
Soundness is not
Sufficient

Fritz Henglein
DIKU

Shonan Village, 2011-09-25

Disclaimer

Disclaimer
• This is a rambling talk.

Disclaimer
• This is a rambling talk.

• The ideas and the intentions behind
them are important, I believe.

Disclaimer
• This is a rambling talk.

• The ideas and the intentions behind
them are important, I believe.

• The technical definitions may not
hold water (yet).

Disclaimer
• This is a rambling talk.

• The ideas and the intentions behind
them are important, I believe.

• The technical definitions may not
hold water (yet).

• I have likely overlooked some results
of yours -- tell me.

Disclaimer
• This is a rambling talk.

• The ideas and the intentions behind
them are important, I believe.

• The technical definitions may not
hold water (yet).

• I have likely overlooked some results
of yours -- tell me.

• Ask, comment, interrupt any time.

Goals

Goals

• Propose informal criteria for what a
static analysis should satisfy to
warrant being called a “good” static
analysis.

Goals

• Propose informal criteria for what a
static analysis should satisfy to
warrant being called a “good” static
analysis.

• Propose technical criteria for
capturing some aspects of the
informal criteria

Goals

• Propose informal criteria for what a
static analysis should satisfy to
warrant being called a “good” static
analysis.

• Propose technical criteria for
capturing some aspects of the
informal criteria

• Identify questions for further work,
both conceptual and technical.

Program property

Program property

• A program property is a predicate on
programs.

Program property

• A program property is a predicate on
programs.

• A program property P is semantic
(extensional) if
 p ≅ q => (P(p) ⇔ P(q))

Program property

• A program property is a predicate on
programs.

• A program property P is semantic
(extensional) if
 p ≅ q => (P(p) ⇔ P(q))

• A program property P is trivial if
 P(p) for all p, or ¬P(p) for all p.

Rice’s Curse

Theorem:
Let L be a Turing-complete programming
language, P a nontrivial semantic program
property.
Then P is undecidable.

Rice, Classes of recursively enumerable sets and their decision problems, Trans. AMS 1953

Rice’s Curse, pictorially
P does not hold

P holds

p’ ≅ q’ p ≅ q ≆

Rice’s Curse, pictorially
P does not hold

P holds

p’ ≅ q’ p ≅ q ≆

P is not decidable!

Rice’s Curse: Example

Normalizing λ-terms
(N)

Rice’s Curse: Example

Normalizing λ-terms
(N)

semantic and
nontrivial

Rice’s Curse: Example

Normalizing λ-terms
(N)

Corollary: N is not decidable!

semantic and
nontrivial

Rice’s Curse: Example

Normalizing λ-terms
(N)

Corollary: N is not decidable!

semantic and
nontrivial

Can we
approximate it?

Static analysis

Static analysis
• Given:

Static analysis
• Given:

• P: Extensional program property

Static analysis
• Given:

• P: Extensional program property

• (S, S’): Static analysis for P

Static analysis
• Given:

• P: Extensional program property

• (S, S’): Static analysis for P

• We want of (S, S’):

Static analysis
• Given:

• P: Extensional program property

• (S, S’): Static analysis for P

• We want of (S, S’):

• Soundness: S ⊆ P, S’ ⊆ ¬P

Static analysis
• Given:

• P: Extensional program property

• (S, S’): Static analysis for P

• We want of (S, S’):

• Soundness: S ⊆ P, S’ ⊆ ¬P

Is that sufficient? No, we also
want...

Static analysis
• Given:

• P: Extensional program property

• (S, S’): Static analysis for P

• We want of (S, S’):

• Soundness: S ⊆ P, S’ ⊆ ¬P

Is that sufficient? No, we also
want...

• Goodness

Static analysis
• Given:

• P: Extensional program property

• (S, S’): Static analysis for P

• We want of (S, S’):

• Soundness: S ⊆ P, S’ ⊆ ¬P

Is that sufficient? No, we also
want...

• Goodness

What does
“good” mean??

Goodness characteristics

Goodness characteristics

• Usefulness:

• Has some effective use

Goodness characteristics

• Usefulness:

• Has some effective use

• Declarative specification:

• Separation of what the analysis
computes from how it computes it
(the particular algorithm[s] used)

Goodness characteristics

Goodness characteristics

• Unimprovability:

• Can’t get better approximation at
lower computational cost

Goodness characteristics

• Unimprovability:

• Can’t get better approximation at
lower computational cost

• Predictability:

• Predictability under program
transformations

Goodness characteristics

• Compositional certification

• Explicit, modular (syntax-oriented),
efficiently checkable logical
explanation of analysis results

• Constructive interpretation

• Operational interpretation of
certificate, not just of yes/no answer

Algorithm need not be
compositional, only its

result

Goodness characteristics

Goodness characteristics
• Adaptiveness:

• Easy instances are handled
efficiently

• Hard instances may take more
time.

• Parameter sensitivity

• Scale well with parameter, which
captures expectations on input
distribution.

Goodness characteristics
• Adaptiveness:

• Easy instances are handled
efficiently

• Hard instances may take more
time.

• Parameter sensitivity

• Scale well with parameter, which
captures expectations on input
distribution.

Property of particular
algorithm A implementing an

analysis S

Goodness characteristics
• Adaptiveness:

• Easy instances are handled
efficiently

• Hard instances may take more
time.

• Parameter sensitivity

• Scale well with parameter, which
captures expectations on input
distribution.

Property of particular
algorithm A implementing an

analysis S

(Not developed here)

Static Analysis for N

Static Analysis for N

• Imagine we want to analyze N

Static Analysis for N

• Imagine we want to analyze N

• Is System F typability a good static
analysis for N?

System F for N

System F for N

• Sound? ✔

System F for N

• Sound? ✔

• Declarative? ✔

System F for N

• Sound? ✔

• Declarative? ✔

• Compositionally certified? ✔

System F for N

• Sound? ✔

• Declarative? ✔

• Compositionally certified? ✔

• Useful? ✔

System F for N

• Sound? ✔

• Declarative? ✔

• Compositionally certified? ✔

• Useful? ✔

• Predictability properties? (✔)

System F for N

• Sound? ✔

• Declarative? ✔

• Compositionally certified? ✔

• Useful? ✔

• Predictability properties? (✔)

• Unimprovability? Hmm...

Static Analysis for N

N

F

Static Analysis for N

N

F

Nontrivial,
but not semantic

Static Analysis for N

N

F

Theorem: F is undecidable

Nontrivial,
but not semantic

Static Analysis for N

N

F

Theorem: F is undecidable
Wells, Typability and Type Checking in the Second-Order λ-Calculus Are Equivalent and Undecidable, LICS 1994

Nontrivial,
but not semantic

System F for N:
Improvability

• Okay for System F to be undecidable,
as long as there is no better
approximation of N that is decidable
(more efficient).

Recursive inseparability

Definition:
Let A ⊆ P. A is recursively inseparable
from P if there is no B such that A ⊆ B ⊆ P
and B is decidable (“recursive”).

Recursive inseparability

Definition:
Let A ⊆ P. A is recursively inseparable
from P if there is no B such that A ⊆ B ⊆ P
and B is decidable (“recursive”).

Is F recursively inseparable from N?

Is F recursively
inseparable from N?

Is F recursively
inseparable from N?

• The answer is...

Is F recursively
inseparable from N?

• The answer is...

•We don’t know!

Is F recursively
inseparable from N?

• The answer is...

•We don’t know!
• Does not follow from Well’s proof

Is F recursively
inseparable from N?

• The answer is...

•We don’t know!
• Does not follow from Well’s proof

• We don’t know whether F is
improvable

Is F recursively
inseparable from N?

• The answer is...

•We don’t know!
• Does not follow from Well’s proof

• We don’t know whether F is
improvable

• There may be a (type) system out
there that extends System F,
guarantees N and is decidable.

Is F recursively
inseparable from N?

• The answer is...

•We don’t know!
• Does not follow from Well’s proof

• We don’t know whether F is
improvable

• There may be a (type) system out
there that extends System F,
guarantees N and is decidable.

I don’t believe
it, though

Another analysis for N

N

Fω(1)

Another analysis for N

N

Fω(1)

Nontrivial,
but not semantic

Another analysis for N

N

Fω(1)

Theorem: Fω(1) is undecidable

Nontrivial,
but not semantic

Another analysis for N

N

Fω(1)

Theorem: Fω(1) is undecidable
Urzyczyn, Type reconstruction in Fω, MSCS 1997

Nontrivial,
but not semantic

Another analysis for N

N

Fω(1)

Another analysis for N

N

Fω(1)

Theorem: Fω(1) is recursively
inseparable from N

Another analysis for N

N

Fω(1)

Theorem: Fω(1) is recursively
inseparable from N

Follows from
proof method:

TM simulation

SCT for N

Ncbv

SCT

SCT for N

Ncbv

SCT

Theorem: SCT is decidable.
(Complexity?)

SCT for N

Ncbv

SCT

Theorem: SCT is decidable.
(Complexity?)

Bohr, Jones, Termination analysis of the untyped lambda-calculus, 2004

http://cl-informatik.uibk.ac.at/apps/reading/uploads/jones.bohr2005.pdf
http://cl-informatik.uibk.ac.at/apps/reading/uploads/jones.bohr2005.pdf

An analysis for type
error freeness

T

ML

(Programs not resulting
in a type error)

An analysis for type
error freeness

T

ML

(Programs not resulting
in a type error)

System F(1)
typable

programs

ML goodness

ML goodness
• Predictability:

ML goodness
• Predictability:

• Invariant under let-reduction

ML goodness
• Predictability:

• Invariant under let-reduction

• ML(let x = e in e’) <=> ML(e’[e/x])

ML goodness
• Predictability:

• Invariant under let-reduction

• ML(let x = e in e’) <=> ML(e’[e/x])

• Preservation under beta-reduction

ML goodness
• Predictability:

• Invariant under let-reduction

• ML(let x = e in e’) <=> ML(e’[e/x])

• Preservation under beta-reduction

• ML((λx.e)e’) => ML(e[e’/x])

ML goodness
• Predictability:

• Invariant under let-reduction

• ML(let x = e in e’) <=> ML(e’[e/x])

• Preservation under beta-reduction

• ML((λx.e)e’) => ML(e[e’/x])

• Preservation under eta-reduction

ML goodness
• Predictability:

• Invariant under let-reduction

• ML(let x = e in e’) <=> ML(e’[e/x])

• Preservation under beta-reduction

• ML((λx.e)e’) => ML(e[e’/x])

• Preservation under eta-reduction

• ML(λx.ex) => ML(e)

ML goodness
• Predictability:

• Invariant under let-reduction

• ML(let x = e in e’) <=> ML(e’[e/x])

• Preservation under beta-reduction

• ML((λx.e)e’) => ML(e[e’/x])

• Preservation under eta-reduction

• ML(λx.ex) => ML(e)

ML is
“semantic” for

let-expressions:
Context sensitivity

for nonrecursive
definitions

ML typability as static
analysis for type error

freeness

• Is ML typability improvable?

ML typability as static
analysis for type error

freeness

Theorem: Let ML ⊆ B ⊆ T.
Then B is DEXPTIME-hard.

Henglein, A Lower Bound for Full Polymorphic Type Inference: Girard-Reynolds Typability is DEXPTIME-hard, Utrecht U. TR
RUU-CS-90-14, 1990

ML typability as static
analysis for type error

freeness

Theorem: Let ML ⊆ B ⊆ T.
Then B is DEXPTIME-hard.

No, ML is not
improvable for type

error detection

Henglein, A Lower Bound for Full Polymorphic Type Inference: Girard-Reynolds Typability is DEXPTIME-hard, Utrecht U. TR
RUU-CS-90-14, 1990

mVFA
OCFA in direct style

λ+

x

λx.e

e

Build graph with flow and tree edges. One node
per subexpression, plus some extra ones.

λ-

e’

e” e’e”

...
x x

1. Base flow rules, resulting in graph G:

mVFA
OCFA in direct style

λ+

x

λx.e

O(n) nodes
O(n) edges
Out- and indegree 1,λ if affine λ-term

λ-

e’

e” e’e”

...
x x

mVFA
OCFA in direct style

λ+

x

λx.e

e

O(n) nodes
O(n) edges
Out- and indegree 1,λ if affine λ-term

λ-

e’

e” e’e”

...
x x

mVFA
OCFA in direct style

λ+

2. Closure rule:

λ-
*

mVFA
OCFA in direct style

Algorithm:
Close base graph under closure rule, resulting
in graph G.

mVFA
OCFA in direct style

Theorem: mVFA can be implemented in time
O(d m* + p n + q), where
•n: number of nodes
•d: maximum outdegree of G,
•m*: number of flow edges in G*
 (flow-transitive closure of G),
•p: number of closure rule applications.
•q: number of reachability queries

Yellin, Speeding Up Dynamic Transitive Closure for Bounded Degree Graphs,
Acta Informatica 30, 369-384, 1993

sVFA
Simple monomorphic VFA

λ+

1. Base rules: As for mVFA
2. Closure rule:

λ-
*

sVFA
Simple monomorphic VFA

λ+

1. Base rules: As for mVFA
2. Closure rule:

λ-
*

Undirected!
(= both directions)

sVFA
Simple monomorphic VFA

λ+

1. Base rules: As for mVFA
2. Closure rule:

λ-
*

Undirected!
(= both directions)

Only difference!

sVFA
Simple monomorphic VFA

λ+

1. Base rules: As for mVFA
2. Closure rule:

λ-
*

Undirected!
(= both directions)

Only difference!

Top-level
directional flow!

sVFA
Simple monomorphic VFA

Algorithm:
Close base graph under closure rule by
unification closure, using union/find data
structure.

sVFA
Simple monomorphic VFA

Theorem: sVFA can be implemented in time
O(n α(n,n) + q n), where
•α(m,n): inverse Ackerman function
•q: number of reach set queries

Henglein, Simple Closure Analysis, TOPPS TR D-193, 1992

sVFA
Simple monomorphic VFA

• Very fast in practice

• Applications:

• Binding-time analysis

• Dynamic type inference for Scheme

• Closure analysis in Similix

• No significant reduction in precision vis a
vis mVFA observed

Bondorf, Jørgensen, Efficient Analysis for Realistic Off-Line Partial Evaluation, JFP 1993

Henglein, Efficient Type Inference for Higher-Order Binding-Time Analysis, FPCA 1991

Henglein, Global tagging optimization by type inference, LFP 1992

sub0-CFA

...

(similar characterization)

sVFA predictability

sVFA predictability

• sVFA is invariant under

sVFA predictability

• sVFA is invariant under

• linear beta-reduction

sVFA predictability

• sVFA is invariant under

• linear beta-reduction

• eta-reduction (for pure λ-terms)

sVFA predictability
Theorem:
sVFA reachability is P-complete
Van Horn, Mairson, Flow Analysis, Linearity, and PTIME, SAS 2008

sVFA predictability
Theorem:
sVFA reachability is P-complete
Van Horn, Mairson, Flow Analysis, Linearity, and PTIME, SAS 2008

also for
sub0-CFA

sVFA predictability
Theorem:
sVFA reachability is P-complete
Van Horn, Mairson, Flow Analysis, Linearity, and PTIME, SAS 2008

also for
sub0-CFA

Theorem:
Let B be such that sVFA ⊆ B ⊆ R,
where R is semantic (un)reachability.
Then B is P-hard.

sVFA predictability
Theorem:
sVFA reachability is P-complete
Van Horn, Mairson, Flow Analysis, Linearity, and PTIME, SAS 2008

also for
sub0-CFA

Theorem:
Let B be such that sVFA ⊆ B ⊆ R,
where R is semantic (un)reachability.
Then B is P-hard.

Follows from proof
method used:

invariance under linear
λ-term reduction

Adaptiveness

Adaptiveness

• Assume S0 ⊆ S1 ⊆ P, with algorithms
A0, A1 for S0, S1, respectively.

Adaptiveness

• Assume S0 ⊆ S1 ⊆ P, with algorithms
A0, A1 for S0, S1, respectively.

• A1 is adaptive over A0 if its (time)
complexity is < 2 times the complexity
of A0 on instances from S0.

Adaptiveness

• Assume S0 ⊆ S1 ⊆ P, with algorithms
A0, A1 for S0, S1, respectively.

• A1 is adaptive over A0 if its (time)
complexity is < 2 times the complexity
of A0 on instances from S0.

• A1 is allowed to take substantially
more time than A0 on instances
outside S0.

Adaptiveness

• Intuition: A static analysis algorithm
should not be slower on instances
where a less precise analysis
algorithm manages to compute the
semantically correct result (on “easy
instances”).

Questions

Questions

• Are the various kCFA-algorithms
adaptive (over sVFA or sub0-CFA)?

Questions

• Are the various kCFA-algorithms
adaptive (over sVFA or sub0-CFA)?

• Is (functional) kCFA improvable for
k≥1?

Questions

• Are the various kCFA-algorithms
adaptive (over sVFA or sub0-CFA)?

• Is (functional) kCFA improvable for
k≥1?

• Is SCT improvable? How predictable
is it?

Questions

• Are the various kCFA-algorithms
adaptive (over sVFA or sub0-CFA)?

• Is (functional) kCFA improvable for
k≥1?

• Is SCT improvable? How predictable
is it?

• ...

