
Type-Based Automated Verification of Authenticity in
Asymmetric Cryptographic Protocols

Morten Dahl2, Naoki Kobayashi1, Yunde Sun1, and Hans Ḧuttel2

1 Tohoku University
2 Aalborg University

Abstract. Gordon and Jeffrey developed a type system for verification of asym-
metric and symmetric cryptographic protocols. We propose a modified version of
Gordon and Jeffrey’s type system and develop a type inference algorithm for it,
so that protocols can be verified automatically as they are, without any type anno-
tations or explicit type casts. We have implemented a protocol verifierSPICA2
based on the algorithm, and confirmed its effectiveness.

1 Introduction

Security protocols play a crucial role in today’s Internet technologies including elec-
tronic commerce and voting. Formal verification of security protocols is thus an impor-
tant, active research topic, and a variety of approaches to (semi-)automated verification
have been proposed [8, 5, 16]. Among others, type-based approaches [1, 15, 16] have
advantages that protocols can be verified in a modular manner, and that it is relatively
easy to extend them to verify protocols at the source code level [4]. They have however a
disadvantage that users have to provide complex type annotations, which require exper-
tise in both security protocols and type theories. Kikuchi and Kobayashi [19] developed
a type inference algorithm but it works only for symmetric cryptographic protocols.

To overcome the limitation of the type-based approaches and enable fully automated
protocol verification, we integrate and extend the two lines of work – Gordon and Jef-
frey’s work [16] for verifying protocols using both symmetric and asymmetric cryp-
tographic protocols, and Kikuchi and Kobayashi’s work. The outcome is an algorithm
for automated verification of authenticity in symmetric and asymmetric cryptographic
protocols. The key technical novelty lies in the symmetric notion ofobligationsandca-
pabilitiesattached to name types, which allows us to reason about causalities between
actions of protocol participants in a general and uniform manner in the type system. It
not only enables automated type inference, but also brings a more expressive power,
enabling, e.g., verification of multi-party cryptographic protocols. We have developed a
type inference algorithm for the new type system, and implemented a protocol verifica-
tion tool SPICA2 based on the algorithm. According to experiments,SPICA2 is very
fast; it could successfully verify a number of protocols in less than a second.

The rest of this paper is structured as follows. Section 2 introduces spi-calculus [2]
extended with correspondence assertions as a protocol description language. Sections 3
and 4 present our type system and sketches a type inference algorithm. Section 5 reports
implementation and experiments. Sections 6 and 7 discuss extensions and related work
respectively. Section 8 concludes the paper.

2 Processes

This section defines the syntax and operational semantics of the spi-calculus extended
with correspondence assertions, which we call spiCA. The calculus is essentially the
same as that of Gordon and Jeffrey [16], except (i) there are no type annotations or
casts (as they can be automatically inferred by our type inference algorithm), and (ii)
there are no primitives for witness and trust; supporting them is left for future work.

We assume that there is a countable set ofnames, ranged over bym, n, k, x, y, z,
By convention, we often usek,m, n, . . . for free names andx, y, z, . . . for bound names.

The set of messages, ranged over byM , is given by:

M ::= x | (M1,M2) | {M1}M2 | {|M1|}M2

(M1,M2) is a pair consisting ofM1 andM2. The message{M1}M2 ({|M1|}M2
, resp.)

represents the ciphertext obtained by encryptingM1 with the symmetric (asymmetric,
resp.) keyM2. For the asymmetric encryption, we do not distinguish between encryp-
tion and signing;{|M1|}M2

denotes an encryption ifM2 is a public key, while it denotes
signing ifM2 is a private key.

The set of processes, ranged over byP , is given by:

P ::= 0 | M1!M2 | M?x.P | (P1 |P2) | ∗P | (νx)P | (νsymx)P | (νasymx, y)P
| check M1 is M2.P | split M is (x, y).P | match M1 is (M2, y).P
| decrypt M1 is {x}M2 .P | decrypt M1 is {|x|}M2

−1 .P
| beginM.P | endM

The names denoted byx, y areboundin P . We write [M1/x1, . . . ,Mn/xn]P for
the process obtained by replacing every free occurrence ofx1, . . . , xn in P with M1, . . . ,
Mn. We writeFN(P) for the set of free (i.e. non-bounded) names inP .

Process0 does nothing,M1!M2 sendsM2 over the channelM1, andM1?x.P waits
to receive a message on channelM1, and then bindsx to it and behaves likeP . P1 |P2

executesP1 andP2 in parallel, and∗P executes infinitely many copies ofP in parallel.
We have three kinds of name generation primitives:(νx) for ordinary names,(νsymx)

for symmetric keys, and(νasymx1, x2,) for asymmetric keys.(νasymx1, x2, P) creates
a fresh key pair(k1, k2) (wherek1 andk2 are encryption and decryption keys respec-
tively), and behaves like[k1/x1, k2/x2]P . The processcheck M1 is M2.P behaves
like P if M1 andM2 are the same name, and otherwise behaves like0. The process
split M is (x, y).P behaves like[M1/x,M2/y]P if M is a pair(M1, M2); otherwise
it behaves like0. match M1 is (M2, y).P behaves like[M3/y]P if M1 is a pair of
the form (M2,M3); otherwise it behaves like0. Processdecrypt M1 is {x}M2 .P
(decrypt M1 is {|x|}M2

−1 .P , resp.) decrypts ciphertextM1 with symmetric (asym-
metric, resp.) keyM2, bindsx to the result and behaves likeP ; if M1 is not an encryp-
tion, or an encryption with a key not matchingM2, then it behaves like0. The process
beginM.P raise an eventbeginM and behaves likeP , while endM just raises an
eventendM ; they are used to express expected authenticity properties.

Example 1.We use the three protocols in Figure 1, taken from [16], as running ex-
amples. POSH and SOSH protocols aim to pass a new messagemsg from B to A, so

POSH:

A->B: n
B begins msg
B->A: {|(msg,n)| }skB

A ends msg

SOPH

A->B: {|(msg,n)| }pkB

B begins msg
B->A: n
A ends msg

SOSH

A->B: {|n| }pkB

B begins msg
B->A: {|msg,n| }pkA

A ends msg

Fig. 1. Informal Description of Three Protocols

(νasymskB , pkB)(net!pkB | (* create asymmetric keys for B and makepkB public *)
(νnon)(net!non| (* A creates a nonce and sends it *)
net?ctext.decrypt ctextis {|x|}pkB

−1 . (* receive a cypertext and decrypt it*)
split x is (m, non′).check nonis non′. (* decompose pairx and check nonce *)
endm) | (* believe thatm came from B *)
net?n. (* B receives a nonce *)
(νmsg)begin msg. (* create a message and declare that it is going to be sent*)
net!{|(msg, n)|}skB

) (* encrypt and send(msg, n) *)

Fig. 2. Public-Out-Secret-Home (POSH) protocol in spiCA

(νasympkB , skB) (* create asymmetric keys for B *)
(net!pkB (* makepkB public *)
| (* Behavior of A *)
(νnon)(νmsg) (* create a nonce and a message *)
(net!{|(msg, non)|}pkB

| (* encrypt and send(msg, non) *)
net?non′. (* receive a nonce *)
check nonis non′. (* check nonce *)
end msg) (* end assertion *)
| (* Behavior of B *)
net?ctext. (* receive a cypertext *)
decrypt ctextis {|x|}skB−1 . (* decrypt the cypertext *)
split x is (m, non′′). (* decompose pairx *)
beginm. (* begin assertion *)
net!non′′ (* send the nonce *)
)

Fig. 3. Secret-Out-Public-Home (SOPH) protocol in spiCA

thatA can confirm thatmsg indeed comes fromB, while SOPH protocol aims to pass
msg from A to B, so thatA can confirm thatmsg has been received byB. The sec-
ond and fourth lines of each protocol expresses the required authenticity by using Woo
and Lam’s correspondence assertions [21]. “B begins msg ” on the second line of
POSH means “B is going to sendmsg”, and “A ends msg” on the fourth line means
“A believes thatB has sentmsg”. The required authenticity is then expressed as a cor-
respondence between begin- and end-events: whenever an end-event (“A ends msg”
in this example) occurs, the corresponding begin-event (“B begins msg ”) must have
occurred.3 In the three protocols, the correspondence between begin- and end-events is
guaranteed in different ways. In POSH, the correspondence is guaranteed by the signing
of the second message withB’s secret key, so thatA can verify thatB has created the
pair(msg, n). In SOPH, it is guaranteed by encrypting the first message with B’s public
key, so that the noncen, used as an acknowledgment, cannot be forged by an attacker.
SOSH is similar to POSH, but keepsn secret by using A and B’s public keys.

Figure 2 gives a formal description of POSH protocol, represented as a process in
spiCA. The first line is an initial set-up for the protocol. An asymmetric key pair for B is
created and the decryption keypkB is sent on a public channelnet, on which an attacker
can send and receive messages. The next four lines describe the behavior ofA. On the
second line, a noncenon is created and sent alongnet. On the third line, a ciphertext
ctext is received and decrypted (or verified) with B’s public key. On the fourth line,
the pair is decomposed and it is checked that the second component coincides with the
nonce sent before. On the fifth line, an end-event is raised, meaning thatA believes that
msgcame fromB. The last three lines describe the behavior ofB. On the sixth line, a
noncen is received fromnet. On the seventh line, a new messagemsgis created and
a begin-event is raised, meaning thatB is going to sendmsg. On the last line, the pair
(msg, n) is encrypted (or signed) with B’s secret key and sent onnet.

Figure 3 gives a formal description of SOPH protocol in spiCA. ut

Following Gordon and Jeffrey, we call a processsafeif it satisfies correspondence
assertions (i.e. for each end-event, a corresponding begin-event has occurred before),
androbustly safeif a process is safe in the presence of arbitrary attackers (representable
in spiCA). Proving robust safety automatically is the goal of protocol verification in the
present paper. To formalize the robust safety, we use the operational semantics shown
in Figure 4. A runtime state is a quadruple〈Ψ, E, N,K〉, whereΨ is a multiset of pro-
cesses, andE is the multiset of messages on which begin-events have occurred but the
matching end-events have not.N is the set of names (including keys) created so far, and
K is the set of key pairs. The special runtime stateError denotes that correspondence
assertions have been violated. Note that a reduction gets stuck when a process does not
match a rule. For example,split M is (x, y).P is reducible only ifM is of the form
(M1,M2). Using the operational semantics, the robust safety is defined as follows.

3 There are two types of correspondence assertions in the literature: non-injective (or one-to-
many) and injective (or one-to-one) correspondence. Throughout the paper we consider the
latter.

〈Ψ] {n?y.P, n!M}, E, N,K〉 −→ 〈Ψ] {[M/y]P}, E, N,K〉 (R-COM)

〈Ψ] {P |Q}, E, N,K〉 −→ 〈Ψ] {P, Q}, E, N,K〉 (R-PAR)

〈Ψ] {∗P}, E, N,K〉 −→ 〈Ψ] {∗P , P}, E, N,K〉 (R-REP)
〈Ψ] {(νx)P}, E, N,K〉 −→ 〈Ψ] {[n/x]P}, E, N ∪ {n},K〉 (n /∈ N) (R-NEW)

〈Ψ] {(νsymx)P}, E, N,K〉 −→ 〈Ψ] {[k/x]P}, E, N ∪ {k},K〉 (k /∈ N) (R-NEWSK)

〈Ψ] {(νasymx, y)P}, E, N,K〉
−→ 〈Ψ] {[k1/x, k2/y]P}, E, N ∪ {k1, k2},K ∪ {(k1, k2)}〉 (k1, k2 /∈ N)

(R-NEWAK)

〈Ψ] {check n is n.P}, E, N,K〉 −→ 〈Ψ] {P}, E, N,K〉 (R-CHK)

〈Ψ] {split (M, N) is (x, y).P}, E, N,K〉 −→ 〈Ψ] {[M/x, N/y]P}, E, N,K〉
(R-SPLT)

〈Ψ] {match (M, N) is (M, z).P}, E, N,K〉 −→ 〈Ψ] {[N/z]P}, E, N,K〉
(R-MTCH)

〈Ψ] {decrypt {M}k is {x}k.P}, E, N,K〉 −→ 〈Ψ] {[M/x]P}, E, N,K〉 (R-DECS)

〈Ψ] {decrypt {|M |}k1
is {|x|}k2−1 .P}, E, N,K〉

−→ 〈Ψ] {[M/x]P}, E, N,K〉 (if (k1, k2) ∈ K)
(R-DECA)

〈Ψ] {beginM.P}, E, N,K〉 −→ 〈Ψ] {P}, E] {M}, N,K〉 (R-BGN)

〈Ψ] {endM}, E] {M}, N,K〉 −→ 〈Ψ, E, N,K〉 (R-END)

〈Ψ] {endM}, E, N,K〉 −→ Error (if M 6∈ E) (R-ERR)

Fig. 4. Operational Semantics

Definition 21 (safety, robust safety)A processP is safeif 〈{P}, ∅,FN(P), ∅〉 6−→∗

Error. A processP is robustly safeif P |O is safe for every spiCA processO that
contains no begin/end/check operations.4

3 Type System

This section presents a type system such that well-typed processes are robustly safe.
This allows us to reduce protocol verification to type inference.

3.1 Basic Ideas

Following the previous work [15, 16, 19], we use the notion ofcapabilities(called ef-
fects in [15, 16]) in order to statically guarantee that end-events can be raised only after
the corresponding begin-events. A capabilityϕ is a multiset ofatomic capabilitiesof
the formend(M), which expresses a permission to raise “endM ” event. The robust
safety of processes is guaranteed by enforcing the following conditions on capabilities:
(i) to raise an “endM ” event, a process must possess and consume an atomicend(M)
capability; and (ii) an atomicend(M) capability is generated only by raising a “begin
M ” event. Those conditions can be statically enforced by using a type judgment of the

4 Having no check operations is not a limitation, as an attacker process can check the equality
of n1 andn2 by match (n1, n1) is (n2, x).P .

form:Γ ; ϕ ` P , which means thatP can be safely executed under the type environment
Γ and the capabilities described byϕ. For example,x :T ; {end(x)} ` endx is a valid
judgment, butx :T ; ∅ ` endx is not. The two conditions above can be locally enforced
by the following typing rules for begin and end events:

Γ ;ϕ + {end(M)} ` P

Γ ;ϕ ` beginM.P Γ ; ϕ + {end(M)} ` endM

The left rule ensures that the new capabilityend(M) is available after the begin-event,
and the right rule for end ensures that the capabilityend(M) must be present.

The main difficulty lies in how to pass capabilities between processes. For example,
recall the POSH protocol in Figure 2, where begin- and end-events are raised by differ-
ent protocol participants. The safety of this protocol can be understood as follows:B
obtains the capabilityend(msg) by raising the begin event, and then passes the capabil-
ity to A by attaching it to the noncen. A then extracts the capability and safely executes
the end event. Asn is signed withB’s private key, there is no way for an attacker to
forge the capability. For another example, consider the SOPH protocol in the middle
of Figure 1. In this case, the noncen is sent in clear text, so thatB cannot pass the
capability toA through the second message. Instead, the safety of the SOPH protocol
is understood as follows:A attaches ton (in the first message) anobligationto raise the
begin-event.B then discharges the obligation by raising the begin-event, and notifies of
it by sending backn. Here, note that an attacker cannot forgen, as it is encrypted by
B’s public key in the first message.

To capture the above reasoning by using types, we introduce types of the form
N(ϕ1, ϕ2), which describes names carrying an obligationϕ1 and a capabilityϕ2. In
the examples above,n is given the typeN(∅, {end(msg)}) in the second message of
POSH protocol, and the typeN({end(msg)}, ∅) in the first message of SOPH protocol.

The above typesN(∅, {end(msg)}) and N({end(msg)}, ∅) respectively corre-
spond toresponseandchallenge typesin Gordon and Jeffrey’s type system [16]. Thanks
to the uniform treatment of name types, type inference for our type system reduces to
a problem of solving constraints on capabilities and obligations, which can further be
reduced to linear programming problems by using the technique of [19]. The uniform
treatment also allows us to express a wider range of protocols (such as multi-party
cryptographic protocols). Note that neither obligations nor asymmetric cryptography
are supported by the previous type system for automated verification [19]; handling
them requires non-trivial extensions of the type system and the inference algorithm.

3.2 Types

Definition 31 The syntax of types, ranged over byτ , is given by:

τ ::= N`(ϕ1, ϕ2) | SKey(τ) | DKey(τ) | EKey(τ) | τ1 × τ2

ϕ ::= {A1 7→ r1, . . . , Am 7→ rm} capabilities
A ::= end(M) | chk`(M, ϕ) atomic cap.
ι ::= x | 0 | 1 | 2 | · · · extended names
` ::= Pub | Pr name qualifiers

Here,ri ranges over non-negative rational numbers.

The typeN`(ϕ1, ϕ2) is assigned to names carrying obligationsϕ1 and capabilitiesϕ2.
Here, obligations and capabilities are mappings from atomic capabilities to rational
numbers. For example,N`({end(a) 7→ 1.0}, {end(b) 7→ 2.0}) describes a name that
carries the obligation to raisebegin a once, and the capability to raiseend b twice.
Fractional values are possible:N`(∅, {end(b) 7→ 0.5}) means that the name carries a
half of the capability to raiseend b, so that if combined with another half of the capa-
bility, it is allowed to raiseend b. The introduction of fractions slightly increases the
expressive power of the type system, but the main motivation for it is rather to enable ef-
ficient type inference as in [19]. When the ranges of obligations and capabilities are inte-
gers, we often use multiset notations; for example, we write{end(a), end(a), end(b)}
for {end(a) 7→ 2, end(b) 7→ 1}. The atomic capabilitychk`(M, ϕ) expresses the ca-
pability to check equality onM by check M is M ′.P : since nonce checking releases
capabilities this atomic effect is used to ensure that each nonce can only be checked
once. The componentϕ expresses the capability that can be extracted by the check
operation (see the typing rule for check operations given later).

Qualifier ` attached to name types are essentially the same as thePublic/Private
qualifiers in Gordon and Jeffrey’s type system and express whether a name can be made
public or not. We often writeUn for NPub(∅, ∅).

The typeSKey(τ) describes symmetric keys used for decrypting and encrypting
values of typeτ . The typeEKey(τ) (DKey(τ), resp.) describes asymmetric keys
used for encrypting (decrypting, resp.) values of typeτ . The typeτ1 × τ2 describes
pairs of values of typesτ1 and τ2. As in [19], we express the dependency of types
on names by using indices. For example, the typeUn × N`(∅, {end(0)}) denotes a
pair (M1, M2) whereM1 has typeUn andM2 has typeN`(∅, {end(M1)}). The type
Un×(Un×NPub(∅, {end(0, 1) 7→ r}) describes triples of the form(M1, (M2, M3)),
whereM1 andM2 have typeUn, andM3 has typeNPub(∅, {end(M2,M1) 7→ r}).
In general, an indexi is a natural number referring to thei-th closest first component
of pairs. In the syntax of atomic capabilitiesend(M), M is an extended message that
may contain indices. We use the same metavariableM for the sake of simplicity.

Predicates on typesFollowing Gordon and Jeffrey, we introduce two predicatesPub
andTaint on types, inductively defined by the rules in Figure 5.Pub(τ) means that a
value of typeτ can safely be made public by e.g. sending it through a public channel.
Taint(τ) means that a value of typeτ may have come from an untrusted principal
and hence cannot be trusted. It may for instance have been received through a public
channel or have been extracted from a ciphertext encrypted with a public key.

The first rule says that forN`(ϕ1, ϕ2) to be public, the obligationϕ1 must be empty,
as there is no guarantee that an attacker fulfills the obligation. Contrary, forN`(ϕ1, ϕ2)
to be tainted, the capabilityϕ2 must be empty if̀ = Pub, as the name may come from
an attacker and the capability cannot be trusted.5

Pub andTaint are a sort of dual, flipped by the type constructorEKey. In terms
of subtyping,Pub(τ) andTaint(τ) may be understood asτ ≤ Un andUn ≤ τ

5 These conditions are more liberal than the corresponding conditions in Gordon and Jef-
frey’s type system. In their type system, forPublic Challenge ϕ1 (which corresponds to
NPub(ϕ1, ∅) in our type system) to be tainted,ϕ1 must also be empty.

respectively, whereUn is the type of untrusted, non-secret data. Note thatDKey is
co-variant,EKey is contra-variant, andSKey is invariant; this is analogous to Pierce
and Sangiorgi’s IO types with subtyping [20].

` = Pub ϕ1 = ∅
Pub(N`(ϕ1, ϕ2))

` = Pub ⇒ ϕ2 = ∅
Taint(N`(ϕ1, ϕ2))

Pub(τ1) Pub(τ2)

Pub(τ1 × τ2)

Taint(τ1) Taint(τ2)

Taint(τ1 × τ2)

Pub(τ) Taint(τ)

Pub(SKey(τ))

Pub(τ) Taint(τ)

Taint(SKey(τ))

Taint(τ)

Pub(EKey(τ))

Pub(τ)

Taint(EKey(τ))

Pub(τ)

Pub(DKey(τ))

Taint(τ)

Taint(DKey(τ))

Fig. 5. PredicatesPub andTaint

Operations and relations on capabilities and typesWe write dom(ϕ) for the set
{A | ϕ(A) > 0}. We identify capabilities up to the following equality≈:

ϕ1 ≈ ϕ2 ⇐⇒ (dom(ϕ1) = dom(ϕ2) ∧ ∀A ∈ dom(ϕ1).ϕ1(A) = ϕ2(A)).

We write ϕ ≤ ϕ′ if ϕ(A) ≤ ϕ′(A) holds for everyA ∈ dom(ϕ) and we define the
summation of two capabilities by:(ϕ1 + ϕ2)(A) = ϕ1(A) + ϕ2(A). This is a natural
extension of the multiset union. We writeϕ1−ϕ2 for the leastϕ such thatϕ1 ≤ ϕ+ϕ2.

As we use indices to express dependent types, messages may be substituted in types.
Let i be an index andM a message. The substitution[M/i]τ is defined inductively in
the straight-forward manner, except for pair types where

[M/i](τ1 × τ2) = ([M/i]τ1)× ([M/(i + 1)]τ),

such that the index is shifted for the second component.

3.3 Typing

We introduce two forms of type judgments:Γ ; ϕ ` M : τ for messages, andΓ ; ϕ ` P
for processes, whereΓ , called a type environment, is a sequence of type bindings of the
form x1 : τ1, . . . , xn : τn. JudgmentΓ ; ϕ ` M : τ means thatM evaluates to a value
of type τ under the assumption that each name has the type described byΓ and that
capabilityϕ is available.Γ ; ϕ ` P means thatP can be safely executed (i.e. without
violation of correspondence assertions) if each free name has the type described byΓ
and the capabilityϕ is available. For example,x : Un; {end(x)} ` endx is valid but
x : Un; ∅ ` endx is not.

We consider only the judgements that arewell-formedin the sense that (i)ϕ refers
to only the names bound inΓ , and (ii) Γ must be well-formed, i.e., ifΓ is of the
form Γ1, x : τ, Γ2 thenτ only refers to the names bound inΓ1 andx is not bound in

neitherΓ1 nor Γ2. See [10] for the formal definition of the well-formedness of type
environments and judgments. We freely permute bindings in type environments as long
as they are well-formed; for example, we do not distinguish betweenx :Un, y :Un and
y : Un, x : Un.

Typing The typing rules are shown in Figure 6. The ruleT-CAST says that the current
capability can be used for discharging obligations and increasing capabilities of the
name.T-CAST plays a role similar to the typing rule for cast processes in Gordon and
Jeffrey’s type system, but our cast is implicit and changes only the capabilities and
obligations, not the shape of types. This difference is important for automated type
inference. The other rules for messages are standard;T-PAIR is the standard rule for
dependent sum types (except for the use of indices).

In the rules for processes, the capabilities shown bycan be any capabilities. The
rules are also similar to those of Gordon and Jeffrey, except for the rulesT-OUT, T-IN,
T-NEWN, andT-CHK. In ruleT-OUT, we require that the type of messageM2 is public
as it can be received by any process, including the attacker. Similarly, in ruleT-IN we
require that the type of the received valuex is tainted, as it may come from any process.
This is different from Gordon and Jeffrey’s type system where the type of messages
sent to or received from public channels must beUn, and a subsumption rule allows
any value of a public type to be typed asUn and a value of typeUn to be typed as any
tainted type. In effect, our type system can be considered a restriction of Gordon and
Jeffrey’s such that the subsumption rule is only allowed for messages sent or received
via public channels. This point is important for automated type inference.

In rule T-NEWN, the obligationϕ1 is attached to the fresh namex and recorded in
the atomic check capability. Capabilities corresponding toϕ1 can then later be extracted
by a check operation if the obligation has been fulfilled. In ruleT-CHK, chk`(M1, ϕ4)
in the conclusion means that the capability to checkM1 must be present. If the check
succeeds, the capabilityϕ5 attached toM2 can be extracted and used inP . In addition,
the obligations attached toM2 must be empty, i.e. all obligations initially attached to the
name must have been fulfilled, and hence the capabilityϕ4 can be extracted and used
in P . The above mechanism for extracting capabilities through obligations is different
from Gordon and Jeffrey’s type system in a subtle but important way, and provides more
expressive power: see [10]. The remaining rules should be self-explanatory.

Example 2.Recall the POSH protocol in Figure 2. Letτ beUn×NPub(∅, {end(0)}).
Then the process describing the behavior ofB (net?n. · · · in the last five lines) is typed
as the upper part of Figure 7. Here,Γ = net: Un, skB : EKey(τ), n : Un, msg: Un.
Similarly, the partdecrypt ctextis {|x|}pkB

−1 . · · · of process A is typed as the lower
part of Figure 7. Here,Γ2 = net : Un, pkB : DKey(τ), non : Un, ctext : Un and
Γ3 = Γ2, x : τ, m :Un, non′ :NPub(∅, {end(m)}). LetP1 be the entire process of the
POSH protocol. It is typed bynet: Un; ∅ ` P1.

The SOPH and SOSH protocols in Figure 1 are typed in a similar manner. We show
here only key types:

SOPH
pkB : EKey(Un×NPub({end(0)}, ∅)), skB : DKey(Un×NPub({end(0)}, ∅))

Γ, x : τ ; ϕ ` x : τ
(T-VAR)

Γ ; ϕ1 ` M1 : τ1 Γ ; ϕ2 ` M2 : [M1/0]τ2

Γ ; ϕ1 + ϕ2 ` (M1, M2) : τ1 × τ2

(T-PAIR)

Γ ; ϕ1 ` M1 : τ1 Γ ; ϕ2 ` M2 : SKey(τ1)

Γ ; ϕ1 + ϕ2 ` {M1}M2 : N`(∅, ∅)
(T-SENC)

Γ ; ϕ1 ` M1 : τ Γ ; ϕ2 ` M2 : EKey(τ)

Γ ; ϕ1 + ϕ2 ` {|M1|}M2
: N`(∅, ∅)

(T-AENC)

Γ ; ϕ1 ` M : N`(ϕ2, ϕ3)

Γ ; ϕ1 + ϕ′2 + ϕ′3 ` M : N`(ϕ2 − ϕ′2, ϕ3 + ϕ′3)
(T-CAST)

Γ ; ∅ ` 0
(T-ZERO)

Γ ; ϕ1 ` P1 Γ ; ϕ2 ` P2

Γ ; ϕ1 + ϕ2 ` P1 |P2

(T-PAR)

Γ ; ∅ ` P

Γ ; ∅ ` ∗P
(T-REP)

Γ ; ϕ′ ` P ϕ′ ≤ ϕ

Γ ; ϕ ` P
(T-CSUB)

Γ ; ϕ1 ` M1 : N`(∅, ∅)
Γ ; ϕ2 ` M2 : τ Pub(τ)

Γ ; ϕ1 + ϕ2 ` M1!M2

(T-OUT)

Γ ; ϕ1 ` M : N`(∅, ∅)
Γ, x : τ ; ϕ2 ` P Taint(τ)

Γ ; ϕ1 + ϕ2 ` M?x.P
(T-IN)

Γ, x : SKey(τ); ϕ ` P

Γ ; ϕ ` (νsymx)P
(T-NEWSK)

Γ, x : N`(ϕ1, ∅), ϕ + {chk`(x, ϕ1)} ` P

Γ ; ϕ ` (νx)P
(T-NEWN)

Γ, k1 : EKey(τ), k2 : DKey(τ); ϕ ` P

Γ ; ϕ ` (νasymk1, k2)P
(T-NEWAK)

Γ ; ϕ1 ` M1 : N`(,) Γ ; ϕ2 ` M2 : SKey(τ) Γ, x : τ ; ϕ3 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 ` decrypt M1 is {x}M2 .P
(T-SDEC)

Γ ; ϕ1 ` M1 : N`(,) Γ ; ϕ2 ` M2 : DKey(τ) Γ, x : τ ; ϕ3 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 ` decrypt M1 is {|x|}M2−1 .P
(T-ADEC)

Γ ; ϕ1 ` M1 : N`(,) Γ ; ϕ2 ` M2 : N`(∅, ϕ5) Γ ; ϕ3 + ϕ4 + ϕ5 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 + {chk`(M1, ϕ4)} ` check M1 is M2.P
(T-CHK)

Γ ; ϕ1 ` M : τ1 × τ2 Γ, y : τ1, z : [y/0]τ2; ϕ2 ` P

Γ ; ϕ1 + ϕ2 ` split M is (y, z).P
(T-SPLIT)

Γ ; ϕ1 ` M1 : τ1 × τ2 Γ ; ϕ2 ` M2 : τ1 Γ, z : [M2/0]τ2; ϕ3 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 ` match M1 is (M2, z).P
(T-MATCH)

Γ ; ϕ + {end(M)} ` P

Γ ; ϕ ` beginM.P
(T-BEGIN) Γ ; ϕ + {end(M)} ` endM

(T-END)

Fig. 6. Typing Rules

Γ ; ∅ ` msg: Un

Γ ; ∅ ` n : NPub(∅, ∅)
Γ ; {end(msg)} ` n : NPub(∅, {end(msg)})

Γ ; {end(msg)} ` (msg, n) : τ
· · ·

Γ ; {end(msg), chkPub(msg, ∅)} ` net!{|(msg, n)|}skB

Γ ; {chkPub(msg, ∅)} ` begin msg. · · ·
net: Un, skB : EKey(τ), n : Un; ∅ ` (νmsg) · · ·

net: Un, skB : EKey(τ); ∅ ` net?n. · · ·

Γ3; {end(m)} ` endm

Γ3; {chkPub(non, ∅)} ` check nonis non′. · · ·
Γ2, x : τ ; {chkPub(non, ∅)} ` split x is (m, non). · · ·

Γ2; {chkPub(non, ∅)} ` decrypt ctextis {|x|}pkB
−1 . · · ·

Fig. 7. Partial Typing of the POSH Protocol

SOSH
pkA : EKey(Un×NPr(∅, {end(0)})), skA : DKey(Un×NPr(∅, {end(0)}))
pkB : EKey(Un×NPr(∅, ∅)), skB : DKey(Un×NPr(∅, ∅))

Note that for POSH and SOPH the name qualifier must bePub, and only for the SOSH
protocol may it bePr. ut

3.4 Soundness of the Type System

The soundness of the type system is stated as follows.

Theorem 1 (soundness).If x1 : Un, . . . , xm : Un; ∅ ` P , thenP is robustly safe.

To prove this theorem above we first prepare the following lemma, which implies
that, in the definition of robust safety, it is sufficient to consider only well-typed oppo-
nent processes.

Lemma 1. If O is a process that contains no begin/end/check, then there existsO′ that
satisfies the following conditions:

1. x1 : Un, . . . , xm : Un; ∅ ` O′, where{x1, . . . , xk} = FN(O).
2. For any processP , if P |O′ is safe then so isP |O.

Proof SketchLety be a name not occurring inO and letO′ be the process obtained from
O by replacing any occurrence ofM1!M2 andM?x.P with (νy)(y!M1 | y?z.z!M2)
and(νy)(y!M | y?z.z?x.P), respectively. In this way we are free to change the types of
opponent values likeUn,Un×Un, andDKey(Un) by communicating them through
channels of public types. Then,O′ satisfies the required properties. See Appendix C for
more details.¤

By the lemma above, to prove Theorem 1, it suffices to show the following lemma.

Lemma 2. If ∅; ∅ ` P , thenP is safe.

Proof. See Appendix D.

Returning to the proof of the soundness theorem we then have:

Proof of Theorem 1Supposex1 :Un, . . . , xn :Un; ∅ ` P . LetO be a process that does
not contain begin/end/check. We need to show thatP |O is safe. By Lemma 1, there
exists a processO′ such that (i)y1 :Un, . . . , yk :Un; ∅ ` O′ and (ii) if P |O′ is safe, so
isP |O. Let{z1 :Un, . . . , zm :Un} = {x1 :Un, . . . , xn :Un}∪{y1 :Un, . . . , yk :Un}.
Then, by weakening and the typing rules, we have∅; ∅ ` (νz1) · · · (νzm)(P |O′). By
Lemma 2,(νz1) · · · (νzm)(P |O′) is safe. By the definition of the safety,P |O′ is also
safe. By condition (ii) above,P |O is also safe.¤

4 Type Inference

We now briefly discuss type inference. For this we impose a minor restriction to the type
system, namely that in ruleT-PAIR, if M1 is not a name then the indice0 cannot occur
in τ2. Similarly, in ruleT-MATCH we require that index0 does not occur unlessM2

is a name. These restrictions prevent the size of types and capabilities from blowing
up. Given as input a processP with free namesx1, . . . , xn, the algorithm to decide
x1 : Un, . . . , xn : Un; ∅ ` P proceeds as follows:

1. Determine theshape of the type(or simple type) of each term via a standard unifi-
cation algorithm, and construct a template of a type derivation tree by introducing
qualifier and capability variables.

2. Generate a setC of constraints on qualifier and capability variables based on the
typing rules such thatC is satisfiable if and only ifx1 : Un, . . . , xn : Un; ∅ ` P .

3. Solve the qualifier constraints.
4. Transform the capability constraints to linear inequalities over the rational numbers.
5. Use linear programming to determine if the linear inequalities are satisfiable.

In step 1, we can assume that there are no consecutive applications ofT-CAST and
T-CSUB. Thus, the template of a type derivation tree can be uniquely determined: for
each process and message constructor there is an application of the rule matching the
constructor followed by at most one application ofT-CAST or T-CSUB.

At step 3 we have a set of constraintsC of the form:

{`i = `′i | i ∈ I} ∪ {(`′′j = Pub) ⇒ (ϕj = ∅) | j ∈ J} ∪ C1

whereI andJ are finite sets,̀ i, `
′
i, `

′′
j are qualifier variables or constants, andC1 is

a set of effect constraints (likeϕ1 ≤ ϕ2). Here, constraints on qualifiers come from
equality constraints on types and conditionsPub(τ) andTaint(τ). In particular,(`′′j =
Pub) ⇒ (ϕj = ∅) comes from the rule forTaint(N`′′j (ϕ,ϕj)). By obtaining the most
general unifierθ of the first set of constraints{`i = `′i | i ∈ I} we obtain the constraint
setC ′ ≡ {(θ`′′j = Pub) ⇒ (θϕj = ∅) | j ∈ J}∪θC1. Letγ1, . . . , γk be the remaining

qualifier variables, and letθ′ = [Pr/γ1, . . . ,Pr/γk]. ThenC is satisfiable if and only
if θ′C ′ is satisfiable. Thus, we obtain the setθ′C ′ of effect constraints that is satisfiable
if and only if x1 : Un, . . . , xn : Un; ∅ ` P holds.

Except for step 3, the above algorithm is almost the same as our previous work and
we refer the interested reader to [18, 19]. By a similar argument to that given in [19] we
can show that under the assumptions that the size of each begin/end assertion occurring
in the protocol is bounded by a constant and that the size of simple types is polynomial
in the size of the protocol, the type inference algorithm runs in polynomial time.

Example 3.Recall the POSH protocol in Figure 2. By the simple type inference in step
1 we get the following types for names:

non, non′ : N, pkB : DKey(N×N), . . .

By preparing qualifier and capability variables we get the following elaborated types
and constraints on those variables:

non: Nγ1(ξ0,o, ξ0,c), non′ : Nγ′1(ξ
′
0,o, ξ

′
0,c), . . .

Pub(Nγ1(ξ0,o, ξ0,c)) γ1 = γ′1 ξ6 ≤ ξ3 + ξ4 + ξ5

ξ2 ≥ ξ′0,o + (ξ5 − ξ′0,c) ξ7 ≥ ξ1 + ξ2 + ξ3 + {chkγ1(non, ξ4)} · · ·

Here, the constraintPub(Nγ1(ξ0,o, ξ0,c)) comes fromnet!non, and the other con-
straints fromcheck non is non. · · ·. By solving the qualifier constraints, we getγ1 =
γ′1 = Pub, . . ., and are left with constraints on capability variables. By computing (an
over-approximation of) the domain of each capability, we can reduce it to constraints on
linear inequalities. For example, by lettingξi = {chkPub(non, ξ4) 7→ xi, end(m) 7→
yi, . . .}, the last constraint is reduced to:

x7 ≥ x1 + x2 + x3 + 1 y7 ≥ y1 + y2 + y3 + 0 · · ·

5 Implementation and Experiments

We have implemented a protocol verifierSPICA2 based on the type system and in-
ference algorithm discussed above. The implementation is mostly based on the for-
malization in the paper, except for a few extensions such as sum types and private
channels to securely distribute initial keys. The implementation can be tested athttp:
//www.kb.ecei.tohoku.ac.jp/˜koba/spica2/ .

We have testedSPICA2 on several protocols with the results of the experiments
shown in Table 5. Experiments were conducted using a machine with a 3GHz CPU and
2GB of memory.

The descriptions of the protocols used in the experiments are available at the above
URL. POSH, SOPH, andSOSHare (spiCA-notations of) the protocols given in Figure 1.
GNSLis the generalized Needham-Schroeder-Lowe protocol [9]: see Appendix B.2 for
details.Otway-Ree is Otway-Ree protocol using symmetric keys.Iso-two-pass
is from [16], and the remaining protocols are the Needham-Schroeder-Lowe protocol
and its variants, taken from the sample programs of Cryptyc [17] (but with type an-
notations and casts removed).ns-flawed is the original flawed version,nsl-3 and

nsl-7 are 3- and 7-message versions of Lowe’s fix, respectively. See [17] for the other
three. As the table shows, all the protocols have been correctly verified or rejected.
Furthermore, verification succeeded in less than a second except forGNSL. ForGNSL,
the slow-down is caused by the explosion of the number of atomic capabilities to be
considered, which blows up the number of linear inequalities obtained from capability
constraints.

Protocols Typing Time (sec.)
POSH yes 0.001
SOPH yes 0.001
SOSH yes 0.001
GNSL yes 7.40
Otway-Ree yes 0.019
Iso-two-passyes 0.004

Protocols Typing Time (sec.)
ns-flawed no 0.007
nsl-3 yes 0.015
nsl-7 yes 0.049
nsl-optimized yes 0.012
nsl-with-secret yes 0.023
nsl-with-secret-optimizedyes 0.016

Table 1.Experimental results

6 Extensions

In this section, we hint on how to modify our type system and type inference algorithm
to deal with other features. Formalization and implementation of the extensions are left
for future work.

Our type system can be easily adopted to deal with non-injective correspondence [14],
which allows multiple end-events to be matched by a single begin-event. It suffices to
relax the typing rules, for example, by changing the rules for begin- and end-events to:

Γ ; ϕ + {end(M) 7→ r} ` P r > 0
Γ ;ϕ ` beginM.P

r > 0
Γ ; ϕ + {end(M) 7→ r} ` endM

The capabilities attached to a name can now be extracted without using the check oper-
ation:

Γ ϕ ` M : N`(ϕ1, ϕ2)
Γ ϕ + ϕ2 ` M : N`(ϕ1, ϕ2)

Fournet et al. [12] generalized begin- and end-events by allowing predicates to be
defined by Datalog programs. For example, the process:

assumeemployee(a); expectcanRead(a, handbook)

is safe in the presence of the clause “canRead(X,handbook) :- employee(X)”. Here, the
primitivesassumeandexpectare like non-injective versions ofbeginandend. A simi-
lar type system can be obtained by extending our capabilities to mappings from ground
atomic formulas to rational numbers (whereϕ(L) > 0 meansL holds), and introduc-
ing rules for assume and expect similar to the rules above for begin and end-events. To
handle clauses like “canRead(X,handbook) :- employee(X)”, we can add the following

rule:
Γ ; ϕ + {L 7→ r} ` P There is an (instance of) clauseL : − L1, . . . , Lk

r ≤ ϕ(Li) for eachi ∈ {1, . . . , k}
Γ ; ϕ ` P

This allows us to derive a capability forL whenever there are capabilities forL1, . . . , Lk.
To reduce capability constraints to linear programming problems, it suffices to extend
the algorithm to obtain the domain of each effect [19], taking clauses into account (more
precisely, if there is a clauseL : −L1, . . . , Lk andθL1, . . . , θLk are in the domain of
ϕ, we addθL to the domain ofϕ).

To deal with trust and witness in [16], we need to mix type environments and capa-
bilities, so that type environments can also be attached to names and passed around. The
resulting type system is rather complex, so that we leave the details to another paper.

7 Related Work

The present work extends two lines of previous work: Gordon and Jeffrey’s type sys-
tems for authenticity [15, 16], and Kikuchi and Kobayashi’s work to enable type infer-
ence for symmetric cryptographic protocols [19]. In our opinion the extension is non-
trivial, requiring the generalization of name types and a redesign of the type system.
This has yielded a fully-automated and efficient protocol verifier. As for the expressive
power, the fragment of Gordon and Jeffrey’s type system (subject to minor restrictions)
without trust and witness can be easily embedded into our type system. On the other
hand, thanks to the uniform treatment of name types in terms of capabilities and obliga-
tions, our type system can express protocols that are not typable in Gordon and Jeffrey’s
type system, like the GNSL multi-party protocol [9]. See [10] for more details.

Gordon et al. [3, 4] extended their work to verify source code-level implementation
of cryptographic protocols by using refinement types. Their type systems still require
refinement type annotations. We plan to extend the ideas of the present work to enable
partial type inference for their type system. Bugliesi, Focardi, and Maffei [6, 11, 7] have
proposed a protocol verification method that is closely related to Gordon and Jeffrey’s
type systems. They [11] developed an algorithm for automatically inferringtags(which
roughly correspond to Gordon and Jeffrey’s types in [15, 16]). Their inference algorithm
is based on exhaustive search of taggings by backtracking, hence our type inference
would be more efficient. As in Gordon and Jeffrey type system, their tagging and typing
system is specialized for the typical usage of nonces in two-party protocols, and appears
to be inapplicable to multi-party protocols like GNSL.

There are automated protocol verification tools based on other approaches, such as
ProVerif [5] and Scyther [8]. Advantages of our type-based approach are: (i) it allows
modular verification of protocols6; (ii) it sets up a basis for studies of partial or full

6 Although the current implementation ofSPICA2 only supports whole protocol analysis, it
is easy to extend it to support partial type annotations to enable modular verification. For
that purpose, it suffices to allow bound variables to be annotated with types, and generate
the corresponding constraints during type inference. For example, for a type-annotated input
M?(x : τ1).P , we just need to add the subtype constraintτ1 ≤ τ to ruleT-IN.

type inference for more advanced type systems for protocol verification [4] (for an
evidence, recall Section 6); and (iii) upon successful verification, it generates types as a
certificate, which explains why the protocol is safe, and can be independently checked
by other type-based verifiers [16, 4]. On the other hand, ProVerif [5] and Scyther [8]
have an advantage that they can generate an attack scenario given a flawed protocol.
Thus, we think that our type-based tool is complementary to existing tools.

8 Conclusion

We have redesigned Gordon and Jeffrey’s type system for authenticity of asymmetric
cryptographic protocols, and developed a type inference algorithm. This has enabled
fully automated type-based protocol verification, which requires no type annotations.
Future work includes an extension to deal with trust and witness in Gordon and Jeffrey’s
type system.

References

1. M. Abadi. Secrecy by typing in security protocols.JACM, 46(5):749–786, 1999.
2. M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus.

Information and Computation, 148(1):1–70, January 1999.
3. J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for

secure implementations. InProceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF 2008), pages 17–32, 2008.

4. K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code
by typing. InProceedings of POPL 2010, pages 445–456, 2010.

5. B. Blanchet. From Secrecy to Authenticity in Security Protocols. In9th International Static
Analysis Symposium (SAS’02), volume 2477 ofLNCS, pages 342–359. Springer-Verlag,
2002.

6. M. Bugliesi, R. Focardi, and M. Maffei. Analysis of typed analyses of authentication pro-
tocols. In18th IEEE Computer Security Foundations Workshop, (CSFW-18 2005), pages
112–125, 2005.

7. M. Bugliesi, R. Focardi, and M. Maffei. Dynamic types for authentication.Journal of
Computer Security, 15(6):563–617, 2007.

8. C. J. F. Cremers. Unbounded verification, falsification, and characterization of security pro-
tocols by pattern refinement. InProceedings of ACM Conference on Computer and Commu-
nications Security (CCS 2008), pages 119–128, 2008.

9. C. J. F. Cremers and S. Mauw. A family of multi-party authentication protocols - extended
abstract. InProceedings of WISSEC’06, 2006.

10. M. Dahl, N. Kobayashi, Y. Sun, and H. Hüttel. Type-based automated verification of authen-
ticity in asymmetric cryptographic protocols. Full version, available athttp://www.kb.
ecei.tohoku.ac.jp/˜koba/papers/protocol-full.pdf , 2011.

11. R. Focardi, M. Maffei, and F. Placella. Inferring authentication tags. InProceedings of the
Workshop on Issues in the Theory of Security (WITS 2005), pages 41–49, 2005.

12. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies.ACM
Trans. Prog. Lang. Syst., 29(5), 2007.

13. A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
Technical Report MRS-TR-2002-31, Microsoft Research, Aug. 2002.

14. A. D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many correspondences in secu-
rity protocols. InSoftware Security – Theories and Systems, Mext-NSF-JSPS International
Symposium (ISSS 2002), volume 2609 ofLNCS, pages 263–282. Springer-Verlag, 2002.

15. A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.Journal of
Computer Security, 11(4):451–520, 2003.

16. A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
Journal of Computer Security, 12(3-4):435–483, 2004.

17. C. Haack and A. Jeffrey. Cryptyc.http://www.cryptyc.org/ , 2004.
18. D. Kikuchi and N. Kobayashi. Type-based verification of correspondence assertions for

communication protocols. InProceedings of APLAS 2007, volume 4807 ofLNCS, pages
191–205. Springer-Verlag, 2007.

19. D. Kikuchi and N. Kobayashi. Type-based automated verification of authenticity in crypto-
graphic protocols. InProceedings of ESOP 2009, volume 5502 ofLNCS, pages 222–236.
Springer-Verlag, 2009.

20. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.Mathematical
Structures in Computer Science, 6(5):409–454, 1996.

21. T. Y. Woo and S. S. Lam. A semantic model for authentication protocols. InRSP: IEEE
Computer Society Symposium on Research in Security and Privacy, pages 178–193, 1993.

A Well-formedness of Type Environments and Judgments

The well-formedness conditions for type judgments and type environments are given in
Figure 8. Here,↑N denotes the set of extended names obtained fromN by replacing
each numberi in N with i + 1. For example,↑{x, y, 0} = {x, y, 1}.

`wf Γ FEN(ϕ) ⊆ dom(Γ) dom(Γ) `wf τ

`wf Γ ; ϕ ` M : τ
(WFJ-MESSAGE)

`wf Γ FEN(ϕ) ⊆ dom(Γ)

`wf Γ ; ϕ ` P
(WFJ-PROC)

`wf ∅
(WFTE-EMPTY)

`wf Γ dom(Γ) `wf τ x /∈ dom(Γ)

`wf Γ, x : τ
(WFTE-EXT)

FEN(ϕ1) ∪ FEN(ϕ2) ⊆ N

N `wf N`(ϕ1, ϕ2)
(WFT-NAME)

N `wf τ

N `wf SKey(τ)
(WFT-SKEY)

N `wf τ

N `wf DKey(τ)
(WFT-DKEY)

N `wf τ

N `wf EKey(τ)
(WFT-EKEY)

N `wf τ1 {0} ∪ ↑N `wf τ2

N `wf τ1 × τ2

(WFT-PAIR)

Fig. 8. Well-formedness conditions for type judgments

B Relation to Gordon-Jeffrey Type System

We now turn to the subject of relating our type system to that of Gordon and Jeffrey.
There are two main points here. First, we show that the fragment of the Gordon-Jeffrey
type system withoutwitness andtrust can be embedded into our type system. We make
some additional restrictions regarding nonce types but these appear to be without loss of
expressive power for practice purposes. Second, we show that our formulation of nonce
types actually allows us to type realistic protocols untypable in the Gordon-Jeffrey type
system.

B.1 Partial Embedding of Gordon and Jeffrey’s Type System

Restrictions In order to show an embedding of their type system into ours we have
to make a few modifications. Most notably, we (i) leave out an embedding forwitness

andtrust processes, (ii) inline the message subsumption rule, (iii) modifycheck atomic
effects to additionally contain an effectes, and (iv) change the typing of processes
dealing with nonce types.

Modification (ii) means that the subsumption rule for messages is removed and in-
lined in rulesPROC OUTPUT UN andPROC INPUT UN (and similarly forPROC REPEAT INPUT UN)
instead:

Γ `GJ M : Un Γ `GJ N : T T ≤GJ Un

Γ `GJ out M N : []
(PROC OUTPUT UN)

Γ `GJ M : Un Γ, y : T `GJ P : es Un ≤GJ T

Γ `GJ inp M (y : T); P : es
(PROC INPUT UN)

This modification is justified by the belief that honest processes should not have to
apply subsumptions in more general ways than this, in that doing so means changing a
type from or to something else thanUn.

Modifications (iii) and (iv) mean that typing rulesPROC CHALLENGE andPROC CHECK

are changed as follows:

Γ `GJ fs Γ, x : l Challenge fs `GJ P : es

Γ `GJ new (x : l Challenge fs); P : es− [check l x fs]
(PROC CHALLENGE)

Γ `GJ M : l Challenge esC

Γ `GJ N : l Response esR Γ `GJ P : fs
es = fs − (esC + esR) es′C = esC

Γ `GJ check M is N ; P : es + [check l M es′C]
(PROC CHECK)

One consequence of this is thatM in rule PROC CHECK can no longer be bound
to names with different check capabilities. Moreover, while the addition of condition
es′C = esC makes rulePROC CHECK more restrictive than in the original formulation,
breaking this condition does require use of either subtyping or matching in a way that
respectively should not be done by honest processes, or does not appear to be required
by a significant number of protocols. In the former case, subtyping must be used to turn
a public nonce into a private nonce. In the latter case,match can be used to turn a check
capability for one name into a check capability for another name. This however, seems
to be possible only for protocols that deadlock.

We apply a few less important modifications to the type system as well. TypeTop is
removed and typing rulesPROC BEGIN andPROC END are modified to simply require
M to be of some typeT instead:

Γ `GJ M : T Γ `GJ P : es

Γ `GJ begin M ;P : es− [end M]
(PROC BEGIN)

Γ `GJ M : T Γ `GJ P : es

Γ `GJ end M ;P : es + [end M]
(PROC END)

As far as we checked, all the protocols (without trust and witness) typed in [16] are
typable under all the modifications above.

For the calculus we first consider a variant of the process calculus withoutinl (M)
andinr (M) messages, and withoutcase processes. Secondly, we restrictend processes
to match our non-continuous variant. Thirdly, we restrict the generation of key pairs so
that messagesEncrypt (M) andDecrypt (M) may only occur immediately following the
creation of a key pair (see below). The restrictions on the calculus can be removed by
an easy extension of our calculus and type system, and are improsed here just for the
sake of simplicity.

Embedding To ease the presentation we first add a derived process to both calculi

let y is x in P = match (c, x) is (c, y).P

for some constantc, along with typing rule

Γ ; ϕ1 ` x : τ Γ, y : τ ; ϕ2 ` P

Γ ; ϕ1 + ϕ2 ` let y is x in P
(T-LET)

derivable from typing rulesT-MATCH andT-PAIR.

[(x :T, U)] = [T]× [0/x][U]

[Un] = NPub(∅, ∅)
[SharedKey(T)] = SKey([T])

[Public Challenge es] = NPub([es], ∅)
[Private Challenge es] = NPr([es], ∅)
[Public Responce es] = NPub(∅, [es])

[Private Responce es] = NPr(∅, [es])
[Encrypt Key(T)] = EKey([T])

[Decrypt Key(T)] = DKey([T])

Fig. 9. Type mapping

The central ingredient in the embedding is the mapping of types. For this we first
have a straightforward mapping of messagesM and effectses relying purely on syn-
tactical conversion; for this reason we shall often simply writeM instead of[M] andes
instead of[es]. We then define the mapping[T] of a Gordon-Jeffrey typeT as in Figure
9. We extend this to environmentsΓ in the point-wise manner. Note that as discussed

above we consider a variant of the Gordon-Jeffrey type system withtopTop andSum
types and our mapping is left undefined for these. As we furthermore allow only a re-
stricted use ofKeyPair types the mapping is also left undefined for these as well as for
CR types since these should not occur in user code.

In the mapping of processes (Figure 10) we use the provided typing information
in the case of name restriction. As discussed above we impose some restrictions on
processes and the mapping is left undefined for these; for the remaining processes the
mapping is defined recursively.

[cast x is (y :T); P] = let y is x in [P]

[check x is (y :T); P] = check x is y.[P]

[end M ; 0] = endM

[begin M ; P] = beginM.[P]

[new (x :Un); P] = (νx)[P]

[new (x : l Challenge es); P] = (νx)[P]

[new (x :SharedKey(T)); P] = (νsymx)[P]2
664

new (x :KeyPair(T));
let y is Encrypt(x) in
let z is Decrypt(x) in
P (x 6∈ FN(P))

3
775 = (νasymy, z)[P]

[new (x :Un); P] = (νx)[P]

[out M N] = M !N

[inp M (x :T); P] = M?x.[P]

[repeat inp M (x :T); P] = ∗M?x.[P]

[split M is (x :T, y :U); P] = split M is (x, y).[P]

[match M is (N, y : U); P] = match M is (N, y).[P]

[decrypt M is {x :T}N ; P] = decrypt M is {x}N .[P]

[decrypt M is {|x :T |}N−1 ; P] = decrypt M is {|x|}N−1 .[P]

[P | Q] = [P] | [Q]

[stop] = 0

Fig. 10.Process mapping

Theorem 2. If Γ `GJ P : es then[Γ]; [es] ` [P].

B.2 Limitations of Gordon and Jeffrey Type System

The converse of the result of the previous subsection does not hold, i.e. there are some
realistic protocols that are typable in our type system but not in the Gordon-Jeffrey type

system. This is a consequence of how nonces are typed: in their type system, nonce
types are given two kinds of types:` Challenge es and` Response es. This forces each
nonce to be used in at most two phases, first as a challenge, and then as a response. Our
name types do not impose such restriction. The rest of this section illustrates two cases
of protocols typable in our type system but not in Gordon and Jeffrey’s type system.

Generalised Needham-Schroeder-LoweThe GNSL multi-party protocol [9] estab-
lishes mutual authentication betweenp parties using a minimal number of messages.
Forp = 3 with participants namedR0, R1, andR2, the protocol looks as follows:

R0 -> R1: {|R0,R2,n0| }pk1
R1 -> R2: {|R0,R1,n0,n1| }pk2
R2 -> R0: {|R1,R2,n0,n1,n2| }pk0
R0 -> R1: {|n1,n2| }pk1
R1 -> R2: {|n2| }pk2

whereni is a nonce generated byRi andpki the public key of a key pair belonging to
Ri.

ParticipantR0 first sends his noncen0 to R1 who appends his noncen1 before
forwarding toR2. Likewise,R2 appends his noncen2 before sending all nonces back
to R0. For the second round,R0 checks his nonce against the one received fromR2

and sendsn1 andn2 to R1. After checking his nonce,R1 sendsn2 to R2 who then also
checks his nonce.

The authenticity property dictates that each party agrees with both of the other par-
ties on who the participants are, and is specified like so:

R0 -> R1: {|R0,R2,n0| }pk1
R1 begins (R0,R1,R2,01)
R1 begins (R0,R1,R2,21)
R1 -> R2: {|R0,R1,n0,n1| }pk2
R2 begins (R0,R1,R2,02)
R2 begins (R0,R1,R2,12)
R2 -> R0: {|R1,R2,n0,n1,n2| }pk0
R0 ends (R0,R1,R2,01)
R0 ends (R0,R1,R2,02)
R0 begins (R0,R1,R2,10)
R0 begins (R0,R1,R2,20)
R0 -> R1: {|n1,n2| }pk1
R1 ends (R0,R1,R2,10)
R1 ends (R0,R1,R2,12)
R1 -> R2: {|n2| }pk2
R2 ends (R0,R1,R2,20)
R2 ends (R0,R1,R2,21)

for some constants01, . . . , 21. Note that for this property to hold we must assume that
none of the partiesR0, R1, andR2 are compromised.

From the type system’s point of view, the authenticity property e.g. means that a
end-capability from bothR1 andR2 must be transferred toR0 using one noncen0.
This is a problem for Gordon and Jeffrey’s type system since capabilities can only be
attached to nonces once due to the fact that thePROC CAST typing rule will only accept
a Challenge type and additionally turn it into aResponse type. Our type system does
not have this limitation and can type the protocol with the following initial types for the
nonces:

n0 : NPr({end(. . . , 01), end(. . . , 21), end(. . . , 02)}, ∅)
n1 : NPr({end(. . . , 10), end(. . . , 12)}, ∅)
n2 : NPr({end(. . . , 20), end(. . . , 21)}, ∅)

so that the type ofn0 is later changed byR1 to NPr({end(. . . , 02)}, ∅) and then by
R2 to NPr(∅, ∅). Whenn0 makes it back toR0 it can extract capabilities
{end(. . . , 01), end(. . . , 21), end(. . . , 02)} and useend(. . . , 21) to discharge the obli-
gation attached ton2. These changes of name types cannot be expressed in Gordon and
Jeffrey’s type system.

SOPH HandshakesAnother example of a protocol that is typable in our type system
but not in Gordon and Jeffrey’s is the SOPH handshake protocol in Figure 1. As men-
tioned in Example 2 in Section 3.3,pkB should have typeEKey(Un×NPub({end(0) 7→
1}, ∅)), which corresponds toEncryptKey(x :Un, Pub Challenge [end(x)]) in Gordon
and Jeffrey’s type system. The keypkB is public, but thePub predicate does not hold
for this type in Gordon and Jeffrey’s type system [16].7 The discrepancy comes from
the fact thatTaint(NPub(ϕ, ∅)) holds for arbitraryϕ in our type system, but the corre-
sponding conditionTaint(Pub Challenge ϕ) holds only for the caseϕ = ∅ in Gordon
and Jeffrey’s. This seems to be caused by the difference in the rules for typing check
operations as discussed in the previous subsection. Because of the difference, allowing
Taint(PubChallenge ϕ) to hold for arbitraryϕ is unsound for Gordon and Jeffrey’s
type system.

C Proof of Lemma 1

Here we give a more detailed proof of Lemma 1. We define encodings of messages
and processes.[[M]]x translates a messageM (that may not be well-typed) to a well-
typed process that sends the value ofM on channelx. [[P]] translates a processP to an
equivalent, well-typed process. We assume below that renaming is applied as necessary

7 Confirmed by email discussion with Gordon and Jeffrey.

to avoid the name clashing.

[[y]]x = x!y
[[(M1,M2)]]x =

(νy1)(νy2)([[M1]]y1
| [[M2]]y2

| y1?z1.y2?z2.x!(z1, z2))
[[{M1}M2]]x =

(νy1)(νy2)([[M1]]y1
| [[M2]]y2

| y1?z1.y2?z2.x!{z1}z2)
[[{|M1|}M2

]]x =
(νy1)(νy2)([[M1]]y1

| [[M2]]y2
| y1?z1.y2?z2.x!{|z1|}z2

)

[[0]] = 0
[[M1!M2]] =

(νy1)(νy2)([[M1]]y1
| [[M2]]y2

| y1?z1.y2?z2.z1!z2)
[[M1?x.P]] = (νy1)([[M1]]y1

| y1?z1.z1?x. [[P]])
[[∗P]] = ∗[[P]]
[[(νx)P]] = (νx) [[P]]
[[(νsymx)P]] = (νsymx) [[P]]
[[(νasymx1, x2)P]] = (νasymx1, x2) [[P]]

[[check M1 is M2.P]] =
(νy1)(νy2)([[M1]]y1

| [[M2]]y2
|

y1?z1.y2?z2.check z1 is z2. [[P]])
[[split M is (x1, x2).P]] =

(νy)([[M]]y | y?z.split z is (x1, x2). [[P]])
[[match M1 is (M2, x).P]] =

(νy1)(νy2)([[M1]]y1
| [[M2]]y2

|
y1?z1.y2?z2.match z1 is (z2, x). [[P]])

[[decrypt M1 is {x}M2 .P]] =
(νy1)(νy2)([[M1]]y1

| [[M2]]y2
|

y1?z1.y2?z2.decrypt z1 is {x}z2 . [[P]])
[[decrypt M1 is {|x|}M2

−1 .P]] =
(νy1)(νy2)([[M1]]y1

| [[M2]]y2
|

y1?z1.y2?z2.decrypt z1 is {|x|}z2−1 . [[P]])
[[beginM.P]] = beginM. [[P]]
[[endM]] = endM

By straightforward induction on the structures ofM andP , we can prove:

y1 : Un, . . . , yn : Un, x : Un; ∅ ` [[M]]x : Un

and
z1 : Un, . . . , zm : Un; ∅ ` [[P]]

whereFN(M) = {y1, . . . , yn} andFN(P) = {z1, . . . , zm}. It is also obvious that for
any reduction sequence ofP |Q, there is a corresponding[[P]] |Q. Thus, the required
result of the lemma holds forO′ = [[O]].

D Proof of Lemma 2

D.1 Extended Processes and Typing

To prove Lemma 2, we extend the syntax of processes and the typing rules in order to
express invariants preserved by reductions.

Extended ProcessesWe extend the syntax of processes, in order to make it explicit
what obligations and capabilities is carried by each name, and when they are attached
to the name. We distinguish below between (bound) variables, ranged over byx, and
(free) names, ranged over byn.

Definition D1 The sets ofextended messages and processesare given by:

M (ext. messages)::=
v | addC(M, ϕ1, ϕ2) | (M1,M2) | {M1}M2 | {|M1|}M2

V (values)::= v | (V1, V2) | {V1}V2 | {|V1|}V2

v ::= x | n(ϕ1,ϕ2)

P (ext. processes)::=
0 | M1!M2 | M?x.P | (P1 |P2) | ∗P

| (νx : τ)P | (νsymk : τ)P | (νasymk1 : τ1, k2 : τ2)P
| check M1 is M2.P
| split M is (x, y).P | match M1 is (M2, y).P
| decrypt M1 is {x}M2 .P | decrypt M1 is {|x|}M2

−1 .P
| beginV.P | endV

The typing rules for extended processes are shown in Figure 12 and 13. In Figure 12,
≤ex is the least reflexive relation that satisfies the following rules:

Pub(τ) Taint(τ ′)
τ ≤ex τ ′

(EXSUBT-PUBTAINT)

ϕ1 ≤ ϕ′1 ϕ2 ≥ ϕ′2
N`(ϕ1, ϕ2) ≤ex N`(ϕ′1, ϕ

′
2)

(EXSUBT-NAME)

We show properties of the subtyping relation below.

Lemma 3. If τ1 ≤ex τ2 andτ2 ≤ex τ3, thenτ1 ≤ex τ3.

Proof. By a case analysis on the rules used for derivingτ1 ≤ex τ2 andτ2 ≤ex τ3. If
one of the rules is reflexivity, the result follows immediately. There are four remaining
cases.

– CaseEXSUBT-PUBTAINT -EXSUBT-PUBTAINT : In this case,Pub(τ1) andTaint(τ3),
from which the result follows byEXSUBT-PUBTAINT .

– CaseEXSUBT-NAME-EXSUBT-NAME: In this case,τi = N`(ϕi, ϕ
′
i) for i ∈

{1, 2, 3} with ϕ1 ≤ ϕ2 ≤ ϕ3 and ϕ′1 ≥ ϕ′2 ≥ ϕ′3. Thus, the result follows by
EXSUBT-NAME.

– CaseEXSUBT-PUBTAINT -EXSUBT-NAME: In this case, we haveτi = N`(ϕi, ϕ
′
i)

for i ∈ {2, 3} with Pub(τ1), Taint(N`(ϕ2, ϕ
′
2), ϕ2 ≤ ϕ3 andϕ′2 ≥ ϕ3. If ` = Pub,

thenϕ′2 = ∅, which impliesϕ3 = ∅. Thus, we havè = Pub ⇒ ϕ3 = ∅, which
impliesTaint(τ3). The required result is obtained by usingEXSUBT-PUBTAINT .

– CaseEXSUBT-NAME-EXSUBT-PUBTAINT : In this case, we haveτi = N`(ϕi, ϕ
′
i)

for i ∈ {1, 2} with Taint(τ3), Pub(N`(ϕ2, ϕ
′
2), ϕ1 ≤ ϕ2 andϕ′1 ≥ ϕ2. By the con-

dition Pub(N`(ϕ2, ϕ
′
2)), we havè = Pub andϕ2 = ∅, which impliesϕ1 = ∅. Thus,

we havePub(τ1). The required result follows byEXSUBT-PUBTAINT .

The following lemma guarantees that the subsumption rule (EXT-SUB) only in-
creases obligations, and decreases capabilities of a name type, unless the qualification
of the name type is changed fromPub to Pr.

Lemma 4. If N`(ϕ1, ϕ2) ≤ex N`′(ϕ′1, ϕ
′
2), then either̀ = Pub∧ `′ = Pr∧ϕ1 = ∅,

or ` = `′ ∧ ϕ1 ≤ ϕ′1 ∧ ϕ2 ≥ ϕ′2.

Proof. In the case whereN`(ϕ1, ϕ2) ≤ex N`′(ϕ′1, ϕ
′
2) was derived using ruleEXSUBT-NAME

we immediately have that the second set of conditions are satisfied. If instead rule
EXSUBT-PUBTAINT was used we first note that in this case` = Pub must hold.
Then, if`′ = Pub (respectivelyPr) we have that the second (respectively first) set of
conditions are satisfied.

Extended Operational Semantics

Definition D2 The set ofmessage reduction contextsfor messages, ranged over by
Cm, is given by:

Cm ::= [] | addC(Cm, ϕ1, ϕ2) | (Cm,M) | (V, Cm) | {Cm}M

| {V }Cm | {|Cm|}M | {|V |}Cm

The message reduction relation is defined by:

(ϕ + ϕ′1 + ϕ′2, Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ
′
2)])

−→ex (ϕ,Cm[n(ϕ1−ϕ′1,ϕ2+ϕ′2)])

(ϕ,Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ
′
2)]) −→ex Error
(if ϕ′1 + ϕ′2 6≤ ϕ)

The extended reduction relation〈Ψ, E, Γ,K, ϕ〉 −→ex 〈Ψ ′, E′, Γ ′,K′, ϕ′〉 is de-
fined by the rules in Figure 11. Here,Ψ is a multiset of extended processes,E is a set of
messages (that represent the begin-events that have occured but have not been matched
by corresponding end-events),Γ is a set of names that have been created (with type as-
sumptions),K is a set of pairs of decryption and encryption keys, andϕ is a capability.

In the figure,C ranges over the set of reduction contexts (for messages), given by:

C ::= M1!M2 | v!Cm | M?x.P | (P1 |P2)
| check Cm is M.P | check V is Cm.P
| split Cm is (x, y).P
| match Cm is (M, y).P | match V is (Cm, y).P
| decrypt Cm is {x}M2 .P | decrypt V is {x}Cm

.P
| decrypt Cm is {|x|}M2

−1 .P
| decrypt V is {|x|}Cm

−1 .P

D.2 Proof

For an extended processP , we writeErase(P) for the process obtained by removing
type annotations and “addC”.

Lemma 5. If Γ ; ϕ ` P , then there existsP ′ such thatΓ ; ϕ `ex P ′ andErase(P ′) =
P .

Proof. Easy induction on the derivation ofΓ ;ϕ ` P .

Lemma 6. If 〈P, ∅, ∅, ∅, ∅〉 6−→∗
ex Error, thenErase(P) is safe.

Proof. We show contraposition. SupposeErase(P) is not safe, i.e.,〈Erase(P), ∅, ∅, ∅〉 −→∗

Error. Then〈P, ∅, ∅, ∅, ∅〉 −→∗
ex Error follows from the facts: (i) if〈Erase(P), E, dom(Γ),K〉 −→

〈Q,E′, N ′,K′〉, then either〈P, E, Γ,K, ϕ〉 −→ex 〈P ′, E′, Γ ′,K′, ϕ′〉with Erase(P ′) =
P anddom(Γ ′) = N ′ or 〈P, E, Γ,K, ϕ〉 −→ex Error; and (ii) if 〈Erase(P), E, dom(Γ),K〉 −→
Error, then〈P, E, Γ,K, ϕ〉 −→∗

ex Error. (These facts follow by an easy case anal-
ysis on the rule used for deriving〈Erase(P), E, dom(Γ),K〉 −→ 〈Q,E′, N ′,K′〉 or
〈Erase(P), E, dom(Γ),K〉 −→ Error.)

Lemma 7. If ∅; ∅ `ex P , then〈P, ∅, ∅, ∅, ∅〉 6−→∗
ex Error.

To show Lemma 7, we define a typing rule for run-time configurations (of the form
〈Ψ, E, Γ,K, ϕ〉) and show (i) the typing is preserved (Lemma 11) and (ii) a well-typed
configuration is not immediately reduced toError (Lemma 8).

In order to express a necessary invariant, we introduce a reduction relation(ϕ, N) =⇒Ψ

(ϕ′, N ′), which is used to collect all the capabilities, including those attached to names.
Here, the second componentN is a set of names, used to keep track of the names that
have been checked.

n(ϕ3,ϕ4) occurs inΨ

(ϕ1 + {chk`(n, ϕ2) 7→ 1}, N)
=⇒Ψ (ϕ1 + (ϕ2 − ϕ3) + ϕ4, N ∪ {n})

We write ConsistentCap(E, ϕ, Ψ) if, whenever(ϕ, ∅) =⇒∗
Ψ (ϕ′, N), the follow-

ing conditions hold: (i)E(V) ≥ ϕ′(end(V)) for every V , and (ii) for everyn, if
ϕ′(chk`(n, ϕ2)) ≥ 1, thenn 6∈ N .

(ϕ, M) −→ex (ϕ′, M ′)

〈Ψ] {C[M]}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {C[M ′]}, E, Γ,K, ϕ′〉 (EXR-M)

(ϕ, M) −→ex Error

〈Ψ] {C[M]}, E, Γ,K, ϕ〉 −→ex Error
(EXR-M-ER)

〈Ψ] {n(,)?y.P, n(,)!V }, E, Γ,K, ϕ〉 −→ex 〈Ψ] {[V/y]P}, E, Γ,K, ϕ〉 (EXR-COM)

〈Ψ] {P |Q}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {P, Q}, E, Γ,K, ϕ〉 (EXR-PAR)

〈Ψ] {∗P}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {∗P, P}, E, Γ,K, ϕ〉 (EXR-REP)

〈Ψ] {(νx : N`(ϕ1, ∅))P}, E, Γ,K, ϕ〉 −→ex

〈Ψ] {[n(ϕ1,∅)/x]P}, E, Γ ∪ {n : N`(ϕ1, ∅)},K, ϕ + {chk`(n, ϕ1)}〉 (n /∈ dom(Γ))
(EXR-NEWN)

〈Ψ] {(νsymx : τ)P}, E, Γ,K, ϕ〉 −→ex

〈Ψ] {[k/x]P}, E, Γ ∪ {k : τ},K, ϕ〉 (k /∈ dom(Γ))
(EXR-NEWSK)

〈Ψ] {(νasymx : τ1, y : τ2)P}, E, Γ,K, ϕ〉 −→ex

〈Ψ] {[k1/x, k2/y]P}, E, Γ ∪ {k1 : τ1, k2 : τ2},K ∪ {(k1, k2)}, ϕ〉 (k1, k2 /∈ dom(Γ))
(EXR-NEWAK)

〈Ψ] {check n(,) is n(∅,ϕ1).P}, E, Γ,K, ϕ + {chk`(n, ϕ2)}〉 −→ex

〈Ψ] {P}, E, Γ,K, ϕ + ϕ1 + ϕ2〉 (EXR-CHK)

(ϕ0 6= ∅) ∨ ¬∃ϕ2, `.(chk`(n, ϕ2) ∈ ϕ)

〈Ψ] {check n(,) is n(ϕ0,ϕ1).P}, E, Γ,K, ϕ〉 −→ex Error
(EXR-CHK-ER)

〈Ψ] {split (V, W) is (x, y).P}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {[V/x, W/y]P}, E, Γ,K, ϕ〉
(EXR-SPLT)

〈Ψ] {match (V, W) is (V, z).P}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {[W/z]P}, E, Γ,K, ϕ〉
(EXR-MTCH)

〈Ψ] {decrypt {V }k is {x}k.P}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {[V/x]P}, E, Γ,K, ϕ〉
(EXR-SDEC)

(k1, k2) ∈ K
〈Ψ] {decrypt {|V |}k1

is {|x|}k2−1 .P}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {[V/x]P}, E, Γ,K, ϕ〉
(EXR-ADEC)

〈Ψ] {beginV.P}, E, Γ,K, ϕ〉 −→ex 〈Ψ] {P}, E] {V }, Γ,K, ϕ + {end(V)}〉
(EXR-BEG)

〈Ψ] {endV }, E] {V }, Γ,K, ϕ + {end(V)}〉 −→ex 〈Ψ, E, Γ,K, ϕ〉 (EXR-END)

(V 6∈ E) ∨ (ϕ(end(V)) < 1)

〈Ψ] {endV }, E, Γ,K, ϕ〉 −→ex Error
(EXR-END-ER)

Fig. 11.Extended Operational Semantics

Γ, x : τ ; ϕ `ex x : τ (EXT-VAR)

Γ, n : N`(,); ϕ `ex n(ϕ1,ϕ2) : N`(ϕ1, ϕ2) (EXT-NAME)

Γ ; ϕ `ex V : N`(ϕ1, ϕ2)

Γ ; ϕ + ϕ′1 + ϕ′2 `ex addC(V, ϕ′1, ϕ
′
2) : N`(ϕ1 − ϕ′1, ϕ2 + ϕ′2)

(EXT-ADDC)

Γ ; ϕ1 `ex M1 : τ1 Γ ; ϕ2 `ex M2 : [M1/0]τ2

Γ ; ϕ1 + ϕ2 `ex (M1, M2) : τ1 × τ2

(EXT-PAIR)

Γ ; ϕ1 `ex M1 : τ1 Γ ; ϕ2 `ex M2 : SKey(τ1)

Γ ; ϕ1 + ϕ2 `ex {M1}M2 : N`(∅, ∅)
(EXT-SENC)

Γ ; ϕ1 `ex M1 : τ Γ ; ϕ2 `ex M2 : EKey(τ)

Γ ; ϕ1 + ϕ2 `ex {|M1|}M2
: N`(∅, ∅)

(EXT-AENC)

Γ ; ϕ `ex M : τ ′ τ ′ ≤ex τ

Γ ; ϕ `ex M : τ
(EXT-SUB)

Fig. 12.Typing Rules for Extended Messages

The condition (i) ensures that the end capabilities estimated by the type system (i.e.
ϕ′) is at most those that are actually present (E). The condition (ii) ensures that there is
always at most one check capability for each name.

The typing rule for run-time configurations is given as follows:

Γ ; ϕ `ex P1 | · · · |Pm

ConsistentCap(E,ϕ, {P1, . . . , Pm})
∀(k1, k2) ∈ K.∃τ.(Γ (k1) = EKey(τ) ∧ Γ (k2) = DKey(τ))

∀n, `, `′.(Γ (n) = N`(,)∧
(“chk`′(n,) occurs in somePi or ϕ”) ⇒ ` = `′)

`ex 〈{P1, . . . , Pm}, E, Γ,K, ϕ〉

Lemma 7 follows from Lemmas 8 and 11 below.

Lemma 8 (lack of immediate error).
If `ex 〈Ψ,E, Γ,K, ϕ〉, then〈Ψ, E, Γ,K, ϕ〉 6−→ex Error.

Proof. Supposè ex 〈Ψ, E, Γ,K, ϕ〉 holds. There are three rules that may yieldError:
EXR-M-ER, EXR-CHK-ER, andEXR-END-ER. We show below that none of those
rules is applicable.

– CaseEXR-M-ER: In this case,Ψ = Ψ ′] {C[M]} with (ϕ,M) −→ex Error. By
the typing rules, it must be the case thatΓ ; ϕ′ `ex M : τ andϕ′ ⊆ ϕ for someϕ′

andτ . By the typing rules and reduction rules for messages,(ϕ, M) −→ex Error
cannot hold.

– CaseEXR-CHK-ER: In this case,Ψ = Ψ ′] {check n(,) is n(ϕ0,ϕ1).P}. By the
assumptioǹ ex 〈Ψ, E, Γ,K, ϕ〉, there must existϕ′ such thatϕ′ ≤ ϕ and

Γ ; ϕ′ `ex check n(,) is n(ϕ0,ϕ1).P.

Γ ; ∅ `ex 0

Γ ; ϕ1 `ex M1 : N`(∅, ∅) Γ ; ϕ2 `ex M2 : τ Pub(τ)

Γ ; ϕ1 + ϕ2 `ex M1!M2

(EXT-OUT)

Γ1; ϕ1 `ex M : N`(∅, ∅) Γ2, x : τ ; ϕ2 `ex P Taint(τ)

Γ ; ϕ1 + ϕ2 `ex M?x.P
(EXT-IN)

Γ ; ϕ1 `ex P1 Γ ; ϕ2 `ex P2

Γ ; ϕ1 + ϕ2 `ex P1 |P2

(EXT-PAR)

Γ ; ∅ `ex P

Γ ; ∅ `ex ∗P
(EXT-REP)

Γ, x : N`(ϕ1, ∅); ϕ + {chk`(x, ϕ1) 7→ 1} `ex P

Γ ; ϕ `ex (νx : N`(ϕ1, ∅))P
(EXT-NEWN)

Γ, x : SKey(τ); ϕ `ex P

Γ ; ϕ `ex (νsymx : SKey(τ))P
(EXT-NEWSK)

Γ, k1 : EKey(τ), k2 : DKey(τ); ϕ `ex P

Γ ; ϕ `ex (νasymk1 : EKey(τ), k2 : DKey(τ))P
(EXT-NEWAK)

Γ ; ϕ1 `ex M1 : N`(,) Γ ; ϕ2 `ex M2 : SKey(τ) Γ, x : τ ; ϕ3 `ex P

Γ ; ϕ1 + ϕ2 + ϕ3 `ex decrypt M1 is {x}M2 .P
(EXT-SDEC)

Γ ; ϕ1 `ex M1 : N`(,) Γ ; ϕ2 `ex M2 : DKey(τ) Γ, x : τ ; ϕ3 `ex P

Γ ; ϕ1 + ϕ2 + ϕ3 `ex decrypt M1 is {|x|}M2−1 .P
(EXT-ADEC)

Γ ; ϕ1 `ex M1 : N`(,) Γ ; ϕ2 `ex M2 : N`(∅, ϕ5) Γ ; ϕ3 + ϕ4 + ϕ5 `ex P

Γ ; ϕ1 + ϕ2 + ϕ3 + {chk`(M1, ϕ4)} `ex check M1 is M2.P
(EXT-CHK)

Γ ; ϕ + {end(V) 7→ 1} `ex P

Γ ; ϕ `ex beginV.P
(EXT-BEG)

Γ ; ϕ + {end(V) 7→ 1} `ex endV
(EXT-END)

Γ ; ϕ1 `ex M : τ1 × τ2 Γ, y : τ1, z : [y/0]τ2; ϕ2 `ex P

Γ ; ϕ1 + ϕ2 `ex split M is (y, z).P
(EXT-SPLT)

Γ ; ϕ1 `ex M1 : τ1 × τ2 Γ ; ϕ2 `ex M2 : τ1 Γ, z : [M2/0]τ2; ϕ3 `ex P

Γ ; ϕ1 + ϕ2 + ϕ3 `ex match M1 is (M2, z).P
(EXT-MTCH)

Γ ; ϕ′ `ex P ϕ′ ≤ ϕ

Γ ; ϕ `ex P
(EXT-WEAKCAP)

Fig. 13.Typing Rules for Extended Processes

By the typing rules, we have:

Γ ;ϕ2 `ex n(,) : N`(,)
Γ ;ϕ3 `ex n(ϕ0,ϕ1) : N`(∅, ϕ5)
Γ ;ϕ4 + ϕ5 + ϕ6 `ex P
ϕ′ ≥ ϕ2 + ϕ3 + ϕ4 + {chk`(n, ϕ6)}

By the second condition, we haveϕ0 = ∅. (Note that the judgment must have
been derived fromEXT-NAME, followed by a possible application ofEXT-SUB.
EXT-NAME assigns the typeN`′(ϕ0, ϕ1), and by Lemma 3, we must haveN`′(ϕ0, ϕ1) ≤ex

N`(∅, ϕ5). By Lemma 4, we haveϕ0 = ∅.) Thus, the premise ofEXR-CHK-ER

does not hold.
– CaseEXR-END-ER: In this case,Ψ = Ψ ′]{endV }with (V 6∈ E)∨(ϕ(end(V)) <

1). If V 6∈ E, then by the assumptioǹex 〈Ψ, E, Γ,K, ϕ〉 and the second condi-
tion on the configuration typing, we have(ϕ(end(V)) < 1). By the assumption
`ex 〈Ψ, E, Γ,K, ϕ〉, however, we also haveΓ ; ϕ′ `ex endV for someϕ′ ≤ ϕ.
By the typing rule forendV , it must be the case that(ϕ′(end(V)) ≥ 1), hence a
contradiction.

Lemma 9. If Γ ; ϕ `ex V : τ , thenΓ ; ∅ `ex V : τ .

Proof. Straightforward induction on the derivation ofΓ ; ϕ `ex V : τ . (Note that by
the syntax of values,V does not contain “addC”.)

Lemma 10 (substitution). If Γ1; ∅ `ex V : τ and Γ1, x : τ, Γ2; ϕ `ex P , then
Γ1, [V/x]Γ2; [V/x]ϕ `ex [V/x]P .

Proof. A derivation ofΓ1, [V/x]Γ2; [V/x]ϕ `ex [V/x]P is obtained fromΓ1, x:τ, Γ2; ϕ `ex

P by replacing each leaf of the formΓ1, x : τ, Γ ′2; ϕ
′ `ex x : τ (whereΓ ′2 ⊇ Γ2) with

Γ1, [V/x]Γ2; [V/x]ϕ′ `ex V : τ (which is obtained by weakening andEXT-WEAKCAP).

Lemma 11 (type preservation). If `ex 〈Ψ,E, Γ,K, ϕ〉 and 〈Ψ,E, Γ,K, ϕ〉 −→ex

〈Ψ ′, E′, Γ ′,K′, ϕ′〉, then`ex 〈Ψ ′, E′, Γ ′,K′, ϕ′〉.
Proof. Supposè ex 〈Ψ, E, Γ,K, ϕ〉 and 〈Ψ, E, Γ,K, ϕ〉 −→ex 〈Ψ ′, E′, Γ ′,K′, ϕ′〉.
We shoẁ ex 〈Ψ ′, E′, Γ ′,K′, ϕ′〉 by case analysis on the rule used for deriving〈Ψ, E, Γ,K, ϕ〉 −→ex

〈Ψ ′, E′, Γ ′,K′, ϕ′〉. By abuse of notation, we often writeΓ ; ϕ ` {P1, . . . , Pk} for
Γ ; ϕ ` P1 | · · · |Pk below.

– CaseEXR-M: In this case,Ψ = Ψ1] {C[M]} andΨ ′ = Ψ1] {C[M ′]} with M =
Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ

′
2)], M ′ = Cm[n(ϕ1−ϕ′1,ϕ2+ϕ′2)], ϕ = ϕ′ + ϕ′1 + ϕ′2. We

also haveE′ = E, Γ ′ = Γ , andK′ = K. By the assumptioǹ ex 〈Ψ, E, Γ,K, ϕ〉,
Γ ; ϕ ` Ψ1] {C[Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ

′
2)]]} holds, which must have been de-

rived from Γ ; ϕ′1 + ϕ′2 `ex addC(n(ϕ1,ϕ2), ϕ′1, ϕ
′
2) : N`′(ϕ′′1 − ϕ′1, ϕ

′′
2 + ϕ′2),

whereΓ (n) = N`(,) andN`(ϕ1, ϕ2) ≤ex N`′(ϕ′′1 , ϕ′′2). By Lemma 4, we have
either` = Pub ∧ `′ = Taint ∧ ϕ1 = ∅, or ` = `′ ∧ ϕ1 ≤ ϕ′′1 ∧ ϕ2 ≥ ϕ′′2 . In both
cases, we haveN`(ϕ1−ϕ′1, ϕ2 + ϕ′2) ≤ex N`′(ϕ′′1 −ϕ′1, ϕ

′′
2 + ϕ′2), which implies

Γ ; ∅ `ex n(ϕ1−ϕ′1,ϕ2+ϕ′2) : N`′(ϕ′′1 − ϕ′1, ϕ
′′
2 + ϕ′2). Thus, we have

Γ ; ϕ′ ` Ψ1] {C[Cm[n(ϕ1−ϕ′1,ϕ2+ϕ′2)]]}.

It remains to checkConsistentCap(E, ϕ′, Ψ ′). To check this, it suffices to observe
that whenever(ϕ′, ∅) =⇒∗

Ψ ′ (ϕ′3, ϕ
′
4), we can construct a corresponding sequence

(ϕ, ∅) =⇒∗
Ψ (ϕ3, ϕ4) such thatϕ′3 + ϕ′4 ≤ ϕ3 + ϕ4. (The only reduction step

(ϕ′, ∅) =⇒∗
Ψ ′ (ϕ′3, ϕ

′
4) introduces more capabilities is a reduction onchk`(n,),

but that can happen at most once, and the difference is at mostϕ′1 + ϕ′2.)
– CaseEXR-COM: In this case,Ψ = Ψ1] {n(,)?y.P, n(,)!V } and Ψ = Ψ1]
{[V/y]P}, with E′ = E, Γ ′ = Γ , K′ = K, andϕ′ = ϕ. By the assumption
`ex 〈Ψ, E, Γ,K, ϕ〉, we have:

Γ ;ϕ1 `ex Ψ1

Γ ;ϕ2 `ex n(,) : N`(∅, ∅)
Γ ;ϕ3 `ex V : τ
Pub(τ)
Γ ;ϕ4 `ex n(,) : N`′(∅, ∅)
Γ, y : τ ′;ϕ5 `ex P
Taint(τ ′)
ϕ ≥ ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5

By the conditionsΓ ;ϕ3 `ex V : τ , Pub(τ), andTaint(τ ′), we haveΓ ;ϕ3 `ex

V : τ ′. By Lemma 9,Γ ; ∅ `ex V : τ ′ holds. Thus, by using the substitution lemma
(Lemma 10), we obtainΓ ; ϕ5 `ex [V/y]P . By usingEXT-PAR andEXT-WEAKCAP,
we obtainΓ ; ϕ `ex Ψ ′ as required.ConsistentCap(E,ϕ, Ψ ′) follows immediately
from ConsistentCap(E, ϕ, Ψ).

– CaseEXR-PAR, EXR-REP: Trivial.
– CaseEXR-NEWN: In this case,Ψ = Ψ1] {(νx : N`(ϕ1, ∅))P} andΨ ′ = Ψ1]
{[n(ϕ1,∅)/x]P}, with E′ = E, Γ ′ = (Γ, n : N`(ϕ1, ∅)), K′ = K, andϕ′ = ϕ +
{chk`(n, ϕ1) 7→ 1}. By the assumptioǹex 〈Ψ, E, Γ,K, ϕ〉 and ruleEXT-NEWN
we have:Γ ; ϕ2 `ex Ψ1 andΓ, x : N`(ϕ1, ∅); ϕ3 + {chk`(x, ϕ1) 7→ 1} `ex P ,
with ϕ ≥ ϕ2 + ϕ3. By the substitution lemma (Lemma 10), we have

Γ ′;ϕ3 + {chk`(n, ϕ1) 7→ 1} `ex [n(ϕ1,∅)/x]P.

Thus, by usingEXT-PAR and EXT-WEAKCAP, we obtainΓ ′; ϕ′ `ex Ψ ′ as re-
quired.ConsistentCap(E′, ϕ′, Ψ ′) follows immediately fromConsistentCap(E,ϕ, Ψ).

– CaseEXR-NEWSK: Similar to the case forEXR-NEW.
– CaseEXR-NEWAK: Similar to the case forEXR-NEW.
– CaseEXR-CHK: In this case,Ψ = Ψ1] {check n(,) is n(∅,ϕ1).P} andΨ ′ =

Ψ1] {P}, with E′ = E, Γ ′ = Γ , K′ = K, ϕ = ϕ0 + {chk`(n, ϕ2)} and
ϕ′ = ϕ0 + ϕ1 + ϕ2.
By the assumptioǹ ex 〈Ψ, E, Γ,K, ϕ〉, we have:

Γ ;ϕ3 `ex Ψ1

Γ ;ϕ4 `ex n(,) : N`(,)
Γ ;ϕ5 `ex n(ϕ7,ϕ8) : N`(∅, ϕ1)

(with N`(ϕ7, ϕ8) ≤ex N`(∅, ϕ1))
Γ ;ϕ6 + ϕ1 + ϕ2 `ex P
ϕ0 ≥ ϕ3 + ϕ4 + ϕ5 + ϕ6

Therefore, we haveΓ ; ϕ3 +ϕ6 +ϕ1 +ϕ2 `ex Ψ ′. By EXT-WEAKCAP, we obtain
Γ ; ϕ′ `ex Ψ ′. It remains to checkConsistentCap(E,ϕ′, Ψ ′).
Next, we show thatϕ7 = ∅ and ϕ8 ≥ ϕ1. By the conditionN`(ϕ7, ϕ8) ≤ex

N`(∅, ϕ1), either(ϕ7 = ∅)∧(ϕ8 = ϕ1) orPub(N`(ϕ7, ϕ8))∧Taint(N`(∅, ϕ1))
holds. In the latter case,` = Pub andϕ7 = ϕ1 = ∅. Thus, we haveϕ7 = ∅ and
ϕ8 ≥ ϕ1 as required.
Since(ϕ, ∅) =⇒Ψ (ϕ0 + ϕ2 + ϕ′1, {chk`(n, ϕ2)}) for someϕ′1 ≥ ϕ8 ≥ ϕ1,
ConsistentCap(E, ϕ′, Ψ ′) follows fromConsistentCap(E, ϕ, Ψ).

– CaseEXR-SPLT: In this case,Ψ = Ψ1] {split (V, W) is (x, y).P} andΨ ′ =
Ψ1] {[V/x,W/y]P}, with E′ = E, Γ ′ = Γ , K′ = K, andϕ′ = ϕ. By the
assumptioǹ ex 〈Ψ, E, Γ,K, ϕ〉, we have:

Γ ; ϕ1 `ex Ψ1

Γ ; ϕ2 `ex V : τ1

Γ ; ϕ3 `ex W : [V/0]τ2

Γ, x : τ1, y : [x/0]τ2; ϕ4 `ex P
ϕ ≥ ϕ1 + ϕ2 + ϕ3 + ϕ4

Here,ϕ4 does not containx andy. Without loss of generality, we also assume that
x, y does not occur inV,W . By applying the substitution lemma (Lemma 10), we
haveΓ, y : [V/0]τ2; ϕ4 `ex [V/x]P . By applying the substitution lemma again,
we get:Γ ;ϕ4 `ex [V/x, W/y]P . Thus, we obtainΓ ′; ϕ′ `ex Ψ ′ as required.
ConsistentCap(E, ϕ′, Ψ ′) follows fromConsistentCap(E, ϕ, Ψ).

– CaseEXR-MTCH: Similar to the caseEXR-SPLT above.
– CaseEXR-SDEC: Similar to the caseEXR-ADEC below.
– CaseEXR-ADEC: In this case,Ψ = Ψ1] {decrypt {|V |}k1

is {|x|}k2
−1 .P} and

Ψ ′ = Ψ1] {[V/x]P}, with E′ = E, Γ ′ = Γ , K′ = K, andϕ′ = ϕ. By the
assumptioǹ ex 〈Ψ, E, Γ,K, ϕ〉, we have:

Γ ;ϕ1 `ex Ψ1

Γ ;ϕ2 `ex k1 : EKey(τ1)
Γ ;ϕ3 `ex V : τ1

Γ ;ϕ4 `ex k2 : DKey(τ2)
Γ, x : τ2; ϕ5 `ex P
ϕ ≥ ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5

Γ (k1) = EKey(τ)
Γ (k2) = DKey(τ)

By the 2nd, 4th, and the last two conditions, we haveEKey(τ) ≤ex EKey(τ1)
andDKey(τ) ≤ex DKey(τ2). EKey(τ) ≤ex EKey(τ1) implies τ = τ1 or
Pub(EKey(τ)) ∧ Taint(EKey(τ1)), which implies,τ = τ1 or Taint(τ) ∧
Pub(τ1). Thus, we haveτ1 ≤ex τ . Similarly, DKey(τ) ≤ex DKey(τ2) im-
pliesτ ≤ex τ2. As the subtyping relation is transitive (Lemma 3), we haveτ1 ≤ex

τ2. Thus, by usingEXT-SUB and the substitution lemma (Lemma 10), we obtain
Γ ; ϕ5 `ex [V/x]P . By EXT-WEAKCAP, we obtainΓ ; ϕ `ex Ψ ′ as required.
ConsistentCap(E′, ϕ′, Ψ ′) follows immediately fromConsistentCap(E,ϕ, Ψ).

– CaseEXR-BEG: In this case,Ψ = Ψ1] {beginV.P} andΨ ′ = Ψ1] {P}, with
E′ = E] {end(V)}, Γ ′ = Γ , K′ = K, andϕ′ = ϕ + {end(V) 7→ 1}. By the
assumptioǹ ex 〈Ψ, E, Γ,K, ϕ〉, we have:

Γ ; ϕ1 `ex Ψ1

Γ ; ϕ2 + {end(V) 7→ 1} `ex P
ϕ ≥ ϕ1 + ϕ2

Thus, we haveΓ ; ϕ′ `ex Ψ ′ as required.ConsistentCap(E′, ϕ′, Ψ ′) follows im-
mediately fromConsistentCap(E, ϕ, Ψ).

– CaseEXR-END: In this case,Ψ = Ψ ′]{endV } with E = E′]{end(V)}, Γ ′ =
Γ ,K′ = K, andϕ = ϕ′+{end(V) 7→ 1}. By the assumptioǹex 〈Ψ, E, Γ,K, ϕ〉,
we have:

Γ ; ϕ1 `ex Ψ ′

Γ ; ϕ2 + {end(V) 7→ 1} `ex endV
ϕ ≥ ϕ1 + ϕ2 + {end(V) 7→ 1}

Thus, we haveΓ ; ϕ `ex Ψ ′ as required.ConsistentCap(E′, ϕ′, Ψ ′) follows imme-
diately fromConsistentCap(E, ϕ, Ψ).

Lemma 2 now follows as an immediate corollary of the lemmas above.

Proof of Lemma 2Suppose∅; ∅ ` P . By Lemma 5, there exists an extended processP ′

such that∅; ∅ `ex P ′ andErase(P ′) = P . By Lemma 7,〈P ′, ∅, ∅, ∅, ∅〉 6−→∗
ex Error.

Thus, by Lemma 6 andP = Erase(P ′), P is safe.¤

E Proof of Theorem 2

Lemma 12. If Γ, x : T `GJ P andx 6∈ fn(P) thenΓ `GJ P .

Proof. Follows from Lemma 10 in the technical report for the Gordon-Jeffrey type
system [13]

Lemma 13. If Public(T) thenPub([T]). If Tainted(T) thenTaint([T]).

Proof. By straightforward induction in the derivation ofPublic(T) andTainted(T) us-
ing their algorithmic formulation. RulesTAINTED TOP, PUBLIC SUM, TAINTED SUM,
PUBLIC KEYPAIR, TAINTED KEYPAIR, andPUBLIC CR are not considered.

Lemma 14. If T ≤GJ Un thenPub([T]). If Un ≤GJ T thenTaint([T]).

Proof. In both cases we see that ruleSUB PUBLIC TAINTED must have been used to
derive the subtyping expression. In both cases Lemma 13 gives us the desired result.

Lemma 15. If Γ `GJ M : T then[Γ]; ∅ ` [M] : [T].

Proof. By straightforward induction in the derivation ofΓ `GJ M : T . Note that rules
MSG SUBSUM, MSG INL, MSG INR, andMSG PART cannot happen by restriction.

Theorem 3. If Γ `GJ P : es then[Γ]; [es] ` [P].

Proof. By induction in the derivation ofΓ `GJ P : es.

– CasePROC SUBSUM: by induction hypothesis and the fact thates ≤ es + fs, we
can apply ruleT-CSUB to obtain the desired result.

– CasePROC OUTPUT UN: sinceΓ `GJ M : Un we have by Lemma 15 that
[Γ]; ∅ ` M : [Un]. As [Un] = NPub(∅, ∅) we get that the first condition for rule
T-OUT is satisfied. SinceΓ `GJ N : T we can again apply Lemma 15 to obtain
[Γ]; ∅ ` N : [T] thereby satisfying the second condition for ruleT-OUT. Finally,
sinceT ≤GJ Un we get from Lemma 14 thatPub([T]) and can then satisfy the
final condition of ruleT-OUT.

– CasePROC INPUT UN: sinceΓ `GJ M : Un we have by Lemma 15 that[Γ]; ∅ `
M : [Un]. As [Un] = NPub(∅, ∅) we get that the first condition for ruleT-IN

is satisfied. SinceΓ, y : T `GJ P : es we have by induction hypothesis that the
second condition is satisfied. Finally, sinceUn ≤GJ T we get from Lemma 14 that
Taint([T]) and can then satisfy the final condition of ruleT-IN.

– CasePROC REPEAT INPUT UN: similar to casePROC OUTPUT UN but also using
rule T-REP.

– CasePROC PAR: by the induction hypothesis we can immediately apply ruleT-PAR.
– CasePROC RES: we treat the different cases ofT separately:

• T = Un: since[Un] = NPub(∅, ∅) we can apply the induction hypothesis and
rule T-NEWN to obtain the desired result.

• T = SharedKey(T ′): by the fact thatSKey([T ′]) = [SharedKey(T ′)] we can
apply the induction hypothesis and ruleT-NEWSK to obtain the desired result.

• T = KeyPair(T ′): by the restricted used ofKeyPair we know that two next
constructions inP arelet constructs follows by a processP ′. By the typing of
P we get thatE, x:KeyPair(T ′), y:Encrypt Key(T ′), z :Encrypt Key(T ′) `GJ

P ′ : es. By the fact thatx 6∈ fn(P ′) Lemma 12 gives us thatE, y:Encrypt Key(T ′), z:
Encrypt Key(T ′) `GJ P ′ : es. By induction hypothesis[E], y:[Encrypt Key(T ′)], z:
[Encrypt Key(T ′)]; [es] ` [P ′]. Since[Encrypt Key(T ′)] = EKey([T ′]) and
[Decrypt Key(T ′)] = DKey([T ′]) we can apply ruleT-NEWAK to obtain the
desired result.

– CasePROC SPLIT: follows by the induction hypothesis, Lemma 15, and ruleT-SPLIT.
– CasePROC MATCH: follows by the induction hypothesis, Lemma 15, and rule

T-MATCH.
– CasePROC CASE: cannot happen by our restrictions.
– CasePROC SYMM : follows by the induction hypothesis, Lemma 15, and ruleT-SDEC.
– CasePROC ASYMM: follows by the induction hypothesis, Lemma 15, and rule

T-ADEC.
– CasePROC BEGIN: follows by the induction hypothesis and ruleT-BEGIN; if es

does not contain anend(M) we have to extend it first usingT-CSUB.
– CasePROC END: by our restrictionsP = endL; stop and hence the results follows

by ruleT-END.
– CasePROC WITNESS: cannot happen by our restrictions.
– CasePROC TRUST: cannot happen by our restrictions.

– CasePROC CAST: by assumption we haveΓ `GJ x : l Challenge esC and also
Γ, x : l Response esR `GJ P : fs. Lemma 15 then gives us that[Γ]; ∅ ` x :
[l Challenge esC] and the induction hypothesis that[Γ], x : [l Response esR]; [fs] `
[P]. Since[l Challenge esC] = Nl([esC], ∅) we can apply ruleT-NAME to obtain
[Γ]; [esC] + [esR] ` x : Nl(∅, [esR]). AsNl(∅, [esR]) = [l Response esR] we can
apply ruleT-LET to obtain the desired result.

– CasePROC CHECK: by assumption we haveΓ `GJ M : l Challenge esC , Γ `GJ

N : l Response esR, andΓ `GJ P : fs. Lemma 15 then gives us that[Γ]; ∅ ` M :
[l Challenge esC] and[Γ]; ∅ ` N : [l Response esC]. Since[l Challenge esC] =
Nl([esC], ∅) and [l Response esR] = Nl(∅, [esR]) we can satisfy the two first
premises of ruleT-CHK usingϕ1 = ϕ2 = ∅. Now letϕ3 = [es] = [fs]− ([esC] +
[esR]), ϕ4 = [esC], andϕ5 = [esR]. SinceΓ `GJ P : fs we have by the induction
hypothesis that[Γ]; ϕ3 + ϕ4 + ϕ5 ` [P] and we can finally apply ruleT-CHK.

– CasePROC CHALLENGE: follows by induction hypothesis and ruleT-RES.

