Foundations of Software Science (ソフトウェア基礎科学) / Foundations of Computer Software (ソフトウェア基礎) Exercises (<u>no need to submit</u>) October 30, 2009 Eijiro Sumii (instructor)

Fill in the blanks below after the following definitions.

Definitions

The syntax of λ -terms M, N, ... is given by:

Μ	::=	i	(integers)	
	Ι	X	(variables)	
	Ι	$\lambda x.M$	(functions)	
	Ι	$\mathbf{M}_1 \ \mathbf{M}_2$	(function applications)	
	Ι	(M_1, M_2)	(pairs)	
	Ι	fst(M)	(first projections)	
	Ι	snd(M)	(second projections)	
	Ι	Left(M)	(left variants)	
	Ι	Right(M)	(right variants)	
	Ι	case M of Lef	(case branches)	

The syntax of types τ , σ , ... is:

τ	::=	int	(integer type)
	Ι	$\tau_1 \rightarrow \tau_2$	(function types)
	Ι	$\tau_1 imes au_2$	(pair types)
	Ι	τ_1 + τ_2	(variant types)

A type environment Γ , Δ , ... is a (partial) map from variables to types. It is often written like

 $\label{eq:gamma} \begin{array}{ll} \Gamma &=& x_1 \dot{\cdot} \tau_1, \, x_2 \dot{\cdot} \tau_2, \, ..., \, x_n \dot{\cdot} \tau_n \\ \text{when the domain of } \Gamma \text{ is } \{ \, x_1, x_2, ..., x_n \, \} \text{ and } \Gamma(x_i) = \tau_i \text{ for } i = 1, 2, ..., n. \end{array}$

A type judgment $\Gamma \models M : \tau$ is the smallest relation among type environments,

 λ -terms and types that satisfies the following <u>typing rules</u>:

- Rule <u>T-Int</u>: Γ | i : int, for any type environment Γ and integer i (the quantification "for any ..." will be omitted in the other rules)
- Rule <u>T-Var</u>: $\Gamma \vdash x : \tau$ if $\Gamma(x) = \tau$
- Rule <u>T-Fun</u>: $\Gamma \models \lambda x.M : \tau_1 \rightarrow \tau_2$ if $\Gamma, x:\tau_1 \models M : \tau_2$
- Rule <u>T-App</u>: $\Gamma \models M_1 M_2 : \tau_2$ if $\Gamma \models M_1 : \tau_1 \rightarrow \tau_2$ and $\Gamma \models M_2 : \tau_1$
- Rule <u>T-Pair</u>: $\Gamma \models (M_1, M_2) : \tau_1 \times \tau_2$ if $\Gamma \models M_1 : \tau_1$ and $\Gamma \models M_2 : \tau_2$
- Rule <u>T-Fst</u>: $\Gamma \models fst(M) : \tau_1$ if $\Gamma \models M : \tau_1 \times \tau_2$
- Rule <u>T-Snd</u>: $\Gamma \vdash \text{snd}(M) : \tau_2$ if $\Gamma \vdash M : \tau_1 \times \tau_2$
- Rule <u>T-Left</u>: $\Gamma \vdash Left(M) : \tau_1 + \tau_2$ if $\Gamma \vdash M : \tau_1$
- Rule <u>T-Right</u>: $\Gamma \models$ Right(M) : $\tau_1 + \tau_2$ if $\Gamma \models$ M : τ_2
- Rule <u>T-Case</u>: $\Gamma \models$ (case M of Left(x) \Rightarrow N₁ | Right(y) \Rightarrow N₂): τ if $\Gamma \models$ M: $\tau_1 + \tau_2$ and Γ , x: $\tau_1 \models$ N₁: τ and Γ , y: $\tau_2 \models$ N₂: τ

Exercise 1

Let us prove $\Gamma \models \lambda x.\lambda y.x : \tau_1 \rightarrow \tau_2 \rightarrow \tau_1$ (for any Γ , τ_1 , and τ_2). By rule T-Fun, it suffices to prove Γ , $x:\tau_1 \models \lambda y.x : \tau_2 \rightarrow \tau_1$. Thus, again by rule T-Fun, it suffices to prove Γ , $x:\tau_1$, _____ $\models x :$ _____. This follows from rule _____. <u>Exercise 2</u>

Let us prove $\Gamma \models \lambda f.\lambda x.f(fx) : (\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau$. By rule T-Fun, it suffices to prove

 Γ , _______ has a second by rule T-Fun, ______. Thus, again by rule T-Fun,

it suffices to prove Γ, _____. To

prove this by rule T-App, it suffices to show

Γ,	- f :	an	d		
Γ,	- fx :		The	e forme	r is
immediate from rule	To pro	ve the latter l	by rule		_, it
suffices to show Γ ,		f :		and	
Γ,	- x :		_, both of	which	are
immediate from rule	<u> </u>				
Exercise 3					
Prove $\Gamma \vdash \lambda f.\lambda g.\lambda x.g(fx) : (τ_1 -$	$\rightarrow \tau_2) \rightarrow (\tau_2 \rightarrow \tau_3)$ -	$\rightarrow(\tau_1\rightarrow\tau_3).$			

Exercise 4

Prove that there are <u>no</u> Γ and τ such that $\Gamma \models (\lambda x.xx)(\lambda x.xx) : \tau$.