A Definitions

Definition A.1 (environmental bisimulation). Environmental relation X is an environmental bisimu-
lation if PXe(Q implies:

1. P 5 PlimpliesQ = ... 5 Q and P' X:Q'

2. P Y P with aéb and VEW implies Q = . 2 L and P'X:Q)

vé.a(V) vd.b(W)
— R

3. P P’ with a€b and ¢ & fn(#1(E)) implies 3d & fn(#2(E)). Q 5 ...
and PlXéfU{(V,W)}Q/

the converse of (1-3) on Q)

L5 Q)

VIEW, and VaEWs imply Vi = Vy <= Wi = W,
(PEY(Q') implies P|P'X:Q|Q’
PXeUg(ap)Q for any a € fn(P,#1(€)) and b € fn(Q, #2(E))

8. VEW implies:

N S A

(a) V = aimpliesW =b

(b) V = [ implies W = f

(c) V= f(vl, o V) implies W = g(Wy, ..., Wy,)

(d) V € Quo implies 3b & fn(E, P, Q). PXe{(reify,(V),reify, (W)} &

9. the converse of 8 on W

Definition A.2 (context closure for environmental bisimulations). We write PX 5(*)@ if P =vec.(Py|Py)
and Q = vd.(Qo|Q1) with PyXe:Qq and PLE" Q) for an environmental relation X, where & & fn(#1(£))
and d & fn(#,(E)) with € C{(V,W) | VE W and fn(V) N {&} = fn(W) N {d} = 0}.

Definition A.3 (environmental bisimulation up-to context). Environmental relation X is an environ-
mental bisimulation up-to context if PX¢() implies:

1. PS5 PlimpliesQ = ... 5 Q and P’Xé*)Q’

2. P Y prith ab and VEW implies @ = ... " @ and PO Q)
3. P " prith afb and @ & fn(#1(E)) implies 3d & fn(#:(E)). Q = ... LGSR Q'
and P,Xg(z){(V,W)}QI

4. the converse of (1-3) on ()

5. ViEW, and VoEWs imply Vi = Vy <= Wy = W,y



6. (P)EQ') implies P|P'X{Q|Q
7. PXeugapn @ for any a & fn(P,#1(&)) and b € fn(Q, #2(E))
8 VEW implies:
(a) V = aimplies W = b
(b) V = fimplies W = f
(c) V=Ff(Vi,.... V) implies W = g(Wy, ..., W)
(d) V € Quo implies b & (£, P, Q). P, ety v)reitun vy @

9. the converse of 8on W

Structural equivalence. Define evaluation contexts by C' ::= || | (C|P) | (P|C) | ve.C. Structural
equivalence = is the smallest equivalence relation on processes that is closed under evaluation contexts,

with:
PEP‘O P1|(P2|P3)E(P1‘P2)‘P3

P1|P2EP2‘P1 ‘PEP|'P
va.0=0 va.vb.P = vb.va.P
Pilva.Py = va.(P|P,) if a & fn(P)

B Proofs

B.1 Reduction respects structural equivalence

Lemma B.1 (reduction respects structural equivalence).
1. P=Qand P> P imply Q = Q' and P' = Q'
2 P=QandQ > Q imply PS5 P and P' = Q.

Proof. By induction on the derivation of structural equivalence. Since the proof of clause 2 is similar to
that of clause 1, we omit the proof of clause 2. We have some cases of transition derivation.

Case: P=P|0 PS5 P
We have P|0 = P’|0 by PAR-L. Then we have P’ = P’|0

Case: Pi|(P|Ps) = (P1|P2)|Ps  Pi|(P2|Ps) = P!

There are 9 subcases of the transition derivation of Py|(Py|Ps) = P'.

Subcase PAR-L: P, = P
We have P|(Py|P3) < PJ|(P,|Ps) where bn(a) N fn(Py|P;) = (). Then by PAR-L, P,|P, = PJ|P,,
since bn(a) U fn(P;) = 0. Again by PAR-L, (Py|P)|Ps = (P}|P,)|Ps, since bn(a) U fn(Ps) = (). By
definition of structural equivalence, we have P||(P»|Ps) = (P{| P2)|Ps.

Subcase PAR-R, PAR-L: P, = P
We have P,|(P,|P3) < Py|(Py|P;) where bn(a) N fn(P;, P3) = (. Then by PAR-R, P,|P, = P;|P;,
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since bn(a) U fn(P;) = 0. Again by PAR-L, (Py|P)|Ps = (P1|Py)|Ps, since bn(a) U fn(Ps) = (). By
definition of structural equivalence, we have P, |(P;|Ps) = (P1|Ps)|Ps.
Subcase PAR-R, PAR-R: P; = P}
We have Pi|(P,|Ps) <= Pi|(P,|P}) where bn(a) N fn(Py, Py) = (). Then by PAR-R, (P1|P,)|Ps =
(Py|Py)| P, since bn(a) Ufn(Py| P2) = 0. By definition of structural equivalence, we have Py |(P,|Pj) =
(P1[Py)|Ps.
V)

Subcase PAR-R, TAu-L: P, <=2, pr - p, Y, pr
We have P\|(Py|P;) = Pi|vé. (P’|P’) where {¢} N fn(P;) = (). Then by PAR-R, for some ¢; s.t.

(EYO(P, Py, Py) = 0, Py | Ry, 223V, picéiy A pr By TAU-L, we have (Py|Py)| Py =
vér (PU{9Y e Py)I{9/} P). By {¢1} N fn(P1) = 0 and definition of structural equivalence, we have
Py|ve.(Py|Pg) = ver (P ({7} P59 e} Py)) = vér (PI{/a} P3) {9/} Ps). Therefore Py |vé.(Py| Py) =
ver (P{%/ et Po) {2} P).-

Subcase PAR-R, TAU-R: P AW pr py, AV, pr
We have Pi|(Py|Ps) — Pi|vé.(Py|P;) where {¢} N fn(Pg) = (). Then by PAR-R, for some ¢; s.t.

(@) N (P, By, Py) = 0, Pi| P, “/4Y), pire/ 1y By TAU-R, we have (Py| Py)|Ps =
ver.((P{4/ a3 Py {1 P). By {¢1} Nfn(Py) = 0 and definition of structural equivalence, we have
Pilve.(By| Py) = VCE;(Pl\({51/5}135\{51/&}1331)) = ver((PU{%/a} Py)[{/ ¢} P3). Therefore Py [ve. (P3| P5) =
ver (P et Po) {2} Ps)-

Subcase TAU-L, PAR-L: P, =2, p; - p, “Y), py
We have Pi|(P,|Ps) = I/é.(Pl‘(Pl‘Pg)) where {¢} N fn(Py, Ps) = (. Then by TAU-L, P,|P, =
ve.(P]|P)). By PAR-L, we have (P,|P,)|P; = vé.(P]|P))|Ps. By {¢} N fn(P3) = () and definition
of structural equivalence, we have vé.(Py|(Ps|Ps)) = ve.((P|Py)|Ps) = vé.(Py|Ps)|Ps. Therefore
ve.(Pl|(Py| P3)) = ve.(Pi|Py) | Ps.

Subcase TAU-L, PAr-R: P, =20 pr p 4, pr

véa(V)

We have Py|(P,|P3) = yé.(Pl’\(Pg\P3)) where {¢} N fn(P,, P3) = (). Then by PAR-L, P;|P, —
P/|P,. By TAU-L, we have (P, |P,)|Ps — vé.((P]|P,)|Pj). By definition of structural equivalence, we
have vé.(P]|(Py|P3)) = vé. ((P \Pg)\P’)
Subcase TAU-R, PAR-L: P prp, Y, pr

We have P\ |(P|Ps) = VC.(P’|(P’\P3)) where {c} N fn(Py, Ps) = (. Then by TAU-R, P,|P, =
ve.(P]|Py). By PAR-L, we have (P,|P,)|P; = vé.(P]|Py)|Ps. By {¢} N fn(P3) = () and definition
of structural equivalence, we have vé.(Py|(Ps|Ps)) = ve.((P|Py)|Ps) = vé.(Py|Ps)|Ps. Therefore
ve.(P{|(Py|Ps)) = ve.(P]|Py)| Ps.

Subcase TAU-R, PAR-R: P, o, P Pp— v P

We have Py |(P,|P3) = vé.(P]|(P,|Py)) where {¢}Nfn(Py, P,) = (). Thenby PAR-L, P,| P, — ¥, P||P,.
By TAU-L, we have (P,|P,)|Ps = vé.((P]|P;)|P}). By definition of structural equivalence, we have
ve.(P|(Po|By)) = ver (P Py) | Py).

vé.a(V)

a(V)

a{V)
V)

Case: P||P, = P2|P1
Subcase PAR-L: P, & P/
We have P;|P, < P{|P,, where bn(a) N fn(P;) = (). Then by PAR-R, we have P,|P; = P,|P|. By
definition of structural equivalence, we have P||P, = P,|P].



Subcase PAR-R: P, = P,
Similar.
Subcase Tau-L: P ““ py - p, “2 Py
We have P, | P, = vé.(P]|Py), where {¢} N fn(Pg) = (). Then by TAU-R, we have P,|P, = vé.(Py|P)).

By definition of structural equivalence, we have v¢.(P]|P;) = vé.(Py|P]).

Subcase TAU-R: P, ﬂ P P, m P

Similar.

Case: |P = P|!P
Assume |P % P'. By REP, we have P|!P 2 P'. Of course P’ = P’ and that’s all.

Case: va.0 =0
The transition of va.0 can’t happen.

Case: va.vb.P = vb.va.P
It is immediate by the case a = b, so we suppose a # b. There are 4 subcases of transition derivations
of va.vb.P.
Subcase SCOPE, SCOPE: vb.P < vb. P’
Assume va.vb.P % va.vb.P' We have P % P’, where a,b ¢ n(a). Then we have vb.va.P = vb.va.P'

By definition of structural equivalence, we have va.vb.P’ = vb.va.P’.
vébar(V)

Subcase SCOPE, OPEN: vb.P P’
Assume va.b. P 2TV g, P’, where a ¢ n(vé,b.a;(V)). We have P vemt), P’ where b #

véar(V) vé,b.ai(V)
—_—

a,b € fn(V) \ {¢}. Then we have va.P va.P'

by OPEN. Naturally we have va.P’ = va.P’.
Subcase OPEN, SCOPE: vb.P vh. P!
Assume va.vb.P 22TV P’, where a # al,a e fn(V) \ {¢}. We have P

va.P’ by SCOPE, and thus vb.va.P

véar(V)

vé.ay

—>> P’, where

b € n(vé.a;(V)). Then we have va.P voealV), pr by OPEN, and thus vb.va.P veestlVo, Ly pr by
SCoPE. Naturally we have vb.P' = vb.P'.

Subcase OPEN, OPEN: vb.P “X ), pr
Assume va.vb.p LT P’, where a,b # ay,a,b € fn(V) \ {¢}. We have P @), p' Then

vé,a.ai(V)
we have va.P

P =P,

vé,a,b.ar(V)

P’ by OPEN, and thus vb.va.P P’ by OPEN. Naturally we have

Case: P|va.Py, = va.(P|P)

There are 6 subcases of transition derivations of P |va.Ps.

Subcase PAR-L: P, = P!
We have P,|va.Py, = Pl|va.P,, where bn(a)Nfn(va.P,) = . Then for some a;, we have Py |[{%/,} P, %
P/|{%/,} Py, where a; ¢ (bn(a)Ufn(P,)). Therefore va.(Py|Py) = vay.(Pi{%/,} P2) % vai.(P]|{*/.} P»).
Then we have P||va.P, = va.(P{|P;y) = vay.(P{|{*/.} P). Hence P||va.Py = vay.(P{|{"/ 4} P»).

Subcase PAR-R, SCOPE: va.Py = va.P,
We have P;|va.P, = Pi|va.P,, where bn(a) N fn(P;) = (). We also have P, < Pj, where a ¢ n(a).



Then we have P, |P, = P;|Pj and thus va.(Py|P,) < va.(P|Py) By a & fn(P,), we have P\|va.P) =
va.(Py|Py).

Subcase PAR-R, OPEN: va.Ps reamv), Py
We have Pilva.P, 22 p Py where é,a & fn(P,). We also have P, ™. P! where

vé.ar vé,a.ai(V)

a # ay,a € fn(V'). Then we have P;|P; veat), P, | Py and thus va.(Py|P,) ——— Py|Pj. Naturally
we have P|P, = Py |P;.

Subcase Tau-L: P, Y pr o py Y, 10 Py
We have Pi|va.P, = vé.(Pl|lva.P}), where {¢} N fn(va.P;) = (. We also have P, a®), P,

where a & n(a;(V)). Then for some ay, we have ay & fn(Py), Pi|{%/,} Py = vé.(P/{%/,}Py)
and thus vay.(P1|{%/,}P,) = vay,é(P|{*/,}Py). By ay ¢ fn(P}]), we have vé.(Pl|va.Py) =
ve.(Pllvag.{%/ .} Py) = vé, as.(Py|{*/ .} P}). Therefore ve.(P||va.Py) = vé, as.(P|{*/ .} Py).

Subcase TAU-R, Scope: P, “Y P! ya Py 222V 1 Py
vé.a(V)

We have P |va.P, = vé.(Pjlva.Py), where {¢} Nfn(Py,) = ). We also have P, —— P4, where a ¢
n(vé.a(V)). Then we have P,| P, = vé.(P)|Py) and thus va.(Pi|Py) = va,é(P}|Py). By a & fn(Py),
we have vé.(P||va.Py) = vé, a.(P{|Py) = va, é.(Py{| Py). Therefore vé.(Pf|va.Py) = va, é.(P]|Py).

vé,a.a1(V)

Subcase TAU-R, OPEN: P; W), P va.Py, ——— P}
We have Pi|va.P, = vé a.(P]|Py), where ¢ a & fn(P)). We also have P, veaw), Pj, where
a # ay,a € fn(V) \ {¢}. Then we have P,|P, = vé.(P}|Py) and thus va.(Py|Py) = va,é.(P]|Py). By
definition of structural equivalence, we have v¢, a.(P;|Py) = va, ¢.(P]|Pj).

Case REFLEXIVITY: P=P
Immediately holds.

Case TRANSITIVITY: P, = P;
Assume P, = P», P, = Py and P, = P]. By the induction hypothesis, we have P, = Pj, Py % P,
P} = Pyand Py = P;. Therefore P = P; and of course P3 — Pj.

Case SYMMETRY: Q = P
Assume P = (@ and by clause 2 it holds that Q = Q' implies P = P’ and P’ = ). We have Q = '
and therefore P = P’. By rule of symmetry and P’ = ', we have @' = P'.

Case EVALUATION CONTEXTS: C[P]| = C[(Q)]
Similar to the case of Py |(P2|Ps) = (P1|P2)|Ps.

B.2 Soundness of environmental bisimulation up-to context

Lemma B.2 (input transition). Ler P,E*(Q)1 and a&b. Suppose that W1 = b for any aEW;. If P, V),

P}, then for any W, there exists some Q' such that () 2w, Q4 with P{(E U {(V,W)})*Q;.

. . .. o 14
Proof. By induction on transition derivation of P, v, P|.



Case IN: C' = Cy(x).Cy

The transition of P; must be of the form C4[V](z).Co[V] —= {V/x}Cé[ ] where eval(C1[V]) =
a. Then we have eval (C1[W]) = b. Therefore Q; = C1[W](z).Cy[W ] {W/I}Cg[ | and
{V/a}CaVI(E U{(V. W) 1) {7/} Co[W].

Case PAR-L: O = (4|, C1[V] 22 pr,

Assume that C,[V]|C,[V] = v, P/,|C5[V] holds. By the induction hypothe51s and a&b, there exists Q

such that C4[W] “" @1, and P}, (€ U {(V,W)})*Q,,. Therefore, Cy[W]|Cy[W] 25 Q G,
By C4[V]E*Co[IW], we have Co[V](EU{(V, W)})*Co[W]. Thus P, |Co[V](E ULV, W )*Q, |Co[ W]
Case PAR-R: C' = (1|0, Cu[V] 2
Similar to PAR-L.

— P
Case REP: C' =!C} 101 V] av), =
We have C1[V]|!Cy[V] = o), P!,. By the induction hypothesis and aEb, we have C;[W]|!Cy[W]

@}, and P/, (£ U {(V,W)})*Q}, for some Q’,. Therefore !C[W] — viv) —> ', and of course P,(€ U
{(V. W)@y

b(W)
e

Case SCOPE: C' = vc.Cy  ve.Ch[V] D, ye, P,
V)

Assume that C1[V] = C%[V, ] holds. Then we have C}[V/, ] AV, P/,. By the induction hypothesis,
we have C/[IW, ] W, 11 and P (E U {(c,0)} U{(V,W)})*Q}; for some Q};. Then we have

vc. 01[ ] l% ve.Qqy- By Pi1(EU{(c,c)} U{(V,W)})* @}, we have ve Pl (EU{(V, W)})*VCQIMD

Lemma B.3 (output transition). Let P\E*Q); and a€b. Suppose that W, = b for any aEWi. If

P, —>VC av) P’ with ¢ & fn(#1(£)), then there exist some Q',, W and d with V(€ U {(¢,d)})*W such
that Qv “2"™ 0 with d ¢ fn(#2(€)) and PL(E U {(¢,d)})*Q,.

~ . véa(V)
—_—

Proof. By induction on transition derivation of P; = C[V/] P

Case OUT: C' = C1(C,).Cs
We have C1[V](Cy[V]).Cs[V] LN C3[V] where eval(Cy [f/]) = a and eval(Cy[V]) = V. By a&b,

we have evag(Cl[W]) = b. Therefore C [W](Cg[W])Cg[W] LALZN C3[W], W = eval(Cy[W]) and
Cs[V]ECs[W].

l/Ca

Case PAR-L: C = (1[C,  C1[V] 222V pro G fn(Cu[V])
Assume that C’l[~]|C’2[ ] veaw, P |ColV /'] holds. By the induction hypothesis, we have C’l[ ] m
1 PL(EU{(6,d)}) @, VIEUL(E d)})* W and d & fn(#:(€)) for some Qi d. By d ¢ fn(Ca[W]),

we have Cy [I7]|Co[W] 22X 01 |Co[W7). By P (€ U {( d)})* @y, we have



P} |Co[VI(E U{(E d)}) Q1 |Co[W].
vé.a(V)

Case PAR-R: C' = C4|Cy, Cy[V] ==L P, & fn(Cy[V))
Similar to PAR-L.

I/Ca

Case REP: C =!C} 'C’l[ | ——> Pl’1
We have C,[V]|!C [~] ven —— P[;. By the induction hypothesis, we have CL W J|'c L[] 2abW),
s PLEU{(Ed)) Q. V(EU{(6,d)})*W and d & fn(#,(E)) for some Q},,d. Then we have
10y [W] vaBW), @', and of course P/, (€ U {(¢ d)})*@Q},

Case SCOPE: C' = ve.Cy,  ve.Cy[V] ras), e, P,
vér.a(

Assume that C,[V] = C![V, ¢] holds. By SCOPE, we have C}[V, ] raa), P/, and ¢ & n(vé.a(V)).
By the induction hypothesis, we have C{ [V, ] v ) 1 PLEU{(c,0)}u{(cr,d) ) Q. V(EU
{(¢1,dv), (c, )}) W dy & fn(#:(E U {(c,c)})) and ¢ & n(vdy.b(W)) for some Q),,d;. Therefore
ve.Cy[W] =225 v b L veQ)y and ve PL(EU{(é, dy) ) re.Q.

vé,c.alV)

Case OPEN: C' = vc.Cy  ve.Cy[V] /2225 P
Assume that C,[V] = C/[V, ] holds. By OPEN, We have C’ [V c|

udl

L, Py e # aand € f(V) \

{¢1}. By the induction hypothesis, we have C (W, ] Qll, P (EU{(c,0)y u{(a, d)})* e
V(EU{(é1,dy), (c,e)))* W, dy & fn(#2(EU{(c,¢)})). ¢ # band ¢ € fn(W)\ {d,} for some Q' Cs, d;.

Therefore ve.Cy [IV] 222 01 and Q) (€ U {(c, &)} U {(é1, d)})* Q).

O

Lemma B.4 (7 transition). Suppose Py)s()y and Plc‘f *QQ1 for an environmental bisimulation ) up-to
context. If P, > P}, then there exists some Q' such that Q, — Q' with P0|Pl'yé*)Q0|Q'l.

Proof. By induction on transition derivation of P, = C[V] = P|.

Case PAR-L: C = C1|Co  C1[V] 5 P}, i
Assume that C;[V]|Co[V] = P{;|C5[V] holds. By the induction hypothesis, we have C; [W] = @, and
Po| P,V Q0| @4, for some Q). Therefore C1[W]|Co[W] 5 Q) |Co[W]. By Cs[V]E*Co[W], we have
ol PLICo V]V Qol @4 Co[ W],

Case PAR-R: C' = (C4|Cy (s [‘7] 5 P,
Similar to PAR-L.

Case TaU-L: C = C4|C,  Cy[V] 2225 pr oo 22
Assume that C,[V]|Cy[V] = vé.(Pj,|P],) holds. We can choose fresh ¢ (i.e. & & fn(Po, #1(E))).
By Lemma B.3, we have C,[W] VoW ', and P, (€ U {(¢,d)})*Q), for some Q}, and d &
fn(Qo, #2(€)), and we also have VE U {(¢,d)} W. By Lemma B.2, we have Cy[WW] —= KiUN Q’2 and

Pl (EV{(V,W)})* @}, for some Qj,. Hence P{,E U{(&, d)} @1y, PL,E U{(& d)} @ and Ci[W]|Co[W]

7



L vd (Q),|Q,)- By d & fn(Qq, #2(£)) and clause 7, we have PoYe (4, Qo- Therefore
ve.(Pol Py Pio) Vv (Qol Q1 |Qio)

Case TAU-R: O = (1|, C1[V] 2 pr o] 2% pr,
Similar to TAU-L.

Case REP: C' =IC;  1C1[V] 5 P . -
We have C;[V]|!C;[V] = P/. By the induction hypothesis and a€b, we have C;[W]|!C;[W] = Q) and
Po| PYE"Qu|Q} for some . Therefore IC4[1] % @ and of course Pyl P{YE” Qol@;.

Case ScopE: ' =ve.Cy ve.Cy V]S vePly.
We have C1[V] 5 P!,. Assume that C;[V] = C’[V,¢] holds, where fn(C?) = bn(C%) N fn(€ U
{(c,¢)}, Py, Qo) = 0. By the induction hypothesis, we have C! [, ¢] = Q! and P0|P1’1yg8{(c,c)}Qo\Q’ll
for some Q4 ,. Therefore vc.C1[W] = ve.Q4,. By Polve.Pj, = ve.(Py|Ply), Qolve.Qhy = ve.(QolQhy)
and € C {(V, W) | VEU{(c,e)} Wand e & fn(V, W)}, we have Py|ve. Pl Y8 Qolve.Ql,.

Case RUN: C = run(C})

Suppose run(C[V]) = P}, where eval(Cy[V]) = ‘P]. By definition of terms and C,[V]E*Cy[W], we
have eval(Cy[V]) = CI[V] = ‘P, eval(C1[W]) = C}[W] for some C. Now there are two subcases of
Cy.

Subcase: C] = ||
We have eval(Cy[V]) = ‘P/EN = eval(Cy[W]) for some N. By clause 5, 6, and 8, there exists Q' such
that N = ‘Q} and Py| P}YL” Qo|@Q),. Therefore run(Cy[W]) = @ and Py| P,V Q0@

Subcase: C] = ‘CY,
We have eval(Cy[V]) = ‘CI,[V]EXC!,[W] = eval(Cy[W]). Therefore run(Cy[V]) = C},[V] and

run(Cy[W]) 5 Cf, [W]. By Cf,[V]E*C1,[W], we have Py|C1, [VIVE” Qo|Ct [W].

Case IFTRUE: C = if C) = Cy then Cs else C4 eval(C’l [f/]) = eval(Cy [f/])
We have if Cy[V] = Co[V] then Cs[V] else C4[V] = C3[V]. By clause 5and 8, we have eval (C,[IW]) =
eval(C,[W]). Therefore if C1[W] = Cy[W] then C5[W] else C4[W] 5 Cs[W]. By Cs[V]E*Cs[W], we
have Py|Cs [V]yé*)Qo\Cg [W].

Case IFFALSE: C = if C = Cy then Cy else Cy eval(C’l[ |) # eval(Cy [V])
Similar to IFTRUE.

Case MATCH: C' = match Cy asz inCy  eval(C1[V]) = C1[V] € Quo
There are 3 subcases of C7.
Subcase: C| = [| match C1[V] asz in Co[V] 5 vb.{(V)/ YCy[V]
We can suppose b & fn(Py, Qo, V, W, Co[V], Co[W]). Suppose VEW in the hole of C}. By clause 8d,
we have 3b € fn(E). Poygu{ (reifyy (V),reify, (W)} Qo- Then we have match Cy [W] as n CQ[W] 5
vb. {0 (W)/ L Co[W] by clause 5. Since {™#(V)/ L Cy[V]E" {reifuW)) Ay [W] for

&' = EU{(reify,(V), reify,(W))}, we have



Polwb {7 V)] Y Co[V] = wb.(Po| {1 (V)), } Cy [V])yé*)Vb-(Qd{mfy”(w)/z}@ W])
= Qo|vb.{W)/ 1O, [W]. Therefore Po\vb.{reifyb(v/ 1Oy ~]yg* Qolvb. {reitu (W) Y CL W],

Subcase: C) =[] match C1[V] as x in Cy[V] 5 vb.{7#s(V)/ 1Co[V] )
Assume that VEW holds in the hole of C} and b ¢ fn(P, Qo, V, W, Cy[V], Cs [W]) holds. We have
‘W € Quo. By MATCH, we have match C [W] as x in Cy (W] 5 wb. {mfyb( W)/ Oy [W). By

(reify(‘V'), reify(‘ )) e &, we have {mfy ) 4 }02[ ]5*{’“fyb(w/ FCOL[W. Then we have
Polob {7V} ColV] = ub. (Bl {0V 1O V) Ve v (Qo|{mfy W} Co[W]) =
Qo|vb.{TW)/ 1Oy [W]. Therefore Py|vb. {mfy / Y[V VL Qo\ub {mfy WO W],

Subcase: Otherwise match C1[V] as z in Co[V] 5 vb. {mfyb(c’ /ey CalV]
We can assume that b & fn(Po,Qo, Ci[V], C W], C'Q[ ], C2[W]) holds. By clause 8d, we have 3b ¢
0 (E)-Fodeu(reiy, (117 reifyy (1))} Qo- We have C{[W] € Quo by clause 5, thus by MATCH, we have
match C1[W] as x in CQ[/]_: l/b {mfyb (CHWVD/ YCo[W]. By {7us(C1VD/ YOy [V]E7 {retfun(C1IWD Oy W]
for & = £ {(eif(CHIV). el (CHIVI)). wehave Py (=301 ] =
v, (Pl {0 iV, }02[ DV b (Qol{ (VD) Y Co[W]) = Qolwb {1 (WD)} Co[IW]. There-
fore Py|uvb.{™s(CVD/ Yo [VIVE) Qo|ub. { s GIWD) A Cy[W). O

Theorem B.1 (soundness of environmental bisimulation up-to context). Let ) be the environmental
bisimilarity up-to context. Then X = {(&, P, Q) | Pyé*)Q} is an environmental bisimulation.

Proof. Suppose PX:(), i.e.,PJ)é*)Q. Therefore for some Py, P, Qo, Q1, £, ¢, and cz, we have ¢ ¢
fn(#.(€)), d ¢ fll(#g(g>>, P = ué.(PO\PlA);Q = vd.(Qo|@1), € C {(V,W) | VE Wandfn(V)N
{e} =tm(W)N{d} =0}, PoYVeQo and P,E" (). We are going to show the 9 clauses hold.

Casel: P - P

By Lemma B.1, we have 4 subcases of the transition of v¢.(Py|Py).

Subcase: P, = P
By PyYeQo, we have Qy — ... = Q) and Péy(T)Q{). Therefore vé.(Py|P) = vé(P)P) =
vé, é1.(Ply| Py |PL) = P and vd.(Qo|Q1) = ... = vd.(Qh]Q1) = vd, dy.(Q)| @) |Q1) = Q. Hence
PYYQ, ie., P'XeQ.

Subcase: P, - P;
By Lemma B.4, we have ; — @} and PO\P{))(T)QMQ&. Therefore vé.(Py|P) — vé.(Py|P)) = P!
and vd.(Qo|Q1) = vd.(Qo|Q}) = Q’ Hence PV Q' ie., P'X:Q.

vadVl, prop Y, pr

Subcase: F, 2N
By PyYeQo, we have Qo — . .. M .5 Qf and P Yerugvwyy Qo while d, ¢ fn(#2(&’)). Then
there exists just one b such that alb by the definition of terms, and by Lemma B.2, we have @, ),
Q) and P{(&" U {(V,W)})*Q}. Therefore vé.(Py|P)) = vé é.(Py|P)) = P’ and vd.(Qo|Q1) —
vd, d.(Q}]Q}) = Q. Hence P’yg* Q’ ie., P'X:Q.

Subcase: P, “ pr p YTV pr

There exists just one b such that aEb by the definition of terms, and by Lemma B.3, we have ),

—

@, and P}(£' U {(é1,d1)})* Q). We also have VE' U {(¢1,d;)} W by Lemma B.3.

vdy b(W)
— 5



Now we have PoYer (i 4,y Qo by dy & fn(#2(€)) and clause 7. Therefore Qo — ... w, o, Q5

and P’yg/u{(~ - Q{). Then it holds that vé.(Py|P)) = vé, é.(PjP)) = P’ and vd.(Qo|Q)) =

vd, dy . (Q)|Q) = Q’. Hence P’yé*)Q’, ie., P X:Q.

Case2: P % pr aéh VEW

By Lemma B.1, we have 2 subcases of the transition of v¢.(Py|Py).

Subcase: P, =% P’
By PyYeQo, we have Qy — ... w1 Q, and P(;y(f)@g for some ;. Then it holds that
ve.(Po|Py) 5 ve.(véy.(Py| Py | P) = vé, é1.(Py| Py | P) = P where é € n(a(V)), and vd.(Qo| Q1) =

D wd (vdy Q| Q) 1Q1) = vd, dy . (Qho Q)| @1) = @ where d & n(b(W)). Hence PV Q) ie.,

PA:Q.

Subcase: P, V), P/
By Lemma B.2, we have ), W, Q’ and P/(EU{(V,W)})*Q), for some Q. Therefore vé.(Py| P;)
Ve (BoP)) = P and vd.(Qo|Q1) ™ vd.(Qo]Q)) = Q. By (€ U{(V,W)})* C &, we have
PYYQ i, PXQ'.

V)

F

Case 3: P 2"V pr o4& c1 & fn(#1(€))

By Lemma B.1, we have 2 subcases of the transition of v¢.(Py|Py).

Subcase: F, raavi, P X
We can assume that we have {é2} = {1 }\{¢}, {G} = {¢}\{c1},and & & fn(#,(E")). By Py Ve Qo, we
have @ v bW, Q) and P’yS/U{(VW } Qo for some QO Therefore vé.(Py| P) raav), ., vés. (PY|P) =

zxdl

vés.(véy.(Pgo|Po)|P1) = P’ and vd.(Qo|Q1) P, vy, (Qo\Ql) = vds.(vdy Q| Qo) |Q1) = @
where {d,} = {d,} \ {d} and {ds} = {d} \ {d,}. Hence P’ygu{(w)}@, ie., P'Xeuqvwn @'

véz.a(V)
Subcase: P, vaal), P/

We can assume that we have {¢;} = {61} \ {¢} and & ¢ fn(#l( }). Now there exist @, and d, such

vda . b(W ’ -y ,
that @, “=X, L Pl(EU{(Gndo)}) QL V = (€U {(Cz,d2)}) W and dy ¢ fn(#5(&")) by Lemma
vér.a(V) vdy B(W)

B.3. These demonstrate vé.(Py| ;) —— v¢3.(FPo|Py) and vd. (QolQ1) — vds. (Qo|@}), where
{é} ={¢} \ {a}, {dg} = {dl} \ {d} and {dg} = {d} \ {dl} By clause 7, we have PoYei (s, dy)y @o-
By ¢; & fn(V) and ds & fn(1), we have £ U {(V W)} c{(v.w)|v(eu {(é2,d2)})*Wandfn(V) N
{&} = fn(W) N {ds} = 0}. Therefore vc;. (PO\P’)J}&J{ V) vds.(Qo|QY). i.e.,

vés. (Po| Py) Xeugovw) }VdS'(QO‘Ql)'
Case 4: Similar to clause (1-3).
Case 5: ViEW;  VoEW,

We have V15 a W1 and VQS’ W,. The difference between V; and Wy or V; and W5 is that of &', Assume
Vi=0C [Vl] V, = CQ[VQ] W, = C, [Wl] Wy = OQ[WQ] V,E'W,, and VoE'W,. Then by clause 5 of ),
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wehave Vi =V, < V=V, — W, =W, < W, = W,. Hence V| = Vo = W, = Ws.

Case 6: ‘P'EQ)

By £ - & *, we have two subcases of the relation between ‘P’ and ‘Q)’.

Subcase: ‘P'E"Q’
By clause 6 of ), we have Py| P’V Qo|@'. Then we have P|P' = vé.(Py| P'|P) Y5 vd.(Qo|Q'|Q1)
Q|Q’, hence P|P’yg)Q|Q’, ie., P|P'X:Q|Q'.

Subcase: otherwise
Assume that ‘P'E’ *Q'holds. Then we have P’ Q'. By ¢ & fn(P’), d & fn(Q’) and PyYe/Qq, we have
P|P' = Vé.(P0|P1|P’)y§*)yci.(Q0\Q1|Q’) = @Q|Q'. Therefore we have P|P'X:Q|Q)’.

Case7: a & fn(P, #1(£)) b ¢& M(Q, #2(E))
We can assume that a ¢ fn(Po, #1(&") and b & fn(Qo, #2( ")) hold. By clause 7 of ), it holds that

Poygfu{(ab 1Qo. By & C &y {(a b)}, we have P& U {(a b)}@Q1. By € U/{(a\b)} c {(V,iW) |
V(& U {(a b)})*Wandé & fn(V), dd fn(1V)}, we obtain P Xgy(qp)) Q-

Case 8: VEW
Subcase 8a, 8b, 8¢c: V = a, f, f(V4,..., V)
IfVE W, then they hold immediately by clause 8a, 8b, 8c, respectively. If VE *W and not V&’ W, the
outermost syntax of V' and W are same, since these are of the context. Therefore the conditions hold.
Subcase 8d: V' € Quo
We can assume that b ¢ fn(E’) holds. Then we have Jb & fn(E’).Poyg&{(mfyb(V)Jeifyb(w))}QO by
clause 8d of )V and Py Qo, since b & fn(E’). By fn(V') C fn(jél\(éf)) and fn(W) C fn(#2(€)), we have

& U {(reify, (V). reifun (W)} € LV, W) | VI(E U L(reifiyy (V) reif,(W))})* W amdfn(V') 1 {c} =
fn(W’) N {d} = 0}. Therefore 3b ¢ fn(E).Pyéﬂ{(reifyb( V) reifys (W Q i.e., PXeu(reify, (V) reify, (W)} &@-

Case 9: Similar to clause 8. ]
B.3 Soundness of the system

Definition B.1 (reduction-closed barbed equivalence). Reduction-closed barbed equivalence is the
largest binary relation = on closed processes such that P =~ () implies:

1. PS5 PlimpliesQ 5 ... 5 Q and P =~ Q'
2. P, implies Q) |,
3. the converse of 1 and 2 on ()
4. P|R = Q|R for all processes R
Theorem B.2 (soundness of environmental bisimulation). If P ~ (), then P = ().

Proof. We have to prove 4 cases of the requirement of reduction-closed barbed equivalence. Suppose
P ~ . Then we can suppose that there exists X such that PX:Q, € = {(a,a) | a € fn(P,Q)} and X

11



is an environmental bisimulation.

Case1: P = P’
By clause 1 of environmental bisimulation, we have 3Q".QQ = ... = Q' and P'X:Q'. Take ) =
{(£,P,Q) | & C &, PXeQ}. Then ) is also environmental bisimulation. Therefore P’Ye ()" and
& =A{(a,a)|ac(P,Q)} CE Hence P ~ ('

Case2: P |,
There are 2 subcases of .
Subcase: P |,

We have P LUON P’ for some V, P’. It indicates that for some VE*W, we have P LN P'. By clause 2

of environmental bisimulation, we have () 5o LIUSN ... = Q' for some @', since a € fn(P, () and
a&a. Therefore Q) .

Subcase: P la
We have P 2™, P’ for some ¢, V, P'. We can choose ¢ such that ¢ ¢ fn(#1(€)). So by clause 3
of environmental bisimulation, we have Q = ... Vda—<W>> ... 5 @ for some W, Q',d, since aa.

Therefore ) |,.
Case 3: Similar to 1 and 2.

Case 4: R is a process
Suppose P ~ @, i.e., P ~¢ @Q for & = {(a,a) | a € fn(P,Q)}. Let & = {(b,b) | b € fn(R)}.
By clause 7 of environmental bisimulation, P ~¢_ e Q. Since R(E U &')*R, we have P|R N((g*ug/

Q| R by Definition A.2. Since ~ is an environmental bisimulation up-to context, P|R ~g¢ er Q|R by
Theorem B.1. Hence P|R ~ Q|R. O

B.4 Completeness of the system

Lemma B.5.

X ={(&PQ) | Vagn(& P Q)

ve.(Plar(Vi)]... @ (Vi) = vd (QIlar(Wh)| ... ' (Wa)),
{e} = (P, V), {d} = fn(Q, W), € = {(V, W)},
b ¢ £.8 U{(redfy(V), reifys (W)} € € U{(B,B)}))

is an environmental bisimulation up-to context.

Proof. Leta & fn(€, P,Q), ve.(P|lar (V)] ... |!a_n</l/@~ vd. (Q|‘a1<Wl>\ @ (W), {é} = fn(P, V),

{d} = n(Q, W), VEW, and 3b & £.( U {(reify;(V), reify;(V))} C EU {(I;, b)}). We check the con-
ditions of environmental bisimulation up-to context.

Casel: P 5 P’
By ve.(Pllar(Vi)|...[\@(Vy))

Q

vd.(Q'az(Wh)| ... |'a,(W,)), there exists Q' such that Q = Q' and

12



ve.(P'ar (V)| .. 1@ (Vi) = vd (Q''ag (Wh)| . . . ['an(W,)). Thus P'XeQ, ie., PPAY Q.
Case2: P "L P afh VEW
Assume that R = a;(x;). . ... a;(z;).M(N).(m(x)|m(_)), where m is fresh (i.e., m ¢ fn(P,Q, &, a)),

...............

.....

Ve (PIGEOA)] . T (Vi [d(@) A1) D= ve(PEA)] .. [ (Va).

By ve.(P|lar(Vi)| ... ['an(Va)) = vd.(Q|'ar(Wh)| . .. |'a@,(W,)), there exists Q' such that

vd.(Qllar (W) .. '@y (W,))|[R = ... 5= -

vd-(Qar (W)l .. (1@ (W) {"or Wi/ o S a0 N (d(2)d)) =
vd.(Q''ar(Wh)| ... [lan(W,)) and vé.(P'lar(Vh)| . . . |'an (Vo)) = vd.(Q'|'ar(Wh)] . . . |'an (W,,)). Thus

I, X LQ’andP’Xg(*)Q’.

O

V)

Case 3: P 222 pro 4 ép c1 € fn(#1(€))

.......

3 : res, My),...reify,, (M, T\ 1/
eval({vl """ Vj/cci :vg}{ Foey (M) reif l)/y1 wtN) =V,

.....

..........

..........

..........

m1(21)-!—anf1<21))| o ‘(m_k<{vi ..... vj/wi ..... xj}{reifyel(Ml),~..Teifyel(Ml)/yl ..... yl}Nk)|mk(2k).!—an+k<zk>))) N
D= v (Pa()] - (Vi G (VO - s (VE))-
By ve.(P|lar(Vi)| ... ['an(Va)) = vd.(Q|'ar{(Wh)| . .. |'@,(W,)), there exists Q" such that
vd QI (Wh)| ... @i (W) R 5 ... = vd QG (W) ... 1@ (W) G t(W)] - . @z (W)
and v’ (P1ar (Vi) . .. |1 (Vi) i@ (V)| - @i (V7)) ~
vd' —d.b(W)

vd' (Q 1T (W) ... |fa (W G (WH| . . fam(WD)). Thus Q = ... XMW 7 0 and
P'Xe Q. e, P'XL ) @

Case 4: Similar to clause (1-3).

Case 5: VIEW, VoEW,

.................

.....

must have W; = W, so that VOZ.(Q\ lay (W) ... '@, (W,))| R s, and {f.. The other cases are similar.

A~

Case 6: {(P)EY(Q")
By the assumption of &£, we have P'£*()’. Therefore P]P’Xg(*)Q\Q’.

13



Case7: a & fn(P,#1(€)) b ¢& fn(Q,#2(E))
Assume that R = va.!@,;71(a). Then we have ve.(P[lay (Vi) ... '@, (V)| R =
ve,a.(Pllar(Vi)| .. |'an(Vi)llansi(a)) and vd.(Q|'ar (Wh)| . .. [la, (W) | R =
ve,b.(Qlar(Wh)|. .. '@y (Wy)|'@,51(b)). Therefore we have PXe (5 @-

Case 8: VEW
Subcase 8a, 8b, 8c: V =a, f, f(Vl, W)
Assume that R = a;(x;). . ... aj(z;).match M as x in if #1(x) = Sthenc(z) elsed(y), where S =
name, fun, or capp, eval({¥"Y9/,, .. }M) =V, and eval({Vir-Wi/,  , AM) =W.IfV = a, then
we have vé.(Pllar(Vi)| ... '@, (V)| R | and {f,. Thus we have W = b, so that
vd.(Qlaz (W) ... |'an (W,))|R |}, and Jf4. The other cases are similar.
Subcase 8d: V' € Quo

By clause 7 of environmental bisimulation up-to context, we have some b such that PXgU{(M)}Q, so that

£ U {(reify,(V), reify,(W))} € € U{(b,b)}. Therefore we have PXL ) (uin v ey (1w @-

Case 9: Similar to clause 8. O
LemmaB.6. R = {(P,Q) | P=vb.P,,Q =vb.Q1, P, ~ Q} C ~.

Proof. Assume P = V[;.Pl, Q = l/l;.Ql, and P; =~ (J;. We check the conditions of reduction-closed
barbed equivalence.

Casel: P = P’
By Lemma B.1, we have vb. P 5 vb. P/, where P, 5 P|. Then there exists ()] such that ), .5
Q) and P’ ~ (@} by clause 1, thus we have vh.Qr 5 ... 5 owb. Q). If we assume P’ = vb. P/ and
Q5 ... 5 Q =vb.Q), wehave P'RQ', since P, ~ Q).

Case2: P |, .
We have P, |, by P |,, where b ¢ fn(u). Then by P, ~ @y, we have Q; U, By b & fn(pn), we have
Q.

Case 3: Similar to 1 and 2.

Case 4: R is a process
There exist &' such that vb.P; = v/ {/,} Py, v0.Q1 = vV {"/,}Q1, and {*/,} P ~ {¥/,}Q1, where
U ¢ fn(R). Then we have vb. PR =0 ({¥/,}P1|R) and vb.Q1|R = vl .({"/,}Q1|R). By {¥/,} P, =
{¢ /b}Q1 and clause 4, we have {¥/,}Pi|R ~ {¥/,}Q1|R. Therefore we have P|R =
vt .({Y/,} PL|R)RuV .({¥/,}Q1|R) = Q| R. Hence P|[RRQ|R.

Corollary B.1. If P ~ Q, then vb.P =~ vb.Q.

Theorem B.3 (completeness of environmental bisimulation). If P =~ (), then P ~ ().
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Proof. Assume that

X ={(& PQ) | Yadfn(& PQ).
ve.(Pllar(Vi)l. .. '@ (Vo) ~ vd.(Qlar(Wh)| ... ['@(Wa)),
{e} = fn(P.V),{d} = fn(Q, W)€ = {(V. W)},
3b ¢ £.(6 U {(reifyp (V). reifys (W)} € € U{(5,B)})}
Then we have X is an environmental bisimulation up-to context by Lemma B.5. By the way, if P ~ @),
we have P[lay(b1)| ... '@, (by) ~ Q|'ar(b)|. .. |'a@,(b,) by clause 4 of reduction-closed barbed equiv-

alence, and vb.(P|lag(b,)|.. . |/an(b,)) ~ vb.(Q|lat(by)|. .. |%@n(b,)) by Corollary B.1, where {b} =
fn(P, Q) and a are fresh. Therefore PX:(Q) where € = {(b,b) | b € fn(P,Q)}, thatis, P ~ Q. O
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