Algorithms and Applications of
Higher-Order Model Checking

Naoki Kobayashi
Tohoku University

This Talk

¢ Application of HO model checking to CFA
(joint work with Tobita and Tsukada)
- Aims of the talk:

- Familiarize audience with connections between
HO model checking and program verification

+ Get feedbacks from CFA community
¢ Algorithms for HO model checking

- Aims of the talk:

* Familiarize audience with type-based approach
to HO model checking

- Get feedbacks from game semantics community

Outline
¢ Brief Review of HO model checking problem

¢ Application to CFA (20 min.)

¢ Algorithms for higher-order model checking
(25 min.)

¢ Future directions

HO Model Checking Problem

~

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

does A accept Tree(G)?

e.g.
- Does every finite path end with "c"?

- Does “"a” occur below "b"?
f

N
n-EXPTIME-complete [Ong, LICS06] n _ZP >

(for order-n recursion scheme) (2

_ Y,

Outline

¢ Brief Review of HO model checking problem

¢ Application to CFA
- Definition of CFA
- Reduction from CFA to HO model checking

- Discussion
¢ Algorithms for higher-order model checking

¢ Future directions

CFA Problem

Given a closed (simply-typed) A-term M and
labels | and m, decide whether

M >* E[(\'x.N)@™V]
for some x, E, N, V.

~

)

Syntax:
M,N ::= 0| x| AMx.M | M@'N (terms)
E ::= [] l

[JM | V[] (evaluation contexts)

Vii= ()| Mx.M (values)
Evaluation rules:
E[(A'x.M)@"V] > E[[V/xIM]

From CFA to HO model checking
[CFA: M—* E[(\'x.Ny@™V]?]

v cps

(CSA (call-sequence analysis):
"Is function | called immediately after m?”
L Mo* B[W"x.N)@V, 1 > E,[Wx.Ny)ev,]?

¢ Transformation

(Verification of a tree-generating program
"Does the tree generated by M, have a path
_labeled by .m |..?"

\L Transformation to HORS

[Higher‘-order‘ model checking problem J

From CFA to HO model checking
[CFA: M—* E[(\'x.Ny@™V]?]

v cps

(CSA (call-sequence analysis):
"Is function | called immediately after m?”
L Mo* B[W"x.N)@V, 1 > E,[Wx.Ny)ev,]?

¢ Transformation

VYRRV ,

Verification of a tree-generating program
"Does the tree generated by M, have a path
_labeled by .m |..?"

\L Transformation to HORS

[Higher‘-order‘ model checking problem J

From CFA to CSA

4)
Call-by-value CPS
[x] = Ak.k x
[Mx,M] = Ak.k Alx.[M]
[M@"N] = Ak.[M](F.[N]J(\"y . f@y@K))
_ J
Before CPS After CPS
M [M]Ax.x
—* E[M;@™M,] - [M @M JK

.) S IMI@GS.[M Iy FRY@K))
" E[(Mx.N)@™,]| |« [M;]@(M‘y.(xz'x.[N])@y@l())
—* E[(A'x.N)@mV] —* (\my.(Mx.[N])@y@K))@[V]

- (A'x.[N)e[V]eK

From CFA to HO model checking
[CFA: M—* E[(\'x.Ny@™V]?]

Vv cps

(CSA (call-sequence analysis):
"Is function | called immediately after m?”
_ M5* B[A™x.N)@V, 1 - B[(Mx.N)@V,] ?

!

(Verification of a tree-generating program
"Does the tree generated by M" have a path
_labeled by .m I ..?"

w Transformation to HORS

[Higher‘-order‘ model checking problem J

From CSA (for CPS programs) to
analysis of tree-generating program

(Transformation of types:)
(Ans) = o (tree type) (t,—> 1) = (1,)>(1) ..
Transformation of terms:

(A"x. M) = Ax.m({(M)) (for continuation)
(Ax.Ak. MY = Ax.Ak.I((M)) (for user function)
\MiM;) = (M;) (M) ... /
Before transformation After transformation
M (M)
—* (A\"x.N,)@V, —* C[(O\x.m((N)@ (V,)]

— (A'x.2k.N)@V,@K || > CIm((Ax.AK.1({ N3»))@(V.)@(K)]
—>>* C[m(I(..))]

From CFA to HO model checking
[CFA: M->* E[(\'x.N)@mV]2]

v cps

(call-sequence analysis: b

"Is function | called immediately after m?”

_M* B[(A™.N)@V; 1 - Bl (Mx.N)@V, 1?2
¢ Transformation

(Verification of a tree-generating program A

"Does the tree generated by M" have a path

_labeled by .m |..?" y

\L Transformation to HORS

[Higher‘-order‘ model checking problem J

From CFA to HO model checking
[CFA: M—* E[(\'x.Ny@™V]?]

v cps

(call-sequence analysis: b

"Is function | called immediately after m?”

_M* B[(A™.N)@V; 1 - Bl (Mx.N)@V, 1?2
¢ Transformation

(Verification of a tree-generating program A

"Does the tree generated by M" have a path

_labeled by .m |..?" y

\L A-lifting

[Higher‘-order‘ model checking problem J

Example

(A1x.x@2()) @3 (A%y.())

U cPs
(A3u.(M1x.Ak.(A2v.x v kK)()) u K)) (\y.Ak.kQ)

U conversion to tree-generating program
(Au.3(Ax.Ak.1(Av.2(x v k))O) u K)) (Ay.rk.4(k()))
— 3(Ax.Ak.1(Av.2(x v k))()) (Ay.Ak.4(k())) K)

—* 3(1(Av.2((hy.Ak.4(k()) v K)O))
= 3(1(2((hy.2k.4(k0)) O K))
—* 3(1(2(4KON)

Discussion

¢ Cons

- Too slow compared with OCFA

- Can handle only simply (or intersection) typed,
purely functional programs with recursion

¢ Pros
+ Exact for finitary PCF
+ Runnable (c.f. Mossin's exact flow analysis)

+ Linear time in program size for each flow query
if the type size is fixed
(cubic time for all flow information)
(c.f. k-CFA)

Relevant in practice?

¢ Useful for analyzing critical flow?

¢ Useful for evaluating precision of other
(non-exact) CFAs and comparing them

¢ Can be made efficient by some restrictions?
- Limit the nesting of intersection types
- Limit the width of intersection types

— new hierarchies of CFA’'s?

Open Questions

¢ Which flow analysis has the best balance
between precision and cost?

- Precise analysis can often be faster than
imprecise one

st
o « Exact CFA

x_OCFA

> precison

Open Questions

¢ Which flow analysis has the best balance
between precision and cost?

- Precise analysis can often be faster than
imprecise one

¢ Relationship to CFA2 [Vardoulakis&Shivers] ?
- CFA2 models programs as PDS

- HO model checking is equivalent to model
checking of HO (collapsible) PDS

Higher-order extension of CFA2?

Outline

¢ Brief Review of HO model checking problem
¢ Application to CFA

¢ Algorithms for higher-order model checking
- From model checking to type checking

- Practical algorithms

Difficulty of higher-order model checking

¢ Extremely high worst-case complexity
- n-EXPTIME complete [Ong, LICS06]

n//- 2p(><)
-
2

- Earlier algorithms [Ong06;Aehlig06:Hague et al.08]
almost always suffer from n-EXPTIME bottleneck.

Our approach:
from model checking to typing

Construct a type system TS(A) s.t.
Tree(G) is accepted by tree automaton A
if and only if
G is typable in TS(A)

Model Checking as

Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

Model Checking Problem

(Given
G: higher-order recursion scheme
(without safety restriction)

~

A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),

\does A accept Tree(6G)?

/

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)

Model Checking Problem:
Restricted version

KGiven \

G: higher-order recursion scheme

(without safety restriction)
A: trivial automaton [Aehlig c5L06]

(Bichi tree automaton where
all the states are accepting states)

\does A accept Tree(G)? W,

See [K.&Ong, LICSO09] for the general case
(full modal p-calculus model checking)

Trivial tree automaton
for infinite trees

q0
q0 ¢ aq0 5(q0, a) = q0 q0

7 ’

©b, B 80, b) = ql

q1<|: b /Oq\ 5(q1, b) = q1
qltl’ bqO 6(q0, ¢) = ¢

A 5(ql, ¢) = &
qls bf
bal "a"” does not occur below "b”

Types for Recursion Schemes

¢ Automaton state as the type of trees
- q: trees accepted from state q

A

- qlAq2: trees accepted from both q1 and q2

Is Tree(6) accepted by A?

v

Does Tree(G) have type q,?

Types for Recursion Schemes

¢ Automaton state as the type of trees

- q1—> q2: functions that take a tree of type ql
and return a tree of q2

Aok

Types for Recursion Schemes

¢ Automaton state as the type of trees
- qlAq2 — q3:
functions that take a tree of type q1Aq2 and
return a tree of type g3

q3

ql, q2
, + A =

\

Types for Recursion Schemes

¢ Automaton state as the type of trees
(91 - q2) — q3:
functions that take a function of type q1 — q2
and return a tree of type q3

q3

Example

e N
Automaton:
5(qo. @) = 9o G0 5(qo. b) = 3(q;. b) = q
8(qo, €) = 3(qy, €) = ¢
_ _J

a: qo —qo— b: qiogo M- € (0 X) 414

bQo

9 qd0
Y O N
xl

Typing

S(ql C() = Q1---Qn /

I'G:q1—>...—>qn—>q

(\qn

I, xX:t,..., Xit, Ftit T+t (i=1

I FAXt T ALAT, > T Tkt t,r

T | T, ¢ T (for every F,:tel’)

Typing

5@, @) = 414 o e

I'G:q1—>...—>qn—>q

Tt T ALAT, =T
T, X:T,..., XiT, Ft7 I Ft,:1 (i=1,..n)

I FAXt T ALAT, > T Tkt t,r

T | T, ¢ T (for every F,:tel’)
|'{F1—>‘|'1,..., Fn —)1'"} I

Soundness and Completeness
[K., POPL2009)

/Tr'ee(G) is accepted by A

S

if and only if
has type q, in TS(A),

i.e. dr'.(S:qpe I' A |-{F;>1,4,..., F,->t}:T)

if and only if

EIl".(S: Qo € F/\V(Fk:T)Er. Fl— tk: T)

_

/

G = {F, »t,, ..., F, ot} (with S=F,)
A: Trivial automaton with initial state q,
TS(A): Intersection type system for A

Soundness and Completeness
[K., POPL2009]

ﬁee(@) is accepted by A
if and only if

S has type q, in TS(A),

i.e. Ar.(S:qpe I' A |-{F;>t4,..., F,>t}:T)
if and only if

ar.(S: qg € TAV(Fit)el.T|-t,: 1)
if and only if

Ar.(S: qoe ' AT = H(T))

for HI') = { Fiitel | T |-ttt}

Function to filter out invalid type bindings

Type checking (=model checking) problem

r “
Is there a fixedpoint of H greater than {S:q,}?
(wher‘e HT) = { FiiteT|T |-1;it})

Y,

iy . x fixedpoint of
(S. UI W\ U <

. S{F 9090, 5" QO}
N o <,

Naive Algorithm [K. POPLO9]

(1 .Compute the greatest fixedpoint I';¢, of H ™
(HI) = { Fiit e | T |-1;it))
2-Check whether S:qoe I'py, y

'/ ax (the set of all possible type bindings)

H(T fnax)
HE(T) ><>
H3(rmGX)

x fixedpoint

Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
(S:0, F: 0—0)
¢ Automaton:
(9o, @) = 99090 (9. b) = q; 5(qy, b) = q;
6(qo. €) = 8(q;, €) = ¢

Fmax= {5190, S:q;, F: Toqo, Fi qo >q0, F: 91 290, F: g9 Aq; —qo,
F: T—q,, F: g0 —q;, F: q1 —>q;, F: qo Aq; —q;}

H(Fmax) = { Site 1_‘max | 1_‘lrncxx |_ F C:T}
U{Fitel, | Thxl—-AX%.a x (F(b x)) i1}

= {S:q0. S:q;. F: qo —qo. F: qorq; —qo}
H(Tnex) = {540, F: qorgs —90)
H3(Cmax) = {S:q0. F* qorqy —>qg} = HA(Tpye0)

Naive Algorithm [K. POPLO9]

1 .Compute the greatest fixedpoint I

(HI) = { Fiit e | T |-1;it))

gfp Of H

~

J

2-Check whether S:qoe I'py,

'/ ax (the set of all possible type bindings)

H(Tnax) Drawbacks:

Ha(rmax)

)

-~
H2(T, 0) - Huge cost for computing H
- Huge number of iterations

(both as huge as |I', .| =

(AQ)! "
o(l61x y 2)
-

2 A: largest arity

Q: automaton size

How large is I', ., ?

I'.x: The set of all possible type bindings for non-terminals

sort # of types for each sort
(Q={q0.9:.9..93})

o (trees) 4 (90.91.92.93)

050 24 x4 = 64 (7S—q, with 5c2R, qeQ)

(0—0) > o 204 x4 = 266

((0>0) - 0) > o | 2s 10000000000000000000
2 x4 > 10

] Z(AIQI)“S
Ced = OUG1%°)
2

Outline

¢ Brief Review of HO model checking problem
¢ Application to CFA

¢ Algorithms for higher-order model checking
- From model checking to type checking

- Practical algorithms

Practical Algorithms (k. PPpPO9] [K.FosSacs11]
N

G .6uess a type environment Iy
2.Compute greatest fixedpoint I" smaller than T,
3.Check whether S:iqpe T

d. Repeat 1-3 until the property is proved or r'efutedj

' ax (the set of all possible type bindings)

Practical Algorithms [k. PPDPO9] [K.Fossacs11]
N

G .6uess a type environment Iy
2.Compute greatest fixedpoint I" smaller than T,
3.Check whether S:iqpe T

d. Repeat 1-3 until the property is proved or r'efutedj

' ax (the set of all possible type bindings)

How to guess I'y?

¢ PPDPO9 algorithm

- Reduce a recursion scheme
a finite number of steps

- Observe how each function
is used and express it
as types

¢ FoSSacCS11 algorithm

- Like PPDPQO9, but avoid
reductions by using game
semantic interpretation of
types

H(To)
H2(To) «

{5:q0}

How to guess I'y?

¢ PPDPO9 algorithm

- Reduce a recursion scheme
a finite number of steps

- Observe how each function
is used and express it
as types

¢ FoSSacCS11 algorithm

- Like PPDPQO9, but avoid
reductions by using game
semantic interpretation of
types

H(To)
H2(To) «

{5:q0}

Example

¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))

¢ Automaton:
6(qo. @) = 9090 3(q0. b) = q; 3(qy, b) = qy
6(qo, ¢) = 8(q;, €) = ¢

s, F d% dlo — a9
/\ AN
e S 6 /aif
b F(b(b c))°
qi |
c

Example

¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))

¢ Automaton:

6(qo. @) = 9090 3(q0. b) = q; 3(qy, b) = qy

6(qo, ¢) = 8(q;, €) = ¢
Ig:

sl%, F d% dlo — a9 S: q,
/\ \
e S ¢ /ajf
o Fb(b c))°
qi |
C

Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:

6(qo. @) = 9090 3(q0. b) = q; 3(qy, b) = qy
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5%, F doy dlo —> a S: qq
/' \ N\ .
9 Fb Cq)o q{ /aif F: 25 qo

Yp F(b(b c))
91 (!'

Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:

6(qo. @) = 9090 3(q0. b) = q; 3(qy, b) = qy
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5% F d%s do — q S: qq
/\ N .
9o ° q o F: qo A q;
re S o« "9

Yp F(b(b c))
91 (!'

Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:

6(qo. @) = 9090 3(q0. b) = q; 3(qy, b) = qy
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5% F d%s do — q S: qq
/\ N\ :
dq o q Jo F: go A q4
C F(b g) { /a\ S

Y5 Fbb) F: g0 g
q: |
C

Example
¢ Recursion scheme:
S—>Fc F > Ax.a x (F (b x))
¢ Automaton:

6(qo. @) = 9090 3(q0. b) = q; 3(qy, b) = qy
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5% F d%s do — q S: qq
/\ N .
Qo ° 4 9o F: g0~ q;
{re S o« "9

Yp Flbb o) F: gy qo
‘hcl: F: T> q

Practical Algorithms (k. PPpPO9] [K.FosSacs11]
N

G .6uess a type environment I
2.Compute greatest fixedpoint I" smaller than T,
3.Check whether S:iqpe T

d. Repeat 1-3 until the property is proved or r'efutedj

I'0={S: qo. F: 9o A 91— qo.
F: g0 qo.F: T > qo}

H(Fo) - { Fk:T € FO | FO |— tk:T}

= {5 q0, F: g0 A 91— qo.
F: g0— o}

H2(I'o) = {S: qo0. F: qo A 91— qo}
HB(FO) ={S: qo, F: qo A 91— qp}

5:qo}

TRecS [K. PPDP09]
http://www_.kb.ecei.tohoku.ac. jp/~koba/trecs/

%) Type-Based Model Checker for Higher-Order Recursion Scheme - Mozilla Firefox Q@
7ANE REER FTW FEES FvHv-2@ VD ANFH

@ v c‘ a7 | L] | http/fwan kbeceitohokuac.jp/ koba/trecs/

| G
8] H(RB-T P Firefox £EoTHES o B#IZ1-A

__| FrontPage - Kobalab Wiki .| Type-Based Model Checker for..[d = -1 ¥vIFe-@REREIDAD .

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit” button. Examples are given below. Currently, our model checker only accepts determimstic Buchy
automata with a trivial acceptance condition.

¢ The first model checker for recursion
schemes

¢ Based on the PPDPO9 algorithm,
with certain additional optimizations
Tm Y T —

1 [=wy e

Limitation of PPDPO9 Algorithm

¢ Worst-case time complexity is even
worse than the naive algorithm

- Upper-bound
O(expml(l6 I 2))

- Lower-bound

O(exp,(161))
- Naive algorithm:

o(lél)

(with the largest arity and automaton fixed)

Order-1 recursion scheme that
requires exponential reduction steps

(S > Fy 6 \

FO X —> F1 (F1 X)

Frn-1 X & Fr, (F, X)
F, X > ax

KGO—)C /

2m 2m
S-H>*a (6p) >*a (c)

Order-n recursion scheme R,

/s_)l:o 6, ... 6, Glm

FO f —> F1 (F1 f)

Fo.i f > F (F,) m
F.f > 6, f n/ 2
6, fz—f(f 2) /:;
S->*a (6p)

G, fz-f(f 2)

6,z ->az

NS

Verification Time for R, ,

m=1 |m=2 |m=3 |m=4 |m=5 |m=10 [m=15
n=1 |0.002 |0.002 |0.002 |[0.002 |0.003|0.036 |2.866
n=2 |0.002 |0.002 |0.011 |228.4 |- - -
n=3 |[0.002 [394.3 |- - - - -
Specification: 8(qy, a)=qy 8(qy, €)= ¢

Environment: Intel(R) Xeon(R) 3Ghz with 8GB memory

Better Algorithm?

Pros Cons

Naive Linear time in |G| Always suffer from
algorithm | (but n-EXPTIME in |[n-EXPTIME bottleneck

[POPLO9] |other parameters)

PPDPO9 |Efficient in practice |Bad worst case behavior
algorithm (n-EXPTIME in |6])

? Linear time in |G|
Efficient in practice

How to guess I'y?

¢ PPDPO9 algorithm

- Reduce a recursion scheme
a finite number of steps

- Observe how each function
is used and express it
as types

¢ FoSSaCS11 algorithm

- Like PPDP0O9, but avoid
reductions by using game
semantic interpretation of
types

H(To)
H2(To) «

{5:q0}

Example
¢ Recursion scheme:
S—>Fc F - Ax.ax (F (b x))
¢ Automaton:

8(qo. @) = 9090 6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5% F d%s do — q S: qq
/\ N .
Qo ° 4 9o F: g0~ q;
{re S o« "9

Yp F(b(b)0 F: go = o
qlcl F: T—) qo

Example
¢ Recursion scheme:
S—>Fc F - Ax.ax (F (b x))
¢ Automaton:

8(qo. @) = 9090 6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5%, F d%s o S: qq
40/\ 0 F:
C F(b c * 9o = 9
H(o) = { Fyit e T | g |- tiit} F: T— q

= {5: q. F: 90— qo}
H3([o) = {S: g0} H¥(Tp) = &

Set-theoretic vs game-semantic
interpretation of types

-
Set-theoretic view of q1 — q2:

g

Given a tree of type ql, returns a tree of type q2.

~N

_/

-

Game-semantic view of q1 — q2:

issues a request for a tree of type ql
(and then returns a tree of type q2)

Given a request to return a tree of type q2,

~

O —>20

92
ql

Example
¢ Recursion scheme:
S—>Fc F - Ax.ax (F (b x))
¢ Automaton:

8(qo. @) = 9090 6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5%, F d%s o S: qq
QO/\ 0 F: —
C F(b c 9 — 9o

F: T—> qq

Example
¢ Recursion scheme:
S—>Fc F - Ax.ax (F (b x))
¢ Automaton:

8(qo. @) = 9090 6(qo. b) = q;
6(qo, ¢) = 8(q;, €) = ¢

Ig:
5%, F d%s dlo S: qq
/" \
QOC F}b g)o F: 90— Qo
F: qo A qy
b o — Qo

Ich
C

Experiments

order |PPDPO9 FoSSaCS11
R; ; 3 0.002 0.021
Rs 5 3 timeout 0.135
Rs 10 3 timeout 0.382
R4 10 4 timeout 43.8
Twofiles 3 0.001 0.228
Twofiles-e 3 0.001 0.116
FileOcamic 3 0.003 1.162
Nondet 3 N.A. 0.013

(Times are in seconds. Environment: Intel(R) Xeon(R) 3Ghz with 8GB memory)

Better Algorithm?

Pros Cons

Naive Linear time in |G| Always suffer from
algorithm | (but n-EXPTIME in |[n-EXPTIME bottleneck

[POPLO9] |other parameters)

PPDPO9 |Efficient in practice |Bad worst case behavior

algorithm (n-EXPTIME in |6])
FoSSaCS |[Linear time in |G| Often slower than PPDPO9
2011

: Efficient in practice | algorithm for program
algorithm verification problems

Algorithms for Higher-Order
Model Checking: Summary

¢ Model checking can be reduced to type checking,
which in turn becomes a fixedpoint problem

¢ Greatest fixedpoint is too costly to compute

¢ Practical algorithms guess a type environment and
use it as a start point of fixedpoint computation

¢ FoSSaCS11 algorithm (for trivial automata model
checking) achieves fixed-parameter linear time
complexity in the size of grammar by incorporating
game-semantic view

Discussion

¢ Our FoSSaCS11 algorithm may be seen as

abstract interpretation of game semantics
(type as an abstraction of a set of plays)

- Is this view correct?

- Can we make this view precise, and use it to
refine the algorithm and the correctness proof?

(o ->0)->0 (0->0)->0
90 /Yo
/'Qf q/’%
q: 1
/Y0 a5

92 [(q:->90)7(9,->90) ->q (91792->90) ->q0

