Type-Based Automated Verification of Authenticity in
Asymmetric Cryptographic Protocols

Morten Daht, Naoki KobayasHi, Yunde Sut, and Hans HtteP

! Tohoku University
2 Aalborg University

Abstract. Gordon and Jeffrey developed a type system for verification of asym-
metric and symmetric cryptographic protocols. We propose a modified version of
Gordon and Jeffrey’s type system and develop a type inference algorithm for it,
so that protocols can be verified automatically as they are, without any type anno-
tations or explicit type casts. We have implemented a protocol veS8fieC A2
based on the algorithm, and confirmed its effectiveness.

1 Introduction

Security protocols play a crucial role in today’s Internet technologies including elec-
tronic commerce and voting. Formal verification of security protocols is thus an impor-
tant, active research topic, and a variety of approaches to (semi-)automated verification
have been proposed [8, 5, 16]. Among others, type-based approaches [1, 15, 16] have
advantages that protocols can be verified in a modular manner, and that it is relatively
easy to extend them to verify protocols at the source code level [4]. They have however a
disadvantage that users have to provide complex type annotations, which require exper-
tise in both security protocols and type theories. Kikuchi and Kobayashi [19] developed
a type inference algorithm but it works only for symmetric cryptographic protocols.

To overcome the limitation of the type-based approaches and enable fully automated
protocol verification, we integrate and extend the two lines of work — Gordon and Jef-
frey’s work [16] for verifying protocols using both symmetric and asymmetric cryp-
tographic protocols, and Kikuchi and Kobayashi's work. The outcome is an algorithm
for automated verification of authenticity in symmetric and asymmetric cryptographic
protocols. The key technical novelty lies in the symmetric notiooligationsandca-
pabilitiesattached to name types, which allows us to reason about causalities between
actions of protocol participants in a general and uniform manner in the type system. It
not only enables automated type inference, but also brings a more expressive power,
enabling, e.g., verification of multi-party cryptographic protocols. We have developed a
type inference algorithm for the new type system, and implemented a protocol verifica-
tion tool SPICA2 based on the algorithm. According to experimeSBICA2 is very
fast; it could successfully verify a number of protocols in less than a second.

The rest of this paper is structured as follows. Section 2 introduces spi-calculus [2]
extended with correspondence assertions as a protocol description language. Sections 3
and 4 present our type system and sketches a type inference algorithm. Section 5 reports
implementation and experiments. Sections 6 and 7 discuss extensions and related work
respectively. Section 8 concludes the paper.

2 Processes

This section defines the syntax and operational semantics of the spi-calculus extended
with correspondence assertions, which we calbgpiThe calculus is essentially the
same as that of Gordon and Jeffrey [16], except (i) there are no type annotations or
casts (as they can be automatically inferred by our type inference algorithm), and (ii)
there are no primitives for withess and trust; supporting them is left for future work.

We assume that there is a countable seohesranged over byn, n, k, x,y, z,
By convention, we often usge m, n, . . . for free names and, y, z, . . . for bound names.

The set of messages, ranged ovet\Mdyis given by:

M =z | (My, M) | {Mi}ar, | { M}y,

(My, M) is a pair consisting oM, andM,. The messagéM, } s, ({| M1}y, , resp.)
represents the ciphertext obtained by encrypfifigwith the symmetric (asymmetric,
resp.) keyMs;. For the asymmetric encryption, we do not distinguish between encryp-
tion and signing{| M, [} ,,, denotes an encryption if/; is a public key, while it denotes
signing if M, is a private key.

The set of processes, ranged overihyis given by:

P:=0|M!My | M?x.P|(P|P)|*P| (vz)P | Wsymx)P | (Vasym®,y)P
| check M; is Ms.P | split M is (z,y).P | match M; is (Ma,y).P
| decrypt M is {x}ar,. P | decrypt M, is {|x[}y,-1. P
| begin M.P | end M

The names denoted hy y areboundin P. We write [M; /21, ..., M, /x,]P for
the process obtained by replacing every free occurreneg of . , x,, in Pwith My, . ..,
M,. We write FN(P) for the set of free (i.e. non-bounded) name#in

Proces® does nothing/; ! M, sendsM, over the channelfy, andM; 7x. P waits
to receive a message on chanfél, and then binds to it and behaves lik@. P; | P»
executesP; andP; in parallel, andk P executes infinitely many copies &fin parallel.

We have three kinds of name generation primities:) for ordinary namesy,,,, z)
for symmetric keys, antv s, z1, z2,) for asymmetric keys(vqsym 1, z2, P) creates
a fresh key paifk,, ko) (wherek; andk, are encryption and decryption keys respec-
tively), and behaves likgk; /x4, ko /22] P. The procesgheck M, is M,.P behaves
like P if M, and M, are the same name, and otherwise behavedlikehe process
split M is (z,y).P behaves likgM; /z, My /y| P if M is a pair(M;, Ms); otherwise
it behaves liked. match M; is (Maz,y).P behaves likgMs/y| P if M; is a pair of
the form (Ma, Ms3); otherwise it behaves lik@. Processdecrypt M; is {z}ar,.P
(decrypt M is {|x[},.,-1.P, resp.) decrypts ciphertext/; with symmetric (asym-
metric, resp.) key/s, bindsz to the result and behaves lik& if M is not an encryp-
tion, or an encryption with a key not matchidds, then it behaves lik@. The process
begin M. P raise an evernbegin M and behaves liké’, while end M just raises an
eventend M ; they are used to express expected authenticity properties.

Example 1.We use the three protocols in Figure 1, taken from [16], as running ex-
amples. POSH and SOSH protocols aim to pass a new messagieom B to A, so

POSH: SOPH SOSH

A->B: n A->B: {(msg.n)| }pks || A->B: {In] }pkp

B begins msg B begins msg B begins msg

B->A: {|(msg,n)] }skz || B->A n B->A: {imsg,n| }pr,
A ends msg A ends msg A ends msg

Fig. 1. Informal Description of Three Protocols

(VasymSka, pKg) (netpkg | (* create asymmetric keys for B and maile; public *)

(vnon)(netnon| (* A creates a nonce and sends it *)
net’ctextdecrypt ctextis {|z [}y, -1 (* receive a cypertext and decrypt it*)
split = is (m, nor).check nonis norf. (* decompose paiz and check nonce *)
endm) | (* believe thatrn came from B *)
net’n. (* B receives a nonce *)
(vmsgbegin msg (* create a message and declare that it is going to be sent?

net{|(msgn)lty,) (* encrypt and sendmsg n) *)

Fig. 2. Public-Out-Secret-Home (POSH) protocol in gpi

(VasymPKg, Ska) (* create asymmetric keys for B *)
(netpksg (* makepky public *)

| (* Behavior of A *)
(vnon)(vmsg (* create a nonce and a message *)
(net{|(msgnon)f},, | (* encrypt and sendmsg non) *)
net’nor. (* receive a nonce *)
check nonis nor. (* check nonce *)
end msg (* end assertion *)
| (* Behavior of B *)
net’ctext (* receive a cypertext *)
decrypt ctextis {|z[}q,-1. (* decrypt the cypertext *)
split z is (m, non”). (* decompose pair *)
beginm. (* begin assertion *)
netnon’ (* send the nonce *)

)

Fig. 3. Secret-Out-Public-Home (SOPH) protocol in gpi

that A can confirm thaimsg indeed comes froni3, while SOPH protocol aims to pass

msg from A to B, so thatA can confirm thamsg has been received bf. The sec-

ond and fourth lines of each protocol expresses the required authenticity by using Woo
and Lam’s correspondence assertions [2B]. Begins msg ” on the second line of
POSH meansB is going to sendnsg’, and “A ends msg” on the fourth line means

“ A believes thaf3 has senisg’. The required authenticity is then expressed as a cor-
respondence between begin- and end-events: whenever an end-dveartds msg”

in this example) occurs, the corresponding begin-evahtifegins msg ") must have
occurred? In the three protocols, the correspondence between begin- and end-events is
guaranteed in different ways. In POSH, the correspondence is guaranteed by the signing
of the second message witkis secret key, so thal can verify thatB has created the
pair(msgn). In SOPH, it is guaranteed by encrypting the first message with B’s public
key, so that the nonce, used as an acknowledgment, cannot be forged by an attacker.
SOSH is similar to POSH, but keepssecret by using A and B’s public keys.

Figure 2 gives a formal description of POSH protocol, represented as a process in
spic4. The firstline is an initial set-up for the protocol. An asymmetric key pair for B is
created and the decryption kpl is sent on a public channeét, on which an attacker
can send and receive messages. The next four lines describe the behal/i@rothe
second line, a nonceonis created and sent alomgt On the third line, a ciphertext
ctextis received and decrypted (or verified) with B’s public key. On the fourth line,
the pair is decomposed and it is checked that the second component coincides with the
nonce sent before. On the fifth line, an end-event is raised, meaning thaieves that
msgcame fromB. The last three lines describe the behavioBofOn the sixth line, a
noncen is received frormet On the seventh line, a new messagsgis created and
a begin-event is raised, meaning tliais going to sendnsg On the last line, the pair
(msgn) is encrypted (or signed) with B’s secret key and senten

Figure 3 gives a formal description of SOPH protocol inspi ad

Following Gordon and Jeffrey, we call a procesdeif it satisfies correspondence
assertions (i.e. for each end-event, a corresponding begin-event has occurred before),
androbustly saféf a process is safe in the presence of arbitrary attackers (representable
in spic4). Proving robust safety automatically is the goal of protocol verification in the
present paper. To formalize the robust safety, we use the operational semantics shown
in Figure 4. A runtime state is a quadrugle, E, N, K), where? is a multiset of pro-
cesses, and’ is the multiset of messages on which begin-events have occurred but the
matching end-events have not.is the set of names (including keys) created so far, and
K is the set of key pairs. The special runtime steor denotes that correspondence
assertions have been violated. Note that a reduction gets stuck when a process does not
match a rule. For exampleplit M is (z,y).P is reducible only ifM is of the form
(M, Ms). Using the operational semantics, the robust safety is defined as follows.

8 There are two types of correspondence assertions in the literature: non-injective (or one-to-
many) and injective (or one-to-one) correspondence. Throughout the paper we consider the
latter.

(W {n?y.P,nIM}, E,N,K) — (& & {{M/y|P}, E, N, K) (R-Com)
W w{P|Q},E,N,K) — (Ww{P,Q},E, N,K) (R-PAR)
(0 W {xP}, E,N,K) — (W& {+P, P}, E,N,K) (R-REP)
(YT w{(vx)P},E,N,K)y — (@ W {[n/z]P}, E,NU{n},K) (n ¢ N) (R-NEwW)
(W W {(Vsymz)P}, E,N,K) — (W W {[k/x]|P}, E,N U{k},K) (k ¢ N) (R-NEWSK)
(T W A{(Vasymz,y)P}, E, N, K)
— (P W{[ki/x, ko /y]P}, E, N U{k1, ko}, KU {(k1,k2)}) (k1,k2 ¢ N)

(R-NEWAK)
(F W {check n is n.P}, E,N,K) — (I & {P}, E, N, K) (R-CHK)

(¥ W {split (M, N) is (z,y).P},E,N,K) — (¢ W {[M/xz, N/y|P}, E,N,K)
(R-SpLT)

(¥ ¥ {match (M, N) is (M, 2).P},E,N,K) — (¥ & {[N/z|P}, E, N,K)
(R-MTCH)

(T @ {decrypt {M} is {z}r.P}, E,N,K) — (W U {[M/z]P}, E,N,K) (R-DECS)
(¥ @ {decrypt {|{M[}, is{zf},-1.P}, E,N,K)

(W {[M/]P}, B, N.K) (f (k1, ks) € K) (R-DECA)

(@ & {begin M.P}, E, N, K) — (0’ {P}, Ew {M}, N, K) (R-BGN)
(@ W {end M}, E W {M}, N,K) — (¥, E, N, K) (R-END)
(w{end M}, E,N,K) — Error (if M ¢ E) (R-ERR)

Fig. 4. Operational Semantics

Definition 21 (safety, robust safety) A processP is safeif ({ P}, 0, FN(P),0) /—*
Error. A processP is robustly safeif P|O is safe for every spiy processO that
contains no begin/end/check operatidns.

3 Type System

This section presents a type system such that well-typed processes are robustly safe.
This allows us to reduce protocol verification to type inference.

3.1 Basicldeas

Following the previous work [15, 16, 19], we use the notiorcapabilities(called ef-

fects in [15, 16]) in order to statically guarantee that end-events can be raised only after
the corresponding begin-events. A capabilitys a multiset ofatomic capabilitiesof

the formend (M), which expresses a permission to raise “édtl event. The robust
safety of processes is guaranteed by enforcing the following conditions on capabilities:
(i) to raise an “endV/” event, a process must possess and consume an atoa{c\/)
capability; and (ii) an atomiend (M) capability is generated only by raising a “begin

M event. Those conditions can be statically enforced by using a type judgment of the

4 Having no check operations is not a limitation, as an attacker process can check the equality
of n1 andns by match (n1,n1) is (n2, x).P.

form: I'; o = P, which means thaP can be safely executed under the type environment
I" and the capabilities described pyFor examplez : T'; {end(z) } I end z is a valid
judgment, butz: T'; § F end x is not. The two conditions above can be locally enforced
by the following typing rules for begin and end events:

I'so+{end(M)} - P
I';o - begin M.P I';o + {end(M)} - end M

The left rule ensures that the new capabidityd (1) is available after the begin-event,
and the right rule for end ensures that the capalglitd (/) must be present.

The main difficulty lies in how to pass capabilities between processes. For example,
recall the POSH protocol in Figure 2, where begin- and end-events are raised by differ-
ent protocol participants. The safety of this protocol can be understood as folbws:
obtains the capabilitynd(msg by raising the begin event, and then passes the capabil-
ity to A by attaching it to the nonce. A then extracts the capability and safely executes
the end event. A is signed withB’s private key, there is no way for an attacker to
forge the capability. For another example, consider the SOPH protocol in the middle
of Figure 1. In this case, the noneeis sent in clear text, so thd cannot pass the
capability toA through the second message. Instead, the safety of the SOPH protocol
is understood as follows! attaches ta (in the first message) abligationto raise the
begin-eventB then discharges the obligation by raising the begin-event, and notifies of
it by sending back:. Here, note that an attacker cannot forgeas it is encrypted by
B’s public key in the first message.

To capture the above reasoning by using types, we introduce types of the form
N (¢1, ¢2), which describes names carrying an obligatipnand a capabilityps. In
the examples above, is given the typeN (§), {end(msg}) in the second message of
POSH protocol, and the tyf¥ ({end(msg},) in the first message of SOPH protocol.

The above typedN (), {end(msg}) and N ({end(msg}, () respectively corre-
spond taesponsandchallenge types Gordon and Jeffrey’s type system [16]. Thanks
to the uniform treatment of name types, type inference for our type system reduces to
a problem of solving constraints on capabilities and obligations, which can further be
reduced to linear programming problems by using the technique of [19]. The uniform
treatment also allows us to express a wider range of protocols (such as multi-party
cryptographic protocols). Note that neither obligations nor asymmetric cryptography
are supported by the previous type system for automated verification [19]; handling
them requires non-trivial extensions of the type system and the inference algorithm.

3.2 Types
Definition 31 The syntax of types, ranged overhyis given by:
7 2= Ny(p1,92) | SKey(7) | DKey(7) | EKey(7) | 71 X T2

pou={A1—r,...,An—rn} capabilities
A == end(M) | chk,(M, ¢) atomic cap.
te=x |0 1|2]--- extended names
£::=Pub | Pr name qualifiers

Here,r; ranges over non-negative rational numbers.

The typeN,(¢1, ¢2) is assigned to names carrying obligatignsand capabilities,.

Here, obligations and capabilities are mappings from atomic capabilities to rational
numbers. For exampl&,({end(a) — 1.0}, {end(b) — 2.0}) describes a name that
carries the obligation to raideegin a once, and the capability to raiemd b twice.
Fractional values are possibl,((), {end(b) — 0.5}) means that the name carries a
half of the capability to raisend b, so that if combined with another half of the capa-
bility, it is allowed to raiseend b. The introduction of fractions slightly increases the
expressive power of the type system, but the main motivation for it is rather to enable ef-
ficient type inference as in [19]. When the ranges of obligations and capabilities are inte-
gers, we often use multiset notations; for example, we Weited (a), end(a), end(b)}

for {end(a) — 2,end(b) — 1}. The atomic capabilitghk, (M, p) expresses the ca-
pability to check equality o/ by check M is M'.P: since nonce checking releases
capabilities this atomic effect is used to ensure that each nonce can only be checked
once. The component expresses the capability that can be extracted by the check
operation (see the typing rule for check operations given later).

Qualifier ¢ attached to name types are essentially the same a3uthiec/Private
qualifiers in Gordon and Jeffrey’s type system and express whether a name can be made
public or not. We often writdJn for Npp (0, 0).

The typeSKey(7) describes symmetric keys used for decrypting and encrypting
values of typer. The typeEKey(7) (DKey(7), resp.) describes asymmetric keys
used for encrypting (decrypting, resp.) values of typélhe typer; x 7> describes
pairs of values of types; and . As in [19], we express the dependency of types
on names by using indices. For example, the t¥he x N, (0, {end(0)}) denotes a
pair (M, Ms) whereM; has typeUn and M, has typeN, (0, {end(M;)}). The type
Unx (UnxNpy, (0, {end(0,1) — r}) describes triples of the forf\1,, (Ms, M3)),
whereM; and M, have typeUn, and M3 has typeNpup, (0, {end(Mz, M) — r}).

In general, an index is a natural number referring to thieh closest first component
of pairs. In the syntax of atomic capabilitiead (M), M is an extended message that
may contain indices. We use the same metavaridblier the sake of simplicity.

Predicates on typesFollowing Gordon and Jeffrey, we introduce two predica®es
andTaint on types, inductively defined by the rules in Figur@mb(7) means that a
value of typer can safely be made public by e.g. sending it through a public channel.
Taint(7) means that a value of type may have come from an untrusted principal
and hence cannot be trusted. It may for instance have been received through a public
channel or have been extracted from a ciphertext encrypted with a public key.

The first rule says that fdX (1, ¢2) to be public, the obligation; must be empty,
as there is no guarantee that an attacker fulfills the obligation. Contraty,for;,)
to be tainted, the capability, must be empty if = Pub, as the name may come from
an attacker and the capability cannot be trusted.

Pub andTaint are a sort of dual, flipped by the type construdddey. In terms
of subtyping,Pub(7) and Taint(r) may be understood as < Un andUn < 7

> These conditions are more liberal than the corresponding conditions in Gordon and Jef-
frey’s type system. In their type system, fBublic Challenge (1 (which corresponds to
Npub(¢1,0) in our type system) to be tainteg; must also be empty.

respectively, wherd&Jn is the type of untrusted, non-secret data. Note DEey is
co-variant,EKey is contra-variant, an8Key is invariant; this is analogous to Pierce
and Sangiorgi’s 10 types with subtyping [20].

¢ =Pub o1 =10 {=Pub= =10 Pub(7) Pub(m)

Pub(N¢(p1,¢2)) Taint(N¢(p1, ¢2)) Pub(7; X 72)
Taint (1) Taint(2) Pub(7) Taint(7) Pub(7) Taint (1)
Taint(71 X 72) Pub(SKey(7)) Taint(SKey(7))
Taint(7) Pub(7) Pub(7) Taint(7)

Pub(EKey(7)) Taint(EKey(7)) Pub(DKey(r)) Taint(DKey(7))

Fig. 5. Predicateub andTaint

Operations and relations on capabilities and typesWe write dom(y) for the set
{A | ¢(A) > 0}. We identify capabilities up to the following equality:

01 & o <= (dom(p1) = dom(p2) ANVA € dom(p1).¢01(A) = pa(A)).

We write o < ¢’ if p(A) < ¢'(A) holds for everyA € dom(y) and we define the
summation of two capabilities by, + ¢2)(A4) = p1(A) + v2(A). This is a natural
extension of the multiset union. We writg — 5, for the leastp such thatp; < ¢+ 5.

As we use indices to express dependent types, messages may be substituted in types.
Let i be an index and/ a message. The substitutigh/ /|7 is defined inductively in
the straight-forward manner, except for pair types where

[M/i](11 x 72) = ([M/i]1) x ([M/(i + D)]7),

such that the index is shifted for the second component.

3.3 Typing

We introduce two forms of type judgments; ¢ - M : 7 for messages, and; ¢ - P
for processes, whelk, called a type environment, is a sequence of type bindings of the
formaxy :7,..., 2, : 7. Judgmentl; o = M : 7 means thaf\/ evaluates to a value
of type 7 under the assumption that each name has the type describEdaby that
capability p is available.I"; o P means thaf’ can be safely executed (i.e. without
violation of correspondence assertions) if each free name has the type described by
and the capability is available. For example; : Un; {end(z)} F end z is valid but
z:Un; 0 F end z is not.

We consider only the judgements that arell-formedin the sense that (ip refers
to only the names bound ift, and (ii) I" must be well-formed, i.e., if" is of the
form I,z : 7, I'> thent only refers to the names bound I andz is not bound in

neitherI'; nor I';. See [10] for the formal definition of the well-formedness of type
environments and judgments. We freely permute bindings in type environments as long
as they are well-formed; for example, we do not distinguish betwe&n, iy : Un and
y:Un,z:Un.

Typing The typing rules are shown in Figure 6. The riiCAST says that the current
capability can be used for discharging obligations and increasing capabilities of the
name.T-CAST plays a role similar to the typing rule for cast processes in Gordon and
Jeffrey’s type system, but our cast is implicit and changes only the capabilities and
obligations, not the shape of types. This difference is important for automated type
inference. The other rules for messages are standaRdjR is the standard rule for
dependent sum types (except for the use of indices).

In the rules for processes, the capabilities shown bgn be any capabilities. The
rules are also similar to those of Gordon and Jeffrey, except for the Te@sT, T-IN,
T-NEWN, andT-CHK. In rule T-OuT, we require that the type of messalgk is public
as it can be received by any process, including the attacker. Similarly, i rLNewe
require that the type of the received valuis tainted, as it may come from any process.
This is different from Gordon and Jeffrey’s type system where the type of messages
sent to or received from public channels mustlba, and a subsumption rule allows
any value of a public type to be typed &s and a value of typ&/n to be typed as any
tainted type. In effect, our type system can be considered a restriction of Gordon and
Jeffrey’s such that the subsumption rule is only allowed for messages sent or received
via public channels. This point is important for automated type inference.

In rule T-NEWN, the obligationy; is attached to the fresh nameand recorded in
the atomic check capability. Capabilities corresponding;toan then later be extracted
by a check operation if the obligation has been fulfilled. In THEHK, chk, (M1, @4)
in the conclusion means that the capability to chéékmust be present. If the check
succeeds, the capabilipys attached tal/, can be extracted and used#n In addition,
the obligations attached ff; must be empty, i.e. all obligations initially attached to the
name must have been fulfilled, and hence the capaljilitgan be extracted and used
in P. The above mechanism for extracting capabilities through obligations is different
from Gordon and Jeffrey’s type system in a subtle but important way, and provides more
expressive power: see [10]. The remaining rules should be self-explanatory.

Example 2.Recall the POSH protocol in Figure 2. LebeUn x Np,p, (0, {end(0)}).
Then the process describing the behavioBdfet?n. - - - in the last five lines) is typed
as the upper part of Figure 7. Helé,= net: Un, sks : EKey(7),n : Un,msg: Un.
Similarly, the partdecrypt ctextis {|z[}y 1. - - of process A is typed as the lower
part of Figure 7. Here/> = net: Un, pks : DKey(7),non: Un, ctext: Un and
I's = Iy,z:7,m:Un,nor : Npu, (0, {end(m)}). Let P, be the entire process of the
POSH protocol. Itis typed bget: Un; @ - P;.

The SOPH and SOSH protocols in Figure 1 are typed in a similar manner. We show
here only key types:

SOPH
pkg : EKey(Un X Npyup({end(0)},0)), sks : DKey(Un x Npyup,({end(0)},0))

I'yorEMim I';p2 B M : [My /072

To:mpba:T (T-PaIR)
(T-VAR) Tio1 +@a = (Mi, M2) : 71 X 72
TiyorE My Tyoa b My : SKey(ri) 5o My:m I'so0 - Mo : EKey (1)
501+ @o B {Mi}ar, : No(0,0) I'so1 4+ o2 F {|M1|}M2 - N (0,0)
(T-SEnC) (T-AENC)

I'sp1 = M N2, ¢3)
5014 95 + @5 = M 2 No(p2 — ¢, 03 + ¢3)
I'igpo-P1 TPy ;0P Lio'EP o o' <y

(T-CasT)

;00 g1 +gab P Py T0F«P roFP
(T-ZeRO) (T-PAR) (T-REP) (T-CSug)
;o1 B My Ng(0,0) I';o1 B M 2 Ng(0,0)])

[igab My:r Pub(r) La:itigsb P Taint(r) 2 9} SIEGY(T)’ “"; P
T;¢1 + g2 F Mi!Mo T;¢1+ g2 F M7z.P v ((I/Tsm:é\)/vsK)

(T-OurT) (T-IN)
Iz : No(p1,0), ¢ + {chke(z, 1)} F P I' k1 : EKey(7), k2 : DKey(7);0 - P
Ik (va)P Iy = (Vasymka, k2) P
(T-NEWN) (T-NEWAK)
;o1 My Ne(-,) ;00 My : SKey(T) Iz:7m;p3F P
I'; 01 4 p2 + @3 = decrypt M, is {x}u,.P

(T-SDEC)

I';o1 - My Ne(-,-) I'; o2 = M2 : DKey(7) Ir:1;p3F P

I'; 1 + o2 + @3 F decrypt M, is {|zf}pp, 1. P

(T-ADEC)

Iipi b My :Ne(L,2) Tipab Ma:Ne(D,05) iz +@a+ sk P

;01 + 02 + 3 + {chke (M, p4)} F check M; is Ma.P

(T-CHK)
;o0 M1 X Liy:71i,2:[y/0]m2; 02 F P
p1 T1 X Ta .y T1.Z [y/0]72; @2 (T-SpLIT)
I'; o1 + 2 F split M is (y,2).P
01 My X1 Iy M :my I'z:[M3/0)m2; 03 F P (T-MATCH)
I'; o1 + w2 + w3 F match M is (Ma, z).P
I'so+ {end(M)} - P (T-END)
I oFbeginarp (BN I+ {end(M)} - end M

Fig. 6. Typing Rules

F; (Z) Fn: Npub(
I's0Fmsg: Un I';{end(msg} F n : Npub(
I';{end(msg} F (msgn): 7

7®)
,{end(msg})

0
0

I'; {end(msg, chkpub(msg @)} F net{(msgn)[}
I'; {chkpub(Mmsg ()} - beginmsg - - -

net: Un, sks : EKey(7),n: Un;{ - (vmsg - - -
net: Un, skg : EKey(7); 0 - net?n. - - -

skg

I';;{end(m)} F endm
I'3; {chkpub(non @)} + check nonis nor. - - -
Iy, x : 75 {chkpub(noOn §) } - split z is (m, non). - - -
I; {chkpup(non §)} - decrypt ctextis {|zfty, 1. -

Fig. 7. Partial Typing of the POSH Protocol

SOSH
pk, : EKey(Un x Np:(0, {end(0)})), sks : DKey(Un x Np (0, {end(0)}))
pkB : EKey(Un X NPI‘(®7 Q))7 SkB : DKey(Un X NPI‘((Z)a @))

Note that for POSH and SOPH the name qualifier mud®tb, and only for the SOSH
protocol may it bePr. O

3.4 Soundness of the Type System
The soundness of the type system is stated as follows.
Theorem 1 (soundness)if z1 : Un,...,z,, : Un;} + P, thenP is robustly safe.

To prove this theorem above we first prepare the following lemma, which implies
that, in the definition of robust safety, it is sufficient to consider only well-typed oppo-
nent processes.

Lemma 1. If O is a process that contains no begin/end/check, then there éXiskmt
satisfies the following conditions:

1. 21:Un,...,z,:Un;0 - O, where{z,, ...,z } = FN(O).
2. For any process, if P | O’ is safe then so i® | O.

Proof Sketch_ety be a name not occurring i and letO’ be the process obtained from
O by replacing any occurrence @ff;!M,; and M ?z. P with (vy)(y!M; | y?z.21M>)
and(vy)(y!M | y?z.z72.P), respectively. In this way we are free to change the types of
opponent values lik€Jn, Un x Un, andDKey(Un) by communicating them through
channels of public types. The@)/ satisfies the required properties. See Appendix C for
more detailsd

By the lemma above, to prove Theorem 1, it suffices to show the following lemma.

Lemma 2. If §; 0 + P, thenP is safe.
Proof. See Appendix D.

Returning to the proof of the soundness theorem we then have:

Proof of Theorem 1Supposer; : Un, ..., z,:Un; () - P. LetO be a process that does
not contain begin/end/check. We need to show &0 is safe. By Lemma 1, there
exists a proces®’ suchthat (i, : Un,...,y,: Un;) - O’ and (ii) if P | O’ is safe, so
isP|O.Let{z:Un,...,z,:Un} = {z1:Un,...,2,:Un}U{y;:Un,. .., y;:Un}.
Then, by weakening and the typing rules, we h@vét (vz1) - -- (vz,)(P|O'). By
Lemma 2,(vzy) - - - (vzm) (P | O') is safe. By the definition of the safetl,| O’ is also
safe. By condition (ii) above? | O is also safe]

4 Type Inference

We now briefly discuss type inference. For this we impose a minor restriction to the type
system, namely that in rulé-PaIR, if M; is not a name then the indi€ecannot occur

in 7. Similarly, in rule T-MATCH we require that indeX does not occur unles/,

is a nhame. These restrictions prevent the size of types and capabilities from blowing
up. Given as input a proced? with free namesy, ..., z,, the algorithm to decide
z1:Un,...,z,: Un;{ - P proceeds as follows:

1. Determine theshape of the typéor simple type) of each term via a standard unifi-
cation algorithm, and construct a template of a type derivation tree by introducing
qualifier and capability variables.

2. Generate a set’ of constraints on qualifier and capability variables based on the

typing rules such thaf' is satisfiable if and only if; : Un, ..., z, : Un;(- P.

. Solve the qualifier constraints.

. Transform the capability constraints to linear inequalities over the rational numbers.

5. Use linear programming to determine if the linear inequalities are satisfiable.

AW

In step 1, we can assume that there are no consecutive applicationSAad$T and
T-CSuB. Thus, the template of a type derivation tree can be uniquely determined: for
each process and message constructor there is an application of the rule matching the
constructor followed by at most one applicationTeCAST or T-CSuB.

At step 3 we have a set of constraidtof the form:

wherel andJ are finite setséiJ;J;’ are qualifier variables or constants, afid is
a set of effect constraints (like; < 7). Here, constraints on qualifiers come from
equality constraints on types and conditidhsb(7) andTaint (7). In particular,(¢] =
Pub) = (p; = 0) comes from the rule foTaint (N (i, ¢;)). By obtaining the most
general unifiep of the first set of constraint; = ¢} | ¢ € I} we obtain the constraint

setC’ = {(0¢] = Pub) = (0p; =0) | j € J}UOCy. Letyi,. .., be the remaining

qualifier variables, and 1&f = [Pr/~,...,Pr/v;]. ThenC is satisfiable if and only
if 'C’ is satisfiable. Thus, we obtain the 8&t" of effect constraints that is satisfiable
ifand only ifz; : Un,...,z, : Un;(- P holds.

Except for step 3, the above algorithm is almost the same as our previous work and
we refer the interested reader to [18, 19]. By a similar argument to that given in [19] we
can show that under the assumptions that the size of each begin/end assertion occurring
in the protocol is bounded by a constant and that the size of simple types is polynomial
in the size of the protocol, the type inference algorithm runs in polynomial time.

Example 3.Recall the POSH protocol in Figure 2. By the simple type inference in step
1 we get the following types for names:

non nor : N, pk; : DKey (N x N), ...

By preparing qualifier and capability variables we get the following elaborated types
and constraints on those variables:

non: N, (§0,0,§0,c), NOM : N,/ (§5 5, 60.c)5 - - -
Pub(N,, (£0,0:80.c)) M =7 & <& +&+&s
§22>80,+ (&5 — &) & > &+ &+ &+ {chk,, (non &)}

Here, the constrainPub(N., (£,0,&o,.)) comes fromnetnon and the other con-
straints fromcheck nonis non - - -. By solving the qualifier constraints, we gat =

= Pub, ..., and are left with constraints on capability variables. By computing (an
over-approximation of) the domain of each capability, we can reduce it to constraints on
linear inequalities. For example, by lettigg= {chkpyup(nOn &4) — z;,end(m) —
i, - - -}, the last constraint is reduced to:

xrZ2xit+xet+r3+1l yr>y1+y2+ys+0

5 Implementation and Experiments

We have implemented a protocol verifisPICA2 based on the type system and in-
ference algorithm discussed above. The implementation is mostly based on the for-
malization in the paper, except for a few extensions such as sum types and private
channels to securely distribute initial keys. The implementation can be testegd:at
/lIwww.kb.ecei.tohoku.ac.jp/"koba/spica2/

We have teste@®PICA2 on several protocols with the results of the experiments
shown in Table 5. Experiments were conducted using a machine with a 3GHz CPU and
2GB of memory.

The descriptions of the protocols used in the experiments are available at the above
URL. POSHSOPHandSOSHare (spiz4-notations of) the protocols given in Figure 1.
GNSLis the generalized Needham-Schroeder-Lowe protocol [9]: see Appendix B.2 for
details.Otway-Ree is Otway-Ree protocol using symmetric kelso-two-pass
is from [16], and the remaining protocols are the Needham-Schroeder-Lowe protocol
and its variants, taken from the sample programs of Cryptyc [17] (but with type an-
notations and casts removedy-flawed is the original flawed versiomsl-3 and

nsl-7 are 3- and 7-message versions of Lowe’s fix, respectively. See [17] for the other
three. As the table shows, all the protocols have been correctly verified or rejected.
Furthermore, verification succeeded in less than a second excépiNf®i For GNSL,

the slow-down is caused by the explosion of the number of atomic capabilities to be
considered, which blows up the number of linear inequalities obtained from capability
constraints.

Protocols |Typing|Time (sec.) Protocols Typing|Time (sec.
POSH yes 0.001|ns-flawed no 0.007
SOPH yes 0.001|nsl-3 yes 0.015
SOSH yes 0.00%|nsl-7 yes 0.049
GNSL yes 7.40|nsl-optimized yes 0.012
Otway-Ree |yes 0.019|nsl-with-secret yes 0.023
Iso-two-pasg/es 0.004nsl-with-secret-optimizegies 0.016

Table 1. Experimental results

6 Extensions

In this section, we hint on how to modify our type system and type inference algorithm
to deal with other features. Formalization and implementation of the extensions are left
for future work.

Our type system can be easily adopted to deal with non-injective correspondence [14],
which allows multiple end-events to be matched by a single begin-event. It suffices to
relax the typing rules, for example, by changing the rules for begin- and end-events to:

I'ip+{end(M)—r}+P r>0 r>0
I'; o+ begin M.P I'ip+{end(M) —r}Fend M

The capabilities attached to a name can now be extracted without using the check oper-
ation:
I' o M : Ne(p1,p2)
I+ pa b M N1, 92)
Fournet et al. [12] generalized begin- and end-events by allowing predicates to be
defined by Datalog programs. For example, the process:

assumeemployeén); expectcanRead(a, handbook)

is safe in the presence of the clause “canRead(X,handbook) :- employee(X)”. Here, the
primitivesassumeandexpectare like non-injective versions teginandend. A simi-

lar type system can be obtained by extending our capabilities to mappings from ground
atomic formulas to rational numbers (wheseL) > 0 meansL holds), and introduc-

ing rules for assume and expect similar to the rules above for begin and end-events. To
handle clauses like “canRead(X,handbook) :- employee(X)”, we can add the following

rule:
iop+{L—r}+-P There is an (instance of) clauge — Lq,..., Ly

r < @(L;) foreachi € {1,...,k}
Iipk P

This allows us to derive a capability farwhenever there are capabilities for, . . . , L.
To reduce capability constraints to linear programming problems, it suffices to extend
the algorithm to obtain the domain of each effect [19], taking clauses into account (more
precisely, if there is a clause: — Lq,..., L andfL,...,0L; are in the domain of
v, we addd L to the domain ofp).

To deal with trust and witness in [16], we need to mix type environments and capa-
bilities, so that type environments can also be attached to names and passed around. The
resulting type system is rather complex, so that we leave the details to another paper.

7 Related Work

The present work extends two lines of previous work: Gordon and Jeffrey’s type sys-
tems for authenticity [15, 16], and Kikuchi and Kobayashi’s work to enable type infer-
ence for symmetric cryptographic protocols [19]. In our opinion the extension is non-
trivial, requiring the generalization of name types and a redesign of the type system.
This has yielded a fully-automated and efficient protocol verifier. As for the expressive
power, the fragment of Gordon and Jeffrey’s type system (subject to minor restrictions)
without trust and witness can be easily embedded into our type system. On the other
hand, thanks to the uniform treatment of name types in terms of capabilities and obliga-
tions, our type system can express protocols that are not typable in Gordon and Jeffrey’s
type system, like the GNSL multi-party protocol [9]. See [10] for more details.

Gordon et al. [3, 4] extended their work to verify source code-level implementation
of cryptographic protocols by using refinement types. Their type systems still require
refinement type annotations. We plan to extend the ideas of the present work to enable
partial type inference for their type system. Bugliesi, Focardi, and Maffei [6, 11, 7] have
proposed a protocol verification method that is closely related to Gordon and Jeffrey’s
type systems. They [11] developed an algorithm for automatically infetaigg(which
roughly correspond to Gordon and Jeffrey’s types in [15, 16]). Their inference algorithm
is based on exhaustive search of taggings by backtracking, hence our type inference
would be more efficient. As in Gordon and Jeffrey type system, their tagging and typing
system is specialized for the typical usage of nonces in two-party protocols, and appears
to be inapplicable to multi-party protocols like GNSL.

There are automated protocol verification tools based on other approaches, such as
ProVerif [5] and Scyther [8]. Advantages of our type-based approach are: (i) it allows
modular verification of protocofs (i) it sets up a basis for studies of partial or full

5 Although the current implementation &ICA2 only supports whole protocol analysis, it
is easy to extend it to support partial type annotations to enable modular verification. For
that purpose, it suffices to allow bound variables to be annotated with types, and generate
the corresponding constraints during type inference. For example, for a type-annotated input
M?(x:11).P, we just need to add the subtype constrain r to rule T-IN.

type inference for more advanced type systems for protocol verification [4] (for an
evidence, recall Section 6); and (iii) upon successful verification, it generates types as a
certificate, which explains why the protocol is safe, and can be independently checked
by other type-based verifiers [16, 4]. On the other hand, ProVerif [5] and Scyther [8]
have an advantage that they can generate an attack scenario given a flawed protocol.
Thus, we think that our type-based tool is complementary to existing tools.

8 Conclusion

We have redesigned Gordon and Jeffrey’s type system for authenticity of asymmetric
cryptographic protocols, and developed a type inference algorithm. This has enabled
fully automated type-based protocol verification, which requires no type annotations.
Future work includes an extension to deal with trust and witness in Gordon and Jeffrey’s
type system.

References

1. M. Abadi. Secrecy by typing in security protocoBACM, 46(5):749—-786, 1999.

2. M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus.
Information and Computatiqri48(1):1-70, January 1999.

3. J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for
secure implementations. Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF 200§)ages 17-32, 2008.

4. K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code
by typing. InProceedings of POPL 201@ages 445-456, 2010.

5. B. Blanchet. From Secrecy to Authenticity in Security Protocol9tininternational Static
Analysis Symposium (SAS'02plume 2477 ofLNCS pages 342-359. Springer-Verlag,
2002.

6. M. Bugliesi, R. Focardi, and M. Maffei. Analysis of typed analyses of authentication pro-
tocols. In18th IEEE Computer Security Foundations Workshop, (CSFW-18 2pages
112-125, 2005.

7. M. Bugliesi, R. Focardi, and M. Maffei. Dynamic types for authenticatialournal of
Computer Securityl5(6):563-617, 2007.

8. C. J. F. Cremers. Unbounded verification, falsification, and characterization of security pro-
tocols by pattern refinement. Rroceedings of ACM Conference on Computer and Commu-
nications Security (CCS 200§)ages 119-128, 2008.

9. C. J. F. Cremers and S. Mauw. A family of multi-party authentication protocols - extended
abstract. IrProceedings of WISSEC'0B006.

10. M. Dahl, N. Kobayashi, Y. Sun, and H.ilttel. Type-based automated verification of authen-
ticity in asymmetric cryptographic protocols. Full version, availabletgt://www.kb.
ecei.tohoku.ac.jp/"koba/papers/protocol-full.pdf ,2011.

11. R. Focardi, M. Maffei, and F. Placella. Inferring authentication tagsProceedings of the
Workshop on Issues in the Theory of Security (WITS 2@@&)es 41-49, 2005.

12. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization poliéi€
Trans. Prog. Lang. Sys29(5), 2007.

13. A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
Technical Report MRS-TR-2002-31, Microsoft Research, Aug. 2002.

14.

15.

16.

17.

18.

19.

20.

21.

A. D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many correspondences in secu-
rity protocols. InSoftware Security — Theories and Systems, Mext-NSF-JSPS International
Symposium (ISSS 2002blume 2609 of NCS pages 263—-282. Springer-Verlag, 2002.

A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocoldournal of
Computer Securityl1(4):451-520, 2003.

A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols.
Journal of Computer Securityt2(3-4):435-483, 2004.

C. Haack and A. Jeffrey. Cryptytittp://www.cryptyc.org/ , 2004,

D. Kikuchi and N. Kobayashi. Type-based verification of correspondence assertions for
communication protocols. IRroceedings of APLAS 200Volume 4807 ofLNCS pages
191-205. Springer-Verlag, 2007.

D. Kikuchi and N. Kobayashi. Type-based automated verification of authenticity in crypto-
graphic protocols. IfProceedings of ESOP 200%olume 5502 olLNCS pages 222-236.
Springer-Verlag, 2009.

B. Pierce and D. Sangiorgi. Typing and subtyping for mobile proces$ésthematical
Structures in Computer Sciend®5):409-454, 1996.

T.Y. Woo and S. S. Lam. A semantic model for authentication protocolsRSR: IEEE
Computer Society Symposium on Research in Security and Privaggs 178—-193, 1993.

A Well-formedness of Type Environments and Judgments

The well-formedness conditions for type judgments and type environments are given in
Figure 8. Here] N denotes the set of extended names obtained fsoby replacing
each numbeiin N with ¢ 4+ 1. For example]{z,y,0} = {z,y,1}.

Foe I FEN(p) C dom(I dom(I")
£ (f); OT(M) om(I") Free 7 (WFJ-MESSAGH
wf 780 17
Foe I FEN C dom(I”
SR 9(;0: = (1) (WFJ-PROC)
wf)
FTE-EMPTY
— WFTE-E
wf
Foe I dom(T) by dom(I”
£ om(F) Ffa;T z ¢ dom(I) (WFTE-EXT)
wf) .
FEN(p1) UFEN(p2) C N (WFT-NAME)
N Fue Ny(p1, @2)
N Foe 7 (WFT-SKEY)
N ks SKey(7)
N P 7 (WFT-DKEY)
N l_wf DKey(T)
N Foe 7 (WFT-EKEY)
N }_wf EKey(T)
N OfUTN ky
£ ﬁN - {T} ’ TT2 £ T2 (WET-PAIR)
wt 11

Fig. 8. Well-formedness conditions for type judgments

B Relation to Gordon-Jeffrey Type System

We now turn to the subject of relating our type system to that of Gordon and Jeffrey.
There are two main points here. First, we show that the fragment of the Gordon-Jeffrey
type system withoutitness andtrust can be embedded into our type system. We make
some additional restrictions regarding nonce types but these appear to be without loss of
expressive power for practice purposes. Second, we show that our formulation of nonce
types actually allows us to type realistic protocols untypable in the Gordon-Jeffrey type
system.

B.1 Partial Embedding of Gordon and Jeffrey’s Type System

Restrictions In order to show an embedding of their type system into ours we have
to make a few modifications. Most notably, we (i) leave out an embeddingifeess

andtrust processes, (ii) inline the message subsumption rule, (iii) matidgk atomic
effects to additionally contain an effeet, and (iv) change the typing of processes
dealing with nonce types.

Modification (ii) means that the subsumption rule for messages is removed and in-
lined in rulesPROCc OUTPUT UN andPrROC INPUT UN (and similarly forPROC REPEAT INPUT UN)
instead:

FF(;,JM:UH FFG‘]N:T ngJUn
I'Fgyout M N :]

(PROCOUTPUT UN)

Fkg_]M:Un F,y:TFc;JP:SS Un§GJT
I'tgyinpM (y:T); P :es

(PROCINPUT UN)

This modification is justified by the belief that honest processes should not have to
apply subsumptions in more general ways than this, in that doing so means changing a
type from or to something else thaim.

Madifications (iii) and (iv) mean that typing rul€Roc CHALLENGE andPROC CHECK
are changed as follows:

I'tgy fs I,z :1 Challenge fs Fgy P : es

I' gy new (z:1 Challenge fs); P : es — [check | z fs]
(PROC CHALLENGE)

I' g3 M : 1 Challenge es¢
r "(;J N:l Response E€SR I Fg_] P: fS
es = fs — (esc + esr) esy = esc
I' gy check M is N; P : es + [check | M esg]

(PrROC CHECK)

One consequence of this is thaf in rule PRoc CHECK can no longer be bound
to names with different check capabilities. Moreover, while the addition of condition
esy. = esc makes rulePRoc CHECK more restrictive than in the original formulation,
breaking this condition does require use of either subtyping or matching in a way that
respectively should not be done by honest processes, or does not appear to be required
by a significant number of protocols. In the former case, subtyping must be used to turn
a public nonce into a private nonce. In the latter casetch can be used to turn a check
capability for one name into a check capability for another name. This however, seems
to be possible only for protocols that deadlock.

We apply a few less important modifications to the type system as well. Tiypes
removed and typing ruleBRoc BEGIN andPrROC END are modified to simply require
M to be of some typd” instead:

I'rtgy M:T I'Fgy P :es
I' gy begin M; P : es — [end M|

(PROC BEGIN)

'ty M:T I'tgy P:es
I'gyend M; P :es+ [end M|

(PROCEND)

As far as we checked, all the protocols (without trust and witness) typed in [16] are
typable under all the modifications above.

For the calculus we first consider a variant of the process calculus withicidt)
andinr (M) messages, and withoudse processes. Secondly, we restegt! processes
to match our non-continuous variant. Thirdly, we restrict the generation of key pairs so
that messageBncrypt (M) andDecrypt (M) may only occur immediately following the
creation of a key pair (see below). The restrictions on the calculus can be removed by
an easy extension of our calculus and type system, and are improsed here just for the
sake of simplicity.

Embedding To ease the presentation we first add a derived process to both calculi
let y is « in P = match (¢, z) is (¢, y).P
for some constant, along with typing rule

IipyFax:r Iy:7m;p00F P
I';o1+ 9o Fletyisxin P

(T-LET)

derivable from typing rule-MATCH andT-PAIR.

]
]
]
[Public Challenge es] = Npub([es],)
[Private Challenge es] = Np.([es],)
[Public Responce es] = Npub (0, [es])
[Private Responce es] = Np, (0, [es])
[Encrypt Key(T')] = EKey([T])
[Decrypt Key(T)] = DKey([T))

Fig. 9. Type mapping

The central ingredient in the embedding is the mapping of types. For this we first
have a straightforward mapping of messagésand effectss relying purely on syn-
tactical conversion; for this reason we shall often simply wiifénstead of M| andes
instead ofles]. We then define the mappiri@] of a Gordon-Jeffrey typ& as in Figure
9. We extend this to environmenisin the point-wise manner. Note that as discussed

above we consider a variant of the Gordon-Jeffrey type system witfdpmnd Sum

types and our mapping is left undefined for these. As we furthermore allow only a re-
stricted use oKeyPair types the mapping is also left undefined for these as well as for
CR types since these should not occur in user code.

In the mapping of processes (Figure 10) we use the provided typing information
in the case of name restriction. As discussed above we impose some restrictions on
processes and the mapping is left undefined for these; for the remaining processes the
mapping is defined recursively.

[cast x is (y:T); P] = let y is = in [P]
[check x is (y:T); P] = check z is y.[P]
[end M;0] = end M
[begin M; P] = begin M.[P]
[new (z:Un); P] = (vz)[P]
[new (z:1 Challenge es); P] = (vz)[P]
[new (x:SharedKey(T)); P| = (Vsymz)[P]
new (z:KeyPair(T));
let y is Encrypt(zx) in
let z is Decrypt(z) in
P (z ¢ FN(P))
[new (z:Un); P] = (vz)[P]
lout M N] = MIN
[inp M (z:T); P] = M?z.[P]
[repeat inp M (z:T); P] = «M?xz.[P]
[split M is (z:T,y:U); P] = split M is (z,y).[P]
[match M is (N,y: U); P] = match M is (N, y).[P]
[decrypt M is {z:T}n; P] = decrypt M is {z}n.[P]
[decrypt M is {|z:T'} y—1; P] = decrypt M is {|Jzf} y—1.[P]
[P | Q] = [P][Q]
[stop] = 0

= (Vas;z/'m,y7 Z)[P}

Fig. 10.Process mapping

Theorem 2. If I Fgg P : es then[I']; [es] [P].

B.2 Limitations of Gordon and Jeffrey Type System

The converse of the result of the previous subsection does not hold, i.e. there are some
realistic protocols that are typable in our type system but not in the Gordon-Jeffrey type

system. This is a consequence of how nonces are typed: in their type system, nonce
types are given two kinds of type&Challenge es and¢ Response es. This forces each

nonce to be used in at most two phases, first as a challenge, and then as a response. Our
name types do not impose such restriction. The rest of this section illustrates two cases
of protocols typable in our type system but not in Gordon and Jeffrey’s type system.

Generalised Needham-Schroeder-Lowelhe GNSL multi-party protocol [9] estab-
lishes mutual authentication betwegmarties using a minimal number of messages.
Forp = 3 with participants name®,, R, andR,, the protocol looks as follows:

RO -> R1: {|RO,R2,n0] }pkl

R1 -> R2: {|RO,R1,n0,n1] }pk2
R2 -> RO: {R1,R2,n0,n1,n2| +pkO
RO -> R1: {ni,n2] }pkl

R1 -> R2: {n2| }pk2

wheren; is a nonce generated ¥, andpk; the public key of a key pair belonging to
R;.

ParticipantR, first sends his noncey to R; who appends his nonce, before
forwarding toR;. Likewise, Ry appends his nonce, before sending all nonces back
to Ry. For the second round?y checks his nonce against the one received figgm
and sends; andns to R;. After checking his nonce?; sends, to R, who then also
checks his nonce.

The authenticity property dictates that each party agrees with both of the other par-
ties on who the participants are, and is specified like so:

RO -> R1: {RO,R2,n0| }pkl
R1 begins (RO,R1,R2,01)

R1 begins (RO,R1,R2,21)

R1 -> R2: {|RO,R1,n0,n1] }pk2
R2 begins (RO,R1,R2,02)

R2 begins (RO,R1,R2,12)

R2 -> RO: {R1,R2,n0,n1,n2| +pkO
RO ends (RO,R1,R2,01)

RO ends (RO,R1,R2,02)

RO begins (RO,R1,R2,10)

RO begins (RO,R1,R2,20)

RO -> R1: {ni,n2] }pkl

R1 ends (RO,R1,R2,10)

R1 ends (RO,R1,R2,12)

R1 -> R2: {n2| }pk2

R2 ends (RO,R1,R2,20)

R2 ends (RO,R1,R2,21)

for some constantsl, . .., 21. Note that for this property to hold we must assume that
none of the partie®,, R;, andR, are compromised.

From the type system’s point of view, the authenticity property e.g. means that a
end-capability from bothR; and R, must be transferred t&, using one noncey.
This is a problem for Gordon and Jeffrey’s type system since capabilities can only be
attached to nonces once due to the fact thaPthec CAST typing rule will only accept
a Challenge type and additionally turn it into esponse type. Our type system does
not have this limitation and can type the protocol with the following initial types for the
nonces:

no : Npp({end(...,01),end(...,21),end(...,02)},0)
n1: Nps({end(...,10),end(...,12)},0)
ng : Np({end(...,20),end(...,21)},0)

so that the type of is later changed by, to Np,({end(...,02)},0) and then by

R5 to Np,.(0,). Whenny makes it back td? it can extract capabilities
{end(...,01),end(...,21),end(...,02)} and useend(. . ., 21) to discharge the obli-
gation attached te,. These changes of name types cannot be expressed in Gordon and
Jeffrey’s type system.

SOPH Handshakes Another example of a protocol that is typable in our type system
but not in Gordon and Jeffrey’s is the SOPH handshake protocol in Figure 1. As men-
tioned in Example 2 in Section 3.8k; should have typEKey (UnxNpy,({end(0) —
1},0)), which corresponds tBncrypt Key(z : Un, Pub Challenge [end(z)]) in Gordon

and Jeffrey’s type system. The kpl¢; is public, but thePub predicate does not hold

for this type in Gordon and Jeffrey’s type system [16]he discrepancy comes from

the fact thafTaint(Np1, (0, #)) holds for arbitraryp in our type system, but the corre-
sponding conditiorCaint (Pub Challenge ¢) holds only for the case =) in Gordon

and Jeffrey’s. This seems to be caused by the difference in the rules for typing check
operations as discussed in the previous subsection. Because of the difference, allowing
Taint(Pub Challenge ¢) to hold for arbitraryy is unsound for Gordon and Jeffrey’s
type system.

C Proof of Lemma 1l

Here we give a more detailed proof of Lemma 1. We define encodings of messages
and processeg.M |, translates a messagé (that may not be well-typed) to a well-

typed process that sends the valuéfbn channek. [P] translates a proceg3to an
equivalent, well-typed process. We assume below that renaming is applied as necessary

" Confirmed by email discussion with Gordon and Jeffrey.

to avoid the name clashing.

[y], ='y
[(My, M)], =

(vy)(vy2)([Mi],, | [M2],, [y1721.92722.7! (21, 22))
{Mi}ar 1, =

(wy)(vy)([Mi], [IM2],, |91721042720.2 {21} 2,)
[{Milrag, 1 =

(vy)(vy2)([Mi],, | [Mz2],, [y1721.92722.2 211} ,,)

[0] =0
[MiIM,] =
(vy1)(vy2)([ML], | [M2],, [91721.02722.21122)

[My?2.P] = (vy1) ([[Ml]] |y1721.21 72 [P])
[«P] = +[P]

[(va)P] = (vz) [P]

[(Veyma)P] = (vsymz) [P]

[[(Vasymxlax2)P]] - (VasymxlaxZ) [[P]]

[check M, is My.P] =
(vy)(vy2)([M:],, | [M2],, |
y1721.y2729.check 21 is z9. [P])
[[Split M is (ml,Ig).P]] =
(wy)([M], |y?zsplit z is (z1,22). [P])
[match M; is (Ms, x). P]] =
(vyr)(vy2)([M], | [M2],
y1721-y2722 match z1 is (22,) [[P]D
[decrypt M is {z}, . P] =
(vy1)(vy2)([M1], | [M2],, |
y1721.y2729.decrypt 21 is {z}.,. [P])
[decrypt M is {|z[} p;,-1.P] =
(vyr)(vy2)([ML], [[M2],, |
y1721.y2722.decrypt 2y is {|z},,-1. [P])
[begin M.P] = begin M. [P]
[end M] =end M

By straightforward induction on the structuresidfand P, we can prove:
y1:Un,...,y,: Un,z:Un;0 - [M], : Un

and
z1:Un,...,zp :Un;0 - [P]

whereFN(M) = {y1,...,yn} andFN(P) = {z, ..., 2, }. Itis also obvious that for
any reduction sequence &f| Q, there is a correspondirfgP | | Q. Thus, the required
result of the lemma holds fa@»’ = [O].

D Proof of Lemma 2

D.1 Extended Processes and Typing

To prove Lemma 2, we extend the syntax of processes and the typing rules in order to
express invariants preserved by reductions.

Extended ProcessesWe extend the syntax of processes, in order to make it explicit
what obligations and capabilities is carried by each name, and when they are attached
to the name. We distinguish below between (bound) variables, ranged oweralog

(free) names, ranged over hy

Definition D1 The sets obxtended messages and processegliven by:

M (ext. messages)=
v | addQM, @1, p2) | (M, M) [{ M}, | My,
V(values):= v | (V1,V2) [{Vi}v, [{Vilty,
V=1 | n(wl,m)
P(ext. processes)=
| va:T)P | (Veymk : T)P | (Vasymb1 : 71, ko : 7o) P
| check M is My.P
| split M is (z,y).P | match M, is (Ms,y).P
| decrypt M; is {x} s, P | decrypt M, is {|x[} 1. P
| begin V.P | end V

The typing rules for extended processes are shown in Figure 12 and 13. In Figure 12,
<x IS the least reflexive relation that satisfies the following rules:

Pub(r) Taint(7’)

!
T<exT

(EXSuBT-PUBTAINT)

1 <91 w2 > wh

(EXSUBT-NAME)
Ne(p1,02) <ex Ne(¢h,93)

We show properties of the subtyping relation below.
Lemma 3. If 1 <. 7 andmy < 73, thenr <. 73.

Proof. By a case analysis on the rules used for deriving<e, 7 andry <g 73. If
one of the rules is reflexivity, the result follows immediately. There are four remaining
cases.

— CaseExSuBT-PUBTAINT-EXSUBT-PUBTAINT: In this casePub(7;) andTaint(73),
from which the result follows b¥EX SUBT-PUBTAINT.

— CaseExSuBT-NAME-ExSuBT-NAME: In this caser; = Ny(p;, ¢)) fori €
{1,2,3} with 1 < 3 < p3 andy] > ¢4 > 5. Thus, the result follows by
ExSuBT-NAME.

— CaseEXSUBT-PUBTAINT-ExSuUBT-NAME: In this case, we have = Ny(¢;, ¢})
for i € {2,3} with Pub(7), Taint(N,(p2, ©5), g2 < @3 andeh > ¢s. If £ = Pub,
thenyl, = (), which impliesp; = 0. Thus, we havéd = Pub = 3 = (), which
implies Taint(73). The required result is obtained by usiBgSUBT-PUBTAINT.

— CaseExSuBT-NAME-EXSUBT-PUBTAINT: In this case, we have = Ny(¢;, ¢})
for i € {1,2} with Taint(73), Pub(N,(pa2, ¥5), v1 < w2 ande} > ¢o. By the con-
dition Pub(Ny (2, ©5)), we havel = Pub andps =), which impliesp; =). Thus,
we havePub(7;). The required result follows bgx SUBT-PUBTAINT.

The following lemma guarantees that the subsumption rkeT¢SuB) only in-
creases obligations, and decreases capabilities of a name type, unless the qualification
of the name type is changed frafub to Pr.

Lemma 4. If Ny(o1,92) <ex Nu (], 0h), then eithel = Pub A ¢ = Pr Ay = 0,
orl =10 Nep1 <) ANpa > oh.

Proof. Inthe case wher®™, (1, v2) <ex No (0], ¢5) was derived using rulEX SuBT-NAME
we immediately have that the second set of conditions are satisfied. If instead rule
ExSuBT-PUBTAINT was used we first note that in this case= Pub must hold.
Then, if¢/ = Pub (respectivelyPr) we have that the second (respectively first) set of
conditions are satisfied.

Extended Operational Semantics

Definition D2 The set ofmessage reduction conteXts messages, ranged over by
Cn, is given by:

Cp =[] | addQC, 1, 92) | (Crny M) | (V,Ci) [{C s
{Vie, [{Cnly [1VEe,

The message reduction relation is defined by:

(o + ¢} + @b, Cru[addQn(192) o))]
—ex (¢, Cy [n(soreaimzw;)])

(@,Cln[addciﬂ‘”“¢2)7¢37@é)D —ex Error
(if 01 + 05 £)

The extended reduction relatid@, £, I', K,) —ex (W', E', I", K, ¢') is de-
fined by the rules in Figure 11. Her&,is a multiset of extended processésis a set of
messages (that represent the begin-events that have occured but have not been matched
by corresponding end-eventg),is a set of names that have been created (with type as-
sumptions)[C is a set of pairs of decryption and encryption keys, ans a capability.

In the figure,C ranges over the set of reduction contexts (for messages), given by:

C .= M1!M2 | ’U'Cm | M?z.P | (P1 | PQ)
| check C,, is M.P | check V' is C,,,.P
| split Cyy, is (x,y).P
| match Cy, is (M, y).P | match V is (C,,,y).P
| decrypt C,, is {x}prs,.P | decrypt Vis {z}¢, .P
| decrypt Cy, is {|x[} s, -1.P
| decrypt V'is {jzf}o, -1.P

D.2 Proof

For an extended proce$s we write Erase(P) for the process obtained by removing
type annotations and “addC”.

Lemmabs. If I'; p b P, then there exist®’ such thatl™; ¢ ox P’ andErase(P’) =
P.

Proof. Easy induction on the derivation &f;, o - P.
Lemma 6. If (P,0,0,0,0)—+%, Error, thenErase(P) is safe.

Proof. We show contraposition. SuppdBease(P) is not safe, i.e.(Erase(P), 0,0, 0) —*

Error. Then(P,0,0,0,0) —%, Error follows from the facts: (i) if Erase(P), E, dom(I"),K) —
(Q,E',N',K'), theneithelP, E, I', K,) —sex (P',E',I",K', ¢') With Erase(P’) =
Panddom(I") = N'or(P,E,I,K,p) —ex Error; and (i) if (Erase(P), E, dom(I"), K) —
Error, then(P,E, I, K,) —%, Error. (These facts follow by an easy case anal-

ysis on the rule used for derivin@Erase(P), E, dom(I"), K) — (Q,E’, N',K') or
(Erase(P), E, dom(I"),K) — Error.)

Lemma 7. If 0; 0 ex P, then(P,0,0,0, 0)—/%, Error.

To show Lemma 7, we define a typing rule for run-time configurations (of the form
(&, E, I',K, ¢)) and show (i) the typing is preserved (Lemma 11) and (ii) a well-typed
configuration is not immediately reducedieror (Lemma 8).

In order to express a necessary invariant, we introduce a reduction rélatid) =y
(¢’, N"), which is used to collect all the capabilities, including those attached to names.
Here, the second componenitis a set of names, used to keep track of the names that
have been checked.

n(®3:4) oceurs ing

(¢1 4 {chky(n, p3) — 1}, N)
= (01 + (2 — p3) + 04, N U {n})

We write ConsistentCag E, ¢, ¥) if, whenever(p,) =3, (¢', N), the follow-
ing conditions hold: ()E(V) > ¢'(end(V)) for every V, and (ii) for everyn, if
¢'(chky(n, ps)) > 1, thenn ¢ N.

(0, M) —ex (', M)
(P W{C[M)} E, K, p) —ex (T W{C[M'}, E, K, ")

(¢, M) —ex Error

(Tw{C[M]},E, 'K, p) —ex Error
@ {n-2y.PnWE E TK, 0) —ex (W {[V/y]P}, E, TK,o) (EXR-COM)
W {P|Q}, B ,T,K,¢) —ex (T W {P,Q}, E,I,K,) (EXR-PAR)
(PW{«P},E,["K,p) —ex (WW{xP,P},E, K, p) (EXR-REP)
(W {(ve: Ny(p1,0)P}, B, K,) —rex

(@ W {[nD /2] P}, B, I U{n: Ne(p1,0)}, K, ¢+ {chke(n, p1)}) (n ¢ dom(I"))
(EXR-NEWN)

(EXR-M)

(EXR-M-ER)

(W A{(veymz : T)P} E, I K,) —ex
W W{lk/z]P}, E, T U{k:7},K, @) (k¢ dom(I))
(W {(Vasymz : 1,y : T2) P}, B, IV K,) —ex
(W W{[ki/x, ko /y|P}, E, T U{ky : 71,k : 72}, KU {(k1,k2)},) (k1, ka2 & dom(I))
(EXR-NEWAK)

(EXR-NEWSK)

(¥ ¢ {check nt) is n(Q)’W).P}7 E,I''K,p + {chk¢(n,v2)}) —ex
<WW{P}7E7F7’C790+4P1 +¢2>
(¢o # 0) V =32, £.(chke(n, p2) € p)
(W & {check n”) is n(¥0:*1) P} E I K, ¢) —ex Error
<W @ {Split (‘/7 W) iS (l’,y)P}, E7 F”C7SO> —ex <Ep & {[V/xV W/y]P}7Ea F7’C750>

(EXR-CHK)

(EXR-CHK-ER)

(EXR-SPLT)
(¥ W {match (V,W)is (V,2).P}, E, I K, @) —ex (¥ W {[W/2]P}, E, I, K,)
(EXR-MTCH)
(T W {decrypt {V},is {z}r.P}, E, K, @) —ex (WU {[V/x]P}, E, I, K,)
(EXR-SDeC)
(IC1, k’z) e
(7 @ {decrypt {|V\}k1 is {zfty,-1.P}, E,IK, @) —ex (VW {[V/x]P},E, I K,)
(ExR-ADEC)
(T W{beginV.P} E, K, @) —ex (WW{P}, EW{V} I,K, o+ {end(V)})
(EXR-BEG)

PWwW{endV} EU{V}, K, o+ {end(V)}) —ex (¥, E, I K, ©) (EXR-END)
(VEE)V (plend(V)) <1)
(YWwW{endV}, E, 'K, p) —ex Error

(EXR-END-ER)

Fig. 11.Extended Operational Semantics

Ne:mpbexx: T (EXT-VAR)
I'in:Ng(5,2); 0 Fex nlene2) . Ny(p1,p2) (EXT-NAME)
I'ipbex V: N ,
. DoleaViNelpues) / (EXT-ADDC)
s+ 91 + ¢ Fex @ddC(V, 91, ¢3) : Ne(p1 — ¢1, 2 + ¢3)
I Fex M : I Fex M2 : [M1/0
Y1 Fe 1:T1 P2 e 2 [1/ }7’2 (EXT—PAIR)
F; @Y1 + Y2 l_ex (Aflﬂfg) 1 T1 X T2
I';01 Fex My i 7 I'; 2 Fex M2 : SKey(71) (ExT-SENC)
I';01 4 @2 Fex { M}, : N (0,0)
I Fex My : 7T I Fex Mo : EKey (7T
AL 192 Fox My : Bey (7) (EXT-AENC)
o1+ @2 Fex { M}y, : Ne(0,0)
Iipbex M : 7’ T <ex T
(EXT-SuB)
Iipbex M T

Fig. 12. Typing Rules for Extended Messages

The condition (i) ensures that the end capabilities estimated by the type system (i.e.
') is at most those that are actually preserit. (The condition (ii) ensures that there is
always at most one check capability for each name.

The typing rule for run-time configurations is given as follows:

F;Sﬁl_exP1| |Pm
ConsistentCad E, ¢, {P1,..., Pn})
V(k1, ko) € K3r.(I'(k1) = EKey(7) A I'(k2) = DKey(7))
Vn, £, 0" .(I'(n) = Ng(-,)A
(“chky (n,) occurs in someP; or ") = £ = (')
Fex ({P1,..., Pn}, E, T K, 0)

Lemma 7 follows from Lemmas 8 and 11 below.

Lemma 8 (lack of immediate error).
If Fex (¥, E, I K, 0), then(¥, E, T, K, p)/—ex Error.

Proof. Supposé-ox (7, E, I', K, ¢) holds. There are three rules that may yiBltror:
EXR-M-ER, EXR-CHK-ER, and EXR-END-ER. We show below that none of those
rules is applicable.

— CaseExR-M-ER: In this case¥ = ¥’ & {C[M]} with (¢, M) —ex Error. By
the typing rules, it must be the case thaty’ Fex M : 7 andy’ C ¢ for somey’
andr. By the typing rules and reduction rules for messagesM) —ex Error
cannot hold.

— CaseExXR-CHK-ER: In this case¥ = ¥’ & {check n(--) is n(¥0:#1) P}, By the
assumptionro (¥, E, I, K,), there must exisp’ such thaty’ < ¢ and

F? SOI Fex Check ’I'I,(”’) is n(‘PO¢<P1).P.

F,@ }_ex 0
;01 Fex My : Ng(0,0) 500 Fex Mo : T Pub(7)

(EXT-0OurT)

F7 ®1 + ®2 l_ex M1!M2
;1 Fex M Ny (0,0) Ipyx:7;02 Fex P Taint (1) (EXT-IN)

I'; 01 + 92 Fex M?x. P

F;@l}_expl F;WQFEXPQ
EXT-PAR
I'ipr+p2Fex Pi| P2 ()
I''ObFex P

T 0r +P (EXT-REP)
I,z Ne(p1,0); 0 + {chke(z, p1) = 1} Fex P (EXT-NEWN)

I'; 0 Fex (vx: Ny(p1,0))P
Iz :SKey(7); o Fex P
I'; o Fex (Vsymz : SKey(T))P
I' k1 :EKey(7), k2 : DKey(7); ¢ Fex P
I'; p Fex (Vasymk1 : EKey(7), k2 : DKey(7))P
I 1 Fex My i Ny(o,2) I'; p2 Fex Mo : SKey (1) I'z:7;03 Fex P

(EXT-NEWSK)

(EXT-NEWAK)

I'; 01 + @2 + @3 Fox decrypt My is {a}ar,. P
(EXT-SDEC)

I 1 Fex My i Ny(-,2) I'; p2 Fex Mo : DKey(T) Iz :7;03 Fex P

I'; 01 4 @2 + @3 Fox decrypt My is {|2f} yy, -1 P
(EXT-ADECQ)

F7Q01 '_ex Ml : NZ(—;—) F,@Q '_ex M2 : NZ(®7§05) F7§03 +Q04 +SD5 |_ex P

I'; 01 + p2 + w3 + {chke(M1, 94)} Fex check M is M>.P

(EXT-CHK)
I'; o+ {end(V) - 1} Fex P xrBe0
I'; o Fox begin V.P
Tip4+{end(V) — 1} Fex end V (EXT-END)
Fipibex Mimixme Iy:m,2:[y/0lm;po Fex P (EXT-SPLT)

I'; 01 + p2 Fex split M is (y, z).P
I'501 Fex My 71 X T2 500 Fex Mo i1 I' z: [M2/0]12; p3 Fex P

I'; 1 + p2 + p3 Fex match M, is (Ma, z).P
(EXT-MTCH)
I ‘Pl Fex P 847/ <e¢
I'sobex P

(EXT-WEAKCAP)

Fig. 13. Typing Rules for Extended Processes

By the typing rules, we have:

;0 Fex 1) Ny(_,)

F; ©3 Fex n(s@n,sﬁ) : Nﬁ(wa 905)
F;(P4+§05+§06 }_exP

©' > @2 + 3+ @4 + {chky(n, p¢)}

By the second condition, we haye, = . (Note that the judgment must have
been derived fronExT-NAME, followed by a possible application &xT-Sus.
EXT-NAME assigns the typ® (o, ¢1), and by Lemma 3, we must had& (g, ©1) <ex
N¢(0, ¢5). By Lemma 4, we have, = ().) Thus, the premise dEXR-CHK-ER
does not hold.

— CaseExXR-END-ER: Inthis casey = ¥'w{end V'} with (V & E)V(p(end(V)) <
1). If V ¢ E, then by the assumption.x (¥, F, I, K, ¢) and the second condi-
tion on the configuration typing, we havye(end(V)) < 1). By the assumption
Fex (¥, E, I, K,), however, we also havE; ¢’ Fex endV for somey’ < .
By the typing rule forend V, it must be the case th&p’(end(V')) > 1), hence a
contradiction.

Lemma9. fFIpbex Vi, thenl; 0 ke Vi 7.

Proof. Straightforward induction on the derivation 6t ¢ Fex V : 7. (Note that by
the syntax of valued;/ does not contain “addC”.)

Lemma 10 (substitution). If I';0 Fex V @ 7 and I,z : 7,150 Fex P, then
I, [V/2] Iy [V/2]p bex [V/z] P

Proof. Aderivation ofI'y, [V/x]Is; [V/x]¢ Fex [V/x]P is obtained froml™y, z:7, I's; ¢ Fex
P by replacing each leaf of the fordfy, « : 7, I'}; ¢’ Fex : 7 (Wherely O I3) with
I, [V/z|Iy; [V/z]¢' Fex V i 7 (Which is obtained by weakening aBck T-WEAK CAP).

Lemma 11 (type preservation). If Fex (¥, E, I',K,¢) and (&, E, ' IC,) —ex
(W' E I K ¢), thentex (T, E' T K,).

Proof. Suppose-cx (¥, E, K, o) and (W, E, 'K,) —ex (P, E T, K,).

We showo (', E', "', K',) by case analysis on the rule used for deriiigE, I, K, ©) —ex
(W,E', I K',¢'). By abuse of notation, we often writE; o - {Py,..., P} for

;o Py -+ | Py below.

— CaseExR-M: In this case¥ = ¥, W {C[M]} and¥’ = ¥, W {C[M']} with M =
Con[2dAC(n(#192), f, 0h)], M! = Cpy [n(#1=#102102)], 0 = o 4) + . We
also haverE’ = E, I'" = I', andK’ = K. By the assumptioftex (&, E, I, I,),
;o - W w {C[C,,[addC(n(#1:92) |) ©4)]]} holds, which must have been de-
rived from I'; @} + @b Fex @ddC(n(?122), o),)+ Nu(@] — ¢, 05 + ¢b),
wherel'(n) = Ny(-,-) andNy(e1, p2) <ex No (Y, ¢5). By Lemma 4, we have
either{ = Pub A ¢ = Taint A p; =0, 01l = ' A1 < o] Apa > ©h. Inboth
cases, we hav® (o1 —), w2 + ©5) <ex No (0] — 0}, 4 + %), which implies
D50 Fex n(#1=21:92105) - Ny (o — o, ol + ©b). Thus, we have

I F 0w {C[C,, [n(r—eretea]]),

It remains to checkonsistentCaf E, ', ¥’). To check this, it suffices to observe
that whenevety’,) =%, (¢%, ¢}), we can construct a corresponding sequence
(p,0) =3 (g3, 94) such thatph + ¢} < @3 + 4. (The only reduction step
(¢, 0) =%, (¥, ¢}) introduces more capabilities is a reductiond@rk,(n, -),

but that can happen at most once, and the difference is atghoesty}.)
CaseExR-CoM: In this case¥ = ¥ W {n-)?2y. P,n-1VY and¥ = ¥ W
{[V/y]P},with E'! = E, I" = T,K = K, and¢’ = ¢. By the assumption
Fex (U, E, 'K,), we have:

F; ¥1 Fex wl

;0 Fex 1) Ng(0, 0)
Iipsbex Vur

Pub(r)

F; P4 '_ex n(ﬂf) : NZ’ ((Dy 0)
Iy:75¢5 Fex P

Taint(7’)

Y =1+ P2+ @3+ st s

By the conditions”; o3 Fex V' : 7, Pub(7), andTaint(7’), we havel'; 5 Fex
V:7'.ByLemma9,;(Fox V : 7/ holds. Thus, by using the substitution lemma
(Lemma 10), we obtaifi’; 5 Fex [V/y]P. By usingExT-ParR andEXT-WEAK CAP,
we obtainl’; ¢ Fox ¥’ as requiredConsistentCaf £, ¢, ¥’) follows immediately
from ConsistentCag E, ¢, ¥).

CaseEXR-PAR, EXR-ReP: Trivial.

CaseEXR-NEWN: In this case¥ = ¥; W {(vx : Ny(p1,0))P} and¥’ = ¥, W
{[n®D) /2)P}, with E' = E, I"" = (I',n: Ny(¢1,0)), K' = K, andg’ = ¢ +
{chk¢(n, 1) — 1}. By the assumptiohex (¥, E, I, K,) and ruleExT-NEwN
we have:l'; o Fox U1 and ',z : Ny(p1,0); o3 + {chke(z, 1) — 1} Fex P,
with ¢ > o + 3. By the substitution lemma (Lemma 10), we have

I’ @3 + {chky(n,¢1) — 1} Fex [n(%,@)/w]p.

Thus, by usingexT-PAR and EXT-WEAKCAP, we obtainl; ¢’ Fex ¥’ as re-
quired.ConsistentCaf E’, ¢’, ¥') follows immediately fromConsistentCag E, ¢, ¥).
CaseExXR-NEWSK: Similar to the case fOEXR-NEw.

CaseExXR-NEWAK: Similar to the case foEXR-NEw.

CaseExR-CHK: In this case¥ = ¥, ¥ {check n(--) is n(®¥1) P} andy’ =

@, W {P}, with B/ = E, I" = 'K = K, ¢ = ¢o + {chky(n,)} and

¢ = o+ @1+ P

By the assumptiofex (¥, E, I, K,), we have:

F; ©3 |_ex wl
F; Y4 l_ex n(777) : Nf(*7 *)
I 05 Fox n(®7e8) . N (0,01)
(with Ne(p7, ¢8) <ex Ne(0, 1))
506 + @1+ @2 Fex P
Yo = Y3+ Y4+ Y5+ g

Therefore, we havé’; vs3 + w6 + 1 + 2 Fex ¥'. By EXT-WEAKCAP, we obtain
I'; ¢’ Fex W'. It remains to checlConsistentCafd E, ¢, ¥').

Next, we show thatp; = () andps > ;. By the conditionN,(p7, vs) <ex
N (0, 1), either(pr = D) A(ps = ¢1) or Pub(Ny (7, ps)) ATaint (N, (0, 1))
holds. In the latter casé,= Pub andy; = ¢; =). Thus, we haveo; = () and
s > 1 as required.

Since(p,0) = (vo + w2 + ¢!, {chke(n,p2)}) for somey] > ps > 1,
ConsistentCag F, ¢', ') follows from ConsistentCag E, ¢, ¥).
CaseExXR-SpLT: In this case¥ = ¥, W {split (V,W) is (z,y).P} and¥’ =
U W {[V/x,W/y|P}, with B/ = E, I" = I', K' = K, andy¢’ = ¢. By the
assumptiofiro (¥, E, I', K, ¢), we have:

F;Qﬁl |_ex wl

I'ioobex Vim

;03 Fex W [V/0]T2
Iz:m,y:[x/0]72;04 Fex P
w21+ Y2+ Y3+ s

Here,p,4 does not contair andy. Without loss of generality, we also assume that
x,y does not occur iV, . By applying the substitution lemma (Lemma 10), we
havel,y : [V/0]2; 04 Fex [V/x]P. By applying the substitution lemma again,
we get: ;04 Fex [V/x, W/y|P. Thus, we obtain”; ¢’ ex ¥’ as required.
ConsistentCaf E, ¢, ') follows from ConsistentCafd E, ¢, ¥).

CaseEXR-MTCH: Similar to the cas&xR-SpLT above.

CaseExR-SDec: Similar to the cas&xR-ADEC below.

CaseExXR-ADEC: In this case¥ = ¥, W {decrypt {V}, is {|z[}4,-:.P} and

v =W w{[V/z]P}, with B/ = E, " = I, K’ = K, and¢’ = ¢. By the
assumptiotro (¥, E, I, K,), we have:

I'; 01 Fex V1

I'; 9 Fex k1 : EKey(7y)
I'ipsbex Vim

I'; 04 Fex ko : DKey(12)

L' x: 79505 Fex P
P21+ P2+ 3+ st s
I'(k1) = EKey(7)

I'(ky) = DKey(7)

By the 2nd, 4th, and the last two conditions, we hBley (1) <., EKey(r)
andDKey(7) <.x DKey(m). EKey(7) <., EKey(m) impliest = 7, or
Pub(EKey(7)) A Taint(EKey (7)), which implies,7 = 7 or Taint(7) A
Pub(r;). Thus, we haver; <., 7. Similarly, DKey(7) <., DKey(72) im-
pliesT <.« T2. As the subtyping relation is transitive (Lemma 3), we have,,

T9. Thus, by usingExT-Sue and the substitution lemma (Lemma 10), we obtain
I'; p5 Fex [V/x] P. By EXT-WEAKCAP, we obtainl’; ¢ oy ¥’ as required.
ConsistentCag E’, ¢’, ¥’) follows immediately fromConsistentCag E, ¢, ¥).

— CaseExR-BEG: In this case¥ = ¥; W {begin V.P} and¥’ = ¥; W { P}, with
E' =FEw{end(V)},I"=I,K' = K,andy’ = ¢ + {end(V) — 1}. By the
assumptiofiro (¥, E, I', K, ¢), we have:

F§<,01 '_ex 471
;oo +{end(V) — 1} Fex P
Y 2P+ e

Thus, we havd’; ¢’ Fex ¥’ as requiredConsistentCad E’, ', ¥’) follows im-
mediately fromConsistentCag E, ¢, ¥).

— CaseExR-END: In this casey = ¥’ W {end V} with E = F'W{end(V)}, I’ =
I''K'=K,andp = ¢'+{end(V) — 1}. By the assumptiohex (¥, E, I', K,),
we have:

I'; 01 Fex v’
I';oo+{end(V) — 1} Fex end V
¢ = @1+ @2+ {end(V) — 1}

Thus, we haved™; ¢ box ¥’ as requiredConsistentCag E’, ', ¥') follows imme-
diately fromConsistentCag E, ¢, ¥).

Lemma 2 now follows as an immediate corollary of the lemmas above.

Proof of Lemma 2Supposé); § - P. By Lemma 5, there exists an extended prod&ss
such tha); § Fox P’ andErase(P’) = P. By Lemma 7(P’, 0,0, 0, 0)—+-*, Error.
Thus, by Lemma 6 an&® = Erase(F’), P is safed

E Proof of Theorem 2

Lemmal2. If Iz : T gy P andx ¢ fn(P) thenl" Fgy P.

Proof. Follows from Lemma 10 in the technical report for the Gordon-Jeffrey type
system [13]

Lemma 13. If Public(T) thenPub([T]). If Tainted(T) thenTaint([71]).

Proof. By straightforward induction in the derivation &tublic(1") and Tainted (T') us-
ing their algorithmic formulation. RUlEBAINTED TOP, PUBLIC SUM, TAINTED SUM,
PuBLIC KEYPAIR, TAINTED KEYPAIR, andPuBLIC CR are not considered.

Lemma 14. If T’ <gj Un thenPub([T]). If Un <gj T thenTaint([1]).

Proof. In both cases we see that rl&B PuBLIC TAINTED must have been used to
derive the subtyping expression. In both cases Lemma 13 gives us the desired result.

Lemma 15. If I' gy M : T then[I'];0 - [M] : [T)].

Proof. By straightforward induction in the derivation 6f-gy M : T. Note that rules
MSG SUBSUM, MSGINL, MSG INR, andM SG PART cannot happen by restriction.

Theorem 3. If I Fgy P : esthen[I']; [es] F [P].
Proof. By induction in the derivation of ' gy P : es.

— CaseProc Sussuwm: by induction hypothesis and the fact that< es + fs, we
can apply ruler-CSus to obtain the desired result.

— CasePROCOUTPUTUN: sincel’ gy M : Un we have by Lemma 15 that
[I'];0 = M : [Un]. As [Un] = Npun(0,0) we get that the first condition for rule
T-OuT is satisfied. Sincé” gy N : T we can again apply Lemma 15 to obtain
[I'];0 = N : [T] thereby satisfying the second condition for rdl©uT. Finally,
sinceT <y Un we get from Lemma 14 th&ub([T]) and can then satisfy the
final condition of ruleT-OuT.

— CasePROC INPUT UN: sincel” gy M : Un we have by Lemma 15 that']; 0 +-

M : [Un]. As [Un] = Npyub(0,0) we get that the first condition for rul@-In

is satisfied. Sincd’,y : T g3 P : es we have by induction hypothesis that the
second condition is satisfied. Finally, sinde <gj 7T we get from Lemma 14 that
Taint([T]) and can then satisfy the final condition of rdld N.

— CasePrROC REPEATINPUT UN: similar to casd’ROC OuTPUT UN but also using
rule T-RepP.

— CaseProc PAR: by the induction hypothesis we can immediately apply TuleAR.

— CasePrRoc REs: we treat the different cases Bfseparately:

e T = Un:since[Un] = Np, (0, #) we can apply the induction hypothesis and
rule T-NEWN to obtain the desired result.

e T = SharedKey(7"): by the fact thaBKey ([7”]) = [SharedKey(7")] we can
apply the induction hypothesis and rdleNEwWSK to obtain the desired result.

o T = KeyPair(T"): by the restricted used dfeyPair we know that two next
constructions inP arelet constructs follows by a proce$s. By the typing of
P we getthatF, z:KeyPair(T"), y:Encrypt Key(T"), z:Encrypt Key(T") Faj
P’ : es.Bythefactthat: ¢ fn(P’) Lemma 12 gives us thd, y:Encrypt Key(T"), z:
Encrypt Key(T") Feg P’ : es. By induction hypothesifF], y:[Encrypt Key(T")], z:
[Encrypt Key(T")]; [es] - [P’]. Since[Encrypt Key(T")] = EKey([1"]) and
[Decrypt Key(T")] = DKey([T"']) we can apply ruld-NEwWAK to obtain the
desired result.

— CaseProc SpLIT: follows by the induction hypothesis, Lemma 15, and fTHSPLIT.

— CaseProc MATcH: follows by the induction hypothesis, Lemma 15, and rule
T-MATCH.

— CaseProc CASE: cannot happen by our restrictions.

— CaseProc Symm: follows by the induction hypothesis, Lemma 15, and 8 DEC.

— CaseProc AsymMm: follows by the induction hypothesis, Lemma 15, and rule
T-ADEC.

— CaseProc BEGIN: follows by the induction hypothesis and ruleBEGIN; if es
does not contain aend (M) we have to extend it first using-CSus.

— CasePROCEND: by our restrictions”? = end L; stop and hence the results follows
by rule T-END.

— CasePrROC WITNESS cannot happen by our restrictions.

— CasePrRoc TRUST: cannot happen by our restrictions.

— CasePrRoc CAST: by assumption we havE Fgjy = : [Challenge esc and also
I'yx : 1 Response esg Fgy P : fs. Lemma 15 then gives us that]; () - x :
[l Challenge es¢] and the induction hypothesis tHaf, « : [l Response esg]; [fs] I
[P]. Since[l Challenge esc] = Ny([esc], ®) we can apply rul&’-NAME to obtain
[I]; [esc] + [esr) = : Ny(0, [esgr]). As N (0, [esr]) = [l Response esr] we can
apply ruleT-LET to obtain the desired result.

— CasePRroc CHECK: by assumption we havE gy M : [Challenge es¢, I' Fayg
N : 1 Response esg,andl’ Fgy P : fs. Lemma 15 then gives us thdt];) - M :
[l Challenge esc] and[I'];0 = N : [l Response esc]. Since[l Challenge esc| =
N ([esc], @) and[l Response esr] = N;(), [esr]) we can satisfy the two first
premises of rul-CHK usingy; = ¢ = 0. Now letps = [es] = [fs] — ([esc] +
[esgr]), 4 = [esc], andys = [esg]. Sincel” Fgy P : fswe have by the induction
hypothesis thall']; o3 + ©4 + @5 F [P] and we can finally apply rul&-CHk.

— CasePrRoc CHALLENGE: follows by induction hypothesis and rule RES.

