
Region-based Memory for CLI

Alexandru Stefan Florin Craciun Wei-Ngan Chin
Department of Computer Science, National University of Singapore

{alexandr, craciunm, chinwn}@comp.nus.edu.sg

Abstract
Region-based memory management can offer increased time per-
formance, providing support for real-time constraints in program
execution. We have implemented region-based memory support
into the SSCLI 2.0 platform and also devised a region inference
system for CIL programs, with the aid of newly introduced instruc-
tions. Results seem promising, as the programs running with re-
gions have considerably smaller interrupting delays compared to
those running with garbage collector.

1. Introduction
The Common Language Infrastructure (CLI) [5] is an ECMA stan-
dard that describes the core of the .NET Framework. The Microsoft
Shared Source CLI [4] (SSCLI) is one of the implementations of
the ECMA CLI standard, made publicly available for research pur-
poses (while the Microsoft .NET Framework is a commercial im-
plementation of CLI).

We modified Microsoft’s SSCLI memory system such that its
default garbage collector can co-exist with our region-based mem-
ory system. Our system is targeted for using a stack of lexically
scoped regions in which the last region created is the first deleted.
A region is used to give bounds to the lifetime of objects allocated
within it. Deallocating a region deletes all its contents in one op-
eration, resulting in better memory utilization at the cost of some
predictable risks: the dangling references. A reference is said to
be dangling if it points to (an object within) a region that has been
deallocated. Dangling references can lead to unsafe memory access
because, by having the referenced memory freed too early, new un-
expected allocations could be interposed. Our solution to this prob-
lem is a no-dangling approach, preventing programs from creating
dangling references at all.

We also formalised and implemented a region inference system
for CIL (the language used in CLI). The region inference is based
on our previous work [2], using mechanisms that guarantee that
CIL programs never create dangling references while running on
our modified SSCLI platform.

2. SSCLI and GC
The default memory system in SSCLI is a generational Garbage
Collector, managing two generations of objects. This GC is more-
over a copying/mark-and-sweep collector depending on the gen-
eration being inspected. There is a difference made between small
objects (stored in the two generations) and large objects, considered
as ‘large’ when having a size bigger than 85KB. The large objects
are treated differently, being allocated in a large object heap, a spe-
cial heap which is logically part of the older generation.

Any allocated object occupies memory even after becoming
dead, until garbage collection takes place. Garbage collection is
triggered by memory scarcity and other runtime points. The sim-
plified GC algorithm:

• For generation 0 copy all live objects to generation 1

• For generation 1 and large heap - mark and sweep (without
compaction)

• Additional cleaning-up for both generations
The GC keeps track if an object is alive by ‘tracing the roots’

(marking of all live objects), consisting of first finding live objects
from direct references and then further searching for live objects
scanning the newly found. Copying live objects, done only for gen-
eration 0, also includes updating references to new correct values
pointing to the moved objects. Marking refers to tagging objects
as being alive. Sweeping represents freeing ‘dead’ objects - the ob-
jects which haven’t been previously marked. The mark-and-sweep
is only done for generation 1 and large object heap; there is no com-
paction made, so objects from the old generation and large heap are
never moved.

3. Our Approach
We briefly present the modifications made to the SSCLI 2.0 source
code for integrating a region subsystem, then we describe the
compile-time region inference able to automate program adapta-
tion for using this subsystem.

3.1 Design Decisions

We are using the large object heap (from the existing GC) for
allocating regions. This decision is accounted by the usually broad
sizes of regions and the fact that regions’ memory address need not
change (no copying is made for the large object heap). We make use
of fixed sizes for regions and region extensions - whenever filled,
regions will extend with fixed size increments.

A Region class is now used in the code to internally represent all
vital information that makes up a region (a set of pointers, similar
to how Hallenberg et al. [3] represented regions):
• p_region_start, the region’s starting address

• p_region_end, region ending address

• p_new_alloc, new allocation pointer

• p_next, next region extension
The first two pointers are used to simply delimit the region’s

contiguous memory space. Their values are obtained at the point
of explicit allocation of a region inside the large heap. The third
pointer is used to designate where a new object can be allocated
Its value is initialized with the region’s starting address added with
the usual region header size. So that the regions can be expandable,
the forth pointer p_next was introduced to link a region with its
extension, which in turn can have an extension and so on.

Regions can be identified by an assigned index (or id) and thus,
are conveniently placed in an array of Region objects. Whenever
some operation is necessary on a particular region, the pointers
found at the correct index in the array will reflect the region’s
state prior to that operation. To support even larger numbers of



runtime regions, the storage of Region instances is extended past
the region array’s size, through a linked list of region handles,
being practically unbounded. Note that the Region objects, array
and linked list described here are environment entities, and invisible
to the executing program.

3.2 New CIL Instructions

Languages which target the CLI standard (C#, Visual Basic, man-
aged C++ and other .NET languages) compile to CIL (Common
Intermediate Language), which is assembled into bytecode. CIL
resembles an object oriented assembly language, and is entirely
stack-based. With the region features being encompassed into the
SSCLI platform, the following new CIL instructions (opcodes) be-
come necessary:

letreg - Allocates a region. Permits specifying a region index
and even the initial space size (which will usually be a fixed one).

freereg - Deallocates a region. Requires an index, denoting
which region to deallocate.

newrobj - Create an object inside a region.
newrarr - Create an array object (arrays are objects in .NET)

inside a region.
For ensuring harmony of these features with the GC, we use

some of GC’s locks for memory operations. Also, we are enforcing:
- regions are never garbage collected
- objects in regions are part of reference tracing but never part

of sweeping

The programmer can either manually intervene at CIL level,
inserting region control in what areas of his program he deems
necessary, or as a second option, the region instructions can be
inserted automatically by a compile-time region inference.

3.3 Region Inference

Region inference translates a standard CIL program into a CIL pro-
gram with regions. The main algorithm was adapted from [2]. How-
ever, CIL is a stack-based language, therefore we had to modify the
original flow-insensitive region inference to trace the type of the
stack operands in a flow-sensitive manner. As first step of the infer-
ence, every object (variable) in the program code is parameterized
with region variables. Then region lifetime constraints are gathered
for each class and method. These constraints express the order in
which regions should outlive each other - the aim is simply to for-
bid dangling references from being created. After all the constraints
are known for each of the program’s logical blocks, the region vari-
ables can either escape a block or be localized in it. Former sit-
uation implies that the objects going to a certain region (denoted
through their parameterization) are still being referenced after the
analyzed block ends, so that region needs to live longer than the ref-
erencers (the region escapes). All regions found in a block that are
non-escaping are considered localized regions, meaning they will
be discarded as soon as the block ends. The final steps of the infer-
ence are inserting additional parameters in the method signatures
to capture region handles and also insert region instructions for re-
gion allocation/discarding (for the localized regions) and region-
contained object allocations.

The inference is also handling features like method recursion,
method overriding, static fields and others. Finally, we identified
some optimizations regarding the management of regions:
• region resetting - prevents repetitive allocation/deallocation of

regions; useful for loops: at the end of each cycle, we are
resetting the loop-localized region

• region relegation - instead of creating a new region at a block
level to allocate new objects into it, using an existing region
whenever convenient (as to avoid excessive fragmentation of
the memory into regions)

• forced localization - forcing a new local region for a particular
sequence of instructions in order to prevent the storage of too
many dead objects

4. Experimental Evaluation
Our prototype of the region inference was implemented in F# [6].
We tried mostly small-sized benchmarks (adapted from RegJava
and Olden suites also used in [2]) and a tree-constructing GC test
[1] for testing our CIL inference. The execution speed improvement
can be observed in the tables below (timings are in milliseconds):

Input size GC Regions
Eratosthenes n=5000 703 672

n=10000 1422 969
Ackermann n=3*10+8 1454 1328

n=3*10+9 3765 2422
Merge Sort n=20000 1610 1391

n=25000 2359 1484
Mandelbrot n=800*400 1016 1016

n=1000*500 1281 1281
GC Trees fixed 7297 6313

Four out of ten programs from the Olden suite had notable
speed advantage when run with regions, with this being a more
general benchmark (not specifically comprising memory-intensive
applications). Speed gain in these tests mostly comes from the
absence of live object tracing for regions.

Olden suite Input size GC R Improv.
BH 300 8859 8688 1.9 %

400 12141 11938 1.7 %
MST 500 5859 5469 6.7 %

700 10641 9781 8 %
Perimeter 300 2875 2781 3.3 %

400 8484 8031 5.3 %
TreeAdd 20 2401 1575 34.4 %

21 5161 2136 58.6 %

The other Olden programs that have not shown significant speed
advantage use simpler memory structures and have low memory
demand. Nonetheless, we observed that the region programs are
usually at least as fast in execution as the ones running with GC.

5. Conclusion
We built region-based memory support into the SSCLI 2.0 envi-
ronment and added new instructions in the CIL opcode set for sup-
porting region operations. We implemented a region inference sys-
tem that automates the translation of initially garbage collected CLI
(.NET) programs into the region-aware versions. Then we mea-
sured performance aspects of executing programs obtained with
the inference. Execution of region programs exhibits a bigger speed
improvement for programs using complex data structures. Because
regions have bounded delays throughout execution (unlike GC’s
pauses), they also possess a better real-time performance.

References
[1] H. Boehm. http://www.hpl.hp.com/personal/Hans Boehm/gc/.

[2] W.N. Chin, F. Craciun, S.C. Qin, and M. Rinard. Region Inference for
an Object-Oriented Language. In ACM PLDI, Washington, DC, 2004.

[3] N. Hallenberg, M. Elsman, and M. Tofte. Combining Region Inference
and Garbage Collection. In ACM PLDI, Berlin, Germany, 2002.

[4] D. Stutz, T. Neward, and G. Shilling. Shared Source CLI Essentials.
O’Reilly, 2003.

[5] ECMA-335 Standard: Common Language Infrastructure (CLI), 4th
edition, 2006.

[6] F# Language. http://research.microsoft.com/fsharp/fsharp.aspx.


