
Curriculum Vitae

Kohei Suenaga

October 26, 2009

1 Personal Information

Name: Kohei Suenaga
Citizenship: Japan
Email Address: ksuenaga@gmail.com

2 Education

2008 Ph.D in Computer Science from University of Tokyo, JAPAN
2005 M.S. in Computer Science from University of Tokyo, JAPAN
2003 B.S. in Computer Science from University of Tokyo, JAPAN

3 Employment History

1. 2007- : Research Fellow of the Japan Society for the Promotion of Science
(DC2)

2. 2008- : Research Fellow of the Japan Society for the Promotion of Science
(PD)

3. 2009- : Researcher in Tokyo Research Laboratory, IBM Japan

4 Professional Society Memberships

ACM (SIGPLAN); IEEE; Japan Society for Software Science and Technology.

5 Research Experience

1. 2008–Present: Fractional Ownerships for Safe Memory Dealloca-
tion

We have proposed a type system for a programming language with memory
allocation/deallocation primitives, which prevents memory-related errors

1



such as double-frees and memory leaks. The main idea is to aug- ment
pointer types with fractional ownerships, which express both capabilities
and obligations to access or deallocate memory cells. By assigning an
ownership to each pointer type constructor (rather than to a variable), our
type system can properly reason about list/tree-manipulating programs.
Furthermore, thanks to the use of fractions as ownerships, the type system
admits a polynomial-time type inference algorithm, which serves as an
algorithm for automatic verification of lack of memory-related errors. A
prototype verifier has been implemented and tested for C programs.

The current verifier requires users to explicitly pass ownerships among
pointers by assertions. We are now developing a method to automatically
insert assertions into programs.

References: [9]

2. 2006–Present: Formal Verification for Concurrent Programs

The aim of this research is to establish a method for verification of cer-
tain critical properties (such as deadlock- and race-freedom) of concurrent
programs. Since many real-world concurrent programs, such as operating
system kernels, make heavy use of threads and interrupts, it is important
that the method can properly deal with both of the two features.

As a first step towards the goal, we have formalized a concurrent calculus
equipped with primitives for threads and interrupts handling [8]. We
have also proposed a type system that guarantees deadlock-freedom in
the presence of interrupts in [8]. To our knowledge, ours has been the
unique type system for deadlock-freedom that can deal with both thread
and interrupt primitives.

We have also designed a deadlock-freedom verification method for pro-
grams with non-block-structured lock primitives and mutable references [6].
Deadlock-freedom verification for programs with those two features had
not been developed yet.

In my Ph.D thesis [7], we have merged those two methods to a type-based
verification for concurrent programs with (1) non-block-structured lock
primitives (2) mutable references and (3) interrupts.

References: [6, 8]

3. 2005–2006: Resource Usage Analysis for the π-calculus

We have proposed a type-based resource usage analysis for the π-calculus
extended with resource creation/access primitives. The goal of the re-
source usage analysis is to statically check that a program accesses re-
sources such as files and memory in a valid manner. Our type system is
an extension of previous behavioral type systems for the pi-calculus, and
can guarantee the safety property that no invalid access is performed, as

2



well as the property that necessary accesses (such as the close operation
for a file) are eventually performed unless the program diverges. A sound
type inference algorithm for the type system is also developed to free the
programmer from the burden of writing complex type annotations. Based
on the algorithm, we have implemented a prototype resource usage ana-
lyzer for the π-calculus. To our knowledge, ours is the first type-based
resource usage analysis that deals with an expressive concurrent language
like the π-calculus.

References: [1, 2]

4. 2003–Present: Translation of Tree-Processing Programs into Stream-
Processing Programs Based on Ordered Linear Types

There are two ways to write a program for manipulating tree-structured
data such as XML documents and S-expressions: One is to write a tree-
processing program focusing on the logical structure of the data and the
other is to write a stream-processing program focusing on the physical
structure. While tree-processing programs are easier to write than stream-
processing programs, tree-processing programs are less efficient in memory
usage since they use trees as intermediate data.

The goal of this study is to establish a method for automatically trans-
lating a tree-processing program to a stream-processing one in order to
take the best of both worlds. To achieve the goal, we first introduce a
statically-typed language that accepts only tree-processing programs that
traverse input trees from left to right in the depth-first order, and show an
algorithm for translating well-typed tree-processing programs into stream-
processing programs [3, 4]. We then remove the restriction on the access
order by extending the language with primitives for selectively buffering
part of trees on memory.

With the extended language, programmers can write arbitrary tree-processing,
but inserting the buffering primitives manually is sometimes tedious. We
therefore also develop a type-based algorithm that inputs arbitrary tree-
processing programs and automatically inserts the buffering primitives [10].

Though the extended framework enables every simply-typed tree-processing
programs to be translated into a stream-processing program, the resulting
programs sometimes introduce redundant buffering of input data. This is
because, in real-world programs, many trees are accessed twice or more,
so that they are buffered, but only a part of such trees are actually used.
To solve this problem, we extend the framework above by introducing
ordered, non-linear types in addition to ordered linear types [5]. A tree
with an ordered, non-linear type is read lazily on memory, so that if a
part of the tree is not used, it can be discarded without read on memory.
The resulting transformation framework reduces the redundant buffering,
generating more efficient stream-processing programs.

3



References: [3–5, 10]

5. 2002–2003: The Interface Definition Language for Fail-Safe C

Fail-Safe C is a safe implementation of full ANSI-C. It uses its own in-
ternal data representations such as 2-word pointers and memory blocks
with headers describing their contents. Because of this, calls to external
functions compiled by conventional compilers require conversion of data
representations. Moreover, for safety, many of those functions need addi-
tional checks on their arguments and return values. This paper presents a
method of semi-automatically generating a wrapper doing such work. Our
approach is to develop an Interface Definition Language to describe what
the wrappers have to do before and after function calls. Our language is
based on CamlIDL, which was developed for a similar purpose between
Objective Caml and C. Our IDL processor generates code by using the
types and attributes of functions. The attributes are additional informa-
tion describing properties which cannot be expressed only by ordinary
types, such as whether a pointer can be NULL, what range of memory can
be safely accessed via a pointer, etc. We examined Linux system calls as
test cases and designed a set of attributes required for generating their
wrapper.

References: [11]

6 Educational Experience

1. 2003: Teaching assistant of “Compiler Lab” in Department of Information
Science, University of Tokyo.

2. 2004-2005: Teaching assistant of “ML Lab” in Department of Information
Science, University of Tokyo.

Publications

[1] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage
analysis for the π-calculus. In Proceedings of 7th International Confer-
ence on Verification, Model Checking and Abstract Interpretation (VMCAI
2006), Charleston, SC, USA, volume 3855 of Lecture Notes in Computer
Science, pages 298–312, January 2006.

[2] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage
analysis for the π-calculus. Logical Methods in Computer Science, 2(3:4),
2006.

[3] Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of
tree-processing programs into stream-processing programs based on ordered

4



linear type. In Proceedings of the 2nd Asian Symposium on Programming
Languages and Systems (APLAS 2004), Taipei, Taiwan, volume 3302 of
Lecture Notes in Computer Science, pages 41–56, November 2004.

[4] Koichi Kodama, Kohei Suenaga, and Naoki Kobayashi. Translation of
tree-processing programs into stream-processing programs based on ordered
linear type. Journal of Functional Programming, 18(3):333–371, January
2007.

[5] Kohei Suenaga Ryosuke Sato and Naoki Kobayashi. Ordered types for
stream processing of tree-structured data. In Programming Language Tech-
niques for XML (PLAN-X 2009), January 2009.

[6] Kohei Suenaga. Type-based deadlock-freedom verification for non-block-
structured lock primitives and mutable references. In Proceedings of the
6th ASIAN Symposium on Programming Languages and Systems (APLAS
2008), Bangalore, India, volume 5356 of Lecture Notes in Computer Sci-
ence, pages 155–170, December 2008.

[7] Kohei Suenaga. Type Systems for Formal Verification of Concurrent Pro-
grams. PhD thesis, University of Tokyo, March 2008.

[8] Kohei Suenaga and Naoki Kobayashi. Type-based analysis of deadlock
for a concurrent calculus with interrupts. In Proceedings of 16th European
Symposium on Programming (ESOP 2007),Braga,Portugal, volume 4421 of
Lecture Notes in Computer Science, March 2007.

[9] Kohei Suenaga and Naoki Kobayashi. Fractional ownerships for safe mem-
ory deallocation. In Proceedings of the 7th ASIAN Symposium on Pro-
gramming Languages and Systems (APLAS 2009). To appear., December
2009.

[10] Kohei Suenaga, Naoki Kobayashi, and Akinori Yonezawa. Extension of
type-based approach to generation of stream-processing programs by au-
tomatic insertion of buffering primitives. In Proceedings of International
Symposium on Logic-Based Program Synthesis and Transformation (LOP-
STR 2005), number 3901 in Lecture Notes in Computer Science, pages
98–114, September 2005.

[11] Kohei Suenaga, Yutaka Oiwa, Eijiro Sumii, and Akinori Yonezawa. The
interface definition language for Fail-Safe C. In Proceedings of International
Symposium on Software Security (ISSS 2003), volume 3855 of Lecture Notes
in Computer Science, pages 192–208, November 2003.

5


