A Definitions

Definition A.1 (environmental bisimulation). *Environmental relation* \mathcal{X} *is an environmental bisimulation if* $P\mathcal{X}_{\mathcal{E}}Q$ *implies:*

- 1. $P \xrightarrow{\tau} P'$ implies $Q \xrightarrow{\tau} \dots \xrightarrow{\tau} Q'$ and $P' \mathcal{X}_{\mathcal{E}} Q'$
- 2. $P \xrightarrow{a(V)} P'$ with $a\hat{\mathcal{E}}b$ and $V\hat{\mathcal{E}}^*W$ implies $Q \xrightarrow{\tau} \dots \xrightarrow{b(W)} \dots \xrightarrow{\tau} Q'$ and $P'\mathcal{X}_{\mathcal{E}}Q'$
- 3. $P \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P'$ with $a\hat{\mathcal{E}}b$ and $\tilde{c} \notin \mathsf{fn}(\#_1(\mathcal{E}))$ implies $\exists \tilde{d} \notin \mathsf{fn}(\#_2(\mathcal{E})). Q \xrightarrow{\tau} \dots \xrightarrow{\nu \tilde{d}.\overline{b}\langle W \rangle} \dots \xrightarrow{\tau} Q'$ and $P'\mathcal{X}_{\mathcal{E} \cup \{(V,W)\}}Q'$
- 4. the converse of (1-3) on Q
- 5. $V_1 \hat{\mathcal{E}} W_1$ and $V_2 \hat{\mathcal{E}} W_2$ imply $V_1 = V_2 \iff W_1 = W_2$
- 6. $(P')\hat{\mathcal{E}}(Q')$ implies $P|P'\mathcal{X}_{\mathcal{E}}Q|Q'$
- 7. $PX_{\mathcal{E} \cup \{(a,b)\}}Q$ for any $a \notin \mathsf{fn}(P,\#_1(\mathcal{E}))$ and $b \notin \mathsf{fn}(Q,\#_2(\mathcal{E}))$
- 8. $V\hat{\mathcal{E}}W$ implies:
 - (a) V = a implies W = b
 - (b) V = f implies W = f
 - (c) $V = \hat{f}(V_1, ..., V_l)$ implies $W = \hat{g}(W_1, ..., W_m)$
 - (d) $V \in \mathbf{Quo} \ implies \ \exists b \not\in \mathsf{fn}(\mathcal{E}, P, Q). \ P\mathcal{X}_{\mathcal{E} \cup \{(reifu, (V), reifu, (W))\}}Q$
- 9. the converse of 8 on W

Definition A.2 (context closure for environmental bisimulations). We write $P\mathcal{X}_{\mathcal{E}}^{(*)}Q$ if $P \equiv \nu \tilde{c}.(P_0|P_1)$ and $Q \equiv \nu \tilde{d}.(Q_0|Q_1)$ with $P_0\mathcal{X}_{\mathcal{E}'}Q_0$ and $P_1\hat{\mathcal{E}'}^*Q_1$ for an environmental relation \mathcal{X} , where $\tilde{c} \notin \mathsf{fn}(\#_1(\mathcal{E}))$ and $\tilde{d} \notin \mathsf{fn}(\#_2(\mathcal{E}))$ with $\hat{\mathcal{E}} \subseteq \{(V,W) \mid V\hat{\mathcal{E}'}^*W \text{ and } \mathsf{fn}(V) \cap \{\tilde{c}\} = \mathsf{fn}(W) \cap \{\tilde{d}\} = \emptyset\}$.

Definition A.3 (environmental bisimulation up-to context). *Environmental relation* \mathcal{X} *is an environmental bisimulation up-to context if* $P\mathcal{X}_{\mathcal{E}}Q$ *implies:*

- 1. $P \xrightarrow{\tau} P'$ implies $Q \xrightarrow{\tau} \dots \xrightarrow{\tau} Q'$ and $P' \mathcal{X}_{\mathcal{E}}^{(*)} Q'$
- 2. $P \xrightarrow{a(V)} P'$ with $a\hat{\mathcal{E}}b$ and $V\hat{\mathcal{E}}^*W$ implies $Q \xrightarrow{\tau} \dots \xrightarrow{b(W)} \dots \xrightarrow{\tau} Q'$ and $P'\mathcal{X}_{\mathcal{E}}^{(*)}Q'$
- 3. $P \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P'$ with $a\hat{\mathcal{E}}b$ and $\tilde{c} \notin \mathsf{fn}(\#_1(\mathcal{E}))$ implies $\exists \tilde{d} \notin \mathsf{fn}(\#_2(\mathcal{E})). Q \xrightarrow{\tau} \dots \xrightarrow{\nu \tilde{d}.\overline{b}\langle W \rangle} \dots \xrightarrow{\tau} Q'$ and $P'\mathcal{X}^{(*)}_{\mathcal{E} \cup \{(V,W)\}}Q'$
- 4. the converse of (1-3) on Q
- 5. $V_1 \hat{\mathcal{E}} W_1$ and $V_2 \hat{\mathcal{E}} W_2$ imply $V_1 = V_2 \iff W_1 = W_2$

6. $(P')\hat{\mathcal{E}}(Q')$ implies $P|P'\mathcal{X}_{\mathcal{E}}^{(*)}Q|Q'$

7. $PX_{\mathcal{E} \cup \{(a,b)\}}Q$ for any $a \notin \mathsf{fn}(P,\#_1(\mathcal{E}))$ and $b \notin \mathsf{fn}(Q,\#_2(\mathcal{E}))$

8. $V\hat{\mathcal{E}}W$ implies:

(a) V = a implies W = b

(b) V = f implies W = f

(c) $V = \hat{f}(V_1, \dots, V_l)$ implies $W = \hat{g}(W_1, \dots, W_m)$

(d) $V \in \mathbf{Quo} \ implies \ \exists b \not\in \mathsf{fn}(\mathcal{E}, P, Q). \ P\mathcal{X}^{(*)}_{\mathcal{E} \cup \{(reify_b(V), reify_b(W))\}}Q$

9. the converse of 8 on W

Structural equivalence. Define evaluation contexts by $C := [] \mid (C|P) \mid (P|C) \mid \nu c.C$. Structural equivalence \equiv is the smallest equivalence relation on processes that is closed under evaluation contexts, with:

$$P \equiv P|0 \qquad P_1|(P_2|P_3) \equiv (P_1|P_2)|P_3$$

$$P_1|P_2 \equiv P_2|P_1 \qquad !P \equiv P|!P$$

$$\nu a.0 \equiv 0 \qquad \nu a.\nu b.P \equiv \nu b.\nu a.P$$

$$P_1|\nu a.P_2 \equiv \nu a.(P_1|P_2) \text{ if } a \notin \mathsf{fn}(P_1)$$

B Proofs

B.1 Reduction respects structural equivalence

Lemma B.1 (reduction respects structural equivalence).

1. $P \equiv Q$ and $P \xrightarrow{\alpha} P'$ imply $Q \xrightarrow{\alpha} Q'$ and $P' \equiv Q'$

2. $P \equiv Q \text{ and } Q \xrightarrow{\alpha} Q' \text{ imply } P \xrightarrow{\alpha} P' \text{ and } P' \equiv Q'.$

Proof. By induction on the derivation of structural equivalence. Since the proof of clause 2 is similar to that of clause 1, we omit the proof of clause 2. We have some cases of transition derivation.

Case: $P \equiv P|0 \quad P \xrightarrow{\alpha} P'$ We have $P|0 \xrightarrow{\alpha} P'|0$ by PAR-L. Then we have $P' \equiv P'|0$

Case: $P_1|(P_2|P_3) \equiv (P_1|P_2)|P_3 \quad P_1|(P_2|P_3) \xrightarrow{\alpha} P'$

There are 9 subcases of the transition derivation of $P_1|(P_2|P_3) \xrightarrow{\alpha} P'$.

Subcase PAR-L: $P_1 \xrightarrow{\alpha} P_1'$

We have $P_1|(P_2|P_3) \xrightarrow{\alpha} P_1'|(P_2|P_3)$ where $\operatorname{bn}(\alpha) \cap \operatorname{fn}(P_2|P_3) = \emptyset$. Then by PAR-L, $P_1|P_2 \xrightarrow{\alpha} P_1'|P_2$, since $\operatorname{bn}(\alpha) \cup \operatorname{fn}(P_2) = \emptyset$. Again by PAR-L, $(P_1|P_2)|P_3 \xrightarrow{\alpha} (P_1'|P_2)|P_3$, since $\operatorname{bn}(\alpha) \cup \operatorname{fn}(P_3) = \emptyset$. By definition of structural equivalence, we have $P_1'|(P_2|P_3) \equiv (P_1'|P_2)|P_3$.

Subcase PAR-R, PAR-L: $P_2 \xrightarrow{\alpha} P_2'$

We have $P_1|(P_2|P_3) \xrightarrow{\alpha} P_1|(P_2'|P_3)$ where $\mathsf{bn}(\alpha) \cap \mathsf{fn}(P_1,P_3) = \emptyset$. Then by PAR-R, $P_1|P_2 \xrightarrow{\alpha} P_1|P_2'$

since $\operatorname{bn}(\alpha) \cup \operatorname{fn}(P_1) = \emptyset$. Again by PAR-L, $(P_1|P_2)|P_3 \xrightarrow{\alpha} (P_1|P_2')|P_3$, since $\operatorname{bn}(\alpha) \cup \operatorname{fn}(P_3) = \emptyset$. By definition of structural equivalence, we have $P_1|(P_2'|P_3) \equiv (P_1|P_2')|P_3$.

Subcase PAR-R, PAR-R: $P_3 \xrightarrow{\alpha} P_3'$

We have $P_1|(P_2|P_3) \xrightarrow{\alpha} P_1|(P_2|P_3')$ where $\operatorname{bn}(\alpha) \cap \operatorname{fn}(P_1, P_2) = \emptyset$. Then by PAR-R, $(P_1|P_2)|P_3 \xrightarrow{\alpha} (P_1|P_2)|P_3'$, since $\operatorname{bn}(\alpha) \cup \operatorname{fn}(P_1|P_2) = \emptyset$. By definition of structural equivalence, we have $P_1|(P_2|P_3') \equiv (P_1|P_2)|P_3'$.

Subcase PAR-R, TAU-L: $P_2 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_2' \quad P_3 \xrightarrow{a(V)} P_3'$

We have $P_1|(P_2|P_3) \xrightarrow{\tau} P_1|\nu\tilde{c}.(P_2'|P_3')$ where $\{\tilde{c}\} \cap \operatorname{fn}(P_3) = \emptyset$. Then by PAR-R, for some \tilde{c}_1 s.t. $\{\tilde{c}_1\} \cap \operatorname{fn}(P_1, P_2, P_3) = \emptyset$, $P_1|P_2 \xrightarrow{\nu\tilde{c}.\overline{a}\langle\{\tilde{c}_1/\tilde{c}\}V\rangle} P_1|\{\tilde{c}_1/\tilde{c}\}P_2'$. By TAU-L, we have $(P_1|P_2)|P_3 \xrightarrow{\tau} \nu\tilde{c}_1.((P_1|\{\tilde{c}_1/\tilde{c}\}P_2')|\{\tilde{c}_1/\tilde{c}\}P_3')$. By $\{\tilde{c}_1\} \cap \operatorname{fn}(P_1) = \emptyset$ and definition of structural equivalence, we have $P_1|\nu\tilde{c}.(P_2'|P_3') \equiv \nu\tilde{c}_1.(P_1|\{\tilde{c}_1/\tilde{c}\}P_2'|\{\tilde{c}_1/\tilde{c}\}P_3')) \equiv \nu\tilde{c}_1.((P_1|\{\tilde{c}_1/\tilde{c}\}P_2')|\{\tilde{c}_1/\tilde{c}\}P_3')$. Therefore $P_1|\nu\tilde{c}.(P_2'|P_3') \equiv \nu\tilde{c}_1.((P_1|\{\tilde{c}_1/\tilde{c}\}P_2')|\{\tilde{c}_1/\tilde{c}\}P_3')$.

Subcase PAR-R, TAU-R: $P_2 \xrightarrow{a(V)} P_2' \quad P_3 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_3'$ We have $P_1|(P_2|P_3) \xrightarrow{\tau} P_1|\nu \tilde{c}.(P_2'|P_3')$ where $\{\tilde{c}\} \cap \text{fn}(P_2) = \emptyset$. Then by PAR-R, for some \tilde{c}_1 s.t. $\{\tilde{c}_1\} \cap \text{fn}(P_1, P_2, P_3) = \emptyset$, $P_1|P_2 \xrightarrow{a(\{\tilde{c}_1/\tilde{c}\}V)} P_1|\{\tilde{c}_1/\tilde{c}\}P_2'$. By TAU-R, we have $(P_1|P_2)|P_3 \xrightarrow{\tau} \nu \tilde{c}_1.((P_1|\{\tilde{c}_1/\tilde{c}\}P_2')|\{\tilde{c}_1/\tilde{c}\}P_3')$. By $\{\tilde{c}_1\} \cap \text{fn}(P_1) = \emptyset$ and definition of structural equivalence, we have $P_1|\nu \tilde{c}.(P_2'|P_3') \equiv \nu \tilde{c}_1.(P_1|\{\tilde{c}_1/\tilde{c}\}P_2')|\{\tilde{c}_1/\tilde{c}\}P_3')$. Therefore $P_1|\nu \tilde{c}.(P_2'|P_3') \equiv \nu \tilde{c}_1.((P_1|\{\tilde{c}_1/\tilde{c}\}P_2')|\{\tilde{c}_1/\tilde{c}\}P_3')$.

Subcase Tau-L, Par-L: $P_1 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_1' \quad P_2 \xrightarrow{a(V)} P_2'$ We have $P_1|(P_2|P_3) \xrightarrow{\tau} \nu \tilde{c}.(P_1'|(P_2'|P_3))$ where $\{\tilde{c}\} \cap \operatorname{fn}(P_2,P_3) = \emptyset$. Then by Tau-L, $P_1|P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|P_2')$. By Par-L, we have $(P_1|P_2)|P_3 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|P_2')|P_3$. By $\{\tilde{c}\} \cap \operatorname{fn}(P_3) = \emptyset$ and definition of structural equivalence, we have $\nu \tilde{c}.(P_1'|(P_2'|P_3)) \equiv \nu \tilde{c}.((P_1'|P_2')|P_3) \equiv \nu \tilde{c}.(P_1'|P_2')|P_3$. Therefore $\nu \tilde{c}.(P_1'|(P_2'|P_3)) \equiv \nu \tilde{c}.(P_1'|P_2')|P_3$.

Subcase TAU-L, PAR-R: $P_1 \xrightarrow{\nu \bar{c}. \bar{a}\langle V \rangle} P_1' \quad P_3 \xrightarrow{a(V)} P_3'$

We have $P_1|(P_2|P_3) \xrightarrow{\tau} \nu \tilde{c}.(P_1'|(P_2|P_3'))$ where $\{\tilde{c}\} \cap \text{fn}(P_2,P_3) = \emptyset$. Then by PAR-L, $P_1|P_2 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V\rangle} P_1'|P_2$. By TAU-L, we have $(P_1|P_2)|P_3 \xrightarrow{\tau} \nu \tilde{c}.((P_1'|P_2)|P_3')$. By definition of structural equivalence, we have $\nu \tilde{c}.(P_1'|(P_2|P_3')) \equiv \nu \tilde{c}_1.((P_1'|P_2)|P_3')$.

Subcase Tau-R, Par-L: $P_1 \xrightarrow{a(V)} P_1' \quad P_2 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_2'$ We have $P_1|(P_2|P_3) \xrightarrow{\tau} \nu \tilde{c}.(P_1'|(P_2'|P_3))$ where $\{\tilde{c}\} \cap \text{fn}(P_1,P_3) = \emptyset$. Then by Tau-R, $P_1|P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|P_2')$. By Par-L, we have $(P_1|P_2)|P_3 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|P_2')|P_3$. By $\{\tilde{c}\} \cap \text{fn}(P_3) = \emptyset$ and definition of structural equivalence, we have $\nu \tilde{c}.(P_1'|(P_2'|P_3)) \equiv \nu \tilde{c}.((P_1'|P_2')|P_3) \equiv \nu \tilde{c}.(P_1'|P_2')|P_3$. Therefore $\nu \tilde{c}.(P_1'|(P_2'|P_3)) \equiv \nu \tilde{c}.(P_1'|P_2')|P_3$.

Subcase Tau-R, Par-R: $P_1 \xrightarrow{a(V)} P_1' \quad P_3 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_3'$

We have $P_1|(P_2|P_3) \xrightarrow{\tau} \nu \tilde{c}.(P_1'|(P_2|P_3'))$ where $\{\tilde{c}\}\cap \text{fn}(P_1,P_2) = \emptyset$. Then by PAR-L, $P_1|P_2 \xrightarrow{a(V)} P_1'|P_2$. By TAU-L, we have $(P_1|P_2)|P_3 \xrightarrow{\tau} \nu \tilde{c}.((P_1'|P_2)|P_3')$. By definition of structural equivalence, we have $\nu \tilde{c}.(P_1'|(P_2|P_3')) \equiv \nu \tilde{c_1}.((P_1'|P_2)|P_3')$.

Case: $P_1|P_2 \equiv P_2|P_1$

Subcase PAR-L: $P_1 \xrightarrow{\alpha} P_1'$

We have $P_1|P_2 \xrightarrow{\alpha} P_1'|P_2$, where $bn(\alpha) \cap fn(P_2) = \emptyset$. Then by PAR-R, we have $P_2|P_1 \xrightarrow{\alpha} P_2|P_1'$. By definition of structural equivalence, we have $P_1'|P_2 \equiv P_2|P_1'$.

Subcase PAR-R: $P_2 \xrightarrow{\alpha} P_2'$

Similar.

Subcase TAU-L: $P_1 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_1' \quad P_2 \xrightarrow{a(V)} P_2'$

We have $P_1|P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|P_2')$, where $\{\tilde{c}\} \cap \text{fn}(P_2) = \emptyset$. Then by TAU-R, we have $P_2|P_1 \xrightarrow{\tau} \nu \tilde{c}.(P_2'|P_1')$. By definition of structural equivalence, we have $\nu \tilde{c}.(P_1'|P_2') \equiv \nu \tilde{c}.(P_2'|P_1')$.

Subcase TAU-R: $P_1 \xrightarrow{a(V)} P_1' \quad P_2 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_2'$ Similar.

Case: $!P \equiv P|!P$

Assume $P' \stackrel{\alpha}{\to} P'$. By REP, we have $P' \stackrel{\alpha}{\to} P'$. Of course $P' \equiv P'$ and that's all.

Case: $\nu a.0 \equiv 0$

The transition of $\nu a.0$ can't happen.

Case: $\nu a.\nu b.P \equiv \nu b.\nu a.P$

It is immediate by the case a=b, so we suppose $a \neq b$. There are 4 subcases of transition derivations of $\nu a.\nu b.P$.

Subcase Scope, Scope: $\nu b.P \xrightarrow{\alpha} \nu b.P'$

Assume $\nu a.\nu b.P \xrightarrow{\alpha} \nu a.\nu b.P'$ We have $P \xrightarrow{\alpha} P'$, where $a, b \notin \mathsf{n}(\alpha)$. Then we have $\nu b.\nu a.P \xrightarrow{\alpha} \nu b.\nu a.P'$ By definition of structural equivalence, we have $\nu a.\nu b.P' \equiv \nu b.\nu a.P'$.

Subcase Scope, Open: $\nu b.P \xrightarrow{\nu \tilde{c}, b. \overline{a_1} \langle V \rangle} P'$

Assume $\nu a.\nu b.P \xrightarrow{\nu \tilde{c}, b.\overline{a_1}\langle V \rangle} \nu a.P'$, where $a \notin \mathsf{n}(\nu \tilde{c}, b.\overline{a_1}\langle V \rangle)$. We have $P \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V \rangle} P'$, where $b \neq a_1, b \in \mathsf{fn}(V) \setminus \{\tilde{c}\}$. Then we have $\nu a.P \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V \rangle} \nu a.P'$ by SCOPE, and thus $\nu b.\nu a.P \xrightarrow{\nu \tilde{c}, b.\overline{a_1}\langle V \rangle} \nu a.P'$ by OPEN. Naturally we have $\nu a.P' \equiv \nu a.P'$.

Subcase Open, Scope: $\nu b.P \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V \rangle} \nu b.P'$

Assume $\nu a.\nu b.P \xrightarrow{\nu \tilde{c}, a.\overline{a_1}\langle V \rangle} \nu b.P'$, where $a \neq a_1, a \in \text{fn}(V) \setminus \{\tilde{c}\}$. We have $P \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V \rangle} P'$, where $b \notin \text{n}(\nu \tilde{c}.\overline{a_1}\langle V \rangle)$. Then we have $\nu a.P \xrightarrow{\nu \tilde{c}, a.\overline{a_1}\langle V \rangle} P'$ by OPEN, and thus $\nu b.\nu a.P \xrightarrow{\nu \tilde{c}, a.\overline{a_1}\langle V \rangle} \nu b.P'$ by SCOPE. Naturally we have $\nu b.P' \equiv \nu b.P'$.

Subcase Open, Open: $\nu b.P \xrightarrow{\nu \tilde{c}, b.\overline{a_1} \langle V \rangle} P'$

Assume $\nu a.\nu b.P \xrightarrow{\nu \tilde{c}, a, b.\overline{a_1}\langle V \rangle} P'$, where $a, b \neq a_1, a, b \in \mathsf{fn}(V) \setminus \{\tilde{c}\}$. We have $P \xrightarrow{\nu \tilde{c}.a.\overline{a_1}\langle V \rangle} P'$. Then we have $\nu a.P \xrightarrow{\nu \tilde{c}, a.\overline{a_1}\langle V \rangle} P'$ by OPEN, and thus $\nu b.\nu a.P \xrightarrow{\nu \tilde{c}, a, b.\overline{a_1}\langle V \rangle} P'$ by OPEN. Naturally we have $P' \equiv P'$.

Case: $P_1|\nu a.P_2 \equiv \nu a.(P_1|P_2)$

There are 6 subcases of transition derivations of $P_1|\nu a.P_2$.

Subcase PAR-L: $P_1 \xrightarrow{\alpha} P_1'$

We have $P_1|\nu a.P_2 \xrightarrow{\alpha} P_1'|\nu a.P_2$, where $bn(\alpha) \cap fn(\nu a.P_2) = \emptyset$. Then for some a_1 , we have $P_1|\{a_1/a\}P_2 \xrightarrow{\alpha} P_1'|\{a_1/a\}P_2$, where $a_1 \notin (bn(\alpha) \cup fn(P_1))$. Therefore $\nu a.(P_1|P_2) = \nu a_1.(P_1|\{a_1/a\}P_2) \xrightarrow{\alpha} \nu a_1.(P_1'|\{a_1/a\}P_2)$. Then we have $P_1'|\nu a.P_2 \equiv \nu a.(P_1'|P_2) = \nu a_1.(P_1'|\{a_1/a\}P_2)$. Hence $P_1'|\nu a.P_2 \equiv \nu a_1.(P_1'|\{a_1/a\}P_2)$.

Subcase PAR-R, SCOPE: $\nu a.P_2 \xrightarrow{\alpha'} \nu a.P_2'$

We have $P_1|\nu a.P_2 \xrightarrow{\alpha} P_1|\nu a.P_2$, where $\mathsf{bn}(\alpha) \cap \mathsf{fn}(P_1) = \emptyset$. We also have $P_2 \xrightarrow{\alpha} P_2$, where $a \notin \mathsf{n}(\alpha)$.

Then we have $P_1|P_2 \xrightarrow{\alpha} P_1|P_2'$ and thus $\nu a.(P_1|P_2) \xrightarrow{\alpha} \nu a.(P_1|P_2')$ By $a \notin \text{fn}(P_1)$, we have $P_1|\nu a.P_2' \equiv \nu a.(P_1|P_2')$.

Subcase PAR-R, OPEN: $\nu a.P_2 \xrightarrow{\nu \tilde{c}, a.\overline{a_1} \langle V \rangle} P_2'$

We have $P_1|\nu a.P_2 \xrightarrow{\nu \tilde{c},a.\overline{a_1}\langle V\rangle} P_1|P_2'$, where $\tilde{c},a \notin \operatorname{fn}(P_1)$. We also have $P_2 \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V\rangle} P_2'$, where $a \neq a_1,a \in \operatorname{fn}(V)$. Then we have $P_1|P_2 \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V\rangle} P_1|P_2'$ and thus $\nu a.(P_1|P_2) \xrightarrow{\nu \tilde{c},a.\overline{a_1}\langle V\rangle} P_1|P_2'$. Naturally we have $P_1|P_2' \equiv P_1|P_2'$.

Subcase TAU-L: $P_1 \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V \rangle} P_1' \quad \nu a.P_2 \xrightarrow{a_1(V)} \nu a.P_2'$

We have $P_1|\nu a.P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|\nu a.P_2')$, where $\{\tilde{c}\} \cap \text{fn}(\nu a.P_2) = \emptyset$. We also have $P_2 \xrightarrow{a_1(V)} P_2'$, where $a \notin \text{n}(a_1(V))$. Then for some a_2 , we have $a_2 \notin \text{fn}(P_1)$, $P_1|\{^{a_2}/_a\}P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|\{^{a_2}/_a\}P_2')$ and thus $\nu a_2.(P_1|\{^{a_2}/_a\}P_2) \xrightarrow{\tau} \nu a_2, \tilde{c}.(P_1'|\{^{a_2}/_a\}P_2')$. By $a_2 \notin \text{fn}(P_1')$, we have $\nu \tilde{c}.(P_1'|\nu a.P_2') \equiv \nu \tilde{c}.(P_1'|\nu a_2.\{^{a_2}/_a\}P_2') \equiv \nu \tilde{c}.(P_1'|\{^{a_2}/_a\}P_2')$. Therefore $\nu \tilde{c}.(P_1'|\nu a.P_2') \equiv \nu \tilde{c}.a_2.(P_1'|\{^{a_2}/_a\}P_2')$.

Subcase Tau-R, Scope: $P_1 \xrightarrow{a(V)} P_1' \quad \nu a.P_2 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} \nu a.P_2'$

We have $P_1|\nu a.P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|\nu a.P_2')$, where $\{\tilde{c}\} \cap \mathsf{fn}(P_1) = \emptyset$. We also have $P_2 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_2'$, where $a \notin \mathsf{n}(\nu \tilde{c}.\overline{a}\langle V \rangle)$. Then we have $P_1|P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|P_2')$ and thus $\nu a.(P_1|P_2) \xrightarrow{\tau} \nu a.\tilde{c}.(P_1'|P_2')$. By $a \notin \mathsf{fn}(P_1)$, we have $\nu \tilde{c}.(P_1'|\nu a.P_2') \equiv \nu \tilde{c}.a.(P_1'|P_2') \equiv \nu a.\tilde{c}.(P_1'|P_2')$. Therefore $\nu \tilde{c}.(P_1'|\nu a.P_2') \equiv \nu a.\tilde{c}.(P_1'|P_2')$.

Subcase Tau-R, Open: $P_1 \xrightarrow{a(V)} P_1' \quad \nu a.P_2 \xrightarrow{\nu \tilde{c}, a.\overline{a_1}\langle V \rangle} P_2'$

We have $P_1|\nu a.P_2 \xrightarrow{\tau} \nu \tilde{c}, a.(P_1'|P_2')$, where $\tilde{c}, a \notin \text{fn}(P_1)$. We also have $P_2 \xrightarrow{\nu \tilde{c}.\overline{a_1}\langle V \rangle} P_2'$, where $a \neq a_1, a \in \text{fn}(V) \setminus \{\tilde{c}\}$. Then we have $P_1|P_2 \xrightarrow{\tau} \nu \tilde{c}.(P_1'|P_2')$ and thus $\nu a.(P_1|P_2) \xrightarrow{\tau} \nu a, \tilde{c}.(P_1'|P_2')$. By definition of structural equivalence, we have $\nu \tilde{c}, a.(P_1'|P_2') \equiv \nu a, \tilde{c}.(P_1'|P_2')$.

Case Transitivity: $P_1 \equiv P_3$

Assume $P_1 \equiv P_2$, $P_2 \equiv P_3$ and $P_1 \xrightarrow{\alpha} P_1'$. By the induction hypothesis, we have $P_2 \xrightarrow{\alpha} P_2'$, $P_3 \xrightarrow{\alpha} P_3'$, $P_1' \equiv P_2'$ and $P_2' \equiv P_3'$. Therefore $P_1' \equiv P_3'$ and of course $P_3 \xrightarrow{\alpha} P_3'$.

Case Symmetry: $Q \equiv P$

Assume $P \equiv Q$ and by clause 2 it holds that $Q \xrightarrow{\alpha} Q'$ implies $P \xrightarrow{\alpha} P'$ and $P' \equiv Q'$. We have $Q \xrightarrow{\alpha} Q'$ and therefore $P \xrightarrow{\alpha} P'$. By rule of symmetry and $P' \equiv Q'$, we have $Q' \equiv P'$.

Case EVALUATION CONTEXTS: $C[P] \equiv C[Q]$ Similar to the case of $P_1|(P_2|P_3) \equiv (P_1|P_2)|P_3$.

B.2 Soundness of environmental bisimulation up-to context

Lemma B.2 (input transition). Let $P_1\mathcal{E}^*Q_1$ and $a\mathcal{E}b$. Suppose that $W_1 = b$ for any $a\hat{\mathcal{E}}W_1$. If $P_1 \xrightarrow{a(V)} P_1'$, then for any W, there exists some Q_1' such that $Q_1 \xrightarrow{b(W)} Q_1'$ with $P_1'(\mathcal{E} \cup \{(V,W)\})^*Q_1'$.

Proof. By induction on transition derivation of $P_1 \xrightarrow{a(V)} P'_1$.

Case In: $C = C_1(x).C_2$

The transition of P_1 must be of the form $C_1[\tilde{V}](x).C_2[\tilde{V}] \xrightarrow{a(V)} \{^V/_x\}C_2[\tilde{V}]$, where $eval(C_1[\tilde{V}]) = a$. Then we have $eval(C_1[\tilde{W}]) = b$. Therefore $Q_1 = C_1[\tilde{W}](x).C_2[\tilde{W}] \xrightarrow{b(W)} \{^W/_x\}C_2[\tilde{V}]$ and $\{^V/_x\}C_2[\tilde{V}](\mathcal{E} \cup \{(V,W)\})^*\{^W/_x\}C_2[\tilde{W}]$.

Case PAR-L: $C = C_1 | C_2 \quad C_1[\tilde{V}] \xrightarrow{a(V)} P'_{11}$

Assume that $C_1[\tilde{V}]|C_2[\tilde{V}] \xrightarrow{a(V)} P'_{11}|C_2[\tilde{V}]$ holds. By the induction hypothesis and $a\mathcal{E}b$, there exists Q'_{11} such that $C_1[\tilde{W}] \xrightarrow{b(W)} Q'_{11}$ and $P'_{11}(\mathcal{E} \cup \{(V,W)\})^*Q'_{11}$. Therefore, $C_1[\tilde{W}]|C_2[\tilde{W}] \xrightarrow{b(W)} Q'_{11}|C_2[\tilde{W}]$. By $C_2[\tilde{V}]\mathcal{E}^*C_2[\tilde{W}]$, we have $C_2[\tilde{V}](\mathcal{E} \cup \{(V,W)\})^*C_2[\tilde{W}]$. Thus $P'_{11}|C_2[\tilde{V}](\mathcal{E} \cup \{(V,W)\})^*Q'_{11}|C_2[\tilde{W}]$.

Case PAR-R: $C=C_1|C_2$ $C_2[\tilde{V}] \xrightarrow{a(V)} P'_{12}$ Similar to PAR-L.

Case Rep.: $C = !C_1 \quad !C_1[\tilde{V}] \xrightarrow{a(V)} P'_{11}$

We have $C_1[\tilde{V}]|!C_1[\tilde{V}] \xrightarrow{a(V)} P'_{11}$. By the induction hypothesis and $a\mathcal{E}b$, we have $C_1[\tilde{W}]|!C_1[\tilde{W}] \xrightarrow{b(W)} Q'_{11}$ and $P'_{11}(\mathcal{E} \cup \{(V,W)\})^*Q'_{11}$ for some Q'_{11} . Therefore $!C_1[\tilde{W}] \xrightarrow{b(W)} Q'_{11}$ and of course $P'_{11}(\mathcal{E} \cup \{(V,W)\})^*Q'_{11}$.

Case SCOPE: $C = \nu c. C_1 \quad \nu c. C_1[\tilde{V}] \xrightarrow{a(V)} \nu c. P'_{11}$

Assume that $C_1[\tilde{V}] = C_1'[\tilde{V},c]$ holds. Then we have $C_1'[\tilde{V},c] \xrightarrow{a(V)} P_{11}'$. By the induction hypothesis, we have $C_1'[\tilde{W},c] \xrightarrow{b(W)} Q_{11}'$ and $P_{11}'(\mathcal{E} \cup \{(c,c)\} \cup \{(V,W)\})^*Q_{11}'$ for some Q_{11}' . Then we have $\nu c.C_1[\tilde{W}] \xrightarrow{b(W)} \nu c.Q_{11}'$. By $P_{11}'(\mathcal{E} \cup \{(c,c)\} \cup \{(V,W)\})^*Q_{11}'$, we have $\nu c.P_{11}'(\mathcal{E} \cup \{(V,W)\})^*\nu c.Q_{11}'$.

Lemma B.3 (output transition). Let $P_1\mathcal{E}^*Q_1$ and $a\mathcal{E}b$. Suppose that $W_1 = b$ for any $a\hat{\mathcal{E}}W_1$. If $P_1 \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P_1'$ with $\tilde{c} \notin \operatorname{fn}(\#_1(\mathcal{E}))$, then there exist some Q_1' , W and \tilde{d} with $V(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^*W$ such that $Q_1 \xrightarrow{\nu \tilde{d}.\overline{b}\langle W \rangle} Q_1'$ with $\tilde{d} \notin \operatorname{fn}(\#_2(\mathcal{E}))$ and $P_1'(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^*Q_1'$.

Proof. By induction on transition derivation of $P_1 = C[\tilde{V}] \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P'_1$.

Case Out: $C = \overline{C_1} \langle C_2 \rangle . C_3$

We have $\overline{C_1[\tilde{V}]}\langle C_2[\tilde{V}]\rangle.C_3[\tilde{V}] \xrightarrow{\overline{a}\langle V\rangle} C_3[\tilde{V}]$ where $eval(C_1[\tilde{V}]) = a$ and $eval(C_2[\tilde{V}]) = V$. By $a\mathcal{E}b$, we have $eval(C_1[\tilde{W}]) = b$. Therefore $\overline{C_1[\tilde{W}]}\langle C_2[\tilde{W}]\rangle.C_3[\tilde{W}] \xrightarrow{\overline{b}\langle W\rangle} C_3[\tilde{W}]$, $W = eval(C_2[\tilde{W}])$ and $C_3[\tilde{V}]\mathcal{E}^*C_3[\tilde{W}]$.

Case PAR-L: $C = C_1 | C_2 - C_1[\tilde{V}] \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P'_{11} \quad \tilde{c} \not\in \mathsf{fn}(C_2[\tilde{V}])$

Assume that $C_1[\tilde{V}]|C_2[\tilde{V}] \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P'_{11}|C_2[\tilde{V}] \text{ holds. By the induction hypothesis, we have } C_1[\tilde{W}] \xrightarrow{\nu \tilde{d}.\overline{b}\langle W \rangle} Q'_{11}, P'_{11}(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^* Q'_{11}, V(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^* W \text{ and } \tilde{d} \not\in \text{fn}(\#_2(\mathcal{E})) \text{ for some } Q'_{11},\tilde{d}. \text{ By } \tilde{d} \not\in \text{fn}(C_2[\tilde{W}]),$ we have $C_1[\tilde{W}]|C_2[\tilde{W}] \xrightarrow{\nu \tilde{d}.\overline{b}\langle W \rangle} Q'_{11}|C_2[\tilde{W}]. \text{ By } P'_{11}(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^* Q'_{11}, \text{ we have } P'_{11}(\mathcal{E} \cup \{(\tilde{c},\tilde{$

 $P'_{11}|C_2[\tilde{V}](\mathcal{E}\cup\{(\tilde{c},\tilde{d})\})^*Q'_{11}|C_2[\tilde{W}].$

Case PAR-R: $C = C_1 | C_2 \quad C_2[\tilde{V}] \xrightarrow{\nu \tilde{c}. \overline{a}\langle V \rangle} P'_{12} \quad \tilde{c} \not\in \operatorname{fn}(C_1[\tilde{V}])$ Similar to PAR-L.

Case Rep: $C = !C_1 \quad !C_1[\tilde{V}] \xrightarrow{\nu \tilde{c}.\overline{a}\langle V \rangle} P'_{11}$

We have $C_1[\tilde{V}]|!C_1[\tilde{V}] \xrightarrow{\nu\tilde{c}.\overline{a}\langle V \rangle} P'_{11}$. By the induction hypothesis, we have $C_1[\tilde{W}]|!C_1[\tilde{W}] \xrightarrow{\nu\tilde{d}.\overline{b}\langle W \rangle} Q'_{11}$, $P'_{11}(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^*Q'_{11}$, $V(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^*W$ and $\tilde{d} \not\in \operatorname{fn}(\#_2(\mathcal{E}))$ for some Q'_{11},\tilde{d} . Then we have $|C_1[\tilde{W}] \xrightarrow{\nu\tilde{d}.\overline{b}\langle W \rangle} Q'_{11}$ and of course $P'_{11}(\mathcal{E} \cup \{(\tilde{c},\tilde{d})\})^*Q'_{11}$

Case SCOPE: $C = \nu c.C_1 \quad \nu c.C_1[\tilde{V}] \xrightarrow{\nu c_1.\bar{a}\langle V \rangle} \nu c.P'_{11}$

Assume that $C_1[\tilde{V}] = C_1'[\tilde{V},c]$ holds. By SCOPE, we have $C_1'[\tilde{V},c] \xrightarrow{\nu \tilde{c}_1.\overline{a}\langle V \rangle} P_{11}'$ and $c \notin \mathsf{n}(\nu \tilde{c}_1.\overline{a}\langle V \rangle)$. By the induction hypothesis, we have $C_1'[\tilde{W},c] \xrightarrow{\nu \tilde{d}_1.\overline{b}\langle W \rangle} Q_{11}', P_{11}'(\mathcal{E} \cup \{(c,c)\} \cup \{(\tilde{c}_1,\tilde{d}_1)\})^*Q_{11}', V(\mathcal{E} \cup \{(\tilde{c}_1,\tilde{d}_1),(c,c)\})^*W, \ \tilde{d}_1 \notin \mathsf{fn}(\#_2(\mathcal{E} \cup \{(c,c)\})) \ \text{and} \ c \notin \mathsf{n}(\nu \tilde{d}_1.\overline{b}\langle W \rangle) \ \text{for some} \ Q_{11}', \tilde{d}_1. \ \text{Therefore} \ \nu c.C_1[\tilde{W}] \xrightarrow{\nu \tilde{d}_1.\overline{b}\langle W \rangle} \nu c.Q_{11}' \ \text{and} \ \nu c.P_{11}'(\mathcal{E} \cup \{(\tilde{c}_1,\tilde{d}_1)\})^*\nu c.Q_{11}'.$

Case Open: $C = \nu c. C_1 \quad \nu c. C_1[\tilde{V}] \xrightarrow{\nu \tilde{c_1}, c. \overline{a} \langle V \rangle} P'_{11}$

Assume that $C_1[\tilde{V}] = C_1'[\tilde{V},c]$ holds. By OPEN, We have $C_1'[\tilde{V},c] \xrightarrow{\nu \tilde{c}_1.\overline{a}\langle V \rangle} P_{11}', c \neq a$ and $c \in \operatorname{fn}(V) \setminus \{\tilde{c}_1\}$. By the induction hypothesis, we have $C_1'[\tilde{W},c] \xrightarrow{\nu \tilde{d}_1.\overline{b}\langle W \rangle} Q_{11}, P_{11}'(\mathcal{E} \cup \{(c,c)\} \cup \{(\tilde{c}_1,\tilde{d}_1)\})^*Q_{11}', V(\mathcal{E} \cup \{(\tilde{c}_1,\tilde{d}_1),(c,c)\})^*W, \tilde{d}_1 \not\in \operatorname{fn}(\#_2(\mathcal{E} \cup \{(c,c)\})), c \neq b \text{ and } c \in \operatorname{fn}(W) \setminus \{\tilde{d}_1\} \text{ for some } Q_{11}', C_2, \tilde{d}_1.$ Therefore $\nu c.C_1[\tilde{W}] \xrightarrow{\nu \tilde{d}_1,c.\overline{b}\langle w \rangle} Q_{11}'$ and $Q_{11}'(\mathcal{E} \cup \{(c,c)\} \cup \{(\tilde{c}_1,\tilde{d}_1)\})^*Q_{11}'$.

Lemma B.4 (τ transition). Suppose $P_0\mathcal{Y}_{\mathcal{E}}Q_0$ and $P_1\hat{\mathcal{E}}^*Q_1$ for an environmental bisimulation \mathcal{Y} up-to context. If $P_1 \xrightarrow{\tau} P_1'$, then there exists some Q_1' such that $Q_1 \xrightarrow{\tau} Q_1'$ with $P_0|P_1'\mathcal{Y}_{\mathcal{E}}^{(*)}Q_0|Q_1'$.

Proof. By induction on transition derivation of $P_1 = C[\tilde{V}] \xrightarrow{\tau} P'_1$.

Case PAR-L: $C = C_1 | C_2 - C_1 [\tilde{V}] \xrightarrow{\tau} P'_{11}$ Assume that $C_1 [\tilde{V}] | C_2 [\tilde{V}] \xrightarrow{\tau} P'_{11} | C_2 [\tilde{V}]$ holds. By the induction hypothesis, we have $C_1 [\tilde{W}] \xrightarrow{\tau} Q'_{11}$ and $P_0 | P'_{11} \mathcal{Y}^{(*)}_{\mathcal{E}} Q_0 | Q'_{11}$ for some Q'_{11} . Therefore $C_1 [\tilde{W}] | C_2 [\tilde{W}] \xrightarrow{\tau} Q'_{11} | C_2 [\tilde{W}]$. By $C_2 [\tilde{V}] \mathcal{E}^* C_2 [\tilde{W}]$, we have $P_0 | P'_{11} | C_2 [\tilde{V}] \mathcal{Y}^{(*)}_{\mathcal{E}} Q_0 | Q'_1 | C_2 [\tilde{W}]$.

Case PAR-R: $C=C_1|C_2$ $C_2[\tilde{V}] \xrightarrow{\tau} P'_{12}$ Similar to PAR-L.

 $\xrightarrow{\tau} \nu \tilde{d}.(Q'_{11}|Q'_{12}). \text{ By } \tilde{d} \not\in \text{fn}(Q_0, \#_2(\mathcal{E})) \text{ and clause 7, we have } P_0 \mathcal{Y}_{\mathcal{E} \cup \{(\tilde{c},\tilde{d})\}} Q_0. \text{ Therefore } \nu \tilde{c}.(P_0|P'_{11}|P'_{12})\mathcal{Y}_{\mathcal{E}}^{(*)} \nu \tilde{d}.(Q_0|Q'_{11}|Q'_{12}).$

Case TAU-R: $C=C_1|C_2$ $C_1[\tilde{V}] \xrightarrow{a(V)} P'_{11}$ $C_2[\tilde{V}] \xrightarrow{\nu\tilde{c}.\overline{a}\langle V \rangle} P'_{12}$ Similar to TAU-L.

Case Rep. $C = !C_1 \quad !C_1[\tilde{V}] \xrightarrow{\tau} P_1'$

We have $C_1[\tilde{V}]|!C_1[\tilde{V}] \xrightarrow{\tau} P_1'$. By the induction hypothesis and $a\mathcal{E}b$, we have $C_1[\tilde{W}]|!C_1[\tilde{W}] \xrightarrow{\tau} Q_1'$ and $P_0|P_1'\mathcal{Y}_{\mathcal{E}}^{(*)}Q_0|Q_1'$ for some Q_1' . Therefore $!C_1[\tilde{W}] \xrightarrow{\tau} Q_1'$ and of course $P_0|P_1'\mathcal{Y}_{\mathcal{E}}^{(*)}Q_0|Q_1'$.

Case SCOPE: $C = \nu c. C_1 \quad \nu c. C_1[\tilde{V}] \xrightarrow{\tau} \nu c. P'_{11}.$ We have $C_1[\tilde{V}] \xrightarrow{\tau} P'_{11}.$ Assume that $C_1[\tilde{V}] = C'_1[\tilde{V},c]$ holds, where $\operatorname{fn}(C'_1) = \operatorname{bn}(C'_1) \cap \operatorname{fn}(\mathcal{E} \cup \{(c,c)\}, P_0, Q_0) = \emptyset$. By the induction hypothesis, we have $C'_1[\tilde{W},c] \xrightarrow{\tau} Q'_{11}$ and $P_0|P'_{11}\mathcal{Y}^{(*)}_{\mathcal{E} \cup \{(c,c)\}}Q_0|Q'_{11}$ for some $Q'_{11}.$ Therefore $\nu c. C_1[\tilde{W}] \xrightarrow{\tau} \nu c. Q'_{11}.$ By $P_0|\nu c. P'_{11} \equiv \nu c. (P_0|P'_{11}), Q_0|\nu c. Q'_{11} \equiv \nu c. (Q_0|Q'_{11})$ and $\hat{\mathcal{E}} \subseteq \{(V,W) \mid V\mathcal{E} \cup \widehat{\{(c,c)\}}^* W \ and \ c \not\in \operatorname{fn}(V,W)\}$, we have $P_0|\nu c. P'_{11}\mathcal{Y}^{(*)}_{\mathcal{E}}Q_0|\nu c. Q'_{11}.$

Case RUN: $C = run(C_1)$

Suppose $run(C_1[\tilde{V}]) \xrightarrow{\tau} P_1'$, where $eval(C_1[\tilde{V}]) = {}^{\iota}P_1'$. By definition of terms and $C_1[\tilde{V}]\hat{\mathcal{E}}^*C_1[\tilde{W}]$, we have $eval(C_1[\tilde{V}]) = C_1'[\tilde{V}] = {}^{\iota}P_1'$, $eval(C_1[\tilde{W}]) = C_1'[\tilde{W}]$ for some C_1' . Now there are two subcases of C_1' .

Subcase: $C_1' = []$

We have $eval(C_1[\tilde{V}]) = {}^{\iota}P_1'\hat{\mathcal{E}}N = eval(C_1[\tilde{W}])$ for some N. By clause 5, 6, and 8, there exists Q_1' such that $N = {}^{\iota}Q_1'$ and $P_0|P_1'\mathcal{Y}_{\mathcal{E}}^{(*)}Q_0|Q_1'$. Therefore $run(C_1[\tilde{W}]) \xrightarrow{\tau} Q_1'$ and $P_0|P_1'\mathcal{Y}_{\mathcal{E}}^{(*)}Q_0|Q_1'$.

Subcase: $C'_1 = {}^{\iota}C'_{11}$

We have $eval(C_1[\tilde{V}])^{1} = {}^{\iota}C'_{11}[\tilde{V}]\hat{\mathcal{E}}^{*\iota}C'_{11}[\tilde{W}] = eval(C_1[\tilde{W}])$. Therefore $run(C_1[\tilde{V}]) \xrightarrow{\tau} C'_{11}[\tilde{V}]$ and $run(C_1[\tilde{W}]) \xrightarrow{\tau} C'_{11}[\tilde{W}]$. By $C'_{11}[\tilde{V}]\hat{\mathcal{E}}^{*\iota}C'_{11}[\tilde{W}]$, we have $P_0|C'_{11}[\tilde{V}]\mathcal{Y}^{(*)}_{\mathcal{E}}Q_0|C'_{11}[\tilde{W}]$.

 $\textbf{Case} \ \text{IFTRUE:} \ C = if \ C_1 = C_2 \ then \ C_3 \ else \ C_4 \quad eval(C_1[\tilde{V}]) = eval(C_2[\tilde{V}]) \\ \text{We have} \ if \ C_1[\tilde{V}] = C_2[\tilde{V}] \ then \ C_3[\tilde{V}] \ else \ C_4[\tilde{V}] \xrightarrow{\tau} C_3[\tilde{V}]. \ \text{By clause 5 and 8, we have} \ eval(C_1[\tilde{W}]) = eval(C_2[\tilde{W}]). \ \text{Therefore} \ if \ C_1[\tilde{W}] = C_2[\tilde{W}] \ then \ C_3[\tilde{W}] \ else \ C_4[\tilde{W}] \xrightarrow{\tau} C_3[\tilde{W}]. \ \text{By} \ C_3[\tilde{V}] \hat{\mathcal{E}}^*C_3[\tilde{W}], \ \text{we have} \ P_0[C_3[\tilde{V}]\mathcal{Y}_{\mathcal{E}}^{(*)}Q_0|C_3[\tilde{W}].$

Case IFFALSE: $C = if \ C_1 = C_2 \ then \ C_3 \ else \ C_4 \quad eval(C_1[\tilde{V}]) \neq eval(C_2[\tilde{V}])$ Similar to IFTRUE.

Case MATCH: $C = \operatorname{match} C_1$ as x in C_2 $\operatorname{eval}(C_1[\tilde{V}]) = C_1'[\tilde{V}] \in \mathbf{Quo}$ There are 3 subcases of C_1' .

Subcase: $C_1' = [] \quad match \ C_1[\tilde{V}] \ as \ x \ in \ C_2[\tilde{V}] \xrightarrow{\tau} \nu b. \{^{reify_b(V)}/_x\} C_2[\tilde{V}]$

We can suppose $b \notin \operatorname{fn}(P_0, Q_0, V, W, C_2[\tilde{V}], C_2[\tilde{W}])$. Suppose $V\hat{\mathcal{E}}W$ in the hole of C_1' . By clause 8d, we have $\exists b \notin \operatorname{fn}(\mathcal{E}).P_0\mathcal{Y}_{\mathcal{E} \cup \{(reify_b(V),reify_b(W))\}}Q_0$. Then we have $\operatorname{match} C_1[\tilde{W}]$ as x in $C_2[\tilde{W}] \xrightarrow{\tau} \nu b.\{^{\operatorname{reify}_b(W)}/_x\}C_2[\tilde{W}]$ by clause 5. Since $\{^{\operatorname{reify}_b(V)}/_x\}C_2[\tilde{V}]\hat{\mathcal{E}'}^*\{^{\operatorname{reify}_b(W)}/_x\}C_2[\tilde{W}]$ for $\mathcal{E'} = \mathcal{E} \cup \{(\operatorname{reify}_b(V),\operatorname{reify}_b(W))\}$, we have

 $P_0[\nu b.\{reify_b(V)/_x\}C_2[\tilde{V}] \equiv \nu b.(P_0[\{reify_b(V)/_x\}C_2[\tilde{V}])\mathcal{Y}_{\varepsilon}^{(*)}\nu b.(Q_0[\{reify_b(W)/_x\}C_2[\tilde{W}])$ $\equiv Q_0 | \nu b. \{^{\mathit{reify}_b(W)}/_x\} C_2[\tilde{W}]. \text{ Therefore } P_0 | \nu b. \{^{\mathit{reify}_b(V)}/_x\} C_2[\tilde{V}] \mathcal{Y}_{\mathcal{E}}^{(*)} Q_0 | \nu b. \{^{\mathit{reify}_b(W)}/_x\} C_2[\tilde{W}].$ **Subcase**: $C'_1 = `[] \quad match \ C_1[\tilde{V}] \ as \ x \ in \ C_2[\tilde{V}] \xrightarrow{\tau} \nu b. \{^{reify_b(\tilde{V})}/_x\} C_2[\tilde{V}]$ Assume that $V\hat{\mathcal{E}}W$ holds in the hole of C_1' and $b \notin \operatorname{fn}(P_0, Q_0, V, W, C_2[\tilde{V}], C_2[\tilde{W}])$ holds. We have ' $W \in \mathbf{Quo}$. By MATCH, we have $match\ C_1[\tilde{W}]\ as\ x\ in\ C_2[\tilde{W}] \xrightarrow{\tau} \nu b. \{reify_b({}^{\iota}W)/_x\}C_2[\tilde{W}]$. By $(reify(V), reify(W)) \in \hat{\mathcal{E}}, \text{ we have } \{reify(V)/_x\}C_2[\tilde{V}]\hat{\mathcal{E}}^*\{reify_b(W)/_x\}C_2[\tilde{W}]. \text{ Then we have } \{reify(W)/_x\}C_2[\tilde{V}]\}$ $P_0|\nu b.\{reify(V)/x\}C_2[\tilde{V}] \equiv \nu b.(P_0|\{reify(V)/x\}C_2[\tilde{V}])\mathcal{Y}_{\mathcal{E}}^{(*)}\nu b.(Q_0|\{reify(W)/x\}C_2[\tilde{W}]) \equiv V_{\mathcal{E}}^{(*)}$ $Q_0|\nu b.\{{}^{reify(`W)}/{}_x\}C_2[\tilde{W}]. \text{ Therefore } P_0|\nu b.\{{}^{reify(`V)}/{}_x\}C_2[\tilde{V}]\mathcal{Y}^{(*)}_{\mathcal{E}}Q_0|\nu b.\{{}^{reify(`W)}/{}_x\}C_2[\tilde{W}].$ **Subcase**: Otherwise $match\ C_1[\tilde{V}]\ as\ x\ in\ C_2[\tilde{V}]\ \xrightarrow{\tau} \nu b.\{^{reify_b(C_1'[\tilde{V}])}/_x\}C_2[\tilde{V}]$ We can assume that $b \not\in \operatorname{fn}(P_0,Q_0,C_1'[\tilde{V}],C_1'[\tilde{W}],C_2[\tilde{V}],C_2[\tilde{W}])$ holds. By clause 8d, we have $\exists b \not\in \operatorname{fn}(P_0,Q_0,C_1'[\tilde{V}],C_1[\tilde{W}],C_2[\tilde{W}])$ $\mathsf{fn}(\mathcal{E}).P_0\mathcal{Y}_{\mathcal{E}\cup\{(\mathit{reify}_b(C_1'[\tilde{V}]),\mathit{reify}_b(C_1'[\tilde{W}]))\}}Q_0. \text{ We have } C_1'[\tilde{W}]\in \mathbf{Quo} \text{ by clause 5, thus by MATCH, we have } C_1'[\tilde{W}]\in \mathbf{Quo} \text{ by clause 5, thus by MATCH}$ $match\ C_1[\tilde{W}]\ as\ x\ in\ C_2[\tilde{W}]\xrightarrow{\tau} \nu b. \{^{reify_b(C_1'[\tilde{W}])}/_x\}C_2[\tilde{W}]. \ \text{By}\ \{^{reify_b(C_1'[\tilde{V}])}/_x\}C_2[\tilde{V}] \hat{\mathcal{E}'}^* \{^{reify_b(C_1'[\tilde{W}])}/_x\}C_2[\tilde{W}]$ for $\mathcal{E}' = \mathcal{E} \cup \{(reify_b(C_1'[\tilde{V}]), reify_b(C_1'[\tilde{W}]))\}$, we have $P_0|\nu b.\{reify_b(C_1'[\tilde{V}])/x\}C_2[\tilde{V}] \equiv 0$ $\nu b. (P_0 | \{^{reify_b(C_1'[\tilde{V}])}/_x\} C_2[\tilde{V}]) \mathcal{Y}_{\mathcal{E}}^{(*)} \nu b. (Q_0 | \{^{reify_b(C_1'[\tilde{W}])}/_x\} C_2[\tilde{W}]) \equiv Q_0 | \nu b. \{^{reify_b(C_1'[\tilde{W}])}/_x\} C_2[\tilde{W}]. \text{ There-}$ fore $P_0|\nu b.\{reify_b(C_1'[\tilde{V}])/_x\}C_2[\tilde{V}]\mathcal{Y}_{\mathcal{E}}^{(*)}Q_0|\nu b.\{reify_b(C_1'[\tilde{W}])/_x\}C_2[\tilde{W}].$

Theorem B.1 (soundness of environmental bisimulation up-to context). Let $\mathcal Y$ be the environmental bisimilarity up-to context. Then $\mathcal X=\{(\mathcal E,P,Q)\mid P\mathcal Y^{(*)}_{\mathcal E}Q\}$ is an environmental bisimulation.

Proof. Suppose $P\mathcal{X}_{\mathcal{E}}Q$, i.e., $P\mathcal{Y}_{\mathcal{E}}^{(*)}Q$. Therefore for some P_0 , P_1 , Q_0 , Q_1 , \mathcal{E}' , \tilde{c} , and \tilde{d} , we have $\tilde{c} \notin \operatorname{fn}(\#_1(\mathcal{E}))$, $\tilde{d} \notin \operatorname{fn}(\#_2(\mathcal{E}))$, $P \equiv \nu \tilde{c}.(P_0|P_1)$, $Q \equiv \nu \tilde{d}.(Q_0|Q_1)$, $\hat{\mathcal{E}} \subseteq \{(V,W) \mid V\hat{\mathcal{E}'}^*W \ and \ \operatorname{fn}(V) \cap \{\tilde{c}\} = \operatorname{fn}(W) \cap \{\tilde{d}\} = \emptyset\}$, $P_0\mathcal{Y}_{\mathcal{E}'}Q_0$ and $P_1\hat{\mathcal{E}'}^*Q_1$. We are going to show the 9 clauses hold.

Case 1: $P \xrightarrow{\tau} P'$

By Lemma B.1, we have 4 subcases of the transition of $\nu \tilde{c}.(P_0|P_1)$.

Subcase: $P_0 \xrightarrow{\tau} P_0'$

By $P_0 \mathcal{Y}_{\mathcal{E}'} Q_0$, we have $Q_0 \xrightarrow{\tau} \dots \xrightarrow{\tau} Q_0'$ and $P_0' \mathcal{Y}_{\mathcal{E}'}^{(*)} Q_0'$. Therefore $\nu \tilde{c}.(P_0|P_1) \xrightarrow{\tau} \nu \tilde{c}.(P_0'|P_1) \equiv \nu \tilde{c}, \tilde{c}_1.(P_{00}'|P_{01}'|P_1) \equiv P'$ and $\nu \tilde{d}.(Q_0|Q_1) \xrightarrow{\tau} \dots \xrightarrow{\tau} \nu \tilde{d}.(Q_0'|Q_1) \equiv \nu \tilde{d}, \tilde{d}_1.(Q_{00}'|Q_{01}'|Q_1) \equiv Q'$. Hence $P' \mathcal{Y}_{\mathcal{E}}^{(*)} Q'$, i.e., $P' \mathcal{X}_{\mathcal{E}} Q'$.

Subcase: $P_1 \xrightarrow{\tau} P_1'$

By Lemma B.4, we have $Q_1 \xrightarrow{\tau} Q_1'$ and $P_0|P_1'\mathcal{Y}_{\mathcal{E}'}^{(*)}Q_0|Q_1'$. Therefore $\nu \tilde{c}.(P_0|P_1) \xrightarrow{\tau} \nu \tilde{c}.(P_0|P_1') \equiv P'$ and $\nu \tilde{d}.(Q_0|Q_1) \xrightarrow{\tau} \nu \tilde{d}.(Q_0|Q_1') \equiv Q'$. Hence $P'\mathcal{Y}_{\mathcal{E}}^{(*)}Q'$, i.e., $P'\mathcal{X}_{\mathcal{E}}Q'$.

Subcase: $P_0 \xrightarrow{\nu \tilde{c_1}.\overline{a}\langle V \rangle} P_0' \quad P_1 \xrightarrow{a(V)} P_1'$

By $P_0\mathcal{Y}_{\mathcal{E}'}Q_0$, we have $Q_0 \xrightarrow{\tau} \dots \xrightarrow{\nu \tilde{d}_1.\overline{b}\langle W \rangle} \dots \xrightarrow{\tau} Q_0'$ and $P_0'\mathcal{Y}_{\mathcal{E}' \cup \{(V,W)\}}Q_0'$, while $\tilde{d}_1 \not\in \mathsf{fn}(\#_2(\mathcal{E}'))$. Then there exists just one b such that $a\hat{\mathcal{E}}b$ by the definition of terms, and by Lemma B.2, we have $Q_1 \xrightarrow{b(W)} Q_1'$ and $P_1'(\hat{\mathcal{E}}' \cup \{(V,W)\})^*Q_1'$. Therefore $\nu \tilde{c}.(P_0|P_1) \xrightarrow{\tau} \nu \tilde{c}, \tilde{c}_1.(P_0'|P_1') \equiv P'$ and $\nu \tilde{d}.(Q_0|Q_1) \xrightarrow{\tau} \nu \tilde{d}, \tilde{d}_1.(Q_0'|Q_1') \equiv Q'$. Hence $P'\mathcal{Y}_{\mathcal{E}}^{(*)}Q'$, i.e., $P'\mathcal{X}_{\mathcal{E}}Q'$.

Subcase: $P_0 \xrightarrow{a(V)} P_0' \quad P_1 \xrightarrow{\nu \tilde{c_1}.\overline{a}\langle V \rangle} P_1'$

There exists just one b such that $a\hat{\mathcal{E}}b$ by the definition of terms, and by Lemma B.3, we have $Q_1 \xrightarrow{\nu \tilde{d}_1.\overline{b}\langle W \rangle} Q_1'$ and $P_1'(\hat{\mathcal{E}}' \cup \{(\tilde{c}_1,\tilde{d}_1)\})^*Q_1'$. We also have $V\mathcal{E}' \cup \widehat{\{(\tilde{c}_1,\tilde{d}_1)\}}^*W$ by Lemma B.3.

Now we have $P_0 \mathcal{Y}_{\mathcal{E}' \cup \{(\tilde{c_1}, \tilde{d_1})\}} Q_0$ by $\tilde{d_1} \not\in \mathsf{fn}(\#_2(\mathcal{E}))$ and clause 7. Therefore $Q_0 \xrightarrow{\tau} \dots \xrightarrow{b(W)} \dots \xrightarrow{\tau} Q'_0$ and $P'_0 \mathcal{Y}^{(*)}_{\mathcal{E}' \cup \{(\tilde{c_1}, \tilde{d_1})\}} Q'_0$. Then it holds that $\nu \tilde{c}.(P_0|P_1) \xrightarrow{\tau} \nu \tilde{c}, \tilde{c_1}.(P'_0|P'_1) \equiv P'$ and $\nu \tilde{d}.(Q_0|Q_1) \xrightarrow{\tau} \nu \tilde{d}, \tilde{d_1}.(Q'_0|Q'_1) \equiv Q'$. Hence $P' \mathcal{Y}^{(*)}_{\mathcal{E}} Q'$, i.e., $P' \mathcal{X}_{\mathcal{E}} Q'$.

Case 2: $P \xrightarrow{a(V)} P' \quad a\hat{\mathcal{E}}b \quad V\hat{\mathcal{E}}^*W$

By Lemma B.1, we have 2 subcases of the transition of $\nu \tilde{c}.(P_0|P_1)$.

Subcase: $P_0 \xrightarrow{a(V)} P'_0$

By $P_0\mathcal{Y}_{\mathcal{E}'}Q_0$, we have $Q_0 \xrightarrow{\tau} \dots \xrightarrow{b(W)} \dots \xrightarrow{\tau} Q_0'$ and $P_0'\mathcal{Y}_{\mathcal{E}'}^{(*)}Q_0'$ for some Q_0' . Then it holds that $\nu \tilde{c}.(P_0|P_1) \xrightarrow{\tau} \nu \tilde{c}.(\nu \tilde{c}_1.(P_{00}'|P_{01}')|P_1) \equiv \nu \tilde{c}, \tilde{c}_1.(P_{00}'|P_{01}'|P_1) \equiv P'$ where $\tilde{c} \notin \mathsf{n}(a(V))$, and $\nu \tilde{d}.(Q_0|Q_1) \xrightarrow{\tau} \dots \xrightarrow{\tau} \nu \tilde{d}.(\nu \tilde{d}_1.(Q_{00}'|Q_{01}')|Q_1) \equiv \nu \tilde{d}, \tilde{d}_1.(Q_{00}'|Q_{01}'|Q_1) \equiv Q'$ where $\tilde{d} \notin \mathsf{n}(b(W))$. Hence $P'\mathcal{Y}_{\mathcal{E}}^{(*)}Q'$, i.e., $P'\mathcal{X}_{\mathcal{E}}Q'$.

Subcase: $P_1 \xrightarrow{a(V)} P'_1$

By Lemma B.2, we have $Q_1 \xrightarrow{b(W)} Q_1'$ and $P_1'(\hat{\mathcal{E}}' \cup \{(V,W)\})^* Q_1'$ for some Q_1' . Therefore $\nu \tilde{c}.(P_0|P_1) \xrightarrow{a(V)} \nu \tilde{c}.(P_0|P_1') \equiv P'$ and $\nu \tilde{d}.(Q_0|Q_1) \xrightarrow{b(W)} \nu \tilde{d}.(Q_0|Q_1') \equiv Q'$. By $(\mathcal{E}' \cup \widehat{\{(V,W)\}})^* \subseteq \hat{\mathcal{E}}'^*$, we have $P'\mathcal{Y}_{\mathcal{E}}^{(*)}Q'$, i.e., $P'\mathcal{X}_{\mathcal{E}}Q'$.

Case 3: $P \xrightarrow{\nu \tilde{c_1}.\overline{a}\langle V \rangle} P' \quad a\hat{\mathcal{E}}b \quad \tilde{c_1} \not\in \mathsf{fn}(\#_1(\mathcal{E}))$

By Lemma B.1, we have 2 subcases of the transition of $\nu \tilde{c}.(P_0|P_1)$.

Subcase: $P_0 \xrightarrow{\nu \tilde{c_2}.\overline{a}\langle V \rangle} P'_0$

We can assume that we have $\{\tilde{c}_2\} = \{\tilde{c}_1\} \setminus \{\tilde{c}\}, \{\tilde{c}_3\} = \{\tilde{c}\} \setminus \{\tilde{c}_1\}, \text{ and } \tilde{c}_2 \not\in \text{fn}(\#_1(\hat{\mathcal{E}}')). \text{ By } P_0 \mathcal{Y}_{\mathcal{E}'} Q_0, \text{ we have } Q_0 \xrightarrow{\nu \tilde{d}_2.\overline{b}\langle W \rangle} Q_0' \text{ and } P_0' \mathcal{Y}_{\mathcal{E}' \cup \{(V,W)\}}^{(*)} Q_0' \text{ for some } Q_0'. \text{ Therefore } \nu \tilde{c}.(P_0|P_1) \xrightarrow{\nu \tilde{c}_1.\overline{a}\langle V \rangle} \nu \tilde{c}_3.(P_0'|P_1) \equiv \nu \tilde{c}_3.(\nu \tilde{c}_4.(P_{00}'|P_{01})|P_1) \equiv P' \text{ and } \nu \tilde{d}.(Q_0|Q_1) \xrightarrow{\nu \tilde{d}_1.\overline{b}\langle W \rangle} \nu \tilde{d}_3.(Q_0'|Q_1) \equiv \nu \tilde{d}_3.(\nu \tilde{d}_4.(Q_{00}'|Q_{01})|Q_1) \equiv Q' \text{ where } \{\tilde{d}_2\} = \{\tilde{d}_1\} \setminus \{\tilde{d}\} \text{ and } \{\tilde{d}_3\} = \{\tilde{d}\} \setminus \{\tilde{d}_1\}. \text{ Hence } P' \mathcal{Y}_{\mathcal{E} \cup \{(V,W)\}}^{(*)} Q', \text{ i.e., } P' \mathcal{X}_{\mathcal{E} \cup \{(V,W)\}} Q'.$

Subcase: $P_1 \xrightarrow{\nu \tilde{c_2}.\overline{a}\langle V \rangle} P_1'$

We can assume that we have $\{\tilde{c}_2\} = \{\tilde{c}_1\} \setminus \{\tilde{c}\}$ and $\tilde{c}_2 \not\in \operatorname{fn}(\#_1(\hat{\mathcal{E}}'))$. Now there exist Q_1' and \tilde{d}_2 such that $Q_1 \xrightarrow{\nu \tilde{d}_2.\overline{b}\langle W \rangle} Q_1'$, $P_1'(\hat{\mathcal{E}}' \cup \{(\tilde{c}_2,\tilde{d}_2)\})^*Q_1'$, $V = (\mathcal{E}' \cup \{(\tilde{c}_2,\tilde{d}_2)\})^*W$ and $\tilde{d}_2 \not\in \operatorname{fn}(\#_2(\hat{\mathcal{E}}'))$ by Lemma B.3. These demonstrate $\nu \tilde{c}.(P_0|P_1) \xrightarrow{\nu \tilde{c}_1.\overline{a}\langle V \rangle} \nu \tilde{c}_3.(P_0|P_1')$ and $\nu \tilde{d}.(Q_0|Q_1) \xrightarrow{\nu \tilde{d}_1.\overline{b}\langle W \rangle} \nu \tilde{d}_3.(Q_0|Q_1')$, where $\{\tilde{c}_3\} = \{\tilde{c}\} \setminus \{\tilde{c}_1\}, \{\tilde{d}_2\} = \{\tilde{d}_1\} \setminus \{\tilde{d}\} \text{ and } \{\tilde{d}_3\} = \{\tilde{d}\} \setminus \{\tilde{d}_1\}.$ By clause 7, we have $P_0\mathcal{Y}_{\mathcal{E}'\cup\{(\tilde{c}_2,\tilde{d}_2)\}}Q_0$. By $\tilde{c}_3 \not\in \operatorname{fn}(V)$ and $\tilde{d}_3 \not\in \operatorname{fn}(W)$, we have $\mathcal{E} \cup \{(V,W)\} \subseteq \{(V,W) \mid V(\mathcal{E}' \cup \{(\tilde{c}_2,\tilde{d}_2)\})^*W \text{ and }\operatorname{fn}(V) \cap \{\tilde{c}_3\} = \operatorname{fn}(W) \cap \{\tilde{d}_3\} = \emptyset\}$. Therefore $\nu \tilde{c}_3.(P_0|P_1')\mathcal{Y}_{\mathcal{E}\cup\{(V,W)\}}^{(*)}\nu \tilde{d}_3.(Q_0|Q_1')$, i.e., $\nu \tilde{c}_3.(P_0|P_1')\mathcal{X}_{\mathcal{E}\cup\{(V,W)\}}\nu \tilde{d}_3.(Q_0|Q_1')$.

Case 4: Similar to clause (1–3).

Case 5: $V_1 \hat{\mathcal{E}} W_1 = V_2 \hat{\mathcal{E}} W_2$

We have $V_1\hat{\mathcal{E}'}^*W_1$ and $V_2\hat{\mathcal{E}'}^*W_2$. The difference between V_1 and W_1 or V_2 and W_2 is that of $\hat{\mathcal{E}'}$. Assume $V_1=C_1[\tilde{V_1}],\,V_2=C_2[\tilde{V_2}],\,W_1=C_1[\tilde{W_1}],\,W_2=C_2[\tilde{W_2}],\,\tilde{V_1}\hat{\mathcal{E}'}\tilde{W_1}$, and $\tilde{V_2}\hat{\mathcal{E}'}\tilde{W_2}$. Then by clause 5 of \mathcal{Y} ,

we have $V_1=V_2\iff \tilde{V_1}=\tilde{V_2}\iff \tilde{W_1}=\tilde{W_2}\iff W_1=W_2.$ Hence $V_1=V_2\iff W_1=W_2.$

Case 6: $P'\hat{\mathcal{E}}Q'$

By $\hat{\mathcal{E}} \subseteq \hat{\mathcal{E}'}^*$, we have two subcases of the relation between 'P' and 'Q'.

Subcase: $P'\hat{\mathcal{E}}'Q'$

By clause 6 of \mathcal{Y} , we have $P_0|P'\mathcal{Y}_{\mathcal{E}'}^{(*)}Q_0|Q'$. Then we have $P|P' \equiv \nu \tilde{c}.(P_0|P'|P_1)\mathcal{Y}_{\mathcal{E}'}^{(*)}\nu \tilde{d}.(Q_0|Q'|Q_1) \equiv Q|Q'$, hence $P|P'\mathcal{Y}_{\mathcal{E}'}^{(*)}Q|Q'$, i.e., $P|P'\mathcal{X}_{\mathcal{E}}Q|Q'$.

Subcase: otherwise

Assume that $P'\hat{\mathcal{E}'}^*Q'$ holds. Then we have $P'\hat{\mathcal{E}'}^*Q'$. By $\tilde{c} \notin \operatorname{fn}(P')$, $\tilde{d} \notin \operatorname{fn}(Q')$ and $P_0\mathcal{Y}_{\mathcal{E}'}Q_0$, we have $P|P' \equiv \nu \tilde{c}.(P_0|P_1|P')\mathcal{Y}_{\mathcal{E}}^{(*)}\nu \tilde{d}.(Q_0|Q_1|Q') \equiv Q|Q'$. Therefore we have $P|P'\mathcal{X}_{\mathcal{E}}Q|Q'$.

Case 7: $a \notin fn(P, \#_1(\mathcal{E}))$ $b \notin fn(Q, \#_2(\mathcal{E}))$

We can assume that $a \notin \operatorname{fn}(P_0, \#_1(\mathcal{E}'))$ and $b \notin \operatorname{fn}(Q_0, \#_2(\mathcal{E}'))$ hold. By clause 7 of \mathcal{Y} , it holds that $P_0\mathcal{Y}_{\mathcal{E}'\cup\{(a,b)\}}Q_0$. By $\hat{\mathcal{E}}'\subseteq \mathcal{E}'\cup\{(a,b)\}$, we have $P_1\mathcal{E}'\cup\{(a,b)\}Q_1$. By $\mathcal{E}\cup\{(a,b)\}\subseteq\{(V,W)\mid V(\mathcal{E}'\cup\{(a,b)\})^*W$ and $\tilde{c}\notin\operatorname{fn}(V)$, $\tilde{d}\notin\operatorname{fn}(W)$, we obtain $P\mathcal{X}_{\mathcal{E}\cup\{(a,b)\}}Q$.

Case 8: $V\hat{\mathcal{E}}W$

Subcase 8a, 8b, 8c: $V = a, f, \hat{f}(V_1, \dots, V_l)$

If $V\hat{\mathcal{E}}'W$, then they hold immediately by clause 8a, 8b, 8c, respectively. If $V\hat{\mathcal{E}}'^*W$ and not $V\hat{\mathcal{E}}'W$, the outermost syntax of V and W are same, since these are of the context. Therefore the conditions hold.

Subcase 8d: $V \in \mathbf{Quo}$

We can assume that $b \notin \operatorname{fn}(\mathcal{E}')$ holds. Then we have $\exists b \notin \operatorname{fn}(\mathcal{E}').P_0\mathcal{Y}^{(*)}_{\mathcal{E}'\cup\{(\operatorname{reify}_b(V),\operatorname{reify}_b(W))\}}Q_0$ by clause 8d of \mathcal{Y} and $P_0\mathcal{Y}_{\mathcal{E}'}Q_0$, since $b \notin \operatorname{fn}(\mathcal{E}')$. By $\operatorname{fn}(V) \subseteq \operatorname{fn}(\#_1(\mathcal{E}))$ and $\operatorname{fn}(W) \subseteq \operatorname{fn}(\#_2(\mathcal{E}))$, we have $\mathcal{E} \cup \{(\operatorname{reify}_b(V),\operatorname{reify}_b(W))\} \subseteq \{(V',W') \mid V'(\mathcal{E}' \cup \{(\operatorname{reify}_b(V),\operatorname{reify}_b(W))\})^*W' and \operatorname{fn}(V') \cap \{\tilde{c}\} = \operatorname{fn}(W') \cap \{\tilde{d}\} = \emptyset\}$. Therefore $\exists b \notin \operatorname{fn}(\mathcal{E}).P\mathcal{Y}^{(*)}_{\mathcal{E} \cup \{(\operatorname{reify}_b(V),\operatorname{reify}_b(W))\}}Q$, i.e., $P\mathcal{X}_{\mathcal{E} \cup \{(\operatorname{reify}_b(V),\operatorname{reify}_b(W))\}}Q$.

B.3 Soundness of the system

Definition B.1 (reduction-closed barbed equivalence). Reduction-closed barbed equivalence is the largest binary relation \approx on closed processes such that $P \approx Q$ implies:

- 1. $P \xrightarrow{\tau} P'$ implies $Q \xrightarrow{\tau} \dots \xrightarrow{\tau} Q'$ and $P' \approx Q'$
- 2. $P \downarrow_{\mu} implies Q \Downarrow_{\mu}$
- 3. the converse of 1 and 2 on Q
- 4. $P|R \approx Q|R$ for all processes R

Theorem B.2 (soundness of environmental bisimulation). If $P \simeq Q$, then $P \approx Q$.

Proof. We have to prove 4 cases of the requirement of reduction-closed barbed equivalence. Suppose $P \simeq Q$. Then we can suppose that there exists \mathcal{X} such that $P\mathcal{X}_{\mathcal{E}}Q$, $\mathcal{E} = \{(a, a) \mid a \in \mathsf{fn}(P, Q)\}$ and \mathcal{X}

is an environmental bisimulation.

Case 1:
$$P \xrightarrow{\tau} P'$$

By clause 1 of environmental bisimulation, we have $\exists Q'.Q \xrightarrow{\tau} \dots \xrightarrow{\tau} Q'$ and $P'\mathcal{X}_{\mathcal{E}}Q'$. Take $\mathcal{Y} = \{(\mathcal{E}', P, Q) \mid \mathcal{E}' \subseteq \mathcal{E}, P\mathcal{X}_{\mathcal{E}}Q\}$. Then \mathcal{Y} is also environmental bisimulation. Therefore $P'\mathcal{Y}_{\mathcal{E}'}Q'$ and $\mathcal{E}' = \{(a, a) \mid a \in \mathsf{fn}(P', Q')\} \subseteq \mathcal{E}$. Hence $P' \simeq Q'$.

Case 2: $P \downarrow_{\mu}$

There are 2 subcases of μ .

Subcase: $P \downarrow_a$

We have $P \xrightarrow{a(V)} P'$ for some V, P'. It indicates that for some $V\hat{\mathcal{E}}^*W$, we have $P \xrightarrow{a(V)} P'$. By clause 2 of environmental bisimulation, we have $Q \xrightarrow{\tau} \dots \xrightarrow{a(W)} \dots \xrightarrow{\tau} Q'$ for some Q', since $a \in \text{fn}(P,Q)$ and $a\hat{\mathcal{E}}a$. Therefore $Q \downarrow_a$.

Subcase: $P \downarrow_{\bar{a}}$

We have $P \xrightarrow{\nu\tilde{c}.\overline{a}\langle V \rangle} P'$ for some \tilde{c}, V, P' . We can choose \tilde{c} such that $\tilde{c} \not\in \operatorname{fn}(\#_1(\mathcal{E}))$. So by clause 3 of environmental bisimulation, we have $Q \xrightarrow{\tau} \dots \xrightarrow{\nu\tilde{d}.\overline{a}\langle W \rangle} \dots \xrightarrow{\tau} Q'$ for some W, Q', \tilde{d} , since $a\hat{\mathcal{E}}a$. Therefore $Q \Downarrow_a$.

Case 3: Similar to 1 and 2.

Case 4: R is a process

Suppose $P \simeq Q$, i.e., $P \sim_{\mathcal{E}} Q$ for $\mathcal{E} = \{(a,a) \mid a \in \operatorname{fn}(P,Q)\}$. Let $\mathcal{E}' = \{(b,b) \mid b \in \operatorname{fn}(R)\}$. By clause 7 of environmental bisimulation, $P \sim_{\mathcal{E} \cup \mathcal{E}'} Q$. Since $R(\mathcal{E} \cup \mathcal{E}')^*R$, we have $P|R \sim_{\mathcal{E} \cup \mathcal{E}'}^{(*)} Q|R$ by Definition A.2. Since \sim is an environmental bisimulation up-to context, $P|R \sim_{\mathcal{E} \cup \mathcal{E}'} Q|R$ by Theorem B.1. Hence $P|R \simeq Q|R$.

B.4 Completeness of the system

Lemma B.5.

$$\begin{split} \mathcal{X} &= \{ (\mathcal{E}, P, Q) \quad | \quad \forall \tilde{a} \not\in \mathsf{fn}(\mathcal{E}, P, Q). \\ & \nu \tilde{c}.(P|!\overline{a_1}\langle V_1 \rangle| \dots |!\overline{a_n}\langle V_n \rangle) \approx \nu \tilde{d}.(Q|!\overline{a_1}\langle W_1 \rangle| \dots |!\overline{a_n}\langle W_n \rangle), \\ & \{\tilde{c}\} = \mathsf{fn}(P, \tilde{V}), \{\tilde{d}\} = \mathsf{fn}(Q, \tilde{W}), \mathcal{E} = \{(\tilde{V}, \tilde{W})\}, \\ & \exists \tilde{b} \not\in \mathcal{E}.(\mathcal{E} \cup \{(\mathit{reify}_{\tilde{b}}(\tilde{V}), \mathit{reify}_{\tilde{b}}(\tilde{W}))\} \subseteq \mathcal{E} \cup \{(\tilde{b}, \tilde{b})\}) \} \end{split}$$

is an environmental bisimulation up-to context.

Proof. Let $\tilde{a} \not\in \text{fn}(\mathcal{E}, P, Q)$, $\nu \tilde{c}.(P|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle) \approx \nu \tilde{d}.(Q|!\overline{a_1}\langle W_1\rangle|\dots|!\overline{a_n}\langle W_n\rangle)$, $\{\tilde{c}\} = \text{fn}(P, \tilde{V})$, $\{\tilde{d}\} = \text{fn}(Q, \tilde{W})$, $\tilde{V}\mathcal{E}\tilde{W}$, and $\exists \tilde{b} \not\in \mathcal{E}.(\mathcal{E} \cup \{(reify_{\tilde{b}}(\tilde{V}), reify_{\tilde{b}}(\tilde{V}))\} \subseteq \mathcal{E} \cup \{(\tilde{b}, \tilde{b})\})$. We check the conditions of environmental bisimulation up-to context.

Case 1: $P \xrightarrow{\tau} P'$

By $\nu \tilde{c}.(P|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle) \approx \nu \tilde{d}.(Q|!\overline{a_1}\langle W_1\rangle|\dots|!\overline{a_n}\langle W_n\rangle)$, there exists Q' such that $Q \xrightarrow{\tau} Q'$ and

 $\nu \tilde{c}.(P'|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle) \approx \nu \tilde{d}.(Q'|!\overline{a_1}\langle W_1\rangle|\dots|!\overline{a_n}\langle W_n\rangle). \text{ Thus } P'\mathcal{X}_{\mathcal{E}}Q', \text{ i.e., } P'\mathcal{X}_{\mathcal{E}}^{(*)}Q'.$

Case 2: $P \xrightarrow{a(V)} P' \quad a\hat{\mathcal{E}}b \quad V\hat{\mathcal{E}}^*W$ Assume that $R = a_i(x_i) \dots a_j(x_j).\overline{M}\langle N \rangle.(m(x)|\overline{m}\langle - \rangle)$, where m is fresh (i.e., $m \notin \text{fn}(P,Q,\mathcal{E},\tilde{a})$), $eval(\{^{V_i,\dots,V_j}/_{x_i,\dots,x_j}\}M) = a, eval(\{^{W_i,\dots,W_j}/_{x_i,\dots,x_j}\}M) = b, eval(\{^{V_i,\dots,V_j}/_{x_i,\dots,x_j}\}N) = V$, and $eval(\{^{W_i,\dots,W_j}/_{x_i,\dots,x_j}\}N) = W$. Then we have $\nu\tilde{c}.(P|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle)|R\xrightarrow{\tau}\dots\xrightarrow{\tau}\equiv \nu\tilde{c}.(P|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle)|\{\overline{V_i,\dots,V_j}/_{x_i,\dots,x_j}\}M\langle \{^{V_i,\dots,V_j}/_{x_i,\dots,x_j}\}N\rangle.(d(x)|\overline{d}\langle - \rangle)\xrightarrow{\tau}\nu\tilde{c}.(P'|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle)$. By $\nu\tilde{c}.(P|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle)\approx \nu\tilde{d}.(Q|!\overline{a_1}\langle W_1\rangle|\dots|!\overline{a_n}\langle W_n\rangle)$, there exists Q' such that $\nu\tilde{d}.(Q|!\overline{a_1}\langle W_1\rangle|\dots|!\overline{a_n}\langle W_n\rangle)|R\xrightarrow{\tau}\dots\xrightarrow{\tau}\equiv \nu\tilde{d}.(Q'|!\overline{a_1}\langle W_1\rangle|\dots|!\overline{a_n}\langle W_n\rangle)|\{\overline{W_i,\dots,W_j}/_{x_i,\dots,x_j}\}M\langle \{^{W_i,\dots,W_j}/_{x_i,\dots,x_j}\}N\rangle.(d(x)|\overline{d}\langle - \rangle)\xrightarrow{\tau}\equiv \nu\tilde{d}.(Q'|!\overline{d}\rangle)$

 $\begin{aligned} & \text{Case 3: } P \xrightarrow{\nu \bar{c}_1.\overline{a}\langle V \rangle} P' \quad a \hat{\mathcal{E}}b \quad \tilde{c}_1 \not \in \text{fn}(\#_1(\mathcal{E})) \\ & \text{Similar to Case 2. We can take } R \text{ and } \mathcal{E}' \text{ such that } R = a_i(x_i) \dots a_j(x_j).M(x).match \, M_1 \text{ as } y_1 \text{ in } \dots \\ & match \, M_l \text{ as } y_l \text{ in } ((\overline{m_1}\langle N_1 \rangle | m_1(z_1).|\overline{a_{n+1}}\langle z_1 \rangle)| \dots |(\overline{m_k}\langle N_k \rangle | m_k(z_k).|\overline{a_{n+k}}\langle z_k \rangle)) \text{ where } \tilde{m} \text{ is fresh,} \\ & eval(\{V_i,\dots,V_j/x_i,\dots,x_j\}M) = a, eval(\{W_i,\dots,W_j/x_i,\dots,x_j\}M) = b, \\ & eval(\{V_i,\dots,V_j/x_i,\dots,x_j\}\{r^{eify}e_1(M_1),\dots,reifye_l(M_l)/y_1,\dots,y_l\}\tilde{N}) = \tilde{V}', \\ & eval(\{W_i,\dots,W_j/x_i,\dots,x_j\}\{r^{eify}e_1(M_1),\dots,reifye_l(M_l)/y_1,\dots,y_l\}\tilde{N}) = \tilde{V}', \\ & eval(\{W_i,\dots,W_j/x_i,\dots,x_j\}\{r^{eify}e_1(M_1),\dots,reifye_l(M_l)/y_1,\dots,y_l\}\tilde{N}) = \tilde{\mathcal{E}}'). \text{ Then we have} \\ & \forall V'' \mathcal{E}'W''.(\mathcal{E}' \cup \{(reify\bar{e}(\tilde{V}''), reify\bar{e}(\tilde{W}''))\} \subseteq \tilde{\mathcal{E}}'). \text{ Then we have} \\ & \nu \tilde{c}.(P|!\overline{a_1}\langle V_1 \rangle|\dots|!\overline{a_n}\langle V_n \rangle)|R^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} \equiv \\ & \nu \tilde{c}'.(P|!\overline{a_1}\langle V_1 \rangle|\dots|!\overline{a_n}\langle V_n \rangle)|R^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} = \\ & \nu \tilde{c}'.(P|!\overline{a_1}\langle V_1 \rangle|\dots||\overline{a_n}\langle V_n \rangle||\overline{a_{n+1}}\langle V_1' \rangle|\dots||\overline{a_{n+k}}\langle V_n' \rangle). \\ & \text{By } \nu \tilde{c}.(P|!\overline{a_1}\langle V_1 \rangle|\dots||\overline{a_n}\langle V_n \rangle)|R^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} \equiv \nu \tilde{d}'.(Q'|!\overline{a_1}\langle W_1 \rangle|\dots||\overline{a_n}\langle W_n \rangle)|R^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} \equiv \nu \tilde{d}'.(Q'|!\overline{a_1}\langle W_1 \rangle|\dots||\overline{a_n}\langle W_n \rangle)|\overline{a_{n+1}}\langle W_1' \rangle|\dots||\overline{a_{n+k}}\langle W_k' \rangle) \\ & \text{and } \nu c'.(P|!\overline{a_1}\langle V_1 \rangle|\dots||\overline{a_n}\langle V_n \rangle)|R^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} \equiv \nu \tilde{d}'.(Q'|!\overline{a_1}\langle W_1 \rangle|\dots||\overline{a_n}\langle W_n \rangle)|R^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} \equiv \nu \tilde{d}'.(Q'|!\overline{a_1}\langle W_1 \rangle|\dots||\overline{a_n}\langle W_n \rangle)|R^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} \equiv \nu \tilde{d}'.(Q'|!\overline{a_1}\langle W_1 \rangle|\dots||\overline{a_n}\langle W_n \rangle||\overline{a_{n+1}}\langle W_1' \rangle|\dots||\overline{a_{n+k}}\langle W_k' \rangle) \\ & \text{and } \nu c'.(P|!\overline{a_1}\langle V_1 \rangle|\dots||\overline{a_n}\langle V_n \rangle||\overline{a_{n+1}}\langle V_1' \rangle|\dots||\overline{a_{n+k}}\langle W_k' \rangle). \quad \text{Thus } Q^{\frac{\tau}{\gamma}}\dots^{\frac{\tau}{\gamma}} = 0' \text{ and } P'\mathcal{X}_{\mathcal{E}'}Q', \text{ i.e.}, P'\mathcal{X}_{\mathcal{E}'}^{\mathcal{E}}(V_{\mathcal{E}}W_1)}Q'. \end{aligned}$

Case 4: Similar to clause (1–3).

Case 5: $V_1 \hat{\mathcal{E}} W_1 \quad V_2 \hat{\mathcal{E}} W_2$

Assume that $R=a_i(x_i)...a_j(x_j).if$ $M_1=M_2$ then b(x) else c(y) where b and c are fresh, $b\neq c$, $eval(\{V_i,...,V_j/_{x_i,...,x_j}\}M_1)=V_1$, $eval(\{W_i,...,W_j/_{x_i,...,x_j}\}M_1)=W_1$, $eval(\{V_i,...,V_j/_{x_i,...,x_j}\}M_2)=V_2$, and $eval(\{W_i,...,W_j/_{x_i,...,x_j}\}M_2)=W_2$. If $V_1=V_2$, then $\nu \tilde{c}.(P|!\overline{a_1}\langle V_1\rangle|...|!\overline{a_n}\langle V_n\rangle)|R \Downarrow_b$, and \Downarrow_c . Thus we must have $W_1=W_2$, so that $\nu \tilde{d}.(Q|!\overline{a_1}\langle W_1\rangle|...|!\overline{a_n}\langle W_n\rangle)|R \Downarrow_b$, and \Downarrow_c . The other cases are similar.

Case 6: $(P')\hat{\mathcal{E}}(Q')$

By the assumption of \mathcal{E} , we have $P'\hat{\mathcal{E}}^*Q'$. Therefore $P|P'\mathcal{X}^{(*)}_{\mathcal{E}}Q|Q'$.

Case 7: $a \notin \operatorname{fn}(P, \#_1(\mathcal{E}))$ $b \notin \operatorname{fn}(Q, \#_2(\mathcal{E}))$ Assume that $R = \nu a.! \overline{a_{n+1}} \langle a \rangle$. Then we have $\nu \tilde{c}.(P|!\overline{a_1} \langle V_1 \rangle| \dots |!\overline{a_n} \langle V_n \rangle)|R \equiv \nu \tilde{c}, a.(P|!\overline{a_1} \langle V_1 \rangle| \dots |!\overline{a_n} \langle V_n \rangle|!\overline{a_{n+1}} \langle a \rangle)$ and $\nu \tilde{d}.(Q|!\overline{a_1} \langle W_1 \rangle| \dots |!\overline{a_n} \langle W_n \rangle)|R \equiv \nu \tilde{c}, b.(Q|!\overline{a_1} \langle W_1 \rangle| \dots |!\overline{a_n} \langle W_n \rangle|!\overline{a_{n+1}} \langle b \rangle)$. Therefore we have $P\mathcal{X}_{\mathcal{E} \cup \{(a,b)\}}Q$.

Case 8: $V\hat{\mathcal{E}}W$

Subcase 8a, 8b, 8c: $V = a, f, \hat{f}(V_1, ..., V_l)$

Assume that $R=a_i(x_i)....a_j(x_j).match\ M\ as\ x\ in\ if\ \#_1(x)=S\ then\ c(x)\ else\ d(y),$ where S= name, fun, or capp, $eval(\{^{V_i,...,V_j}/_{x_i,...,x_j}\}M)=V,$ and $eval(\{^{W_i,...,W_j}/_{x_i,...,x_j}\}M)=W.$ If V=a, then we have $\nu \tilde{c}.(P|!\overline{a_1}\langle V_1\rangle|\dots|!\overline{a_n}\langle V_n\rangle)|R\Downarrow_c$ and $\mspace{1mu}/_d$. Thus we have W=b, so that $\nu \tilde{d}.(Q|!\overline{a_1}\langle W_1\rangle|\dots|!\overline{a_n}\langle W_n\rangle)|R\Downarrow_c$, and $\mspace{1mu}/_d$. The other cases are similar.

Subcase 8d: $V \in \mathbf{Quo}$

By clause 7 of environmental bisimulation up-to context, we have some b such that $P\mathcal{X}_{\mathcal{E}\cup\{(b,b)\}}Q$, so that $\mathcal{E}\cup\{(reify_b(V),reify_b(W))\}\subseteq \mathcal{E}\cup\{(b,b)\}$. Therefore we have $P\mathcal{X}^{(*)}_{\mathcal{E}\cup\{(reify_b(V),reify_b(W))\}}Q$.

Case 9: Similar to clause 8.

Lemma B.6. $\mathcal{R} = \{(P,Q) \mid P \equiv \nu \tilde{b}.P_1, Q \equiv \nu \tilde{b}.Q_1, P_1 \approx Q_1\} \subseteq \approx$.

Proof. Assume $P \equiv \nu \tilde{b}.P_1$, $Q \equiv \nu \tilde{b}.Q_1$, and $P_1 \approx Q_1$. We check the conditions of reduction-closed barbed equivalence.

Case 1: $P \xrightarrow{\tau} P'$

By Lemma B.1, we have $\nu \tilde{b}.P_1 \xrightarrow{\tau} \nu \tilde{b}.P_1'$, where $P_1 \xrightarrow{\tau} P_1'$. Then there exists Q_1' such that $Q_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} Q_1'$ and $P_1' \approx Q_1'$ by clause 1, thus we have $\nu \tilde{b}.Q_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} \nu \tilde{b}.Q_1'$. If we assume $P' \equiv \nu \tilde{b}.P_1'$ and $Q \xrightarrow{\tau} \dots \xrightarrow{\tau} Q' \equiv \nu \tilde{b}.Q_1'$, we have $P'\mathcal{R}Q'$, since $P_1' \approx Q_1'$.

Case 2: $P \downarrow_u$

We have $P_1 \downarrow_{\mu}$ by $P \downarrow_{\mu}$, where $\tilde{b} \not\in \mathsf{fn}(\mu)$. Then by $P_1 \approx Q_1$, we have $Q_1 \Downarrow_{\mu}$. By $\tilde{b} \not\in \mathsf{fn}(\mu)$, we have $Q \Downarrow_{\mu}$.

Case 3: Similar to 1 and 2.

Case 4: R is a process

There exist $\tilde{b'}$ such that $\nu \tilde{b}.P_1 \equiv \nu \tilde{b'}.\{^{b'}/_b\}P_1$, $\nu \tilde{b}.Q_1 \equiv \nu \tilde{b'}.\{^{b'}/_b\}Q_1$, and $\{^{b'}/_b\}P_1 \approx \{^{b'}/_b\}Q_1$, where $\tilde{b'} \not\in \mathsf{fn}(R)$. Then we have $\nu \tilde{b}.P_1|R \equiv \nu \tilde{b'}.(\{^{b'}/_b\}P_1|R)$ and $\nu \tilde{b}.Q_1|R \equiv \nu \tilde{b'}.(\{^{b'}/_b\}Q_1|R)$. By $\{^{b'}/_b\}P_1 \approx \{^{b'}/_b\}Q_1$ and clause 4, we have $\{^{b'}/_b\}P_1|R \approx \{^{b'}/_b\}Q_1|R$. Therefore we have $P|R \equiv \nu \tilde{b'}.(\{^{b'}/_b\}P_1|R)\mathcal{R}\nu \tilde{b'}.(\{^{b'}/_b\}Q_1|R) \equiv Q|R$. Hence $P|R\mathcal{R}Q|R$.

Corollary B.1. If $P \approx Q$, then $\nu \tilde{b}.P \approx \nu \tilde{b}.Q$.

Theorem B.3 (completeness of environmental bisimulation). If $P \approx Q$, then $P \simeq Q$.

Proof. Assume that

```
 \begin{split} \mathcal{X} &= \{ (\mathcal{E}, P, Q) \quad | \quad \forall \tilde{a} \not\in \mathsf{fn}(\mathcal{E}, P, Q). \\ & \nu \tilde{c}.(P|!\overline{a_1}\langle V_1 \rangle| \dots |!\overline{a_n}\langle V_n \rangle) \approx \nu \tilde{d}.(Q|!\overline{a_1}\langle W_1 \rangle| \dots |!\overline{a_n}\langle W_n \rangle), \\ & \{\tilde{c}\} = \mathsf{fn}(P, \tilde{V}), \{\tilde{d}\} = \mathsf{fn}(Q, \tilde{W}), \mathcal{E} = \{(\tilde{V}, \tilde{W})\}, \\ & \exists \tilde{b} \not\in \mathcal{E}.(\mathcal{E} \cup \{(\mathit{reify}_{\tilde{b}}(\tilde{V}), \mathit{reify}_{\tilde{b}}(\tilde{W}))\} \subseteq \mathcal{E} \cup \{(\tilde{b}, \tilde{b})\}) \} \end{split}
```

Then we have $\mathcal X$ is an environmental bisimulation up-to context by Lemma B.5. By the way, if $P\approx Q$, we have $P|!\overline{a_1}\langle b_1\rangle|\dots|!\overline{a_n}\langle b_n\rangle\approx Q|!\overline{a_1}\langle b_1\rangle|\dots|!\overline{a_n}\langle b_n\rangle$ by clause 4 of reduction-closed barbed equivalence, and $\nu \tilde{b}.(P|!\overline{a_1}\langle b_1\rangle|\dots|!\overline{a_n}\langle b_n\rangle)\approx \nu \tilde{b}.(Q|!\overline{a_1}\langle b_1\rangle|\dots|!\overline{a_n}\langle b_n\rangle)$ by Corollary B.1, where $\{\tilde{b}\}=\mathsf{fn}(P,Q)$ and \tilde{a} are fresh. Therefore $P\mathcal X_{\mathcal E}Q$ where $\mathcal E=\{(b,b)\mid b\in\mathsf{fn}(P,Q)\}$, that is, $P\simeq Q$.