
Efficient Specialization for Applications Using
Shared Libraries

Ping Zhu and Siau-Cheng Khoo

Department of Computer Science, National University of Singapore

1 Introduction

The past few decades have witnessed the prevalence of using shared libraries to
provide reusable and essential services in many systems or application domains.
It has been widely acknowledged that building applications through reusing
shared libraries achieves memory sharing in the sense that there is one single
copy of memory allocated for a shared library and this memory is sharable across
various applications which reuse it. Memory sharing contributes to significant
runtime performance improvements.

Unfortunately existing program specialization frameworks were designed for
specializing static libraries. They are inefficient in specializing applications which
reuse shared libraries in the following two aspects.

Firstly, specializations for libraries were application-driven. Libraries were
not specialized independently. We proposed independent library specialization
to address this inefficiency [4]: We aimed for specializing a library without taking
into consideration its use contexts. Independent library specialization produced,
for a library:

– A set of specialization scenarios which are deemed profitable with respect to
user-specified profitability declarations, and

– A generic specialization library which is a synthesis of (multiple) profitable
specialization scenarios and the original library. It can be efficiently adapted
to different specialization contexts.

Secondly, existing program specialization frameworks adopted static link-
ing to link specialized libraries with the application to produce the final ex-
ecutable specialized application. Thereafter they do not possess the memory
sharing merit. To address this inefficiency, we adopt dynamic linking to link
generic specialization libraries with the application for specialization purpose.
A novel approach to runtime specialization, which is the focus of this poster, is
applied aiming for maximize the memory sharing effect.

2 A novel approach to runtime specialization

Conventional runtime specialization technique [1, 3, 2] created a runtime gener-
ating extension Prtge for a program P with respect to ss a binding time division



of it parameters. Prtge produced different runtime specialized codes Prtsc with
respect to different values of static parameters during runtime. Prtge was com-
monly comprised of two parts:

– Several object templates, each of which is a binary code compiled from a
(partially-)dynamic program fragment parameterized by static expressions.

– A runtime specializer, which not only represents the computations that are
completely decided by the static parameters, but also contains operations
to manipulate object templates. The operations include selecting templates,
filling static expressions in the template (which is termed as template instan-
tiation), and dumping instantiated templates. When creating a Prtsc from a
Prtge, a memory is dynamically allocated to store instantiated templates.
The address of this memory is returned as a function pointer to Prtsc.

Our novel approach to runtime specialization continues to value this two-part
structure of runtime generating extension. We categorize object templates into
two types: Totally dynamic templates without any embedding static expressions
and hybrid templates parameterized by at least one static expressions. Totally dy-
namic templates are sharable among different runtime specialized codes. Thus we
choose not to dump totally dynamic templates into dynamically allocated mem-
ories during runtime. For hybrid templates, they are instantiated and dumped
into dynamically allocated memories.

Given that totally dynamic templates and hybrid templates are located in
two logically separate memories now to form the runtime specialized code, these
templates need to be explicitly connected together so that the execution of the
runtime specialized code can proceed. We tackle this problem by

1. building a table which records the starting address of each object template
to which control will be passed during the process of creating runtime spe-
cialized code and;

2. adding two more types of operations in the runtime specializer to manipulate
object templates. These two extra operations are:

– Registration operation which registers the address of the object template
to the table;

– Redirecting operation which directs the program execution control to the
subsequent template at the end of execution of current template. The
subsequent template is located by the address recorded in the table

In summary our novel approach minimizes the needs to dump object templates
to dynamically allocated memories. This approach achieves memory sharing by
sharing totally dynamic templates among different runtime specialized codes, at
the expense of building an extra table at runtime. Together with our earlier
solution to independent library specialization, this novel approach to runtime
specialization act as two pillars of the framework of efficient specialization for
applications using shared libraries.



References

1. Charles Consel and François Noël. A general approach for run-time specialization
and its application to c. In Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 145–156, St. Petersburg Beach, Florida,
United States, 1996. ACM Press.

2. Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eg-
gers. Dyc: an expressive annotation-directed dynamic compiler for c. Theoretical
Computer Science, 248(1-2):147–199, 2000.

3. Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eg-
gers. An evaluation of staged run-time optimizations in dyc. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 293–304,
New York, NY, USA, 1999. ACM Press.

4. Ping Zhu and Siau-Cheng Khoo. Towards constructing reusable specialization com-
ponents. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pages 154–164, New York, NY, USA, 2007. ACM Press.


