
Towards a Practical π-Calculus Based Mobile

Agent System

Seiji Umatani, Masahiro Yasugi, and Taiichi Yuasa

Graduate School of Informatics, Kyoto University

In recent years, almost all computers around the world (such as servers,
PCs, and PDAs) are connected to the Internet and many people want to utilize
remote resources effectively via the network. In such situations, mobile agent
model gets a lot of attention as one of powerful computation models which
enables the construction of flexible, scalable, and secure distributed applications
in a wide-area computer network.

We are now designing and implementing a π-calculus based mobile agent
programming language. π-calculus is a concurrent process model in which mul-
tiple processes interact with each other via channels. There are many research
activities which propose various extensions to π-calculus with the concepts of
location and mobility. However, most of them are developed for the purpose of
theoretical study, and there are not many practical π-calculus based systems at
present.

π-calculus has several problems to be solved in order to be used as a prac-
tical programming language. The most serious one is the runtime resolution
of names. In π-calculus (and many its extensions), the reduction of a process
term is defined by a set of reduction rules and each name occurrence in the term
can be resolved by searching for the corresponding channel declaration through
enclosing terms at runtime. In order to pass a locally declared channel to an-
other process, the scope of the channel can be arbitrarily extruded to include
the process that receives it. This extrusion, however, is possible only in the
impractical assumption that the entire system is described in a single source
program. From a practical point of view, realizing scope extrusion needs some
kind of elaborate means to avoid name collisions, to refer to names declared in
other modules, and so on.

On the other hand, we employ π-calculus as a base model of our language
because its simple syntax and semantics make program analysis simple and
straightforward. In implementing a practical system, we need to consider the
execution efficiency of mobile agent programs, and if their analyses are simple
and easy tasks, we can apply various optimization techniques to them. In con-
trast, with mobility extensions to an existing language (e.g., Java), it takes a
considerable effort for these extensions to be consistent with pre-existing fea-
tures of the language and it is difficult to analyze correctly.

Based on the above consideration, we designed a new mobile agent language
with the syntax shown in Figure 1. In our language, an agent is represented
as a logical location (written as “l[...]”) which may include channels, in-
put/output processes, and other agents in it. The main features of our language
are as follows:

1



<proc> ::=
<name> ! ( <expr> [, <expr>]* )

| <name> ? ( <identifier> [, <identifier>]* ) -> <proc>
| ( <proc> [| <proc>]* )
| new <identifier> : [chan | loc] in <proc>
| <identifier> [ <proc> ]
| move <identifier> then <proc>

<expr> ::= . . . | <name> | . . .
<name> ::= <identifier> | ’<identifier>’

Figure 1: The syntax of our mobile agent language (excerpt).

flexible name resolution: Normal name occurrences in a program are re-
solved with lexical scope at compile time. During its execution, each name
keeps referring to the same channel bound at compile time independently
of the enclosing agent’s movement. At the same time, runtime name reso-
lution with dynamic scope may be preferable in some situations. For such
situations, our language provides another way of specifying channels with
dynamic scope (denoted with quotation, like ’c’).

first class location: In our language, locations as well as channels can be
passed among agents through channels. This enables the construction
of flexible and modularized large-scale applications because we can almost
always keep locations separate (i.e., invisible) from each other and we may
pass them through channels.

strict definition of channel affiliation: During the execution, a channel is
created at the current location when its declaration is executed and it
never changes its affiliation once created; that is, if a location (agent)
moves to another location, it takes its affiliate channels with it. This
semantics simplifies the implementation and makes it easier for program-
mers to figure out communication patterns. In theoretical terms, channel
affiliation means that no scope extrusion is permitted in our language.

In our current implementation, the entire system consists of location servers
and consoles, both written in Java. A location server corresponds to a sin-
gle (logical) location, and all servers are interconnected with each other in a
tree-structure manner. A server executes arriving agents in turn with a naive
interpreter. A console can connect to any location server and it can send an
agent program to the server interactively.

Additionally, in the current implementation in Java, we can register any Java
object as a passive and immovable agent in a server. In order to call this agent’s
Java method, another agent at the server can send an appropriate message to
it through a channel that can be resolved only with dynamic scope.

2


