Demand-Driven Verification Condition Generation
Advanced Compiler Technology Laboratory, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing 100080, P.R.China
Author 1:

Name: Yu Hongtao

Email: htyu@ict.ac.cn

Affiliation: Ph.D Candidate

Author 2:

Name: Huo Wei

Email: huowei@ict.ac.cn

Affiliation: Ph.D Candidate

Author 3:

Name: Zhang Zhaoqing

Email: zqzhang@ict.ac.cn

Affiliation: Professor and Ph.D Supervisor

Author 4:

Name: Qiao Ruliang

Email: qrl@ict.ac.cn

Affiliation: Professor

Author 5:

Name: Feng Xiaobing

Email: fxb@ict.ac.cn

Affiliation: Professor and Ph.D Supervisor
SUMMARY
We have presented a new method for program verification based on compiler technology. We are interested in checking whether a program satisfies given assertions by using Hoare logic. But the difference from Hoare logic and the weakest precondition strategy is that, we generate the verification conditions (VCs) on demand, which means the verification conditions generated are independent of the statements irrelevant with the assertions. Furthermore, our method can avoid analyzing unfeasible paths and reduce redundant computations. For some cases, the number of VCs we generate is equal to the reachable definitions of variables in the postcondition. So for those cases we can avoid the exponential explosion problem. Our method contains two major steps, GSA (Gated Single Assignment) construction and then demand-driven verification condition generation. We have implemented the method in our compiler ORC (Open Research Compiler).
We make the following contributions:

· Our VCG uses a path-sensitive dataflow analysis that can analyze all the feasible program execution paths efficiently without enumerating or traversing all the paths explicitly. The path-sensitive dataflow analysis is based on SSA construction in which we performed renaming. The remaining can avoid exponential explosion of VC generation. For some cases the number of VCs we generate has a linear relation to the definition points of variables.
· The verification conditions are generated on demand. It means that if any of statements isn’t needed to check, our algorithm can ignore it when the weakest preconditions are generated.
· Our VCG can eliminate invalid program execution paths. If a path can never be executed in the program, the path is called an invalid path.

· Our VCG can also merge some similar paths in order to produce a common VC. This can prevent redundant computations among these paths.
We have implemented the method in compiler VeriORC. And we do some experiments for real-world C programs. The results show that the VCs we generated are much less and much simpler than the current popular tools do, such as Why & Caduceus, at the reasonable expense of a little more time consuming.
We are now extending the method to accommodate large programs that contain function calls and pointers. We intend to construct a global CFG called Interprocedural Control Flow Graph (ICFG) in which the CFG of each subprogram is connected. Then we will construct a global GSA form in the ICFG to analyze the dataflow information path-sensitively and context-sensitively.
PAGE

