Higher-Order Model Checking: From Theory to Practice

Naoki Kobayashi
Tohoku University

In collaborations with:
Luke Ong (University of Oxford)
Ryosuke Sato, Naoshi Tabuchi, Takeshi Tsukada, Hiroshi Unno (Tohoku University)
What's This Talk About?

♦ **NOT** a general survey
 (see the paper in the proceedings for this)

♦ **BUT** an overview of our recent work,
 to get
 practical applications
 (e.g. software model checker for ML)
 from
 theoretical results [Knapik et al.02; Ong06; ...]
 on higher-order model checking
Outline

♦ What is higher-order model checking?
 - higher-order recursion schemes
 - model checking problems

♦ Applications
 - program verification:
 “software model checker for ML”
 - data compression

♦ Algorithms for higher-order model checking

♦ Future directions
Outline

♦ What is higher-order model checking?
 - higher-order recursion schemes
 - model checking problems

♦ Applications
 - program verification:
 “software model checker for ML”
 - data compression

♦ Algorithms for higher-order model checking

♦ Future directions
Higher-Order Recursion Scheme

♦ Grammar for generating an infinite tree

Order-0 scheme (regular tree grammar)

\[
S \rightarrow a \ c \ B \\
B \rightarrow b \ S
\]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-0 scheme
(regular tree grammar)

\[
S \rightarrow a \ c \ B \\
B \rightarrow b \ S
\]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-0 scheme
(regular tree grammar)

\[S \rightarrow a \ c \ B \]
\[B \rightarrow b \ S \]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-0 scheme
(regular tree grammar)

\[S \rightarrow a \ c \ B \]
\[B \rightarrow b \ S \]

\[S \rightarrow a \]
\[C \rightarrow c \ B \]
\[B \rightarrow b \ S \]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-0 scheme
(regular tree grammar)

\[S \rightarrow a \quad c \quad B \]
\[B \rightarrow b \quad S \]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-0 scheme
(regular tree grammar)

\[S \rightarrow a \ S \]
\[S \rightarrow b \ B \]
\[B \rightarrow b \ S \]
\[B \rightarrow c \ B \]

\[S \rightarrow a \ c \ B \]
\[S \rightarrow b \ S \]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-1 scheme
\[S \rightarrow A \ c \]
\[A \rightarrow \lambda x.\ a\ x\ (A\ (b\ x)) \]
\[S: o,\ A: o \rightarrow o \]

S
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-1 scheme

\[S \rightarrow A \, c \]
\[A \rightarrow \lambda x. \, a \, x \,(A \,(b \, x)) \]

\[S: \, o, \, A: \, o \rightarrow o \]

\[S \rightarrow A \, c \]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-1 scheme

\[
S \rightarrow A \, c \\
A \rightarrow \lambda x. \, a \, x \, (A \, (b \, x))
\]

\[
S: \, o, \quad A: \, o \rightarrow o
\]

\[
S \rightarrow A \, c \rightarrow a \\
\quad \triangleleft \quad c \, A(b \, c)
\]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-1 scheme

\[
S \rightarrow A \ c \\
A \rightarrow \lambda x. \ a \ x \ (A \ (b \ x))
\]

S: \ o, \ A: \ o \rightarrow \ o

\[
S \rightarrow A \ c \rightarrow a \rightarrow a \\
\text{c \ A(b c) \ c} \rightarrow \text{a} \rightarrow \text{a} \\
\text{b \ A(b(b c))} \rightarrow \text{b} \rightarrow \text{c}
\]
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-1 scheme

\[
\begin{align*}
S & \rightarrow A \ c \\
A & \rightarrow \lambda x. \ a \ x \ (A \ (b \ x))
\end{align*}
\]

\[
S: \ o, \ A: \ o \rightarrow o
\]

Tree whose paths are labeled by \(a^{m+1} b^m c\)

...
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-1 scheme

\[S \rightarrow A \ c \]
\[A \rightarrow \lambda x. \ a \ x \ (A \ (b \ x)) \]

\[S: o, \ A: o \rightarrow o \]

Higher-order recursion schemes

\[\approx \]

Call-by-name simply-typed \(\lambda \)-calculus

+ recursion, tree constructors
Model Checking Recursion Schemes

Given

\(G \): higher-order recursion scheme
\(A \): alternating parity tree automaton (APT) (a formula of modal \(\mu \)-calculus or MSO), does \(A \) accept \(\text{Tree}(G) \)?

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?
Higher-Order Recursion Scheme

Grammar for generating an infinite tree

Order-1 scheme

\[
\begin{align*}
S & \rightarrow A \ c \\
A & \rightarrow \lambda x. \ a \ x \ (A \ (b \ x))
\end{align*}
\]

\[S: \text{o, } A: \text{o} \rightarrow \text{o}\]

Q1. Does every finite path end with “c”?
YES!

Q2. Does “a” occur below “b”?
NO!
Model Checking Recursion Schemes

Given
- \(G \): higher-order recursion scheme
- \(A \): alternating parity tree automaton (APT)

(a formula of modal \(\mu \)-calculus or MSO),
does \(A \) accept Tree(\(G \))?

e.g.
- Does every finite path end with “c”?
- Does “a” occur below “b”?

\(n \)-EXPTIME-complete [Ong, LICS06]
(for order-\(n \) recursion scheme)

\[\underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_{p(x)} \]
(Non-exhaustive) History

♦ 70s: (1st-order) Recursive program schemes
 [Nivat; Coucelle-Nivat; ...]

♦ 70-80s: Studies of high-level grammars
 [Damm; Engelfriet; ...]

♦ 2002: Model checking of higher-order recursion schemes
 [Knapik-Niwinski-Urzyczyn02FoSSaCS]
 Decidability for “safe” recursion schemes

♦ 2006: Decidability for arbitrary recursion schemes
 [Ong06LICS]

♦ 2009: Model checker for higher-order recursion schemes
 [K09PPDP]
 Applications to program verification [K09POPL]
Outline

♦ What is higher-order model checking?
 - higher-order recursion schemes
 - model checking problems

♦ Applications
 - program verification:
 “software model checker for ML”
 - data compression

♦ Algorithms for higher-order model checking

♦ Future directions
From Program Verification to Model Checking Recursion Schemes

[K. POPL 2009]

Higher-order program + specification (on events or output) → Program Transformation → Rec. scheme (describing all event sequences or outputs) + Tree automaton, recognizing valid event sequences or outputs → Model Checking
From Program Verification to Model Checking: Example

let f(x) =
 if * then close(x)
 else read(x); f(x)
in
let y = open "foo"
in
 f (y)

Is the file "foo" accessed according to read* close?
From Program Verification to Model Checking:

Example

```
let f(x) =
  if * then close(x)
  else read(x); f(x)
in
let y = open "foo"
in
  f(y)
```

Is the file "foo" accessed according to read* close?
let \(f(x) = \)

 \[
 \text{if } * \text{ then close(x) else read(x); } f(x) \]

 in

 let \(y = \text{open "foo"} \)

 in

 \(f(y) \)

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r*c?
From Program Verification to Model Checking:

Example

let f(x) =
 if * then close(x)
 else read(x); f(x)
in
let y = open "foo"
in
 f(y)

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r^*c?
From Program Verification to Model Checking: Example

```
let f(x) =
  if * then close(x)
  else read(x); f(x)
in
let y = open "foo"
in
  f(y)
```

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r*c?
From Program Verification to Model Checking: Example

\[
\begin{align*}
\text{let } f(x) &= \begin{cases}
\text{close}(x) & \text{if } * \\
\text{read}(x); f(x) & \text{else}
\end{cases} \\
\text{in } f(y)
\end{align*}
\]

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r*c?

CPS Transformation!
From Program Verification to Model Checking:
Example

let f(x) =
 if * then close(x)
 else read(x); f(x)
in
let y = open “foo”
in
f(y)

F x k → + (c k) (r(F x k))
S → F d

CPS Transformation!

Is the file “foo” accessed according to read* close?

Is each path of the tree labeled by r*c?
From Program Verification to Model Checking Recursion Schemes

Higher-order program + specification → Program Transformation → Rec. scheme (describing all event sequences) + automaton for infinite trees → Model Checking

Sound, complete, and automatic for:
- A large class of higher-order programs:
 simply-typed λ-calculus + recursion + finite base types (e.g. booleans)
- A large class of verification problems:
 resource usage verification (or typestate checking), reachability, flow analysis,...
Combination with Predicate Abstraction and CEGAR [K&Sato&Unno, PLDI11]

- Higher-order functional program
 - Predicate abstraction
 - New predicates
 - Error path
 - Real error path?
 - Program is unsafe!
 - yes
 - Error path
 - property not satisfied
 - property satisfied
 - Program is safe!
 - Higher-order boolean program
 - Higher-order model checking
 - property not satisfied
Comparison with Traditional Approach (Software Model Checking)

<table>
<thead>
<tr>
<th>Program Classes</th>
<th>Verification Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programs with while-loops</td>
<td>Finite state model checking</td>
</tr>
<tr>
<td>Programs with 1st-order recursion</td>
<td>Pushdown model checking</td>
</tr>
<tr>
<td>Higher-order functional programs</td>
<td>Higher-order model checking</td>
</tr>
</tbody>
</table>

\{ infinite state model checking \}
Applications to Program Verification: Summary

- Sound, complete, and automatic for simply-typed programs with recursion and finite base types (e.g. booleans)

- Sound (but incomplete) and automatic for simply-typed programs with recursion and infinite base types (e.g. integers, lists, ...) by combination with predicate abstraction and CEGAR
Outline

♦ What is higher-order model checking?
 - higher-order recursion schemes
 - model checking problems

♦ Applications
 - program verification:
 “software model checker for ML”
 - data compression

♦ Algorithms for higher-order model checking

♦ Future directions
Applications to Data Compression

- Compressed data as higher-order grammars (c.f. Kolmogorov complexity)
 - Hyper-exponential compression ratio

- Data processing without decompression using higher-order model checking
Compressed Data as Recursion Schemes

\[a(a(a(\ldots(a(e))\ldots))) \]

\[2^n \]

Compression ratio: \(O(n/2^n) \)

\[S = \text{Twice(Twice(\ldots(Twice a)\ldots)) e} \]

\[\text{Twice } f \ x = f(f(x)) \]

\[n \]
Compressed Data as Recursion Schemes

\[a(a(a(\ldots)(a(e))\ldots))) \]

\[n \]

\[2 \]

\[2 \]

\[\ldots \]

\[2 \]

compression

\[S = ((\text{Twice Twice}) \ldots \text{Twice}) \ a \ e \]

Twice \(f \ x = f(f(x)) \)

\[n \]
Applications to Data Compression

♦ Compressed data as higher-order grammars
 - Hyper-exponential compression ratio

♦ Data processing without decompression using higher-order model checking
 - pattern match queries
 - associated data processing to compute:
 • matching positions
 • the number of matches
 • ... (whatever expressed by transducers)
Pattern Matching without Decompression by Higher-Order Model Checking

Does Tree(G) match a pattern P?

e.g. contains “bb”?

Is Tree(G) accepted by M_p?

e.g. accepted by the following automaton?
Example: a Fibonacci word

Fibonacci word:
\[w_0 = b, \ w_1 = a, \ w_2 = w_1 w_0 = ab, \ w_3 = w_2 w_1 = aba, \ldots, \]
\[w_n = w_{n-1} w_{n-2} \]

Compression (case \(n = 2^m \))

\[S = \text{Twice}(\text{Twice}(\ldots(\text{Twice Next})\ldots)) \]
\[\text{Fst} \ b \ a \ e \]
\[\text{Next} \ k \ u \ v = k \ v \ (\text{Concat} \ v \ u) \]
\[\text{Concat} \ f \ g \ x = f(g(x)) \]
\[\text{Twice} \ f \ x = f(f(x)) \]

Query: Does \(w_{1024} \) contain “bb”? (Note: \(|w_{1024}| > 10^{200} \))
Applications to Data Compression

♦ Compressed data as higher-order grammars
 - Hyper-exponential compression ratio

♦ Data processing without decompression using higher-order model checking
 - pattern match queries
 - associated data processing to compute:
 • matching positions
 • the number of matches
 • ... (whatever expressed by transducers)
Data Transformation without Decompression

- **tree** $T = \text{Tree}(G)$
- **transducer** f
 - e.g. counting “ab”:
 - a/ε
 - b/ε
 - $b/1$
- **decompress** $f(T) = \text{Tree}(G')$

- **grammar** G
- **decompress** $T = \text{Tree}(G)$
- **grammar** G'
- **higher-order model checking** + α

- **tree** $f(T)$
Applications to Data Compression: Summary

♦ Compressed data as higher-order grammars
 - Hyper-exponential compression ratio

♦ Data processing without decompression using higher-order model checking
 - pattern match queries; and
 - associated data processing expressed by transducers
Outline

♦ What is higher-order model checking?
♦ Applications
 - program verification:
 “software model checker for ML”
 - data compression
♦ Algorithms for higher-order model checking
 - from model checking to typing
 - practical algorithms
♦ Future directions
Difficulty of higher-order model checking

- Extremely high worst-case complexity
 - n-EXPTIME complete [Ong, LICS06]
 \[
 \underbrace{2 \times 2 \times \ldots \times 2}_{n \text{ times}}^{p(x)}
 \]
 - Earlier algorithms [Ong06; Aehlig06; Hague et al. 08] almost always suffer from n-EXPTIME bottleneck.
Our approach: from model checking to typing

Construct a type system $TS(A)$ s.t. $Tree(G)$ is accepted by tree automaton A if and only if G is typable in $TS(A)$

Model Checking as Type Checking
(c.f. [Naik & Palsberg, ESOP2005])
Model Checking Problem

Given

\(G: \) higher-order recursion scheme (without safety restriction)

\(A: \) alternating parity tree automaton (APT) (a formula of modal \(\mu \)-calculus or MSO),

does \(A \) accept \(\text{Tree}(G) \)?

\text{n-EXPTIME-complete [Ong, LICS06] (for order-}\text{-n recursion scheme)}
Model Checking Problem: Restricted version

Given

\(G \): higher-order recursion scheme
 (without safety restriction)

\(A \): trivial automaton [Aehlig CSL06]
 (Büchi tree automaton where all the states are accepting states)

does \(A \) accept Tree(\(G \))?

See [K.&Ong, LICS09] for the general case (full modal \(\mu \)-calculus model checking)
Trivial tree automaton for infinite trees

\[\delta(q_0, a) = q_0 \]
\[\delta(q_0, b) = q_1 \]
\[\delta(q_1, b) = q_1 \]
\[\delta(q_0, c) = \varepsilon \]
\[\delta(q_1, c) = \varepsilon \]

"a" does not occur below "b"
Trivial tree automaton
for infinite trees

\[\delta(q_0, a) = q_0 q_0 \]
\[\delta(q_0, b) = q_1 \]
\[\delta(q_1, b) = q_1 \]
\[\delta(q_0, c) = \varepsilon \]
\[\delta(q_1, c) = \varepsilon \]

“a” does not occur below “b”
Trivial tree automaton for infinite trees

δ(q₀, a) = q₀ q₀
δ(q₀, b) = q₁
δ(q₁, b) = q₁
δ(q₀, c) = ε
δ(q₁, c) = ε

“a” does not occur below “b”
Trivial tree automaton for infinite trees

\[\delta(q_0, a) = q_0 \]
\[\delta(q_0, b) = q_1 \]
\[\delta(q_0, c) = \varepsilon \]
\[\delta(q_1, b) = q_1 \]
\[\delta(q_1, c) = \varepsilon \]

"a" does not occur below "b"
Trivial tree automaton for infinite trees

\[\delta(q_0, a) = q_0 \]
\[\delta(q_0, b) = q_1 \]
\[\delta(q_0, c) = \varepsilon \]
\[\delta(q_1, b) = q_1 \]
\[\delta(q_1, c) = \varepsilon \]

“a” does not occur below “b”
Trivial tree automaton for infinite trees

\[
\delta(q_0, a) = q_0 \quad \delta(q_0, b) = q_1 \\
\delta(q_0, c) = \varepsilon \\
\delta(q_1, b) = q_1 \\
\delta(q_1, c) = \varepsilon
\]

"a" does not occur below "b"
Types for Recursion Schemes

- Automaton state as the type of trees
 - q: trees accepted from state q
 - $q_1 \land q_2$: trees accepted from both q_1 and q_2

Is Tree(G) accepted by A?

Does Tree(G) have type q_0?
Types for Recursion Schemes

♦ Automaton state as the type of trees

- \(q_1 \rightarrow q_2 \): functions that take a tree of type \(q_1 \) and return a tree of \(q_2 \)
Types for Recursion Schemes

- Automaton state as the type of trees
 - $q_1 \land q_2 \rightarrow q_3$: functions that take a tree of type $q_1 \land q_2$ and return a tree of type q_3
Types for Recursion Schemes

♦ Automaton state as the type of trees

\[(q_1 \rightarrow q_2) \rightarrow q_3:\]

functions that take a function of type \(q_1 \rightarrow q_2\) and return a tree of type \(q_3\)
Typing

\[\delta(q, a) = q_1 \ldots q_n \]

\[\vdash a : q_1 \to \ldots \to q_n \to q \]

\[\Gamma, x : \tau_1, \ldots, x : \tau_n \vdash t : \tau \]

\[\Gamma \vdash \lambda x. t : \tau_1 \land \ldots \land \tau_n \to \tau \]

\[\Gamma \vdash t_1 : \tau_1 \land \ldots \land \tau_n \to \tau \]

\[\Gamma \vdash t_2 : \tau_i \ (i = 1, \ldots, n) \]

\[\Gamma \vdash t_1 \ t_2 : \tau \]

\[\Gamma \vdash t_k : \tau \ (\text{for every } F_k : \tau \in \Gamma) \]

\[\vdash \{F_1 \to t_1, \ldots, F_n \to t_n\} : \Gamma \]
\[\delta(q, a) = q_1 \ldots q_n \]
\[\vdash a : q_1 \to \ldots \to q_n \to q \]
\[\Gamma, x : \tau_1, \ldots, x : \tau_n \vdash t : \tau \]
\[\vdash \lambda x. t : \tau_1 \land \ldots \land \tau_n \to \tau \]
\[\Gamma \vdash t_2 : \tau_i \ (i=1, \ldots n) \]
\[\Gamma \vdash t_1 \ t_2 : \tau \]
\[\Gamma \vdash t_k : \tau \ (\text{for every } F_k : \tau \in \Gamma) \]
\[\vdash \{ F_1 \to t_1, \ldots, F_n \to t_n \} : \Gamma \]
Typing

\[\delta(q, a) = q_1...q_n \]

\[\vdash a : q_1 \rightarrow ... \rightarrow q_n \rightarrow q \]

\[\Gamma, x: \tau_1, ..., x: \tau_n \vdash t: \tau \]

\[\vdash \lambda x.t : \tau_1 \wedge ... \wedge \tau_n \rightarrow \tau \]

\[\Gamma \vdash t_1 : \tau_1 \wedge ... \wedge \tau_n \rightarrow \tau \]

\[\Gamma \vdash t_2 : \tau_i (i=1,..n) \]

\[\Gamma \vdash t_1 t_2 : \tau \]

\[\Gamma \vdash t_k : \tau \text{ (for every } F_k : \tau \in \Gamma) \]

\[\vdash \{F_1 \rightarrow t_1, ..., F_n \rightarrow t_n\} : \Gamma \]
Soundness and Completeness

\[G = \{ F_1 \rightarrow t_1, \ldots, F_m \rightarrow t_m \} \text{ (with } S=F_1) \]
\[A: \text{Trivial automaton with initial state } q_0 \]
\[\text{TS}(A): \text{Intersection type system for } A \]

Tree(G) is accepted by A if and only if
S has type \(q_0 \) in TS(A),
i.e. \(\exists \Gamma. (S: q_0 \in \Gamma \land \vdash \{ F_1 \rightarrow t_1, \ldots, F_n \rightarrow t_n \} : \Gamma) \)
if and only if
\(\exists \Gamma. (S: q_0 \in \Gamma \land \forall (F_k: \tau) \in \Gamma. \Gamma \vdash t_k : \tau) \)
Soundness and Completeness

[K., POPL2009]

Tree(G) is accepted by A
if and only if
S has type q₀ in TS(A),
i.e. \(\exists \Gamma. (S: q₀ \in \Gamma \land \vdash \{ F₁ \to t₁, \ldots, Fₙ \to tₙ \}: \Gamma) \)
if and only if
\(\exists \Gamma. (S: q₀ \in \Gamma \land \forall (F_k : \tau) \in \Gamma. \Gamma \vdash t_k : \tau) \)
if and only if
\(\exists \Gamma. (S: q₀ \in \Gamma \land \Gamma = H(\Gamma)) \)
for \(H(\Gamma) = \{ F_k : \tau \in \Gamma \mid \Gamma \vdash t_k : \tau \} \)

Function to filter out invalid type bindings
Type checking (=model checking) problem

Is there a fixedpoint of \(H \) greater than \(\{S:q_0\} \)? (where \(H(\Gamma) = \{ F_j : \tau \in \Gamma \mid \Gamma \vdash t_j : \tau \} \))

\(\Gamma_{\text{max}} \) (the set of all type bindings)
Naive Algorithm [K. POPL09]

1. Compute the greatest fixedpoint Γ_{gfp} of H
 \[(H(\Gamma) = \{ F_j : \tau \in \Gamma \mid \Gamma |- t_j : \tau \}) \]
2. Check whether \(S : q_0 \in \Gamma_{gfp} \)
Naive Algorithm [K. POPL09]

1. Compute the greatest fixedpoint Γ_{gfp} of H

 \[H(\Gamma) = \{ F_j : \tau \in \Gamma \mid \Gamma |- t_j : \tau \} \]

2. Check whether $S : q_0 \in \Gamma_{gfp}$

\[\Gamma_{\text{max}} \] (the set of all possible type bindings)

\[H(\Gamma_{\text{max}}) \]

\[H^2(\Gamma_{\text{max}}) \]

\[\{ S : q_0 \} \]
Naive Algorithm [K. POPL09]

1. Compute the greatest fixedpoint \(\Gamma_{gfp} \) of \(H \)
 \((H(\Gamma) = \{ F_j : \tau \in \Gamma \mid \Gamma |- t_j : \tau \}) \)

2. Check whether \(S : q_0 \in \Gamma_{gfp} \)

\(\Gamma_{max} \) (the set of all possible type bindings)
Example

Recursion scheme:

\[S \rightarrow F \quad F \rightarrow \lambda x. a \times (F (b \ x)) \]

\((S: o, F: o \rightarrow o)\)

Automaton:

\[\delta(q_0, a) = q_0, q_0 \quad \delta(q_0, b) = q_1 \]

\[\delta(q_0, c) = \delta(q_1, c) = \varepsilon \]

\[\Gamma_{\text{max}} = \{ S:q_0, S:q_1, F: T \rightarrow q_0, F: q_0 \rightarrow q_0, F: q_1 \rightarrow q_0, F: q_0 \land q_1 \rightarrow q_0, \]

\[F: T \rightarrow q_1, F: q_0 \rightarrow q_1, F: q_1 \rightarrow q_1, F: q_0 \land q_1 \rightarrow q_1 \} \]

\[H(\Gamma_{\text{max}}) = \{ S: \tau \in \Gamma_{\text{max}} | \Gamma_{\text{max}} \vdash \neg F \quad c : \tau \} \]

\[\cup \{ F: \tau \in \Gamma_{\text{max}} | \Gamma_{\text{max}} \vdash \neg \lambda x. a \times (F(b \ x)) : \tau \} \]

\[= \{ S:q_0, S:q_1, F: q_0 \rightarrow q_0, F: q_0 \land q_1 \rightarrow q_0 \} \]

\[H^2(\Gamma_{\text{max}}) = \{ S:q_0, F: q_0 \land q_1 \rightarrow q_0 \} \]

\[H^3(\Gamma_{\text{max}}) = \{ S:q_0, F: q_0 \land q_1 \rightarrow q_0 \} = H^2(\Gamma_{\text{max}}) \]
Naive Algorithm [K. POPL09]

1. Compute the greatest fixedpoint Γ_{gfp} of H

 $H(\Gamma) = \{ F_j : \tau \in \Gamma \mid \Gamma \vdash t_j : \tau \}$

2. Check whether $S : q_0 \in \Gamma_{\text{gfp}}$

Drawbacks:

- Huge cost for computing H
- Huge number of iterations

(both as huge as $|\Gamma_{\text{max}}| = O(|G| \times (AQ)^{1+\epsilon})$)

n: number of iterations

A: largest arity

Q: automaton size
How large is Γ_{max}?

Γ_{max}: the set of all possible type bindings for non-terminals

<table>
<thead>
<tr>
<th>sort</th>
<th># of types for each sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>o (trees)</td>
<td>$4 \ (q_0,q_1,q_2,q_3)$</td>
</tr>
<tr>
<td>o → o</td>
<td>$2^4 \times 4 = 64 \ \ (\land S \rightarrow q, \text{ with } S \in 2^Q, q \in Q)$</td>
</tr>
<tr>
<td>(o→o) → o</td>
<td>$2^{64} \times 4 = 2^{66}$</td>
</tr>
<tr>
<td>(((o→o) → o) → o) → o</td>
<td>$2^{66} \times 4 > 10$</td>
</tr>
</tbody>
</table>

\[|\Gamma_{\text{max}}| = O(|G| \times \left(\prod_{i=1}^{n} \frac{2^{(A|Q|)^{1+\varepsilon}}}{2} \right)) \]
Outline

♦ What is higher-order model checking?
♦ Applications
 - program verification:
 “software model checker for ML”
 - data compression
♦ Algorithms for higher-order model checking
 - from model checking to typing
 - practical algorithms
♦ Future directions
1. Guess a type environment Γ_0
2. Compute greatest fixedpoint Γ smaller than Γ_0
3. Check whether $S : q_0 \in \Gamma$
4. Repeat 1-3 until the property is proved or refuted.

Γ_{max} (the set of all possible type bindings)
1. Guess a type environment Γ_0
2. Compute greatest fixedpoint Γ smaller than Γ_0
3. Check whether $S:q_0 \in \Gamma$
4. Repeat 1-3 until the property is proved or refuted.

Γ_{max} (the set of all possible type bindings)
1. Guess a type environment Γ_0
2. Compute greatest fixedpoint Γ smaller than Γ_0
3. Check whether $S:q_0 \in \Gamma$
4. Repeat 1-3 until the property is proved or refuted.

Γ_{max} (the set of all possible type bindings)
1. Guess a type environment Γ_0
2. Compute greatest fixedpoint Γ smaller than Γ_0
3. Check whether $S:q_0 \in \Gamma$
4. Repeat 1-3 until the property is proved or refuted.
How to guess Γ_0?

♦ PPDP09 algorithm
 - Reduce a recursion scheme a finite number of steps
 - Observe how each function is used and express it as types

♦ FoSSaCS11 algorithm
 - Like PPDP09, but avoid reductions by using game semantic interpretation of types
Example

♦ Recursion scheme:

\[
S \rightarrow F \ c \quad F \rightarrow \lambda x. a \ x \ (F \ (b \ x))
\]

♦ Automaton:

\[
\begin{align*}
\delta(q_0, a) &= q_0 \ q_0 \\
\delta(q_0, b) &= q_1 \\
\delta(q_0, c) &= \delta(q_1, c) = \varepsilon
\end{align*}
\]
Example

Recursion scheme:

\[S \rightarrow F \ c \quad F \rightarrow \lambda x. a \times (F \ (b \ x)) \]

Automaton:

\[\delta(q_0, a) = q_0 \quad \delta(q_0, b) = q_1 \]
\[\delta(q_0, c) = \delta(q_1, c) = \varepsilon \]

\[S \rightarrow F \ c \rightarrow a \rightarrow a \]

\[\Gamma_0: \]
\[S: q_0 \]
Example

Recursion scheme:
\[S \rightarrow F \, c \quad F \rightarrow \lambda x. a \times (F \,(b \, x)) \]

Automaton:
\[\delta(q_0, a) = q_0 \quad \delta(q_0, b) = q_1 \]
\[\delta(q_0, c) = \delta(q_1, c) = \varepsilon \]

\[\Gamma_0 : \]
\[S: q_0 \quad F: \ ? \rightarrow q_0 \]
Example

Recursion scheme:

\[S \rightarrow F \, c \quad F \rightarrow \lambda x. a \times (F\, (b \, x)) \]

Automaton:

\[\delta(q_0, a) = q_0 \quad \delta(q_0, b) = q_1 \]
\[\delta(q_0, c) = \delta(q_1, c) = \varepsilon \]

\[\Gamma_0 : \]
\[S: q_0 \]
\[F: q_0 \land q_1 \]
\[\rightarrow q_0 \]
Example

♦ Recursion scheme:

\[S \rightarrow F \ c \quad F \rightarrow \lambda x. a \ x \ (F \ (b \ x)) \]

♦ Automaton:

\[\delta(q_0, a) = q_0 \quad q_0 \quad \delta(q_0, b) = q_1 \]
\[\delta(q_0, c) = \delta(q_1, c) = \varepsilon \]

\[S^{q_0} \rightarrow F \ c^{q_0} \rightarrow a^{q_0} \rightarrow a^{q_0} \]

\[\Gamma_0 : \]

\[S : q_0 \]
\[F : q_0 \land q_1 \rightarrow q_0 \]

\[F : q_0 \rightarrow q_0 \]
Example

- Recursion scheme:
 \[S \rightarrow F \, c \quad F \rightarrow \lambda x. a \times (F \, (b \, x)) \]

- Automaton:
 \[\delta(q_0, a) = q_0 \quad \delta(q_0, b) = q_1 \]
 \[\delta(q_0, c) = \delta(q_1, c) = \varepsilon \]

\[
\Gamma_0:
\begin{align*}
S &: q_0 \\
F &: q_0 \land q_1 \\
F &: q_0 \rightarrow q_0 \\
F &: T \rightarrow q_0
\end{align*}
\]
1. Guess a type environment Γ_0
2. Compute greatest fixedpoint Γ smaller than Γ_0
3. Check whether $S:q_0 \in \Gamma$
4. Repeat 1-3 until the property is proved or refuted.

\[\Gamma_0 = \{ S: q_0, F: q_0 \land q_1 \to q_0, F: q_0 \to q_0, F: T \to q_0 \} \]

\[H(\Gamma_0) = \{ F_k: \tau \in \Gamma_0 | \Gamma_0 \vdash t_k: \tau \} \]
\[= \{ S: q_0, F: q_0 \land q_1 \to q_0, F: q_0 \to q_0 \} \]

\[H^2(\Gamma_0) = \{ S: q_0, F: q_0 \land q_1 \to q_0 \} \]

\[H^3(\Gamma_0) = \{ S: q_0, F: q_0 \land q_1 \to q_0 \} \]
TRecS [K. PPDP09]
http://www.kb.ecei.tohoku.ac.jp/~koba/treces/

The first model checker for recursion schemes

Based on the PPDP09 algorithm, with certain additional optimizations
Experiments

<table>
<thead>
<tr>
<th></th>
<th>order</th>
<th>rules</th>
<th>states</th>
<th>result</th>
<th>Time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twofiles</td>
<td>4</td>
<td></td>
<td></td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>FileWrong</td>
<td>4</td>
<td></td>
<td></td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>TwofilesE</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>FileOcamlC</td>
<td>4</td>
<td>23</td>
<td>4</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>Lock</td>
<td>4</td>
<td>11</td>
<td>3</td>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>Order5</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>mc91</td>
<td>4</td>
<td>49</td>
<td>1</td>
<td>Yes</td>
<td>50</td>
</tr>
<tr>
<td>xhtml</td>
<td>2</td>
<td>64</td>
<td>50</td>
<td>Yes</td>
<td>884</td>
</tr>
</tbody>
</table>

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of Objective Caml, consisting of about 60 lines of O’Caml code.
(A simplified version of) FileOcamlC

let readloop fp =
 if * then () else readloop fp; read fp
let read_sect() =
 let fp = open "foo" in
 {readc=fun x -> readloop fp;
 closec = fun x -> close fp}
let loop s =
 if * then s.closec() else s.readc();loop s
let main() =
 let s = read_sect() in loop s
Algorithms for Higher-Order Model Checking: Summary

- Model checking can be reduced to type checking, which in turn becomes a fixedpoint problem.

- Greatest fixedpoint is too costly to compute.

- Practical algorithms guess a type environment and use it as a start point of fixedpoint computation.

- FoSSaCS11 algorithm (for trivial automata model checking) is linear time in the size of grammar if other parameters (the size of types and automaton) are fixed.
Outline

♦ What is higher-order model checking?

♦ Applications
 - program verification:
 “software model checker for ML”
 - data compression

♦ Algorithms for higher-order model checking
 - from model checking to typing
 - practical algorithms

♦ Discussions on FAQ and Future Directions
FAQ

Does HO model checking scale?
(It shouldn't, because of n-EXPTIME completeness)
Does HO model checking scale?
(It shouldn’t, because of n-EXPTIME completeness)

Answer:
Don’t know yet.
But there is a good hope it does!
Does higher-order model checking scale?

Good News
+ Fixed-parameter \(\text{PTIME} \) in the grammar size
 (linear time for safety properties)
+ Use PPDPO9 or FoSSaCS11 algorithm
+ Worst-case behavior shows an advantage of HO functions, rather than a disadvantage of HO model checking

Bad News
- \(\text{n-EXPTIME} \) complete
- Huge constant factor
Recursion schemes generating $a^{2m}c$

Order-1:

\[
S \rightarrow F_1 c, \quad F_1 x \rightarrow F_2(F_2 x), \ldots, \quad F_m x \rightarrow a(a x)
\]

Order-0:

\[
S \rightarrow a G_1, \quad G_1 \rightarrow a G_2, \ldots, \quad G_k \rightarrow c \quad (k=2^m)
\]

Exponential time algorithm for order-1

≈

Polynomial time algorithm for order-0
Recursion schemes generating $a^{2^m}c$

Order-1:
$S \rightarrow F_1 c, \ F_1 x \rightarrow F_2(F_2 x), \ldots, \ F_m x \rightarrow a(a x)$

Order-0:
$S \rightarrow a \ G_1, \ G_1 \rightarrow a \ G_2, \ldots, \ G_k \rightarrow c \ (k=2^m)$

n-EXPTIME algorithm for order-n
\approx
Polynomial time algorithm for order-0
Recursion schemes generating $a^{2^m} c$

Order-1:

$$S \rightarrow F_1 c, \quad F_1 x \rightarrow F_2(F_2 x), \ldots, \quad F_m x \rightarrow a(a x)$$

Order-0:

$$S \rightarrow a G_1, \quad G_1 \rightarrow a G_2, \ldots, \quad G_k \rightarrow c \quad (k = 2^m)$$

(fixed-parameter)

Polynomial time algorithm for order-n [K11FoSSaCS]

>>

Polynomial time algorithm for order-0
FAQ

Does higher-order model checking scale?
(It shouldn't, because of n-EXPTIME completeness)

Answer:
Don't know yet.
But there is a good hope it does!
Advantages of HO model checking for program verification

(1) Sound, complete and automatic for a large class of higher-order programs
 - no false alarms!
 - no annotations
Advantages of HO model checking for program verification

(1) Sound, complete and automatic for a large class of higher-order programs
- no false alarms!
- no annotations

(2) Subsumes finite-state/pushdown model checking
- Order-0 rec. schemes \(\approx\) finite state systems
- Order-1 rec. schemes \(\approx\) pushdown systems
Advantages of HO model checking for program verification

(3) Take the best of model checking and types

- **Types as certificates** of successful verification
 ⇒ applications to PCC (proof-carrying code)

- **Counterexample** when verification fails
 ⇒ error diagnosis,
 CEGAR (counterexample-guided abstraction refinement)
Advantages of HO model checking for program verification

(4) Encourages structured programming

Previous techniques:
- Imprecise for higher-order functions and recursion, hence discourage using them

Our technique:
- No loss of precision for higher-order functions and recursion
- Performance penalty? -- Not necessarily!
 If higher-order functions are properly used, there may be performance gain!
Remaining Challenges

♦ Refinement of HO model checkers
 - More efficiency
 - Support of full modal μ-calculus

♦ Software model checkers for full-scale programming languages
 - Refinement of predicate abstraction and CEGAR
 - Dealing with advanced types, references, etc.

♦ Extension of the decidability result?
 - Extension of models (recursion schemes)
 - Extension of properties

♦ Other applications (e.g. data compression)
Conclusion

- HO model checking problems can often be solved efficiently, despite the high worst-case complexity (More justifications are needed, though.)
- Important and interesting applications:
 - automated program verification
 - data compression
- Only the first step from theory to practice; more efforts are required both in theoretical and practical communities