Foundations of Software Science (ソフトウェア基礎科学) / Foundations of Computer Software (ソフトウェア基礎)

Reference Handout November 13, 2009 Instructor: Eijiro Sumii

Simply typed λ-calculus

The syntax of λ -terms M, N, ... is given by:

M	::=	i	(integers)	
	1	X	(variables)	
	1	$\lambda x.M$	(functions)	
	1	$\mathbf{M}_1 \ \mathbf{M}_2$	(function applications)	
	1	(M_1,M_2)	(pairs)	
	I	fst(M)	(first projections)	
	1	snd(M)	(second projections)	
	I	Left(M)	(left variants)	
	I	Right(M)	(right variants)	
	1	case M of Le	$ft(x) \Rightarrow N_1 \mid Right(y) \Rightarrow N_2$	(case branches)

The syntax of types τ , σ , ... is:

$$\tau ::= int$$
 (integer type)
 $\mid \quad \tau_1 \rightarrow \tau_2$ (function types)
 $\mid \quad \tau_1 \times \tau_2$ (pair types)
 $\mid \quad \tau_1 + \tau_2$ (variant types)

A <u>type environment</u> Γ , Δ , ... is a (partial) map from variables to types. It is often written like

$$\Gamma = x_1 \div \tau_1, \ x_2 \div \tau_2, \ ..., \ x_n \div \tau_n$$
 when the domain of Γ is $\{\ x_1, x_2, ..., x_n\}$ and $\Gamma(x_i) = \tau_i$ for $i=1,2,...,n$.

A <u>type judgment</u> $\Gamma \vdash M : \tau$ is the smallest relation among type environments, λ -terms and types that satisfies the <u>typing rules</u> in page 3.

Intuitionistic propositional logic (without negations)

The syntax of propositions P, Q, R, ... is:

$$P := A \qquad \text{(atomic formulas)}$$

$$\mid P \Rightarrow Q \qquad \text{(implications)}$$

$$\mid P \wedge Q \qquad \text{(conjunctions)}$$

$$\mid P \vee Q \qquad \text{(disjunctions)}$$

An assumption Γ is a set of propositions.

A judgment $\Gamma \vdash P$ is the smallest relation between assumptions and propositions that satisfies the <u>natural deduction</u> rules in page 4.

Suggested reference (besides the blackboard in class): Sørensen and Urzyczyn, Lectures on the Curry-Howard isomorphism, ISBN 978-0-44452-077-7, Section 2.2 (Natural deduction), 3.1 (Simply typed λ-calculus a la Curry) and 4.5 (Sums and products). Draft available online: http://folli.loria.fr/cds/1999/library/pdf/curry-howard.pdf

$$\begin{array}{l} \Gamma(x) = \tau \\ \hline \Gamma \mid x : \tau \end{array} \text{ T-Var}$$

$$\begin{array}{l} \Gamma, \ x \vdots \tau_1 \not\models M \vdots \tau_2 \\ \cdots \\ \Gamma \not\models \lambda x. M \vdots \tau_1 {\rightarrow} \tau_2 \end{array}$$
 T-Fun

$$\begin{array}{c} \Gamma \not \models M : \tau_1 \times \tau_2 \\ \cdots \\ \Gamma \not \models fst(M) : \tau_1 \end{array} T\text{-}Fst$$

$$\begin{array}{c} \Gamma \not \models M : \tau_1 \times \tau_2 \\ \cdots \\ \Gamma \not \models snd(M) : \tau_2 \end{array} T\text{-Snd}$$

$$\begin{array}{c} \Gamma \not\models M : \tau_1 \\ \hline \Gamma \not\models \mathrm{Left}(M) : \tau_1 + \tau_2 \end{array}$$
 T-Left

$$\begin{array}{c} \Gamma \not \vdash M : \tau_2 \\ \hline \Gamma \not \vdash Right(M) : \tau_1 + \tau_2 \end{array}$$
 T-Right

$$\begin{array}{ll} ----- & T\text{-}Int \\ \Gamma \not \models i : int \end{array}$$

$$\begin{array}{l} P \, \in \, \Gamma \\ \hline \Gamma \mid P \end{array}$$
 Axiom

$$\begin{array}{ccc} \Gamma, P \not \models Q \\ \hline \Gamma \not \models P \Rightarrow Q \end{array} \Rightarrow \text{-Intro}$$

$$\begin{array}{ccc} \Gamma \not \vdash P \Rightarrow Q & \Gamma \not \vdash P \\ \hline \Gamma \not \vdash Q & \end{array} \Rightarrow \text{-Elim}$$

$$\begin{array}{ccc} \Gamma \! \mid \! P & \Gamma \! \mid \! Q \\ \hline \Gamma \! \mid \! P \! \wedge \! Q & \wedge \text{-Intro} \end{array}$$

$$\begin{array}{ccc} \Gamma \, | \, P \wedge Q \\ \hline \Gamma \, | \, P \end{array} \wedge \text{-Elim-L}$$

$$\begin{array}{ccc} \Gamma \, | \, P \wedge Q \\ \hline \Gamma \, | \, Q \end{array} \ \, \wedge \text{-Elim-R}$$

$$\begin{array}{ccc} \Gamma \not \vdash P & & \\ \hline \Gamma \not \vdash P \lor Q & & \\ \end{array} \lor \text{-Intro-L}$$

$$\begin{array}{ccc} \Gamma \not \vdash Q & & \\ \Gamma \not \vdash P \vee Q & & \\ \end{array} \lor \text{-Intro-R}$$