
Implementing a Modular OO Veri�er

Cristian Gherghina1 Cristina David2 Huu Hai Nguyen3 Wei-Ngan Chin2,3

1 Department of Computer Science, Politehnica University of Bucharest
2 Department of Computer Science, National University of Singapore

3 Computer Science Programme, Singapore-MIT Alliance
{cristian,davidcri,nguyenh2,chinwn}@comp.nus.edu.sg

Abstract
Conventional speci�cations for object-oriented (OO) programs
must adhere to behavioral subtyping in support of class inheritance
and method overriding. However, this requirement may cause loss
of precision and modularity during program reasoning. To over-
come these two problems we advocate a new approach to OO ver-
i�cation that focuses on multiple speci�cations (for static and dy-
namic dispatches) and an enhanced speci�cation subsumption that
can help avoid re-veri�cation. We have implemented a prototype
veri�er for a simple OO language and have successfully validated
our new approach for a set of small programs.

1. Introduction
Separation logic [7, 3] extends Hoare logic to support reasoning
about shared mutable data structures. It adds two more connectives
to classical logic: separating conjunction ∗, and separating impli-
cation −−∗. We only make use of the former connective, h1 ∗ h2,
which asserts that two heaps described by h1 and h2 are domain-
disjoint.

For separation logic to work with OO programs, one key prob-
lem that we must address is a suitable format to capture the objects
of classes. The format we use is y::c〈t, v∗〉 denoting a variable y
that points to an object belonging to c-class whose actual type is t
and its �elds are v∗.

2. Lossless Casting
An issue we address is performing upcast/downcast operations
statically in accordance with OO class hierarchy, and without loss
of information where possible. Our object format allows lossless
casting to be performed with the help of the Ext predicate that
captures the �elds added by a subclass. For instance, let us consider
the following class hierarchy:

class A {int n; }
class B extends A {int m; }

When an object x of type B is �rst created, we may capture its state
using the formula x::B〈t, 1, 2, p〉∧t=B∧p=null. This formula
indicates that the actual type of the object is t=B and that there
is no record extension since p=null. With this object format, we
can now perform an upcast to its parent A class by transforming it
to: x::A〈t, 1, q〉∗q::Ext〈B, 2, p〉∧t=B∧p=null. Though this cast
operation is viewing the object as a member of A class, it is still a
B object as the type information t=B indicates. Furthermore, we
have created an extension record q::Ext〈B, 2, p〉 that can capture
the extra �eld of the B subclass.

There are also occasions when we are required to pass the full
object with all its (extended) �elds. This occurs for speci�cations
of methods where subsequent overridings may change the extra
�elds of its subclass. To cater to this scenario, we introduce an
ExtAll〈t1, t2〉 predicate that can capture all the extension records
from a class t1 for an object with actual type t2. The ExtAll
predicate can be de�ned as follows, where the notation t3<t1
denotes a class t3 and its immediate superclass t1:

ExtAll〈t1, t2〉 ≡ t1=t2∧self=null ∨ self::Ext〈t3, v∗, q〉
∗q::ExtAll〈t3, t2〉∧t3<t1∧t2<:t3 inv t2<:t1

We refer to the use of formula x::A〈t, v, p〉∗p::ExtAll〈A, t〉 as
providing a full view for an object with actual type t that is being
treated as a A-class object, while x::A〈t, v, p〉 provides only a
partial view with no extension record. For brevity, full views are
typically written as x::A〈v〉$, while partial views are coded using
x::A〈v〉 which also hides type t and reference to extension p.

3. Static and Dynamic Speci�cations
One major issue to consider when verifying OO programs is how to
design speci�cation for a method that may be overridden by another
method down the class hierarchy, such that it conforms to method
subtyping. Most analysis techniques uphold Liskov's Substitutivity
Principle [5] on behavioral subtyping. Under this principle, an
object of a subclass can always be passed to a location where an
object of its superclass is expected, as the object from each subclass
must subsume the entire set of behaviors from its superclass. To
enforce behavioral subtyping for OO programs, several past works
[2, 1, 4] have advocated for class invariants to be inherited by
each subclass, and for pre/post speci�cations of the overriding
methods of its subclasses to satisfy a speci�cation subsumption
(or subtyping) relation with each overridden method of its super-
class. A basic speci�cation subsumption mechanism was originally
formulated as follows.
DEFINITION 3.1 (Speci�caton Subsumption). Consider a method
A.mn in class A with (preA ∗→ postA) as its pre/post speci-
�cation, and its overriding method B.mn in subclass B, with a
given pre/post speci�cation (preB ∗→ postB). The speci�cation
(preB ∗→ postB) is said to be a subtype of (preA ∗→ postA) in
support of method overriding, if the following subsumption relation
holds:

preA∧type(this)<:B =⇒ preB postB =⇒ postA

(preB ∗→ postB) <:B (preA ∗→ postA)

Consequently, a drawback that might arise is that speci�cations
are typically imprecise (or weaker) for methods of superclasses.
To improve precision of OO veri�cation, we advocate for multiple
speci�cations to be allowed for each method and we introduce two
categories of speci�cations, known as static and dynamic speci�-
cations.
Static Pre/Post: A speci�cation is said to be static if it is meant
to describe a single method declaration, and need not be used for
subsequent overriding methods.
Dynamic Pre/Post: A speci�cation is said to be dynamic if it is
meant for use by a method declaration and its subsequent overrid-
ing methods.
Each dynamic speci�cation must satisfy the following two sub-
sumption properties:
• Be a speci�cation supertype of its static counterpart. This helps

keep code re-veri�cation to a minimum.
• Be a speci�cation supertype of the dynamic speci�cation of

each overriding method in its sub-classes. This helps ensure
behavioral subtyping.



To illustrate our approach towards OO veri�cation, let us con-
sider the following example, highlighting the use of partial views
for static speci�cations and of full views for the dynamic ones:
class A {
int n, m;
void set n to 1()
static requires this::A〈 , 〉 ensures this::A〈1, 2〉;
dynamic requires this::A〈 , 〉$ ensures this::A〈1, 2〉$

∨this::A〈1, 3〉$;
{this.n = 1; this.m = 2; }}

class B extends A{
void set n to 1()
static requires this::B〈 , 〉 ensures this::B〈1, 3〉;
dynamic requires this::B〈 , 〉$ ensures this::B〈1, 3〉$;
{this.n = 1; this.m = 3; }

A uses dynamic(A v)
static requires v::A〈 , 〉 ensures res::A〈1, 2〉∨res::A〈1, 3〉;
{v.set n to 1(); return v; }}

A uses static()
static requires true ensures res::A〈1, 2〉;
{A v = new A(0, 0); v.set n to 1(); return v; }}

The dynamic speci�cation of method set n to 1 in class A is weak-
ened to ensure behavioral subtyping, becoming less precise than its
static counterpart. As in method uses static we know the exact
type for the receiver v of the call v.set n to 1 to be A, we can use
the static speci�cation given to the method set n to 1 in class A.
On the other hand, in the method uses dynamic, due to dynamic
dispatch, we are forced to use the more imprecise dynamic speci�-
cation. Consequently, the postcondition that we are able to ensure
for the uses static method, res::A〈1, 2〉, is stronger than the one
for uses dynamic, res::A〈1, 2〉∨res::A〈1, 3〉.

4. Enhanced Speci�cation Subsumption
We improve on the notion of speci�cation subsumption given in
De�nition 3.1 by allowing postcondition checking to be strength-
ened with the residual heap state from precondition checking. This
enhancement is courtesy of the frame rule from separation logic.
DEFINITION 4.1 (Enhanced Spec. Subsumption). A pre/post an-
notation preB ∗→ postB is said to be a subtype of another pre/post
annotation preA ∗→ postA if the following relation holds:

preA` preB∗∆ postB∗∆` postA
(preB ∗→ postB) <: (preA ∗→ postA)

Note that ∆ captures the residual heap state from the contravari-
ance check on preconditions that is carried forward to assist in the
covariance check on postconditions.
To illustrate the utility of the enhanced speci�cation subsumption,
let us consider the example given below for which we need to
ensure that static-spec(A.foo) <: dynamic-spec(A.foo).

class A {int n;
void foo()
static requires this::A〈 〉 ensures this::A〈1〉
dynamic requires this::A〈 〉$ ensures this::A〈1〉$
{this.n = 1; }}

class B extends A{int m;
void foo()
static requires this::B〈 , 〉 ensures this::B〈1, 1〉
{this.n = 1; this.m = 1; }}

For the required speci�cation subsumption to hold, we must prove:
this::A〈t, , p〉 ∗→ this::A〈t, 1, p〉<: this::A〈t, , q〉∗q::ExtAll〈A, t〉

∗→ this::A〈t, 1, q〉∗q::ExtAll〈A, t〉
The above subtyping only succeeds with our enhanced subsump-

tion relation. We �rst show the contravariance of the preconditions:
this::A〈t, , q〉∗q::ExtAll〈A, t〉` this::A〈t, , p〉∗∆

This succeeds with ∆≡p::ExtAll〈A, t〉. We then prove covariance
on the postconditions using:

this::A〈t, 1, p〉∗∆ ` this::A〈t, 1, q〉∗q::ExtAll〈A, t〉
This is proven with the help of residual heap state ∆ (with an

extension record) from the entailment of preconditions.

5. Implementation
We have constructed a prototype system for verifying OO pro-
grams. Our prototype is built using Objective CAML augmented
with an automatic Presburger solver, called Omega [6]. The main
objective for building this prototype is to show the feasibility of our
approach to enhanced OO veri�cation based on a combination of
static and dynamic speci�cations.

Our initial study contains a set of small benchmark programs
which are given in Figure1. We provide the time (in seconds) taken
to verify each class of those programs. The veri�cation process
consists of two parts: veri�cation of the given static speci�cations
against the bodies of the corresponding methods (VS), and the
speci�cation subtyping checking meant to avoid re-veri�cation of
all dynamic speci�cations (SSC). VS and SSC are given in the sec-
ond and third columns of Figure 1, respectively. The last column
contains the time taken by the re-veri�cation of the dynamic spec-
i�cations against the bodies of the corresponding methods. Due to
our requirement that each dynamic speci�cation is a supertype of
its static counterpart, this re-veri�cation is avoided.

Class VS SSC Re-veri�cation
(secs) (secs) Savings (secs)

Example introduced in Section 3
A 0.03 0.012 0.104
B 0.087 0.029 0.032

Example introduced in Section 4
A 0.07 0.01 0.018
B 0.02 0.013 0.012

A counter example
Cnt 0.05 0.016 0.04

FastCnt 0.044 0.012 0.034
PosCnt 0.065 0.048 0.046
TwoCnt 0.072 0.0226 0.06

Figure 1. Veri�cation Times for Small Benchmarks
References
[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming

system: An overview. In Workshop on Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices, 2004.

[2] K.K. Dhara and G. T. Leavens. Forcing behavioral subtyping through
speci�cation inheritance. In IEEE / ACM SIGSOFT ICSE, pages 258�
267, 1996.

[3] S. Isthiaq and P.W. O'Hearn. BI as an assertion language for mutable
data structures. In ACM POPL, London, January 2001.

[4] J. Kiniry, E. Poll, and D. Cok. Design by contract and automatic
veri�cation for Java with JML and ESC/Java2. ETAPS tutorial, 2005.

[5] B.H. Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices,
23(5):17�34, May 1988. Revised version of the keynote address given
at OOPSLA'87.

[6] W. Pugh. The Omega Test: A fast practical integer programming
algorithm for dependence analysis. Communications of the ACM,
8:102�114, 1992.

[7] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In IEEE LICS, Copenhagen, Denmark, July 2002.


