

N

s
3

TE e s

Disclaimer

e This is a rambling talk.

e The ideas and the intentions behind
them are important, I believe.

e The technical definitions may not
hold water (yet).

Disclaimer

e This is a rambling talk.

e The ideas and the intentions behind
them are important, I believe.

e The technical definitions may not
hold water (yet).

e | have likely overlooked some results
of yours -- tell me.

Disclaimer

e This is a rambling talk.

e The ideas and the intentions behind
them are important, I believe.

e The technical definitions may not
hold water (yet).

e | have likely overlooked some results
of yours -- tell me.

e Ask, comment, interrupt any time.

i
i
2

-w.nﬁﬂ_

ol Y
& i
M,

Bl

Goals

e Propose informal criteria for what a

static analysis should satisfy to
warrant being called a “good” static

analysis.

e Propose technical criteria for

capturing some aspects of the
informal criteria

Goals

e Propose informal criteria for what a

static analysis should satisfy to
warrant being called a “good” static

analysis.

e Propose technical criteria for

capturing some aspects of the
informal criteria

e Identify questions for further work,
both conceptual and technical.

Program property

e A program property is a predicate on
programs.

e A program property P is semantic
(extensional) if

P=a=> (P < P(1)

Program property

e A program property is a predicate on
programs.

e A program property P is semantic
(extensional) if

P=a=> (P < P(1)

e A program property P is trivial if
P(p) for all p, or -P(p) for all p.

Rice’s Curse

Theorem.:

Let L be a Turing-complete programming
language, P a nontrivial semantic program
property.

Then P is undecidable.

Rice, Classes of recursively enumerable sets and their decision problems, Trans. AMS 1953

RO)
3

Static analysis

e (Given:
e P: Extensional program property
e (S, S’): Static analysis for P

e We want of (S, S):

e Soundness: SCP, S’C 4P

Static analysis

e GGiven:
e P: Extensional program property
e (S, S’): Static analysis for P

e We want of (S, S):
e Soundness: SCP, S’C 4P

Is that sufficient? No, we also
want...

Static analysis

e GGiven:
e P: Extensional program property
e (S, S’): Static analysis for P

e We want of (S, S):
e Soundness: SCP, S’C 4P

Is that sufficient? No, we also
want...

e Goodness

Goodness characteristics

e Usefulness:
e Hass some effective use
e Declarative specification:

e Separation of what the analysis
computes from how it computes it
(the particular algorithm[s] used)

Goodness characteristics

e Unimprovability:

e Can'’t get better approximation at
lower computational cost

Goodness characteristics

e Unimprovability:

e Can'’t get better approximation at
lower computational cost

e Predictability:

e Predictability under program
transformations

GOOdneS'r Algorithm need not be ‘tiCS

compositional, only its
result

e Compositicaal cesv...cavion

e Explicit, modular (syntax-oriented),
efficiently checkable logical
explanation of analysis results

e Constructive interpretation

e Operational interpretation of
certificate, not just of yes/no answer

Goodness characteristics

o Adaptiveness:

e Hasy instances are handled
efficiently

e Hard instances may take more
time.

e Parameter sensitivity

e Scale well with parameter, which
captures expectations on input

distribution.

Property of particular

algorithm A implementing an
¢
Goodne i

o Adaptiveness:

e Hasy instances are handled
efficiently

e Hard instances may take more
time.

e Parameter sensitivity

e Scale well with parameter, which
captures expectations on input

distribution.

Property of particular

algorithm A implementing an
¢
Goodne i

o Adaptiveness:

e Hasy instances are handled
efficiently

e Hard instan (Not developed here)
time.

e Parameter sensitivity

e Scale well with parameter, which
captures expectations on input

distribution.

.
>

TR e
SN

.
T
Y

a0,

System F for N

e Sound? v

e Declarative? v/

e Compositionally certified? ¢/

e Useful? v/

e Predictability properties? (v/)

e Unimprovability? Hmm...

57E

"

&,
<
ta

System F for N:
Improvability

e Okay for System F to be undecidable,
as long as there is no better
approximation of N that is decidable
(more efficient).

Recursive inseparability

Definition:
Let A C P. A is recursively inseparable
from P if thereisno Bsuchthat ACBCP

and B is decidable (*recursive”).

Recursive inseparability

Definition:
Let A C P. A is recursively inseparable
from P if thereisno Bsuchthat ACBCP

and B is decidable (*recursive”).

Is F recursively inseparable from N%

Is F recursively
inseparable from N¢

e The answer is...

e We don’t know!

Is F recursively
inseparable from N¢

e The answer is...

e We don’t know!

e Does not follow from Well’s proof

Is F recursively
inseparable from N¢

e The answer is...

e We don’t know!

e Does not follow from Well’s proof

e We don’t know whether F is
improvable

Is F recursively
inseparable from N¢

e The answer is...

e We don’t know!

e Does not follow from Well’s proof

e We don’t know whether F is
improvable

e There may be a (type) system out
there that extends System F,
guarantees N and is decidable.

Is F recursively
inseparable from N¢

e The answer is...

e We don’t know!

I don’t believe

e Does not fc it, though *00f
e We don’t know wilictlhicr I' is
improvable

e There may be a (type) system out
there that extends System F,
guarantees N and is decidable.

lecidable

SCS1997 _

ively

R i

TR ARWIRGTI R L |
EIENREY Y 8 EL R

AN B

o s

A g

S

ed

http://cl-informatik.uibk.ac.at/apps/reading/uploads/jones.bohr2005.pdf
http://cl-informatik.uibk.ac.at/apps/reading/uploads/jones.bohr2005.pdf

.
>

TR e
SN

.
T
Y

a0,

ML goodness

e Predictability:
e Invariant under let-reduction
e ML(let x=eine’) <=> ML(e’[e/x])

e Preservation under beta-reduction

ML goodness

e Predictability:
e Invariant under let-reduction
e ML(let x=eine’) <=> ML(e’[e/x])
e Preservation under beta-reduction

e ML((Ax.e)e”) => ML(e[€e'/x])

ML goodness

e Predictability:
e Invariant under let-reduction
e ML(letx=eine’) <=> ML(e'[e/x])
e Preservation under beta-reduction
e ML((Ax.e)€e’) => ML(e[e’/x])

e Preservation under eta-reduction

ML goodness

e Predictability:
e Invariant under let-reduction
e ML(let x=eine’) <=> ML(e’[e/x])
e Preservation under beta-reduction
e ML((Ax.e)e”) => ML(e[€e'/x])
e Preservation under eta-reduction

e ML(Ax.ex) => ML(e)

ML goodne’ .

semantic” for
let-expressions:
Context sensitivity
for nonrecursive
definitions

e Predictability:
e Invariant under let-rec
e ML(letx=eine’) <=
e Preservation under beta-reduction
e ML((Ax.e)e”) => ML(e[€e'/x])
e Preservation under eta-reduction

e ML(Ax.ex) => ML(e)

ML typability as static
analysis for type error
freeness

e Is ML typability improvable?

ML typability as static
analysis for type error
freeness

Theorem: Let MLC BC T,
Then B is DEXPTIME-hard.

Henglein, A Lower Bound for Full Polymorphic Type Inference: Girard-Reynolds Typability is DEXPTIME-hard, Utrecht U. TR

RUU-CS-90-14, 1990

Theorem::Léﬁfﬁv
Then B is DE3

v
gt G U
--B\T -

e
Ee 4
v

"TME-hard.

Henglein, A Lower Bound for Full Polymorphic Type Inference C}ii‘a,rd-Reynolds Typability is DEXPTIME-hard, Utrecht U. TR
~ RUUCS-90-14,1990

I vy

mVEA

OCFA in direct style

Build graph with flow and tree edges. One node
per subexpression, plus some extra ones.

1. Base flow rules, resulting in graph G:

A+ & & A
AX.e e’
X
F e’ e’'e”

mVEA

OCFA in direct style

Theorem: mVFA can be implemented in time
O(dm*+pn+q), where

e n: number of nodes

¢ d: maximum outdegree of G,

e m*: number of flow edges in G*

(flow-transitive closure of (),
e p: number of closure rule applications.
* J: number of reachability queries

Yellin, Speeding Up Dynamic Transitive Closure for Bounded Degree Graphs,
Acta Informatica 30, 369-384, 1993

Close base &
unification ¢
structure.

SVFEFA

Simple monomorphic VEA

Theorem: sVFA can be implemented in time
O(noa(n,n) +qn), where

* o(m,n): inverse Ackerman function

¢ : number of reach set queries

Henglein, Simple Closure Analysis, TOPPS TR D-193, 1992

SVFEFA

Simple monomorphic VEA

e Very fast in practice
e Applications:

e Binding-time analysis

Henglein, Efficient Type Inference for Higher-Order Binding-Time Analysis, FPCA 1991

e Dynamic ;ype inference for Scheme

Henglein, Globa,l tagging optimization by type inference, LFP 1992

e Closure analysis in Similix

Bondorf, Jorgensen, Efficient Analysis for Realistic Off-Line Partial Evaluation, JFP 1993

e No significant reduction in precision vis a
vis mVFA observed

.
>

TR e
SN

ll
et T

s

SVFA predictabilit~

also for
subO-CFA

Theorem.:
sVFA reachability is P-complete

Van Horn, Mairson, Flow Analysis, Linearity, and PTIME, SAS 2008

Theorem.:
Let B be such that sVFA C B C R,

where R is semantic (un)reachability.
Then B i1s P-hard.

Theorem

[A

n)reachability.

Adaptiveness

e Assume SO C S1 C P, with algorithms
AQO, Al for SO, 51, respectively.

e Al is adaptive over AO if its (time)

complexity is < 8 times the complexity
of AO on instances from SO.

Adaptiveness

e Assume SO C S1 C P, with algorithms
AQO, Al for SO, 51, respectively.

e Al is adaptive over AO if its (time)

complexity is < 8 times the complexity
of AO on instances from SO.

e Al is allowed to take substantially
more time than AO on instances
outside SO.

Adaptiveness

e Intuition: A static analysis algorithm
should not be slower on instances
where a less precise analysis
algorithm manages to compute the
semantically correct result (on “easy
instances”).

Questions

e Are the various KCFA-algorithms
adaptive (over sVFA or subO-CFA)?

e Is (functional) KCFA improvable for
k>1%

e Is SCT improvable? How predictable
is it?

Questions

e Are the various KCFA-algorithms
adaptive (over sVFA or subO-CFA)?

e Is (functional) KCFA improvable for
k>1%

e Is SCT improvable? How predictable
is it?

