
A Calculus for Hardware Description Languages

Sungwoo Park and Jinha Kim

Department of Computer Science and Engineering
Pohang University of Science and Technology

{gla,goldbar}@postech.ac.kr

In efforts to overcome the complexity of the syntax and the lack of formal
semantics in conventional hardware description languages (most notably Verilog
and VHDL), a number of approaches based on functional languages have been
proposed. The merits of functional languages as hardware description languages
can be attributed to the fact that basic building blocks for hardware circuits are
equivalent to mathematical functions while functional languages lend themselves
to creating and composing mathematical functions.

Functional hardware description languages are typically embedded into ex-
isting functional languages such as Haskell and ML, or into new functional lan-
guages designed specifically for hardware design such as reFLect . Since its seman-
tics is unaware of hardware circuits, a host language represents hardware circuits
as a special datatype. Eventually we convert such a datatype into netlists which
describe connections in hardware circuits at the lowest level.

Converting a datatype representing hardware circuits into netlists is certainly
a necessary step, but makes it an unnecessarily low level task to prove properties
of hardware circuits. The reason is that netlists conceal high level descriptions
written into a source program and are thus correspondingly more complex to
analyze. Such an indirect analysis via netlists can be compared to an analysis
of an ordinary functional program in which we first compile it into an assembly
language and then analyze the output assembly program instead.

We present a new calculus, called lλ, which may serve as a “high level assem-
bly language” for functional hardware description languages. lλ is an assembly
language in the sense that its definition consists only of a minimal set of prim-
itive constructs each of which corresponds to a specific method of combining
hardware components, e.g., linking two separate hardware components or build-
ing feedback circuits. lλ is still a high level language in that it makes no explicit
use of low level constructs, such as ports and wires, characterizing netlists. As
it extends the syntax and the type system of the standard lambda calculus,
lλ is particularly suitable as a substitute for netlists when designing functional
hardware description languages.

Two characteristic features of lλ are a denotational semantics and a linear
type system. The denotational semantics enables us to translate an expression,
without evaluating it, into a structural description of hardware components and
their connections. It is sound in the sense that it maps expressions only to realiz-
able hardware circuits which contain no input terminal connected with multiple
wires. It is also complete in the sense that every realizable hardware circuit has
a corresponding expression in lλ as long as all its hardware components are con-



nected via wires. The linear type system enables us to treat functions as first
class objects as in conventional functional languages.

As a proof of concept, we extend lλ with polymorphism and implement a
Fast Fourier Transform circuit. An expression of a polymorphic type describes a
family of hardware circuits with essentially the same layout of hardware compo-
nents, but with different numbers of wires. It yields a specific hardware circuit
when all its type variables are instantiated to sharable types. Thus polymorphism
in lλ offers a simple form of metaprogramming which is particularly useful for
writing higher-order combinators.

As Sheeran [1] notes, “functional programming and hardware design are a
perfect match.” Thus it is actually no surprise to see that there is already an
extensive literature on functional hardware description languages. What comes
as a surprise, however, is that there has been little effort to formally interpret the
lambda calculus, the core calculus for all functional languages, directly in terms
of structural descriptions of hardware circuits. The development of lλ has been
motivated by a desire for such a formal interpretation of the lambda calculus.

References

1. Sheeran, M.: Hardware design and functional programming: a perfect match. The
Journal of Universal Computer Science 11(7) (2005) 1135–1158

2


