→G t′ s and s t −→G s t′.

Here, [s̃/x̃]t is the term obtained by replacing variables x̃ in t with
terms s̃. We omit the subscript G whenever it is clear from the
context.

The value tree of G, written [[G]], is the (possibly infinite)
(dom(Σ)∪ {⊥})-labeled tree obtained by infinitary, fair rewriting
of the start symbol S. More precisely, given a set L of labels, an
L-labeled tree T is a partial map from {1, . . . ,m}∗ (where m is a
natural number) to L such that (i) the domain of T is closed under
the prefix operation, and (ii) if πj ∈ dom(T), then πi ∈ dom(T)
for every i ∈ {1, . . . , j}. Given a term t, we write t⊥ for the fi-
nite tree inductively defined by (i) (Fs1 · · · sn)⊥ = ⊥ and (ii)
(as1 · · · sn)⊥ = a(s1

⊥) · · · (sn
⊥) (where n ≥ 0). The value tree

[[G]] is defined as
⊔{t⊥ | S −→∗

G t}, where
⊔

i Ti is defined by
(
⊔

i Ti)(π) =
⊔

i(Ti(π)) for every π ∈ {1, . . . , A}∗ (where A is
the largest arity), with ⊥ � a = a for every a ∈ dom(Σ). (Note
that

⊔{t⊥ | S −→∗
G t} is well-defined, as there is exactly one

rewriting rule for each non-terminal.)
In the rest of this paper, we consider only recursion schemes

whose value trees do not contain ⊥. This condition is always satis-
fied by the recursion schemes generated by Kobayashi’s translation
of functional programs [18]. In general, given a recursion scheme
G and a formula ψ, one can always transform them into G′ and ψ′

such that (i) [[G′]] satisfies ψ′ if and only if [[G]] satisfies ψ, and (ii)
[[G′]] does not contain ⊥: see [24].

The following example is taken from [20]. As the example
indicates, the value tree of a recursion scheme may not be regular.

EXAMPLE 2.1. Consider the recursion scheme G0 = (Σ,N ,R, S),
where: Σ = {a :o → o → o, b :o → o, c :o}, N = {S :o, F :o →
o}, and R = {S → F c, F → λx.a x (F (bx))}. S is reduced as
follows.

S −→ F c −→ a c (F (b c))
−→ a c (a (b c) (F (b(b c)))) −→···

The value tree [[G0]] is shown as follows.

a� �
c a� �

b a

c
� �

b a

b
�

b

..

�

c

..

Ong [24] showed the decidability of the modal μ-calculus
model checking of recursion schemes.

THEOREM 2.1 (Ong [24]). The model checking problem: “Given
a recursion scheme G of order n, and a modal μ-calculus formula
ψ, does [[G]] satisfy ψ?” is n-EXPTIME-complete.

In this paper, we consider only a subset of the model checking
problem, where the properties are restricted to those described by
deterministic Büchi automata with a trivial acceptance condition
(where all the states are final).

DEFINITION 2.1. A deterministic Büchi automaton with a trivial
acceptance condition (a deterministic trivial automaton, for short)
B is a quadruple:

(Σ, Q, δ, q0)

where Σ is a ranked alphabet, Q is a set of states, δ, called a
transition function, is a partial map from Q × dom(Σ) to Q∗

such that if δ(q, a) = q1 · · · qk , then k = arity(a). A dom(Σ)-
labeled tree T is accepted by B if there is a Q-labeled tree R
such that (i) dom(T) = dom(R); (ii) for every x ∈ dom(R),
δ(R(x), T (x)) = R(x1) · · ·R(xm) where m = arity(T (x)). R
is called a run tree of B over T .

EXAMPLE 2.2. Consider the automatonB0 := (Σ, {q0, q1}, δ, q0)
where

Σ = {a �→ o → o → o, b �→ o → o, c �→ o}
δ(q0, a) = q0q0 δ(q0, b) = q1 δ(q1, b) = q1
δ(q0, c) = ε δ(q1, c) = ε

B0 accepts Σ-labeled trees whose paths are labeled by elements of
aω + a∗bω + a∗b∗c. The run tree of B0 over the tree generated by
the recursion scheme in Example 2.1 is depicted as follows.

q0� �
q0 q0� �

q0 q0

q1
� �
q0 q0

q1
�
q0

..

�

q1

..

�

The complement of the language of trees accepted by a deter-
ministic tree automaton is accepted by a disjunctive alternating
parity tree automaton [19]. Since the model checking of recursion
schemes for disjunctive alternating parity tree automata is (n− 1)-
EXPTIME, so is the model checking problem for deterministic tree
automata. It is also (n− 1)-EXPTIME hard, since the reachability
problem is (n− 1)-EXPTIME hard [19].

THEOREM 2.2. Let G be a recursion scheme of order n, and B be
a deterministic tree automaton. The problem of checking whether
[[G]] is accepted by B is (n− 1)-EXPTIME-complete.

2.2 Model Checking Recursion Schemes and Verification of
Functional Programs

As shown by Kobayashi [18], the verification of temporal proper-
ties of higher-order functional programs can be reduced to a model-
checking problem for recursion schemes. The idea is to transform
a functional program into a recursion scheme that generates all the
possible event sequences of the program (where “events” can be
calls of certain functions, resource accesses, etc., depending on the
property to be verified). That is achieved by the CPS transforma-
tion. For example, consider the following program.

let rec g x = if * then close(x)
else read(x); g x in

let fp = open_in "foo" in
g fp

Here, * denotes a random boolean value. Suppose that we want
to verify that the opened file is accessed according to read∗close.
The above program can be transformed into the following recursion
scheme G1, which generates a tree whose paths represent access
sequences to the file.

S → G d e
G x k → br (c k) (r(Gxk))

br� �
c

e

r

br� �
c r

e
..

Figure 2. The tree generated by G1

Here, the second rule corresponds to the definition of the recursive
function g. The extra argument k represents the access sequences
of the continuation of g. A non-deterministic branch is represented
by the terminal br. The close operation has been replaced by
(c k), which means that the file is closed and then it is accessed
according to the continuation k. Thus, the rule for G is essentially
a continuation passing style representation of the definition of g.
The rule for S corresponds to the remaining part of the program,
where d is a dummy terminal symbol for representing the file,
and e expresses the program termination. The recursion scheme
generates the tree shown in Figure 2. As every path from the root
of the tree is labeled by an element of ((r+br)∗c e)+(r+br)ω, we
know that the original program accesses the file in a valid manner.

Kobayashi [18] gave a systematic transformation of the resource
usage verification problem [12] into a model-checking problem for
recursion schemes. In general, the transformation of a functional
program into a recursion scheme is achieved by (i) applying the
CPS transformation and λ-lifting to get a system of recursive func-
tion definitions in CPS form {f1(x̃) = e1, . . . , fn(x̃) = en};
and then (ii) replacing fi(x̃) = ei with fi(x̃) → e′i, where e′i
is obtained from ei by replacing each operation of interest (such as
“read” and “close” above) with the corresponding tree constructor.
See [18] for the details of the transformation.

EXAMPLE 2.3. The reachability problem (“Does the execution of
a closed program e reach a special command fail?”) is an instance
of the resource usage verification problem; it can therefore be re-
duced to a model checking problem for recursion schemes. Con-
sider, for example, the following program.

let g b = if b then () else fail() in
let f b = if b then g b else g (not(b)) in
if * then f(true) else f(false)

It is transformed into the following recursion scheme. (Here,
booleans are transformed out; F1 k and F0 k correspond to f(1)
and f(0) respectively.)

S → br (F1 e) (F0 e)
F1 k → G1 k F0 k → G1 k
G1 k → k G0 k → fail

By the construction of the recursion scheme, the original program
reaches the fail command if, and only if, the tree generated by the
recursion scheme contains the symbol fail.

2.3 Kobayashi’s Type System Equivalent to Model Checking
Recursion Schemes

Kobayashi [18] has shown that the model checking problem of
whether the tree generated by a recursion scheme is accepted by a
trivial automaton can be reduced to a type-checking problem. The
idea of the type system is to refine sorts into intersection types as
sketched below.

Let B be a deterministic trivial automaton (Σ, Q, δ, q0). The set
of atomic types, ranged over by τ , is given by:

τ ::= q | (
∧

{τ1, . . . , τn}) → τ

where q ranges overQ. We often write
∧n

i=1 τi for
∧{τ1, . . . , τn},

and write 	 for
∧ ∅. We give a higher precedence to

∧
than to →,

and just write
∧n

i=1 τi → τ for (
∧{τ1, . . . , τn}) → τ . The type

q is a refinement of the sort o, and describes trees accepted by the
automaton from state q. The type q1∧q2 → q is a refinement of the
sort o → o; it describes functions that take, as input, a tree accepted
from both states q1 and q2, and return a tree accepted from state q.

A type judgment for terms (where a non-terminal is treated as
a variable) is of the form Γ � t : τ , where Γ, called a type
environment, is a finite set of bindings of the form x : τ . Γ may
contain more than one bindings for each variable.

The typing rules are given by:

Γ, x : τ � x : τ

δ(q, a) = q1 · · · qn
Γ � a : q1 → · · · → qn → q

Γ � t0 :
∧n

i=1 τi → τ Γ � t1 : τi (for each i = 1, . . . , n)

Γ � t0t1 : τ

Γ, x : τ1, . . . , x : τn � t : τ x not occur in Γ

Γ � λx.t :
∧n

i=1 τi → τ

Let G be a recursion scheme (Σ,N ,R, S). We write �B G : Γ
just if Γ � R(F) : τ holds for every F : τ ∈ Γ. A recursion
scheme G is well-typed, written �B G, just if there exists Γ such
that �B G : Γ and S : q0 ∈ Γ. We say “G is well-typed under Γ”
for such Γ.

As shown in [18], the type system is sound and complete.

THEOREM 2.3 ([18]). Let B be a deterministic trivial automaton,
and G be a recursion scheme having the same terminal symbols as
B. Then, �B G if, and only if, [[G]] is accepted by B.

Kobayashi [18] gave the following straightforward type check-
ing (i.e. model checking) algorithm.

THEOREM 2.4 ([18]). Let F be the function on type environments
defined by:

F(Γ) = {F : τ ∈ Γ | Γ � R(F) : τ}.
Let Γmax be the type environment:

{F : τ | F ∈ dom(N), and τ has sort N (F)}.
If Fn(Γmax) = Fn+1(Γmax) for some n,5 then �B G if and only if
S : q0 ∈ Fn(Γmax).

If the sizes of sorts and |Q| are bounded above by a constant, then
the number of bindings on each symbol in Γmax is also bounded
by a constant, so that the algorithm is quadratic in the size of
the recursion scheme. One can further optimize the algorithm to
obtain a linear time algorithm by using a standard technique for
fixed-point computation [26]. In general, however, the size of Γmax

is O(|G|expn((|Q|A)1+ε)), where n is the order of the recursion
scheme, |G| is the size of the recursion scheme, and A is the largest
arity of terminal and non-terminal symbols; expn(x) is defined by
exp0(x) = x and expi+1(x) = 2expi(x). Thus, the naive algorithm
above is impractical: it suffers from the n-EXPTIME bottleneck in
not only the worst but also the best case.

5 Note that such n always exists due to the finiteness of Γmax and the
monotonicity of F .

Init:
C := the initial configuration graph;
goto Step 1;

Step 1:
count := 0;
while(count<MAX and an open node exists) do
{ N := an open node;

if C can be expanded wrt N then {
C := expand(C, N);
count := count+1}

else {
error path := the path from the root to N ;
raise PROPERTY VIOLATED(error path)}

};
goto Step 2;

Step 2:
Γ := ElimTE(ΓC);
goto Step 3;

Step 3:
while(Γ
= F(Γ)) do Γ := F(Γ);
if S : q0 ∈ Γ then

raise PROPERTY SATISFIED(Γ)
else

goto Step 1;

Figure 3. Model Checking Algorithm

REMARK 2.1. For the class of deterministic trivial automata, we
can actually optimize Kobayashi’s algorithm so that it runs in
(n − 1)-EXPTIME for n ≥ 2. Still, the algorithm always (not
just in the worst case) suffers from (n− 1)-EXPTIME bottleneck.

3. Model-Checking Algorithm
This section describes the new model checking algorithm sketched
in Figure 1. Pseudo code for the overall algorithm is shown in
Figure 3. We explain Steps 3, 1, and 2 in this order.

3.1 Step 3

Step 3 takes a type environment Γ as an input, and checks whether
there exists a subset Γ′ of Γ such that �B G : Γ′ and S : q0 ∈ Γ′.
In the pseudo code shown in Figure 3, F is the function on type
environments defined in Theorem 2.4.

The following theorem (which follows from the standard fixed-
point theorem) guarantees the correctness of the algorithm.

THEOREM 3.1. Let F be the function on type environments as
defined in Theorem 2.4. Then, F0(Γ)(= Γ),F1(Γ),F2(Γ), . . . is
a decreasing sequence, i.e.

F0(Γ) ⊇ F1(Γ) ⊇ F2(Γ) ⊇ · · · ;

and there exists n such that Fn(Γ) = Fn+1(Γ). Furthermore,
Γ′ = Fn(Γ) is the largest set such that �B G : Γ′ and Γ′ ⊆ Γ.

3.2 Step 1

The role of Steps 1 and 2 is to find a good candidate for the type
environment, which should be passed to Step 3 described above.
An obvious candidate is Γmax introduced in Section 2.3, but that
is not a good choice, as the size of Γmax is n-exponential, which
grows up very quickly. For example, suppose that the number of
automaton states is 2. Then the number of intersection types for
each sort grows as follows.

[S, q0]

[F c, q0]

[a c (F(b c)), q0]

[c, q0] [F(b c), q0]

[a (b c) (F(b (b c))), q0]

[b c, q0] (F(b (b c)), q0)[c, q1]

1 2

1 21

Figure 4. A Configuration Graph

sorts the number of intersection types
o → o 22 × 2 = 8
(o → o) → o 28 × 2 = 512
((o → o) → o) → o 2512 × 2 = 2513 ≈ 10154

Thus, Kobayashi’s previous type-checking (i.e. model checking)
algorithm [18] would be impractical even for order-3 recursion
schemes.

As mentioned in Section 1, the key observation behind our new
algorithm is that, in realistic programs, the usage patterns of each
function are limited, so that the size of the type environment that
should be passed to Step 3 can be much smaller than the size of
Γmax. To guess such a good type environment, in Step 1, we reduce
the given recursion scheme a finite number of steps and construct
a configuration graph (representing the traces of the reduction).
We then extract type information from the configuration graph in
Step 2.

A configuration graph is a labeled directed graph, constructed
by applying the expansion operations defined below. The initial
configuration graph is a graph consisting of just a single node
(called the root node), labeled by 〈S, q0, open〉. Let C be a configu-
ration graph, andN is a node of C, labeled by 〈t, q, open〉. Then, an
expansion of C wrt N is the graph C′ obtained from C by replacing
the flag of N with closed, and adding nodes and (directed) edges
as follows.

(I) Case t = a t1 · · · tm and δ(q, a) = q1 · · · qm:
If a node labeled with 〈ti, qi, fi〉 (for some fi) does not exist, add
a new node 〈ti, qi, open〉. Add directed edges from N to the nodes
labeled by 〈t1, q1, f1〉, . . . , 〈tm, qm, fm〉, and label each edge from
N to the node 〈ti, qi, fi〉 with i.

(II) Case t = F t1 · · · tm and R(F) = λx1. · · ·λxm.t:
If a node labeled with 〈[t1/x1, . . . , tm/xm]t, q, f 〉 does not exist,
add a new node 〈[t1/x1, . . . , tm/xm]t, q, open〉. Add a directed
edge from N to the node labeled by 〈[t1/x1, . . . , tm/xm]t, q, f 〉,
and label the edge with 0.

The configuration graphs of a recursion scheme are those ob-
tained from the initial configuration graph by applying (possibly an
infinite number of) expansion operations. A configuration graph is
finitely-expanded if it is obtained by a finite number of expansions.
A configuration graph is closed if it contains no open node (i.e.
node which is labeled by 〈t, q, open〉). Note that for a recursion
scheme, a closed configuration graph is uniquely determined (up to
the graph isomorphism), and it may be an infinite graph.

We often write [t, q] for 〈t, q, closed〉 and (t, q) for 〈t, q, open〉.
Figure 4 shows a configuration graph for the recursion scheme G0

in Example 2.1. The edge label 0 is omitted in the figure. The only
open node is (F (b(b c)), q0).

Figure 3 shows the pseudo code for Step 1. Several nodes are ex-
panded and the resulting configuration is passed to Step 2. A graph
cannot be expanded wrtN ifN is labeled by 〈a t1 · · · tm, q, open〉

[S, q0]

[F(F c), q0]

[a (F c) (b(F (F c))), q0]

(F c, q0) [b(F (F c)), q0]
1 2

1
[F (F c), q1]

(a (F c) (b(F (F c))), q1)

Figure 5. A Configuration Graph Containing an Error Node

but δ(q, a) is undefined. In that case, the property is violated, so that
the path from the root to the node is output as an error path. The
selection of the node N on line 3 of Step 1 must be fair, in the sense
that every open node (i.e. a node labeled with open) must be even-
tually selected. (The fairness can be easily ensured, for example, by
maintaining a FIFO queue of open nodes.)

EXAMPLE 3.1. Consider the recursion scheme G1 given by the
following rewriting rules:

S → F (F c) F x→ ax (b(F x)),

and the automaton B0 in Example 2.2. The configuration graph
obtained by several expansions is shown in Figure 5. The node
at the bottom of the figure cannot be expanded, as δ(q1, a) is
undefined. The error path is 0:0:2:1:0 (where “:” denotes the string
concatenation). In fact, the path 2 : 1 (obtained by ignoring 0) of
the tree generated by the recursion scheme is labeled by aba, which
violates the property expressed by B0, that a should not occur after
b.

3.3 Step 2

We now describe the most important part of the algorithm: Step 2
for extracting type information from a configuration graph.

As mentioned in Section 1, the algorithm for extracting type
information described below has been inspired from the proof of
the completeness of Kobayashi and Ong’s type system for the
modal μ-calculus model checking of recursion schemes [20]. We
call a term t′ a prefix of t if t is of the form t′ s̃, where s̃ is a
possibly empty sequence of terms. For each node N labeled with
〈t, q, f〉, we assign a type τt′,N to each prefix t′ of t. The type τt,N

is defined by induction on the sort of t as follows.
(I) Case t has sort o:

In this case, N must have a label of the form 〈t, q, f〉. Define
τt,N := q.

(II) Case t has sort κ1 → κ2:
In this case, N must have a label of the form 〈t s0 s̃, q, f 〉, where
s0 and t s0 have sorts κ1 and κ2 respectively. Let {N1, . . . , Nm}
be the set of nodes that are reachable from N , and have la-
bels of the form 〈s0 ũ, q′, f〉 (where s0 must originate from that
of the node N ; thus we assume implicitly that a configuration
graph has a link to show the origin of each term). If s0 occurs
in an open node reachable from N (including N itself), then let
S := {α, τs0,N1 , . . . , τs0,Nm} where α is a fresh type variable
(which indicates that the type can be further refined by addi-
tional expansion of the configuration graph). Otherwise, let S :=
{τs0,N1 , . . . , τs0,Nm}. Finally, define τt,N := (

∧
S) → τt s0,N .

(Note that the sorts of ts0 and s0 are κ2 and κ1 respectively, so that
τt s0,N and τs0,Ni are determined by the induction.)

Now, given a configuration graph C, define the type environment
ΓC by:

ΓC := {F : τF,N | N has a label of the form 〈Ft1 · · · tm, q, f 〉}.
EXAMPLE 3.2. Consider the configuration graph C of Figure 4.
Let N0, N1, N2, N3, N4, and N5 be the nodes labeled by [S, q0],
[F c, q0], [c, q0], [F (b c), q0], [b c, q0], and [c, q1] respectively.
Then,

τS,N0 = q0
τF,N1 =

∧{τc,N2 , τc,N5 , α} → τF c,N1 = (q0 ∧ q1 ∧ α) → q0
τF,N3 =

∧{τb c,N4 , α
′} → τF (b c),N3 = (q0 ∧ α′) → q0

Here, the type variables α and α′ denote the types of c and b c
respectively, in the open node labeled by (F (b (b c)), q0).

ΓC is given by:

{S : q0, F : (q0 ∧ q1 ∧ α) → q0, F : (q0 ∧ α′) → q0.}
�

EXAMPLE 3.3. As an example of higher-order case, consider the
following fragment of a configuration graph:

[F G, q0]

[a (G c) (G c), q0]

[G c, q0] [G c, q1]
1 2

[c, q1][c, q0]

Let N0, N1, N2, N3, and N4 be the nodes labeled by [F G, q0],
[G c, q0], [c, q0], [G c, q1], and [c, q1]. τF,N0 is computed as fol-
lows.

τF,N0 =
∧{τG,N1 , τG,N3} → τF G,N0

=
∧{τc,N2 → τG c,N1 , τc,N4 → τG c,N3} → q0

=
∧{q0 → q0, q1 → q1} → q0

�

The following is the key theorem underlying the algorithm of
Step 2, which follows from the proof of the completeness of
Kobayashi and Ong’s type system [20].6

THEOREM 3.2. Suppose that [[G]] is accepted by B. Then, there
exists a closed (possibly infinite) configuration graph C of G over
B. Furthermore, G is well-typed under ΓC .

The above theorem cannot be directly used in the algorithm,
since, in general, infinitely many expansions are necessary to get a
closed configuration graph C. By the definition of ΓC , however, a
finitely expanded graph provides an approximation of ΓC .

LEMMA 3.3. Let C′ be a finitely expanded configuration graph of
G over B, and C be the closed configuration graph. Then, there is a
substitution θ for type variables such that θΓC′ = ΓC .

As a corollary of Theorem 3.2 and Lemma 3.3, we obtain:

COROLLARY 3.4. Suppose that [[G]] is accepted by B. Let C be a
configuration graph of G over B. Then, there is a substitution θ for
type variables such that G is well-typed under θΓC , i.e. �B G : θΓC
and S : q0 ∈ θΓC holds.

6 More precisely, Kobayashi and Ong [20] considered a run tree correspond-
ing to the closed configuration graph, gave the definition of τF,N , and
proved a theorem corresponding to Theorem 3.2. They did not consider how
to extract type information from a finitely-expanded configuration graph.

In Step 2 (see Figure 3), therefore, ΓC is first computed from the
current (finitely expanded) configuration graph C. The type vari-
ables are then removed from ΓC by the operation ElimTE described
below.

We first define the function Elim, which takes an atomic type
as input, and returns a set of closed atomic types.

Elim(q) = {q}
Elim(α) = ∅
Elim(

∧m
i=1 τi → τ) =

{∧m
i=1 τ

′
i → τ ′ | τ ′i ∈ Elim ′(τi), τ ∈ Elim(τ)}

Elim′(τ) =

{
Elim(τ) ∪ {	} if τ contains a type variable
Elim(τ) otherwise

The auxiliary function Elim′ may return a set consisting of closed
atomic types and 	; we treat 	 as the unit on ∧, i.e. we identify∧{τ1, . . . , τn,	} with

∧{τ1, . . . , τn}.
In the definition of Elim(

∧m
i=1 τi → τ), if an argument type

τi contains a type variable, Elim may choose 	 from Elim′(τi)
(intuitively, because τi may express incomplete information that
should be ignored). For example, we have:

Elim((q0 ∧ q1 → q2) ∧ (q0 ∧ α→ q2) → q)
= {τ1 ∧ τ2 → q |

τ1 ∈ Elim ′(q0 ∧ q1 → q2), τ2 ∈ Elim ′(q0 ∧ α → q2)}
= {((q0 ∧ q1 → q2) ∧ τ2) → q | τ2 ∈ {q0 → q2,	}}
= {(q0 ∧ q1 → q2) → q, (q0 ∧ q1 → q2) ∧ (q0 → q2) → q}
ElimTE is a pointwise extension of the operation Elim, defined

by:

ElimTE(Γ) =
⋃

F :τ∈Γ

{F : τ ′ | τ ′ ∈ Elim(τ)}

REMARK 3.1. The completeness is lost if we simply replace all
the type variables in Γ with 	, instead of applying the operation
ElimTE above. For example, suppose Γ = {F : (q0 ∧ q1 →
q2) ∧ (q0 ∧ α → q2) → q}. If we replace α with 	, we obtain
the type environment {F : (q0 ∧ q1 → q2) ∧ (q0 → q2) → q}.
However, the actual type of F in the recursion scheme may be
(q0 ∧ q1 → q2) → q.

EXAMPLE 3.4. Recall the type environment ΓC in Example 3.2.
ElimTE(ΓC) is:

{S : q0, F : q0 ∧ q1 → q2, F : q0 → q2}.
�

Optimizations The operation Elim above on function types may
cause a combinatorial explosion of the number of atomic types. The
following optimizations reduce the number of atomic types without
losing the completeness of the algorithm.

(I) Use the canonical representation of function types. Here, a
function type

∧n
i=1 τi → τ is canonical if for each i, there is no

j
= i such that τj ≤ τi (where ≤ is the standard subtype relation).
(Accordingly, we need to extend the type system used in Step 3
with subtyping.)

(II) In the definition of Elim(
∧n

i=1 τi → τ), choose 	 as τ ′i
only if τi is subsumed by τj for some j, i.e. if there is a substitution
θ such that θτi = τ ′j for some j.
Both optimizations are applied in the current implementation of the
model checker described in Section 4.

EXAMPLE 3.5. Let τ be:

(q0∧q1 → q2)∧(α0∧q1 → q2)∧(q0∧α1 → q2)∧(α2 → q2) → q.

Elim(τ) generates the following set of types:

{
∧

(S∪{q0∧q1 → q2}) → q | S ⊆ {q1 → q2, q0 → q2,	 → q2}}.

After the optimizations, Elim(τ) generates:

{τ → q | τ ∈ {q0 ∧ q1 → q2, q1 → q2, q0 → q2,	 → q2}}.

3.4 Correctness of the Algorithm

We now prove the soundness and completeness of the algorithm.

THEOREM 3.5. Given a recursion scheme G, and a deterministic
trivial automaton B, the algorithm eventually terminates. Further-
more, if the algorithm outputs a type environment Γ, then G is well-
typed under Γ (hence [[G]] is accepted by B). If the algorithm reports
an error path, then [[G]] is not accepted by B.

Proof The soundness of the output follows immediately from
Theorem 3.1 and the definition of Step 1. By the construction of
the configuration graph in Step 1 and the fairness assumption on the
selection of nodes, if [[G]] is not accepted by B, then an error path
is eventually found. Thus, it remains to show that the algorithm
eventually terminates when [[G]] is accepted by B.

Let C be the closed configuration graph. By Corollary 3.2, it
suffices to show that there exists a finitely-expanded configuration
graph C′ such that ElimTE(ΓC′) ⊇ ΓC .

Let π be a sequence over {0, 1, . . . , m} where m is the largest
arity of terminals. We write C(π) for the node N such that a
path from the root to N is labeled by π. Let C be the closed
configuration graph and C′ be a finitely-expanded graph. Suppose
that the node C(π) is labeled by 〈t s̃, q, closed〉. We define the
relation C′ �π,t C by induction on the structure of the sort of t, as
follows.

(i) If t has sort o, and τt,C′(π) = q, then C′ �π,t C.
(ii) Suppose t has sort κ1 → κ2. Then, s̃ must be of the form

s0s̃
′, and τt,C(π) is of the form

∧n
i=1 τi → τ . C′ �π,t C holds if

the following conditions are satisfied:
(a) C′ �π,t s0 C;
(b) for each τi, there exists a path πi such that τs0,C(ππi) = τi and
C′ �ππi,s0 C.
Intuitively, C′ �π,t C means that C′ provides complete type infor-
mation about how the term t of node C(π) is used in C.

Suppose C′ �π,t C. The following properties can be proved
by induction on the structure of the sort of t: See Appendix A,
Lemma A.1.

(I) If C′′ is obtained from expansions of C′, then C′′ �π,t C.
(II) τt,C(π) ∈ Elim(τt,C′(π)).

We can also prove, by induction on the sort of t, that for any node
C(π) labeled with 〈t s̃, q, closed〉, there exists a finitely-expanded
graph C′ such that C′ �π,t C (see Appendix A, Lemma A.2).

Now, for each Fi : τi,j ∈ ΓC , pick a node Ni,j = C(πi,j) such
that τFi,Ni,j = τi,j . Let Ci,j be a finitely-expanded graph such
that Ci,j �πi,j ,Fi C, and let C′ be the union of all such Ci,j’s. (By
the “union” of graphs, we mean the graph obtained by merging
the corresponding nodes into one node, where its flag is set to
closed if one of the nodes is closed. In other words, the union of
configuration graphs C1, . . . , Cm is obtained from the initial graph
by expanding all the closed nodes of Ci’s.) By the property (I)
above, C′ �πi,j ,Fi C for every i, j. Thus, by the property (II), we
have ΓC ⊆ ElimTE(C ′) as required. �

4. Preliminary Experiments
We have implemented a model checker TRECS (Types for RE-
Cursion Scheme) for recursion schemes. The implementation
can be tested at http://www.kb.ecei.tohoku.ac.jp/~koba/
trecs/.7

7 Only small examples can be tested through the web interface. The source
code will be distributed later.

Programs O R S Q result E time
Example 2.1 1 2 8 2 YES 53 1
Example 2.3 1 6 13 1 YES 40 1
Example 3.1 1 2 8 1 NO 9 1
File 1 2 8 2 YES 46 1
Flow 3 7 16 1 YES 8 1
Exception 1 5 18 1 YES 7 1
Twofiles 4 11 47 4 YES 153 2
FileWrong 4 11 45 4 NO 66 1
TwofilesExn 4 12 56 5 YES 189 2
FileOcamlc 4 23 110 4 YES 254 5
Lock1 4 12 38 3 YES 34 1
Lock2 4 11 45 4 YES 255 5
Order5 5 11 52 5 YES 165 2
Order5-2 5 9 36 4 YES 198 3

Table 2. Experimental results (time is in milliseconds).

The implementation is mostly based on the algorithm described
in Section 3, except the following points:

• The current implementation uses trees for representing con-
figuration graphs; thus, the same node may be expanded multiple
times, which causes a performance bottleneck. This is just for the
sake of simplicity and will be improved in a future version.

• To select a node to be expanded in Step 1, we use the depth-
first search, except that the expansions of nodes for recursive calls
are delayed. The number of iterations in Step 1 (the value of MAX in
Figure 3) is set to 100. (There is no particular reason for the choice
of 100; the value of MAX only affects the performance.)

• The two optimizations discussed at the end of Section 3.3 are
applied.

• To ease the extraction of type information in Step 2, the
implementation keeps pointers to express the origin of each term.
For example, in Figure 4, we keep a pointer from c of the node
[a c (F (b c)), q0] to that of the node [F c, q0].

• In Step 3, Rehof and Mogensen’s algorithm is used for the
fixed-point computation.

• We keep the type environment obtained in Step 3, and use it
to eliminate open nodes that are typable under the type environ-
ment. For example, consider an open node labeled by (F G, q0).
If the type environment obtained in the previous cycle contains the
bindings F : q0 → q0, G : q0, we remove the open node, recording
that F and G have been used as terms of types q0 → q0 and q0
respectively.

We have tested the model checker for a number of small but
tricky examples. Table 2 shows the result. The columns O, R, S, and
Q show the order of the recursion scheme, the number of rewriting
rules, the size of rewriting rules (which are measured by the number
of occurrences of symbols in the righthand side of the rewriting
rules) and the number of automaton states respectively. The column
“result” shows whether the property is satisfied (YES) or not (NO).
(Note that, in addition to yes/no answers, the model checker outputs
a type environment if the property is satisfied, and reports an error
trace otherwise.) The column “E” shows the number of expansions
of the configuration graph. The column “time” shows the running
time, measured in milliseconds. The experiment was conducted
on a machine with Intel(R) Xeon(R) CPU with 3Ghz and 2GB
memory.

The recursion schemes used in the experiments are available
from http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/. The
first four programs (or, recursion schemes) were taken from earlier
sections of this paper. For the first one, the specification is the au-
tomaton of Example 2.2. The fourth example “File” is the recursion

scheme given in Section 2.2, obtained from the program accessing
a file.

The program Flow encodes the following flow analysis prob-
lem, taken from [22].

let id x = x in let unused = id lam in
id lam’

Here, the flow question is whether “lam” flows to the result of
the program. We can encode this into the problem of whether the
terminal symbol flow occurs in the tree generated by the following
recursion scheme.

S -> C1 Id.
Id x k -> k x.
C1 id -> id Lam (C2 id).
C2 id unused -> id LamPrime C3.
C3 x -> x end.
Lam x -> flow x.
LamPrime x -> x.

The first four rules are obtained by applying the CPS transforma-
tion to the original program. A trick is in the last three rules. The
value of the program is passed to C3. If the value is Lam, then Lam
is invoked and the terminal symbol flow occurs in the value tree;
otherwise, flow does not occur. Thus, Lam flows to the value of
the original program if, and only if, flow occurs in the tree gener-
ated by the recursion scheme. In general, any instance of the flow
analysis problem (“Given a program and its subterms v and e, does
the value of v flow to the value of e?”) can be encoded into a re-
source usage verification problem (by replacing each value with a
pair consisting of the value and a resource to keep track of its use8),
and then to a model checking problem of a recursion scheme.

The program Exception encodes the following exception anal-
ysis problem (of checking whether an uncaught exception may be
raised), taken from [21]:

let failwith msg = raise(Failure msg)
let f x = if ... then ... else failwith ("f")
let g x = try f x with Failure "f" -> 0
let main() = g()

By representing exception handlers as alternative continuations as
in [7], we get the following recursion scheme.

Failwith0 failure0 failure1 k -> failure0
Failwith1 failure0 failure1 k -> failure1
F failure0 failure1 k ->

br k (Failwith0 failure0 failure1 k)
G failure0 failure1 k -> F k failure1 k
S -> G uncaught uncaught end

Here, the string "f" has been replaced by a boolean value, and
then the boolean elimination [18] has been applied. The original
program raises an uncaught exception if and only if the value tree
of the recursion scheme contains the terminal uncaught.

The 7th–12th programs were obtained from resource usage ver-
ification problems (of checking whether files and locks are used
correctly) by manually applying Kobayashi’s transformation [18].
Twofiles, taken from [18], is a program copying a read-only file
to a write-only file. The corresponding OCaml-like program is:

let rec f x y = if * then close x; close y
else read x; write y; f x y in

let x = open_in "foo" in let y = open_out "bar" in
f x y

8 In the translation of the above example, the value part is omitted since it
is not used in the original program.

FileWrong is the program obtained from Twofiles by removing
the close operation on the write-only file.

TwofilesExn is based on the following program, which copies
a read-only file to a write-only file, detecting the end of a file by an
exception:

let rec f(x,y) = read(x);write(y);f(x,y) in
let x = open_in "foo" in
let y = open_out "bar" in
try f(x,y) with end_of_file -> close(x); close(y)

In the recursion scheme, the exception handler is passed to f as an
additional continuation argument. The rules for f and read are as
follows.

F x y ex k -> Read x ex (Write y ex (F x y ex k))
Read x ex k -> ReadWithoutExn x (br ex k)

Here, ex is bound to the continuation expressing an exception
handler. In the rule for Read, the part “br ex k” captures the fact
that Read may or may not raise an exception.

The program FileOcamlc is based on a part of the source code
of Objective Caml compiler 3.11.0 [1], bytecomp/symtable.ml,
which is the most interesting and complex use of input files we
found in the compiler source code. The following is a simplified
version of the code:

let rec readloop x =
if * then () else readloop x; read x in

let read_sect() =
let fp = open "foo" in
{readc = fun x -> readloop fp;
closec = fun x -> close fp} in

let rec loop s =
if * then s.closec() else s.readc(); loop s
in
let s = read_sect() in loop s

The function read_sect opens a file and returns closures to access
the file. This kind of program was extremely hard to analyze for
other (incomplete) methods for the resource usage verification [12,
13]. The original source code consists of about 60 lines of code.
We obtained the recursion scheme from it by manually slicing
irrelevant parts and applying the CPS transformation. (Thus, the
verified recursion scheme is more complex than the simplified code
above.)

The program Lock1, taken from [18], is based on the following
code:

let f b x = if b then lock(x) else () in
let g b x = if b then unlock(x) else () in
let b = rand() in let x = newlock() in
(f b x; g b x)

The rules for encoding the function f above are:

F0 x k -> k.
F1 x k -> Lock x k.

Here, the boolean parameter b has been transformed out (without
losing information) as described in [18]; F0 and F1 simulate the
behaviors of f false and f true respectively.

The program Lock2 is based on the following program.

let l1 = newlock() in
let rel1 x = unlock(l1) in
let acq1 x = lock(l1) in
let rec f g =

if * then g()
else
let l2 = newlock() in

let rel2 x = unlock(l2) in
let acq2 x = lock(l2) in
(acq2(); f rel2; g())

in
(acq1(); f rel1)

Analyzing the above program is very tricky, as (i) infinitely many
locks are created, and (ii) locks are stored in closures and accessed
through them.

In order to test the effectiveness of the current implementation,
we have also tested verification of some order-5 recursion schemes.
(Recall that the most significant parameter that determines the
complexity of model-checking recursion schemes is their orders,
rather than the size of the recursion schemes.) The program Order5
is based on the following program.

let rec loop use finish x =
if * then finish x
else use x; loop use finish x in

let gencon gen use finish =
let x = gen() then loop use finish x in

let genr () = open_in * in
let genw () = open_out * in
gencon genr read close; gencon genw write close

The function gencon takes a generator and consumers of resources
as an argument, creates a new resource by invoking the generator,
and then uses it. In the corresponding recursion schemes, gencon
has order 5, and loop (at which recursion occurs) has order 4.

The program Order5-2 is based on the following program.

let rec gencon gen use =
if * then ()
else let x = gen() in

gencon gen use; use x in
let f x = if * then close x else read x; f x in
let genr () = open_in * in

gencon genr f

In the corresponding recursion schemes, gencon (at which recur-
sion occurs) has order 5.

Our model checker could correctly verify all the recursion
schemes (or reject, in case the property is not satisfied) in less
than a second. This is remarkably fast, considering that the model
checking of recursion schemes is (n − 1)-EXPTIME in general
(so, 3-EXPTIME for the 7th–12th programs); Note also that all the
previous model-checking algorithms [18, 20, 24] are simply unex-
ecutable for the recursion schemes of orders 4 or 5, because of
huge requirement for time and space (recall the discussion in Sec-
tion 3.1). Although the examples are small, at least FileOcamlc
and lock2 are very complex: we are not aware of any previous
automated techniques for the resource usage verification that can
correctly verify them.

The followings are further observations from the experiments.

• The node selection strategy in Step 1 can significantly affect
the overall performance of the model checker. For example, for
FileOcamlc, the model checking has timed out when we used
the pure breadth-first search.

• Without the optimizations described in Section 3.3, the model
checker ran out of the stack space for the programs “FileO-
camlc” and “Lock2.” That is due to the combinatorial explosion
of the number of atomic types, introduced by Elim (recall Ex-
ample 3.5). The combinatorial explosion is disastrous for sym-
bols of high orders and large arities. After the optimizations,
however, the number of atomic types is kept small.

5. Discussion
A limitation of the algorithm described in Section 3 (especially
from a theoretical point of view) is that the worst-case time com-
plexity is not optimal. According to the result of [18], a recursion
scheme can be model-checked in time linear in the size of the gram-
mar, provided that the sizes of sorts and the trivial automaton are
bounded above by a constant. The worst case time complexity of
the algorithm in Section 3 is, however, at least n-exponential under
the same assumption. For example, consider the following recur-
sion scheme for generating a word.

S → F0G
F0 x→ F1(F1 x)
F1 x→ F2(F2 x)
· · ·
Fm−1 x→ Fm(Fm x)
Fm x→ ax
G→ c

Since S is reduced to a2m

G, and then to a2m

c, the algorithm needs
to expand the initial configuration graph O(2m) times in Step 1
to extract type information of G. In general, we can construct
an order-n recursion scheme of size m for which our algorithm
requires O(expn(m)) expansions of configuration graphs.

To address the problem above, we can make the following mod-
ification to Step 1. Let N be a node labeled with 〈F t, q0, open〉
where F is a non-terminal of order 1. If there is a path π from
another node N1 labeled with 〈F s, q0, f〉 to a node N2 labeled
with 〈s, q1, f ′〉 (where s originates from that of F s), then add an
edge from N to 〈t, q1, open〉. This is sound because the argument
s cannot be used in the path from N1 to N2, so that the same com-
putation is possible from N to produce the node 〈t, q1, open〉. For
the example above, we first expand S as follows.

[S, q0] → [F0G, q0] → [F1(F1G), q0] → [F2(F2(F1G)), q0]
→ · · · → [Fm(Fm(Fm−1(· · ·F2(F1G) · · ·))), q0]
→ [a(Fm(Fm−1(· · ·F2(F1G) · · ·))), q0]
→ (Fm(Fm−1(· · ·F2(F1G) · · ·)), q0)

Here, we assume that δ(q0, a) = q0. Now, since there is a path
from [Fm s, q0] to (s, q0) for s = Fm(Fm−1(· · ·F2(F1G) · · ·)),
we can add an edge from (Fm(Fm−1(· · ·F2(F1G) · · ·)), q0) to
(Fm−1(· · ·F2(F1G) · · ·), q0). By applying the same construction
to Fm−1, . . . , F1, we get

[Fm−1(· · ·F2(F1G) · · ·), q0] → [Fm−2(· · ·F2(F1G) · · ·), q0]
→ · · · → [F1G, q0] → [G, q0] → [c, q0]

Thus, we can extract the type information on G by O(m) expan-
sions of the initial graph. A similar optimization is possible for the
case of the 2nd or higher order.

The above optimization alone is, however, insufficient for ob-
taining an algorithm with the optimal worst-case complexity. Fur-
ther optimizations are left for future work.

6. Related Work
Previous work on model-checking recursion schemes Knapik et
al. [15] have shown that the modal μ-calculus model checking of
order-2 safe recursion schemes is decidable (where the safety is a
certain syntactic restriction). This subsumes earlier results of Ra-
bin [25] for order-0 case (i.e. for regular trees) and Courcelle [10]
for order-1 case (i.e. algebraic trees). Since then, the decidability
question of recursion schemes of an arbitrary order had been a hot
topic in the theoretical community [3, 16] (most notably, Knapik et
al.’s result on the decidability of safe recursion schemes [16]), until
Ong [24] finally answered the question positively. Kobayashi and

Ong [20] recently gave a simpler, type-based proof of the decid-
ability.

Despite the theoretical results on the decidability of the model
checking problem above, there has been little work on its appli-
cation to program verification until Kobayashi’s recent work [18].
This may be due to the n-EXPTIME hardness of the model check-
ing problem. Kobayashi [18] has shown that, for the class of triv-
ial automata, the time complexity is actually linear in the size of
the grammar although it is n-EXPTIME in the largest arity of
non-terminal symbols and the size of the property. Kobayashi and
Ong [20] later extended the result to show that, for the full modal
μ-calculus, the time complexity is polynomial in the size of the
grammar. These results gave a hope that one might be able to con-
struct a practical model checker (although, as discussed earlier, it is
hopeless to use Kobayashi and Ong’s algorithms [18, 20] directly),
which lead us to the present work.

Other theoretical studies on recursion schemes include: the
equi-expressivity between recursion schemes and (variants of)
higher-order pushdown automata [11, 17] and the complexity result
on the model checking for subclasses of modal μ-calculus [19].

Other verification techniques for functional programs Flow
analysis, abstract interpretation, and type-based analysis have been
used as standard techniques for analysis/verification of functional
programs [23]. Those techniques (except dependent type systems,
which require human intervention) are usually incomplete even for
the simply-typed λ-calculus with recursion and finite data domains,
for which our verification method is complete.

We are not aware of previous model checkers that can verify
higher-order recursive functions in a sound and complete manner.
Most of the existing software model checkers [5, 6] are based on
either finite state or pushdown model checking; some approxima-
tion is necessary for encoding higher-order recursive functions into
finite state or pushdown systems, so that the completeness is lost.
For example, SLAM [5] deals with function pointers by replacing
them with non-deterministic jumps to the functions they may point
to.

Bakewell and Ghica [4] proposed a model checker called
MAGE, based on game semantics. Although game semantics has
been studied for higher-order functional languages, their model
checking algorithm and implementation deal with neither higher-
order functions nor recursion.

Inference of Intersection Types Since our model checking algo-
rithm is a type inference algorithm for the intersection type sys-
tem presented in Section 2.3, there may be some connection be-
tween our algorithm and type inference algorithms for intersection
types [8, 9, 14, 27]. In particular, earlier algorithms for intersection
type inference [9, 27] first finds a normal form, and then obtains
a principal typing for the normal form; this seems somewhat sim-
ilar to Steps 1 and 2 of our algorithm, which first reduce a given
recursion scheme, and then extract type information. There are,
however, several important differences. First, the intersection type
inference algorithms aim to infer a principal typing, while our al-
gorithm does not. Secondly, our type system is decidable, while the
intersection type systems studied in the literature are usually un-
decidable (as the typability coincides with strong normalization).
Thirdly (and most importantly), the intersection type systems stud-
ied in [8, 9, 14, 27] guarantee that typable terms (possibly with cer-
tain additionial conditions) have the strong normalization property,
while the intersection type system for recursion schemes does not.
That is why our algorithm is hybrid: type information is extracted
after a finite number of reduction steps, and then another algorithm
is used for deciding whether the recursion scheme is typable using
extracted type information. Despite the differences above, it would
be interesting to study the relationship between our algorithm and

their algorithms in more detail, to see whether some of their tech-
niques can be used for optimizing our type inference algorithm.

7. Conclusion
We have proposed a new model checking algorithm for recursion
schemes, proved its correctness, and demonstrated its effectiveness
through an implementation of the model checker.

The next important step of this line of research is to implement
software model checkers for functional languages such as ML and
Haskell on top of the model checker for recursion schemes. For that
purpose, as outlined in [18], we need to combine the model checker
with predicate abstractions and CEGAR (counter-example-guided
abstract refinement). To construct practical software model check-
ers, we probably need to improve the efficiency of the underlying
model checker for recursion schemes by several orders of magni-
tude. There are a number of potentially useful optimizations, such
as a more tight integration of the three steps: for example, when
Step 3 fails (i.e. if S : q0 ∈ Γ does not hold), we should be able
to use the computed type environment Γ in Step 1 for effectively
deciding which open node should be expanded (to get more type
information). Future work also includes the optimization discussed
in Section 5, and an extension of our algorithm to deal with the
full modal μ-calculus (or equivalently, alternating parity tree au-
tomata), based on Kobayashi and Ong’s type system [20]. Actually,
it is not difficult to adapt our algorithm to deal with the full modal
μ-calculus in a naive manner, but the resulting algorithm is proba-
bly too slow: finding an efficient model-checking algorithm for the
full modal μ-calculus remains a challenge.

The current model checking algorithm is for verification of
closed programs. It can, however, be easily adapted to deal with
open programs (which take unknown function arguments as in-
puts), provided that either the specifications (i.e. intersection types)
or typical code of the unknown functions are given. Integration with
testing may be useful, as typical inputs are provided during testing.

Despite the promising experimental results of our model-
checking algorithm, one cannot overcome the theoretical lower-
bound of the worst-case complexity: (n − 1)-EXPTIME hardness
for deterministic trivial automata, and n-EXPTIME hardness for
the full modal μ-calculus [24]. We conclude this paper with infor-
mal remarks on why the verification of higher-order functions is
so hard. We think that the hardness of the verification of higher-
order functions is strongly related to the capability of higher-order
functions to express computation compactly. As we show in Ap-
pendix B, even without recursion, a word of length O(expn(|G|))
can be generated by a recursion scheme of order-n. Thus, for such a
recursion scheme, an n-EXPTIME model-checking algorithm is no
worse than a linear time algorithm for finite-state machines: since
the corresponding finite-state machine must have O(expn(|G|))
states, the linear time algorithm is actually n-EXPTIME in the size
of the recursion scheme. If this is indeed the primary reason for the
hardness of the verification of higher-order functions, then the ver-
ification of a well-organized higher-order functional program can
be actually easier than that of the corresponding while-program
(that expresses the same computation); higher-order functions can
make the high-level structure of a program explicit, which can be
exploited by a verification algorithm. That may explain why our
prototype model checker is reasonably fast in practice.

References
[1] Objective caml. http://caml.inria.fr/ocaml/.

[2] K. Aehlig. A finite semantics of simply-typed lambda terms for
infinite runs of automata. Logical Methods in Computer Science,
3(3), 2007.

[3] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. The monadic second
order theory of trees given by arbitrary level-two recursion schemes
is decidable. In TLCA 2005, volume 3461 of LNCS, pages 39–54.
Springer-Verlag, 2005.

[4] A. Bakewell and D. R. Ghica. On-the-fly techniques for game-
based software model checking. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, volume 4963 of LNCS, pages 78–92. Springer-Verlag,
2008.

[5] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In PLDI 2001, pages 203–213,
2001.

[6] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker blast. International Journal on Software Tools for
Technology Transfer, 9(5-6):505–525, 2007.

[7] M. Blume, U. A. Acar, and W. Chae. Exception handlers as extensible
cases. In Proceedings of APLAS 2008, volume 5356 of LNCS, pages
273–289. Springer-Verlag, 2008.

[8] G. Boudol. On strong normalization and type inference in the
intersection type discipline. Theor. Comput. Sci., 398(1-3):63–81,
2008.

[9] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type
schemes and lambda-calculus semantics. In Essays on Combinatory
Logic, Lambda Calculus, and Foundation, pages 535–560. Academic
Press, 1980.

[10] B. Courcelle. The monadic second-order logic of graphs IX: machines
and their behaviours. Theoretical Computer Science, 151:125–162,
1995.

[11] M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of 23rd
Annual IEEE Symposium on Logic in Computer Science, pages 452–
461. IEEE Computer Society, 2008.

[12] A. Igarashi and N. Kobayashi. Resource usage analysis. ACM
Trans. Prog. Lang. Syst., 27(2):264–313, 2005. Preliminary summary
appeared in Proceedings of POPL 2002.

[13] F. Iwama, A. Igarashi, and N. Kobayashi. Resource usage analysis
for a functional language with exceptions. In Proceedings of ACM
SIGPLAN 2006 Workshop on Partial Evaluation and Program
Manipulation (PEPM 2006), pages 38–47. ACM Press, 2006.

[14] A. J. Kfoury and J. B. Wells. Principality and type inference for
intersection types using expansion variables. Theor. Comput. Sci.,
311(1-3):1–70, 2004.

[15] T. Knapik, D. Niwinski, and P. Urzyczyn. Deciding monadic theories
of hyperalgebraic trees. In TLCA 2001, volume 2044 of LNCS, pages
253–267. Springer-Verlag, 2001.

[16] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown
trees are easy. In FoSSaCS 2002, volume 2303 of LNCS, pages
205–222. Springer-Verlag, 2002.

[17] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe
grammars and panic automata. In ICALP 2005, volume 3580 of
LNCS, pages 1450–1461. Springer-Verlag, 2005.

[18] N. Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In Proc. of POPL, pages
416–428, 2009.

[19] N. Kobayashi and C.-H. L. Ong. Complexity of model checking
recursion schemes for fragments of the modal mu-calculus. In
Proceedings of ICALP 2009, LNCS. Springer-Verlag, 2009.

[20] N. Kobayashi and C.-H. L. Ong. A type system equivalent to
the modal mu-calculus model checking of higher-order recursion
schemes. In Proceedings of LICS 2009. IEEE Computer Society
Press, 2009.

[21] X. Leroy and F. Pessaux. Type-based analysis of uncaught exceptions.
ACM Trans. Prog. Lang. Syst., 22(2):340–377, 2000.

[22] M. Might and O. Shivers. Exploiting reachability and cardinality

in higher-order flow analysis. J. Funct. Program., 18(5-6):821–864,
2008.

[23] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[24] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS 2006, pages 81–90. IEEE Computer
Society Press, 2006.

[25] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Maths. Soc, 141:1–35, 1969.

[26] J. Rehof and T. Mogensen. Tractable constraints in finite semilattices.
Science of Computer Programming, 35(2):191–221, 1999.

[27] S. R. D. Rocca and B. Venneri. Principal type schemes for an
extended type theory. Theor. Comput. Sci., 28:151–169, 1984.

Appendix

A. Proofs
This appendix provides proofs omitted in the main text.

LEMMA A.1. Let C be the fully-expanded configuration graph. If
C′ �π,t C, then the following conditions hold.

(I) If C′′ is obtained from expansions of C′, then C′′ �π,t C.
(II) τt,C(π) ∈ Elim(τt,C′(π)).

Proof Let the label of C(π) be 〈t s̃, q, closed〉. The proof pro-
ceeds by induction on the sort of t. If the sort of t is o, then by the
definition of the relation C′ �π,t C, we have τt,C′(π) = q. By the
definitions of expansions and τt,N , we have τt,C′(π) = τt,C′′(π) =
τt,C(π) = q. Thus, we have C′′ �π,t C and Elim(τt,C′(π)) =
{q} � τt,C(π) as required.

If the sort of t is κ1 → κ2, then by the condition C′ �π,t C, we
have:

(i) s̃ = s0s̃
′;

(ii) τt,C(π) =
∧m

i=1 τi → τ ;
(iii) C′ �π,ts0 C; and
(iv) for each τi, there exists πi such that τs0,C(ππi) = τi and

C′ �ππi,s0 C.
By the induction hypothesis (I), we have C′′ �π,ts0 C and
C′′ �ππi,s0 C, which implies (I). By the induction hypothesis
(II), we also have τts0,C(π) ∈ Elim(τts0,C′(π)) and τs0,C(ππi) ∈
Elim(τs0,C′(ππi)). By the definition of τt,C′(π), it is of the form:∧

{τs0,C′(ππ1), . . . , τs0,C′(ππm), σ1, . . . , σk} → τts0,C′(π).

By the definition of Elim, we can construct τt,C(π) as an element
of Elim(τt,C′(π)) as follows:

(i) choose τi from Elim ′(τs0,C′(ππi)); and
(ii) from Elim ′(σj), choose 	 when σj contains a type vari-

able; otherwise choose σj (in which case we have σj ∈ {τ1, . . . , τm}).
Thus, we have τt,C(π) ∈ Elim(τt,C′(π)) as required. �

LEMMA A.2. Let N = C(π) be a node of a closed configuration
graph C, and suppose thatN is labeled with 〈t s̃, q, closed〉. Then,
there exists a finitely-expanded graph C′ such that C′ �π,t C.

Proof The proof proceeds by induction on the sort of t. If the
sort is o, then the result follows immediately: just expand the initial
graph until N is expanded, and let C′ be the resulting graph.

If the sort is κ1 → κ2, then τt,N is of the form
∧m

i=1 τi → τ ,
and s̃ = s0s̃

′. By the induction hypothesis, there exists a finitely
expanded graph C′

0 such that C′
0 �π,ts0 C. By the definition of τt,N ,

for each i ∈ {1, . . . ,m}, there exists πi such that τs0,C(ππi) = τi.
By the induction hypothesis, there exists a finitely expanded graph
C′

i such that C′
i �ππi,s0 C. Thus, the union of C′

0, C′
1, . . . , C′

m

satisfies the required condition. �

B. On the Expressive Power of Recursion
Schemes

This section demonstrates that a recursion scheme can generate a
very large word or tree, even without using recursion.

The following order-1 recursion scheme generates a word
a2m

c.
S → F0 c
F0 x→ F1(F1 x)
F1 x→ F2(F2 x)
· · ·
Fm−1 x→ Fm(Fm x)
Fm x→ ax

Note that S can be reduced to F2m

m c, and then to a2m

c.
The following order-2 recursion scheme generates a word

a22m

c.
S → F0 a c
F0 xy → F1(F1 x) y
F1 xy → F2(F2 x) y
· · ·
Fm−1 xy → Fm(Fm x) y
Fm xy → x(xy)

S can be reduced to F2m

m a c, and then to a22m

c.
The following order-3 recursion scheme generates a word

a222
m

c.
S → F0 Twice a c
F0 xy z → F1(F1 x) y z
F1 xy z → F2(F2 x) y z
· · ·
Fm−1 x y z → Fm(Fm x) y z
Fm xy z → x(xy) z
Twice y z → y(y z)

S can be reduced to F2m

m Twice a c, and then to (Twice22m

a)c,

which is further reduced to a222
m

c. By repeating the same con-
struction (i.e. by replacing a with Twice), we can construct an order-
n recursion scheme (without recursion) that generates the word
aexpn(m)c.

