Algorithms and Applications of Higher-Order Model Checking

Naoki Kobayashi Tohoku University

This Talk

- ♦ Application of HO model checking to CFA (joint work with Tobita and Tsukada)
 - Aims of the talk:
 - Familiarize audience with connections between HO model checking and program verification
 - · Get feedbacks from CFA community
- ♦ Algorithms for HO model checking
 - Aims of the talk:
 - Familiarize audience with type-based approach to HO model checking
 - · Get feedbacks from game semantics community

Outline

- ♦ Brief Review of HO model checking problem
- ♦ Application to CFA (20 min.)
- ♦ Algorithms for higher-order model checking (25 min.)
- **♦** Future directions

HO Model Checking Problem

Given

G: higher-order recursion scheme

A: alternating parity tree automaton (APT) (a formula of modal μ -calculus or MSO),

does A accept Tree(G)?

e.g.

- Does every finite path end with "c"?
- Does "a" occur below "b"?

```
n-EXPTIME-complete [Ong, LICS06] n 2 p(x) (for order-n recursion scheme)
```

Outline

- ♦ Brief Review of HO model checking problem
- ♦ Application to CFA
 - Definition of CFA
 - Reduction from CFA to HO model checking
 - Discussion
- ♦ Algorithms for higher-order model checking
- **♦** Future directions

CFA Problem

```
Given a closed (simply-typed) \lambda-term M and labels l and m, decide whether M \rightarrow* E[ (\lambda^l x.N) @^m V ] for some x, E, N, V.
```

```
Syntax:

M,N ::= () \mid x \mid \lambda^l x.M \mid M@^l N (terms)

E ::= [] \mid [] M \mid V [] (evaluation contexts)

V ::= () \mid \lambda^l x.M (values)

Evaluation rules:

E[(\lambda^l x.M)@^m V] \rightarrow E[[V/x]M]
```

From CFA to HO model checking

CFA: $M \rightarrow * E[(\lambda^l x.N)@^mV]?$

CPS

CSA (call-sequence analysis):

"Is function l called immediately after m?"

 $M_1 \rightarrow^* E_1[(\lambda^m \times .N_1)@V_1] \rightarrow E_2[(\lambda^l \times .N_2)@V_2]?$

Transformation

Verification of a tree-generating program "Does the tree generated by M_2 have a path labeled by ...m l ...?"

Transformation to HORS

Higher-order model checking problem

From CFA to HO model checking

CFA: $M \rightarrow * E[(\lambda^l \times . N)@^mV]$?

CPS

CSA (call-sequence analysis):

"Is function *l* called immediately after m?"

 $M_1 \rightarrow^* E_1[(\lambda^m \times . N_1)@V_1] \rightarrow E_2[(\lambda^l \times . N_2)@V_2]?$

Transformation

Verification of a tree-generating program "Does the tree generated by M_2 have a path labeled by ...m l ...?"

Transformation to HORS

Higher-order model checking problem

From CFA to CSA

```
Call-by-value CPS
[x] = \lambda k.k x
[\lambda^{I}x,M] = \lambda k.k \lambda^{I}x.[M]
[M@^{m}N] = \lambda k.[M](\lambda f.[N](\lambda^{m}y.f@y@k))
```

Before CPS

M →* $E[M_1@^mM_2]$ →* $E[(\lambda^l \times .N)@^mM_2]$ →* $E[(\lambda^l \times .N)@^mV]$

After CPS

```
[M]\lambda x.x \\ \rightarrow^* [M_1@^mM_2]K \\ \rightarrow [M_1]@(\lambda f.[M_2](\lambda^m y.f@y@K)) \\ \rightarrow^* [M_2]@(\lambda^m y.(\lambda^l x.[N])@y@K)) \\ \rightarrow^* (\lambda^m y.(\lambda^l x.[N])@y@K))@[V] \\ \rightarrow (\lambda^l x.[N])@[V]@K
```

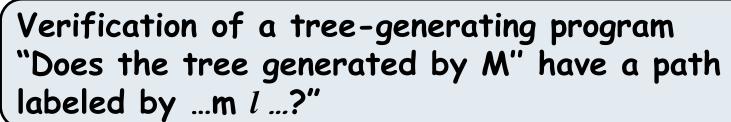
From CFA to HO model checking

CFA: $M \rightarrow * E[(\lambda^l x.N)@^mV]?$

CSA (call-sequence analysis):

"Is function l called immediately after m?"

 $M' \to * E_1[(\lambda^m \times . N_1)@V_1] \to E_2[(\lambda^l \times . N_2)@V_2] ?$



Higher-order model checking problem

From CSA (for CPS programs) to analysis of tree-generating program

```
Transformation of types: \langle Ans \rangle = o (tree type) \langle \tau_1 \rightarrow \tau_2 \rangle = \langle \tau_1 \rangle \rightarrow \langle \tau_2 \rangle ...

Transformation of terms: \langle \lambda^m x. M \rangle = \lambda x. m(\langle M \rangle) (for continuation) \langle \lambda^l x. \lambda k. M \rangle = \lambda x. \lambda k. l(\langle M \rangle) (for user function) \langle M_1 M_2 \rangle = \langle M_1 \rangle \langle M_2 \rangle ...
```

Before transformation

After transformation

```
\begin{array}{c}
M \\
\rightarrow^* (\lambda^m \times . N_1) @ V_1 \\
\rightarrow (\lambda^l \times . \lambda k . N_3) @ V_2 @ K
\end{array}
```

From CFA to HO model checking

CFA: $M \rightarrow * E[(\lambda^l x.N)@^mV]?$

CPS

call-sequence analysis:

"Is function l called immediately after m?" $M' \rightarrow * E_1[(\lambda^m x.N_1)@V_1] \rightarrow E_2[(\lambda^l x.N_2)@V_2]?$

Transformation

Verification of a tree-generating program "Does the tree generated by M" have a path labeled by ...m *l* ...?"

Transformation to HORS

Higher-order model checking problem

From CFA to HO model checking

CFA: $M \rightarrow * E[(\lambda^l x.N)@^mV]?$

CPS

call-sequence analysis:

"Is function l called immediately after m?" $M' \rightarrow * E_1[(\lambda^m x.N_1)@V_1] \rightarrow E_2[(\lambda^l x.N_2)@V_2]?$

Transformation

Verification of a tree-generating program "Does the tree generated by M" have a path labeled by ...m l ...?"

 λ -lifting

Higher-order model checking problem

Example

```
(\lambda^1 \times ... \times \mathbb{Q}^2()) \otimes^3 (\lambda^4 y.())
                 U CPS
(\lambda^3 u.(\lambda^1 x.\lambda k.(\lambda^2 v.x v k)()) u K)) (\lambda^4 y.\lambda k.k())

    ↓ conversion to tree-generating program

(\lambda u.3(\lambda x.\lambda k.1(\lambda v.2(x v k))()) u K)) (\lambda y.\lambda k.4(k()))
\rightarrow 3(\lambdax.\lambdak.1(\lambdav.2(x v k))()) (\lambday.\lambdak.4(k())) K)
\rightarrow* 3(1(\lambdav.2((\lambday.\lambdak.4(k())) v K))()))
\rightarrow 3(1(2((\lambda y.\lambda k.4(k())))))
\rightarrow* 3(1(2(4(K()))))
```

Discussion

♦ Cons

- Too slow compared with OCFA
- Can handle only simply (or intersection) typed, purely functional programs with recursion

♦ Pros

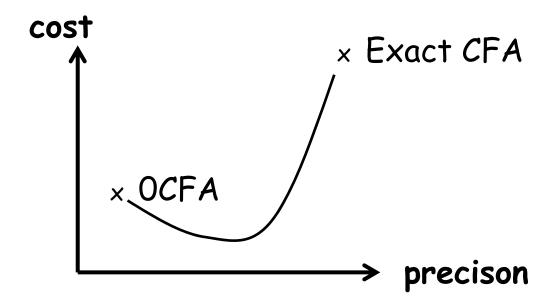
- + Exact for finitary PCF
- + Runnable (c.f. Mossin's exact flow analysis)
- + Linear time in program size for each flow query if the type size is fixed (cubic time for all flow information) (c.f. k-CFA)

Relevant in practice?

- ♦ Useful for analyzing critical flow?
- ♦ Useful for evaluating precision of other (non-exact) CFAs and comparing them
- ♦ Can be made efficient by some restrictions?
 - Limit the nesting of intersection types
 - Limit the width of intersection types
 - ⇒ new hierarchies of CFA's?

Open Questions

- ♦ Which flow analysis has the best balance between precision and cost?
 - Precise analysis can often be faster than imprecise one



Open Questions

- ♦ Which flow analysis has the best balance between precision and cost?
 - Precise analysis can often be faster than imprecise one
- ♦ Relationship to CFA2 [Vardoulakis&Shivers]?
 - CFA2 models programs as PDS
 - HO model checking is equivalent to model checking of HO (collapsible) PDS

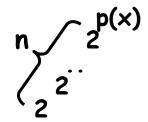
Higher-order extension of CFA2?

Outline

- ♦ Brief Review of HO model checking problem
- ♦ Application to CFA
- ♦ Algorithms for higher-order model checking
 - From model checking to type checking
 - Practical algorithms

Difficulty of higher-order model checking

- ♦ Extremely high worst-case complexity
 - n-EXPTIME complete [Ong, LICS06]



- Earlier algorithms [Ong06; Aehlig06; Hague et al.08] almost always suffer from n-EXPTIME bottleneck.

Our approach: from model checking to typing

Construct a type system TS(A) s.t.

Tree(G) is accepted by tree automaton A if and only if

G is typable in TS(A)

Model Checking as

Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

Model Checking Problem

```
Given
G: higher-order recursion scheme
(without safety restriction)
A: alternating parity tree automaton (APT)
(a formula of modal μ-calculus or MSO),
does A accept Tree(G)?
```

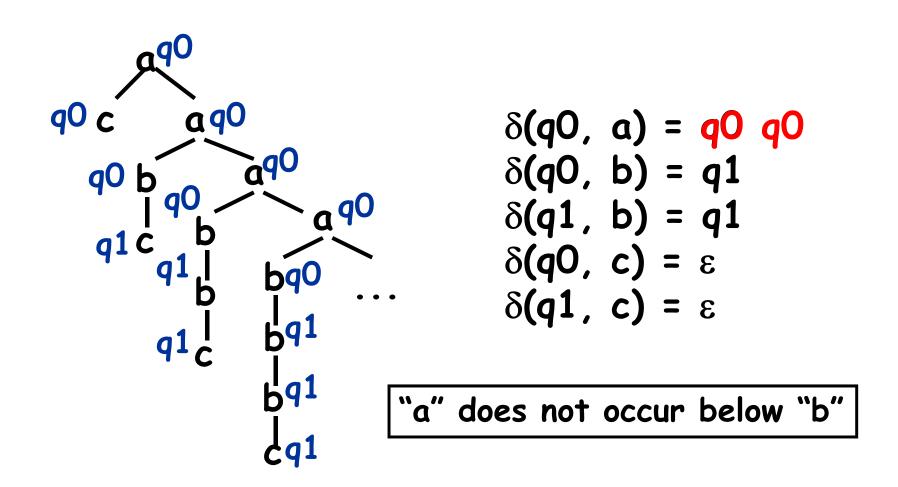
n-EXPTIME-complete [Ong, LICS06] (for order-n recursion scheme)

Model Checking Problem: Restricted version

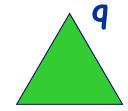
```
Given
G: higher-order recursion scheme
(without safety restriction)
A: trivial automaton [Aehlig CSL06]
(Büchi tree automaton where all the states are accepting states)
does A accept Tree(G)?
```

See [K.&Ong, LICS09] for the general case (full modal μ -calculus model checking)

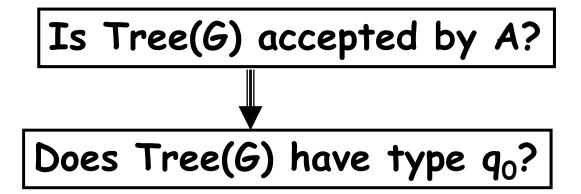
Trivial tree automaton for infinite trees



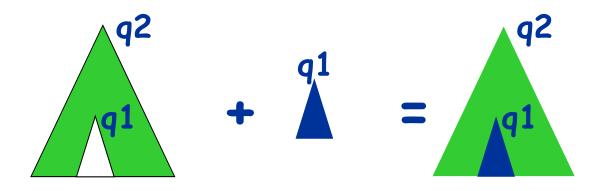
- ♦ Automaton state as the type of trees
 - q: trees accepted from state q



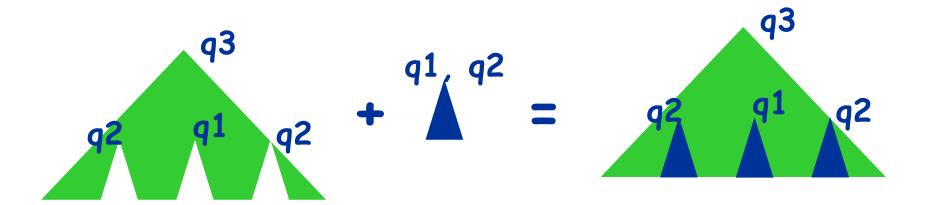
- q1 \land q2: trees accepted from both q1 and q2



- ♦ Automaton state as the type of trees
 - $q1 \rightarrow q2$: functions that take a tree of type q1 and return a tree of q2

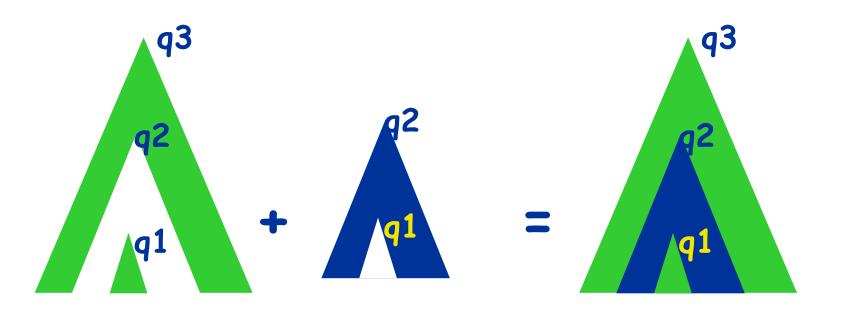


- ♦ Automaton state as the type of trees
 - $q1 \land q2 \rightarrow q3$: functions that take a tree of type $q1 \land q2$ and return a tree of type q3



 \bigstar Automaton state as the type of trees $(q1 \rightarrow q2) \rightarrow q3$:

functions that take a function of type q1 \rightarrow q2 and return a tree of type q3

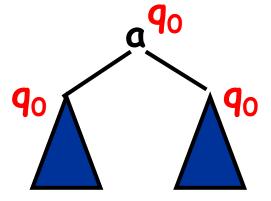


Example

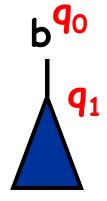
Automaton:

$$\delta(q_0, a) = q_0 q_0 \quad \delta(q_0, b) = \delta(q_1, b) = q_1 \\ \delta(q_0, c) = \delta(q_1, c) = \varepsilon$$

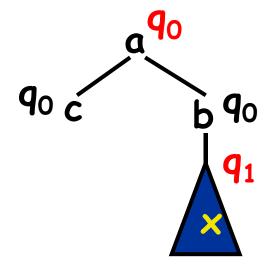
$$a: q_0 \rightarrow q_0 \rightarrow q_0$$



$$b: q_1 \rightarrow q_0$$



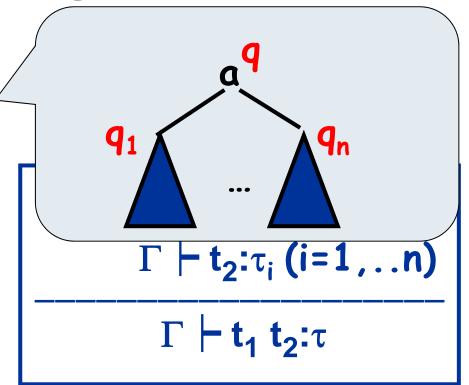
$$\lambda x.a c (b x): q_1 \rightarrow q_0$$



Typing

$$\delta(q, a) = q_1...q_n$$
 $-a:q_1 \to ... \to q_n \to q$

$$\frac{\Gamma, \mathbf{x}:\tau_{1}, \dots, \mathbf{x}:\tau_{n} \vdash \mathbf{t}:\tau}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{t}: \tau_{1} \wedge \dots \wedge \tau_{n} \to \tau}$$



$$\frac{\Gamma \vdash t_k : \tau \text{ (for every } F_k : \tau \in \Gamma)}{\vdash \{F_1 \rightarrow t_1, \dots, F_n \rightarrow t_n\} : \Gamma}$$

Typing

$$\delta(q, a) = q_1...q_n$$

$$\vdash a : q_1 \rightarrow ... \rightarrow q_n \rightarrow q$$

$$\frac{\Gamma, \mathbf{x}: \tau_{1}, \dots, \mathbf{x}: \tau_{n} \vdash \mathbf{t}: \tau}{\Gamma \vdash \lambda \mathbf{x}. \mathbf{t}: \tau_{1} \wedge \dots \wedge \tau_{n} \rightarrow \tau}$$

$$\Gamma, \mathbf{x}:\tau \vdash \mathbf{x}:\tau$$

$$\Gamma \vdash t_1: \tau_1 \wedge ... \wedge \tau_n \to \tau \\
\Gamma \vdash t_2: \tau_i \text{ (i=1,...n)}$$

$$\Gamma \vdash t_1 \ t_2: \tau$$

$$\frac{\Gamma \vdash t_k : \tau \text{ (for every } F_k : \tau \in \Gamma)}{\vdash \{F_1 \rightarrow t_1, \dots, F_n \rightarrow t_n\} : \Gamma}$$

Soundness and Completeness

[K., POPL2009]

```
Tree(G) is accepted by A if and only if S has type q_0 in TS(A), i.e. \exists \Gamma.(S:q_0 \in \Gamma \land | -\{F_1 \rightarrow t_1, \dots, F_n \rightarrow t_n\} : \Gamma) if and only if \exists \Gamma.(S:q_0 \in \Gamma \land \forall (F_k:\tau) \in \Gamma.\Gamma | -t_k:\tau)
```

 $G = \{F_1 \rightarrow t_1, ..., F_m \rightarrow t_m \}$ (with $S=F_1$) A: Trivial automaton with initial state q_0 TS(A): Intersection type system for A

Soundness and Completeness

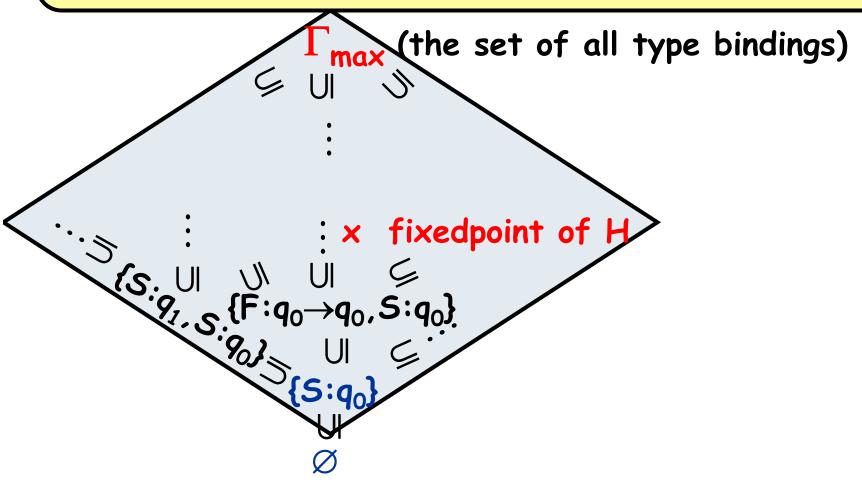
[K., POPL2009]

```
Tree(G) is accepted by A
      if and only if
S has type q_0 in TS(A),
i.e. \exists \Gamma. (S:q_0 \in \Gamma \land \vdash \{F_1 \rightarrow t_1, \ldots, F_n \rightarrow t_n\} : \Gamma)
      if and only if
\exists \Gamma. (S: q_0 \in \Gamma \land \forall (F_k:\tau) \in \Gamma. \Gamma | -t_k:\tau)
      if and only if
\exists \Gamma. (S: q_0 \in \Gamma \land \Gamma = H(\Gamma))
for H(\Gamma) = \{ F_k : \tau \in \Gamma \mid \Gamma \mid -t_k : \tau \}
```

Function to filter out invalid type bindings

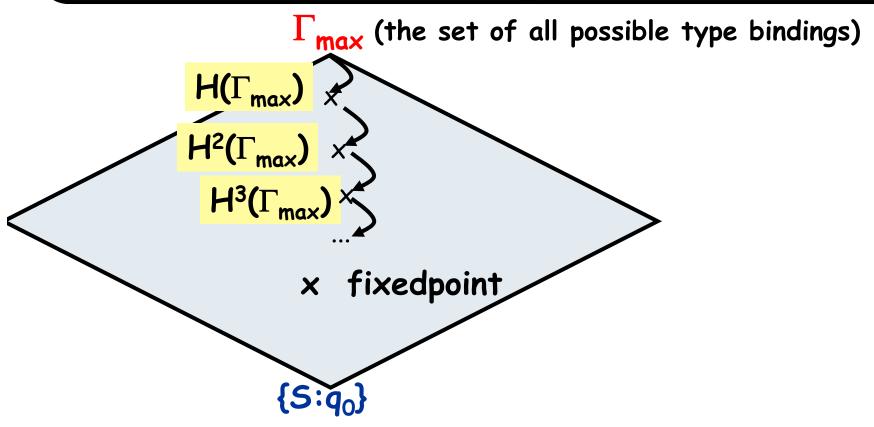
Type checking (=model checking) problem

```
Is there a fixedpoint of H greater than \{S:q_0\}? (where H(\Gamma) = \{ F_j: \tau \in \Gamma \mid \Gamma \mid -t_j:\tau \})
```



Naive Algorithm [K. POPL09]

- 1. Compute the greatest fixedpoint Γ_{gfp} of H (H(Γ) = { F_j : $\tau \in \Gamma \mid \Gamma \mid -t_j$: τ })
- 2. Check whether $S:q_0 \in \Gamma_{gfp}$



Example

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$$

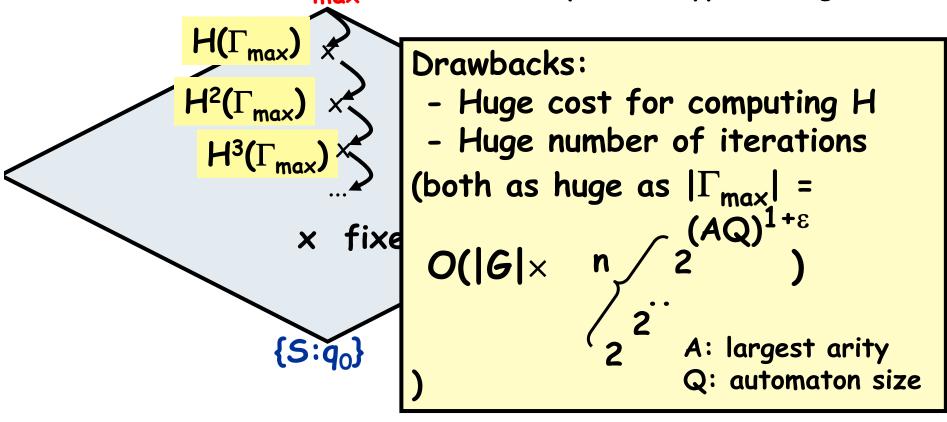
(S:o, F: o\rightarrow o)

♦ Automaton:

```
\begin{split} \delta(q_{0}, \ a) &= q_{0} \ q_{0} \quad \delta(q_{0}, \ b) = q_{1} \quad \delta(q_{1}, \ b) = q_{1} \\ \delta(q_{0}, \ c) &= \delta(q_{1}, \ c) = \epsilon \\ \Gamma_{\text{max}} &= \{S: q_{0}, \ S: q_{1}, \ F: \ T \rightarrow q_{0}, \ F: \ q_{0} \rightarrow q_{0}, \ F: \ q_{1} \rightarrow q_{0}, \ F: \ q_{0} \land q_{1} \rightarrow q_{0}, \\ F: \ T \rightarrow q_{1}, \ F: \ q_{0} \rightarrow q_{1}, \ F: \ q_{1} \rightarrow q_{1}, \ F: \ q_{0} \land q_{1} \rightarrow q_{1} \} \\ H(\Gamma_{\text{max}}) &= \{ S: \tau \in \Gamma_{\text{max}} \mid \Gamma_{\text{max}} \mid -F \ c: \tau \} \\ & \cup \{ F: \tau \in \Gamma_{\text{max}} \mid \Gamma_{\text{max}} \mid -\lambda x. \ a \times (F(b \ x)) : \tau \} \\ &= \{ S: q_{0}, \ S: q_{1}, \ F: \ q_{0} \rightarrow q_{0}, \ F: \ q_{0} \land q_{1} \rightarrow q_{0} \} \\ H^{2}(\Gamma_{\text{max}}) &= \{ S: q_{0}, \ F: \ q_{0} \land q_{1} \rightarrow q_{0} \} \\ H^{3}(\Gamma_{\text{max}}) &= \{ S: q_{0}, \ F: \ q_{0} \land q_{1} \rightarrow q_{0} \} \\ \end{split}
```

Naive Algorithm [K. POPLO9]

- 1. Compute the greatest fixedpoint Γ_{gfp} of H $(H(\Gamma) = \{ F_j : \tau \in \Gamma \mid \Gamma \mid -t_j : \tau \})$ 2. Check whether $S: q_0 \in \Gamma_{afp}$
 - Γ_{max} (the set of all possible type bindings)



How large is Γ_{max} ?

 Γ_{max} : the set of all possible type bindings for non-terminals

sort	# of types for each sort $(Q=\{q_0,q_1,q_2,q_3\})$		
o (trees)	4 (q_0,q_1,q_2,q_3)		
$o \rightarrow o$	$2^4 \times 4 = 64 (\land S \rightarrow q, \text{ with } S \in 2^Q, q \in Q)$		
$(o\rightarrow o)\rightarrow o$	$2^{64} \times 4 = 2^{66}$		
$((o \rightarrow o) \rightarrow o) \rightarrow o$	2 ⁶⁶ 100000000000000000000000000000000000		

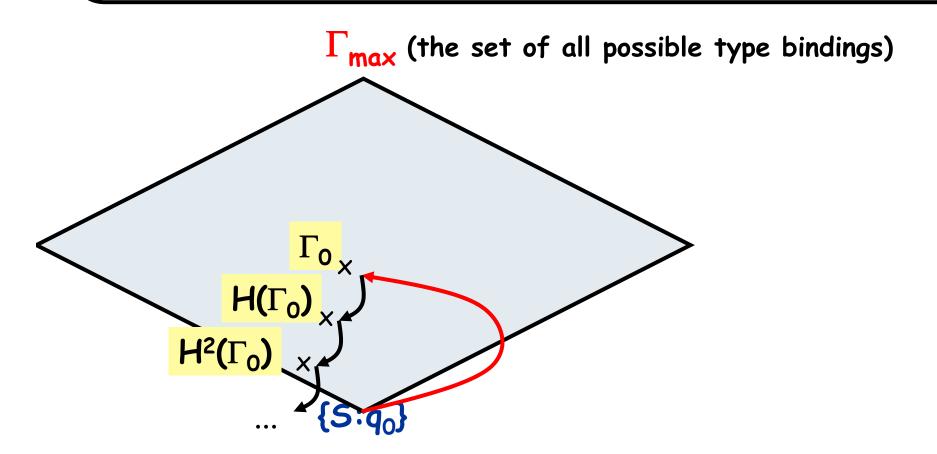
$$|\Gamma_{\text{max}}| = O(|G| \times \sum_{2}^{n} \sum_{2}^{(A|Q|)^{1+\varepsilon}})$$

Outline

- ♦ Brief Review of HO model checking problem
- **♦** Application to CFA
- ♦ Algorithms for higher-order model checking
 - From model checking to type checking
 - Practical algorithms

Practical Algorithms [K. PPDP09] [K.Fossacs11]

- 1. Guess a type environment Γ_0
- 2. Compute greatest fixedpoint Γ smaller than Γ_0
- 3. Check whether $S:q_0 \in \Gamma$
- 4. Repeat 1-3 until the property is proved or refuted.



Practical Algorithms [K. PPDP09] [K.Fossacs11]

- 1. Guess a type environment Γ_0
- 2. Compute greatest fixedpoint Γ smaller than Γ_0
- 3. Check whether $S:q_0 \in \Gamma$
- 4. Repeat 1-3 until the property is proved or refuted.

 Γ_{max} (the set of all possible type bindings)

How to guess Γ_0 ?

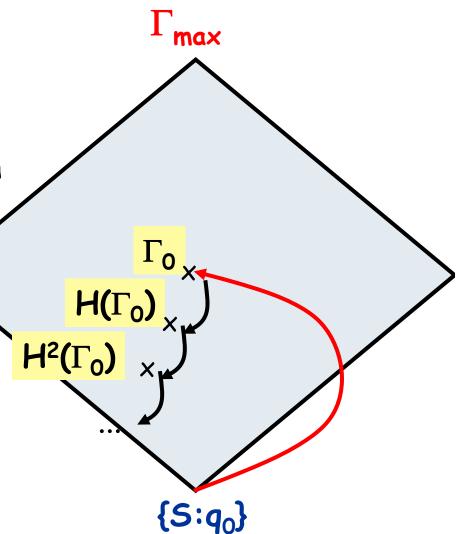
♦ PPDP09 algorithm

 Reduce a recursion scheme a finite number of steps

Observe how each function is used and express it as types

♦ FoSSaCS11 algorithm

- Like PPDP09, but avoid reductions by using game semantic interpretation of types



How to guess Γ_0 ?

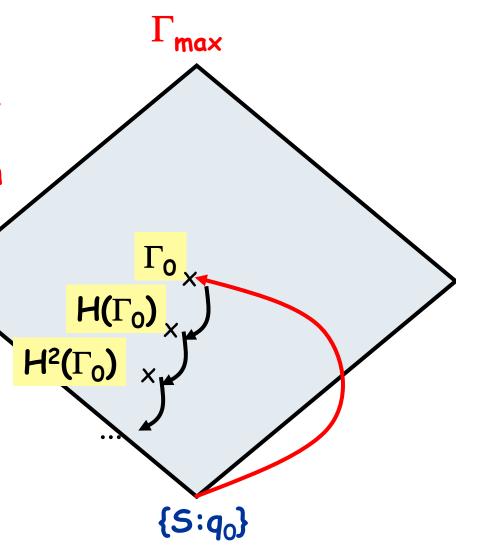
♦ PPDP09 algorithm

- Reduce a recursion scheme a finite number of steps

 Observe how each function is used and express it as types

♦ FoSSaCS11 algorithm

 Like PPDP09, but avoid reductions by using game semantic interpretation of types



♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$$

$$\delta(q_0, a) = q_0 q_0 \delta(q_0, b) = q_1 \delta(q_1, b) = q_1 \delta(q_0, c) = \delta(q_1, c) = \epsilon$$

$$\delta(q_0, c) = \delta(q_1, c) = \varepsilon$$

$$S^{q_0} \rightarrow F \xrightarrow{q_0} a^{q_0} \rightarrow a^{q_0}$$

$$q_0 \leftarrow F(b c) \qquad q_0 \leftarrow q_0$$

$$q_0 \leftarrow F(b(b c))^{q_0}$$

$$q_1 \leftarrow q_1 \leftarrow q_0$$

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$$

$$\delta(q_0, a) = q_0 q_0 \delta(q_0, b) = q_1 \delta(q_1, b) = q_1 \delta(q_0, c) = \delta(q_1, c) = \epsilon$$

$$\delta(q_0, c) = \delta(q_1, c) = \varepsilon$$

$$5^{q_0} \rightarrow F \xrightarrow{q_0} a^{q_0} \rightarrow a^{q_0}$$

$$q_0 \rightarrow F(b c) \xrightarrow{q_0} F(b(b c))^{q_0}$$

$$q_1 \downarrow c$$

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x. \alpha \times (F (b x))$$

$$\delta(q_0, a) = q_0 q_0 \delta(q_0, b) = q_1 \delta(q_1, b) = q_1 \delta(q_0, c) = \delta(q_1, c) = \epsilon$$

$$S^{q_0} \rightarrow F \xrightarrow{q_0} q_0 \qquad \rightarrow q_0 \qquad S: q_0$$

$$q_0 \leftarrow F(b c) \qquad q_0 \leftarrow q_0 \qquad q_0 \qquad F: ? \rightarrow q_0$$

$$q_0 \leftarrow F(b(b c)) \qquad q_0 \leftarrow q_0 \qquad q_0 \leftarrow q_0 \qquad q_0 \leftarrow q_0 \qquad q_0 \leftarrow q_0 \leftarrow$$

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x. \alpha x (F (b x))$$

$$\delta(q_0, a) = q_0 q_0 \delta(q_0, b) = q_1 \delta(q_1, b) = q_1 \delta(q_0, c) = \delta(q_1, c) = \epsilon$$

$$S^{q_0} \rightarrow F \xrightarrow{q_0} q_0 \rightarrow q_0 \rightarrow q_0$$

$$q_0 \leftarrow F(b \leftarrow c) \qquad q_0 \leftarrow q_0 \qquad q_0 \rightarrow q_0$$

$$q_0 \leftarrow F(b(b \leftarrow c)) \qquad q_0 \leftarrow q_0 \rightarrow q_0$$

$$q_1 \leftarrow q_0 \rightarrow q_0$$

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$$

$$\delta(q_0, a) = q_0 q_0 \delta(q_0, b) = q_1 \delta(q_1, b) = q_1 \delta(q_0, c) = \delta(q_1, c) = \epsilon$$

$$S \xrightarrow{q_0} F \xrightarrow{q_0} q_0 \longrightarrow q_0$$

$$q_0 F(b c) \xrightarrow{q_0} F(b(b c))^{q_0}$$

$$q_0 F(b(b c))^{q_0} F(b(b c))^{q_0}$$

$$q_1 F(b(b c))^{q_0} F(b(b c))^{q_0}$$

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x. \alpha x (F (b x))$$

$$\delta(q_0, a) = q_0 q_0 \delta(q_0, b) = q_1 \delta(q_1, b) = q_1 \delta(q_0, c) = \delta(q_1, c) = \epsilon$$

$$S^{q_0} \rightarrow F \xrightarrow{q_0} q_0 \rightarrow q_0 \qquad \Rightarrow q_0 \qquad S: q_0 \qquad F: q_0 \land q_1 \qquad \Rightarrow q_0 \qquad F: q_0 \land q_1 \qquad \Rightarrow q_0 \qquad F: q_0 \rightarrow q_0 \qquad F: q_0 \rightarrow q_0 \qquad F: T \rightarrow q_0$$

$$\Gamma_{\mathsf{o}}$$
:

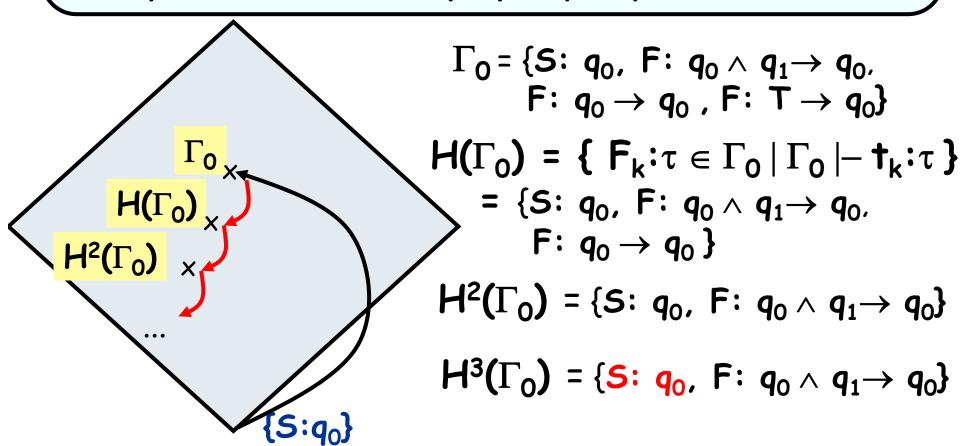
$$F: q_0 \wedge q_1 \\ \rightarrow q_0$$

$$F: q_0 \rightarrow q_0$$

$$F: T \rightarrow q_0$$

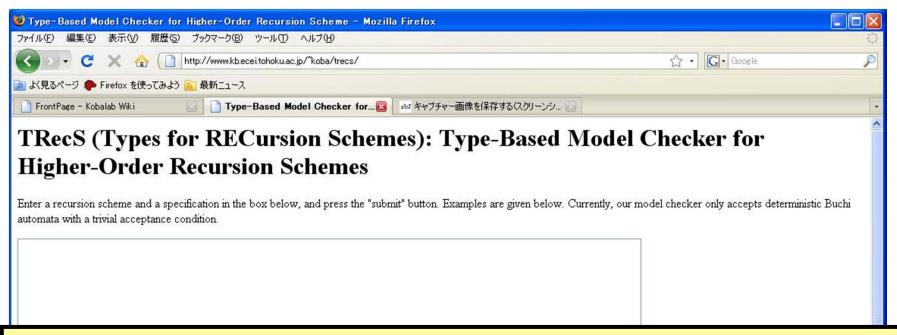
Practical Algorithms [K. PPDP09] [K.Fossacs11]

- 1. Guess a type environment Γ_0
- 2. Compute greatest fixedpoint Γ smaller than Γ_0
- 3. Check whether $S:q_0 \in \Gamma$
- 4. Repeat 1-3 until the property is proved or refuted.



TRecS [K. PPDP09]

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/



- ♦ The first model checker for recursion schemes
- ♦ Based on the PPDP09 algorithm, with certain additional optimizations

Limitation of PPDP09 Algorithm

- ♦ Worst-case time complexity is even worse than the naive algorithm
 - Upper-bound $O(\exp_{n+1}(|G|^2))$
 - Lower-bound $O(\exp_n(|G|))$
 - Naive algorithm:O(|G|)

(with the largest arity and automaton fixed)

Order-1 recursion scheme that requires exponential reduction steps

$$\begin{array}{c} \textbf{S} \rightarrow \textbf{F}_0 \ \textbf{G}_0 \\ \textbf{F}_0 \ \textbf{x} \rightarrow \textbf{F}_1 \ (\textbf{F}_1 \ \textbf{x}) \\ & \cdots \\ \textbf{F}_{m-1} \ \textbf{x} \rightarrow \textbf{F}_m \ (\textbf{F}_m \ \textbf{x}) \\ \textbf{F}_m \ \textbf{x} \rightarrow \textbf{a} \ \textbf{x} \\ \textbf{G}_0 \rightarrow \textbf{c} \end{array}$$

$$5 \rightarrow^* a^{2m} (G_0) \rightarrow^* a^{2m} (c)$$

Order-n recursion scheme R_{m,n}

$$\begin{array}{c} \textbf{S} \rightarrow \textbf{F}_0 \ \textbf{G}_{\mathsf{n-1}} \ \dots \ \textbf{G}_2 \ \textbf{G}_1 \ \textbf{G}_0 \\ \textbf{F}_0 \ \textbf{f} \rightarrow \textbf{F}_1 \ (\textbf{F}_1 \ \textbf{f}) \\ \dots \\ \textbf{F}_{\mathsf{m-1}} \ \textbf{f} \rightarrow \textbf{F}_{\mathsf{m}} \ (\textbf{F}_{\mathsf{m}} \ \textbf{f}) \\ \textbf{F}_{\mathsf{m}} \ \textbf{f} \rightarrow \textbf{G}_{\mathsf{n}} \ \textbf{f} \\ \textbf{G}_{\mathsf{n}} \ \textbf{f} \ \textbf{z} \rightarrow \textbf{f} \ (\textbf{f} \ \textbf{z}) \\ \dots \\ \textbf{G}_2 \ \textbf{f} \ \textbf{z} \rightarrow \textbf{f} \ (\textbf{f} \ \textbf{z}) \\ \textbf{G}_1 \ \textbf{z} \rightarrow \textbf{a} \ \textbf{z} \\ \textbf{G}_0 \rightarrow \textbf{c} \end{array}$$

Verification Time for R_{m,n}

	m=1	m=2	m=3	m=4	m=5	m=10	m=15
n=1	0.002	0.002	0.002	0.002	0.003	0.036	2.866
n=2	0.002	0.002	0.011	228.4	•	-	-
n=3	0.002	394.3	-	-	-	-	-

Specification: $\delta(q_0, a) = q_0 \quad \delta(q_0, c) = \varepsilon$

Environment: Intel(R) Xeon(R) 3Ghz with 8GB memory

Better Algorithm?

	Pros	Cons
Naive algorithm [POPL09]	Linear time in G (but n-EXPTIME in other parameters)	Always suffer from n-EXPTIME bottleneck
PPDP09 algorithm	Efficient in practice	Bad worst case behavior (n-EXPTIME in G)
?	Linear time in G Efficient in practice	

How to guess Γ_0 ?

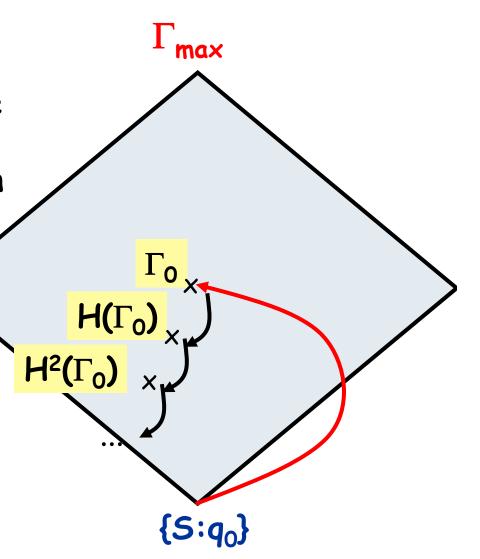
♦ PPDP09 algorithm

- Reduce a recursion scheme a finite number of steps

- Observe how each function is used and express it as types

♦ FoSSaCS11 algorithm

 Like PPDP09, but avoid reductions by using game semantic interpretation of types



♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$$

$$\delta(q_0, a) = q_0 q_0 \quad \delta(q_0, b) = q_1$$

 $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$

$$S^{q_0} \rightarrow F \xrightarrow{q_0} q_0 \qquad \rightarrow q_0 \qquad S: q_0$$

$$q_0 \leftarrow F(b c) \qquad q_0 \leftarrow q_0 \qquad q_0 \qquad F: q_0 \wedge q_1 \qquad \rightarrow q_0$$

$$q_0 \rightarrow F(b(b c)) \qquad F: q_0 \rightarrow q_0$$

$$q_1 \leftarrow F: T \rightarrow q_0$$

$$\Gamma_0$$
:

$$F: q_0 \wedge q_1 \\ \rightarrow q_0$$

$$F: q_0 \rightarrow q_0$$

$$F: T \rightarrow q_0$$

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$$

♦ Automaton:

$$\delta(q_0, a) = q_0 q_0 \quad \delta(q_0, b) = q_1$$

 $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$

$$S^{q_0} \rightarrow F \stackrel{q_0}{\leftarrow} q^{q_0}$$

$$q_0 \nearrow F(b c)$$

$$\begin{aligned} \mathsf{H}(\Gamma_0) &= \{ \ \mathsf{F}_k \text{:} \tau \in \Gamma_0 \, | \, \Gamma_0 \, | \text{-} \, \mathsf{t}_k \text{:} \tau \} \\ &= \{ \mathsf{S} \text{:} \ q_0, \ \mathsf{F} \text{:} \ q_0 \to q_0 \, \} \\ \mathsf{H}^2(\Gamma_0) &= \{ \mathsf{S} \text{:} \ q_0 \} \quad \mathsf{H}^3(\Gamma_0) = \varnothing \end{aligned}$$

Γ_0 :

$$F: q_0 \rightarrow q_0$$

$$F: T \rightarrow q_0$$

Set-theoretic vs game-semantic interpretation of types

Set-theoretic view of q1 \rightarrow q2: Given a tree of type q1, returns a tree of type q2.

Game-semantic view of $q1 \rightarrow q2$:

Given a request to return a tree of type q2,

issues a request for a tree of type q1(and then returns a tree of type q2) q1

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x. \alpha x (F (b x))$$

♦ Automaton:

$$\delta(q_0, a) = q_0 q_0 \quad \delta(q_0, b) = q_1$$

 $\delta(q_0, c) = \delta(q_1, c) = \varepsilon$

$$S^{q_0} \rightarrow F \stackrel{q_0}{\rightarrow} \alpha^{q_0}$$

$$q_0 \nearrow F(b c)$$

 Γ_0 :

S: q0

 $F: q_0 \rightarrow q_0$

 $F: T \rightarrow q_0$

♦ Recursion scheme:

$$S \rightarrow F c \qquad F \rightarrow \lambda x.a \times (F (b x))$$

♦ Automaton:

$$\delta(q_0, a) = q_0 q_0 \qquad \delta(q_0, b) = q_1$$

$$\delta(q_0, c) = \delta(q_1, c) = \varepsilon$$

$$S^{q_0} \rightarrow F \stackrel{q_0}{c} \rightarrow a^{q_0}$$

$$q_0 \leftarrow F(b c)$$

$$b \stackrel{q_0}{c} \qquad b \stackrel{q_0}{c}$$

$$q_1 \leftarrow b \stackrel{q_0}{c}$$

 Γ_0 :

S: q0

 $F: q_0 \rightarrow q_0$

 $F: q_0 \wedge q_1 \\ \rightarrow q_0$

Experiments

	order	PPDP09	FoSSaCS11	
R _{3,1}	3	0.002	0.021	
R _{3,5}	3	timeout	0.135	
R _{3,10}	3	timeout	0.382	
R _{4,10}	4	timeout	43.8	
Twofiles	3	0.001	0.228	
Twofiles-e	3	0.001	0.116	
FileOcamlc	3	0.003	1.162	
Nondet	3	N.A.	0.013	

(Times are in seconds. Environment: Intel(R) Xeon(R) 3Ghz with 8GB memory)

Better Algorithm?

	Pros	Cons
Naive algorithm [POPL09]	Linear time in G (but n-EXPTIME in other parameters)	Always suffer from n-EXPTIME bottleneck
PPDP09 algorithm	Efficient in practice	Bad worst case behavior (n-EXPTIME in G)
FoSSaCS 2011 algorithm	Linear time in G Efficient in practice	Often slower than PPDP09 algorithm for program verification problems

Algorithms for Higher-Order Model Checking: Summary

- ♦ Model checking can be reduced to type checking, which in turn becomes a fixedpoint problem
- ♦ Greatest fixedpoint is too costly to compute
- ♦ Practical algorithms guess a type environment and use it as a start point of fixedpoint computation
- ♦ FoSSaCS11 algorithm (for trivial automata model checking) achieves fixed-parameter linear time complexity in the size of grammar by incorporating game-semantic view

Discussion

- ♦ Our FoSSaCS11 algorithm may be seen as abstract interpretation of game semantics (type as an abstraction of a set of plays)
 - Is this view correct?
 - Can we make this view precise, and use it to refine the algorithm and the correctness proof?

