Logical Relations for Encryption

Eijiro Sumii
University of Tokyo
Joint work with Benjamin Pierce,
University of Pennsylvania
Overview

- Introduction
- The cryptographic λ-calculus
- Logical relations
- Application: protocol encoding
- Extensions
- Related work
- Conclusion
Motivation

Two approaches to information hiding:

- Encryption
 - mainly studied in security systems
- Type abstraction
 - mainly studied in programming languages (polymorphism, modules, objects, etc.)

How are these related?
Adapting the theory of type abstraction for encryption

- **Cryptographic \(\lambda\)-calculus** +
- **Logical relation** of the polymorphic \(\lambda\)-calculus

\[\Rightarrow \text{Method of proving secrecy in programs using encryption} \]
Example

A program $p(i)$ consisting of

- a secret integer i and
- an interface function $\lambda x. \ x \ mod \ 2$
Example

A program $p(i)$ consisting of
- a secret integer i and
- an interface function $\lambda x. x \mod 2$

Information hiding by type abstraction

$p(i) = \text{pack int, } \langle i, \lambda x. x \mod 2 \rangle$

as $\exists \alpha. \alpha \times (\alpha \rightarrow \text{int})$
Example

A program $p(i)$ consisting of
- a secret integer i and
- an interface function $\lambda x. x \mod 2$

- Information hiding by type abstraction

 $p(i) = \text{pack int, } \langle i, \lambda x. x \mod 2 \rangle$
 as $\exists \alpha. \alpha \times (\alpha \rightarrow \text{int})$

- Information hiding by encryption

 $p(i) = \text{new } k \text{ in } \langle \{i\}_k, \lambda \{x\}_k. x \mod 2 \rangle$
Overview

- Introduction
- The cryptographic λ-calculus
- Logical relations
- Application: protocol encoding
- Extensions
- Related work
- Conclusion
The Cryptographic λ-Calculus

Simply typed call-by-value λ-calculus + (perfect) cryptographic primitives

e ::= \{e_1\}e_2 | \text{let } \{x\}_e_1 = e_2 \text{ in } e_3 \text{ else } e_4 |
\text{ new } x \text{ in } e | k | ...

τ ::= \text{bits}[τ] | \text{key}[τ] | ...

The Cryptographic λ-Calculus

Simply typed call-by-value λ-calculus + (perfect) cryptographic primitives

e ::= \{e_1\}_e2 \mid \text{let } \{x\}_{e_1} = e_2 \text{ in } e_3 \text{ else } e_4 \\
\mid \text{new } x \text{ in } e \mid k \mid \ldots

\tau ::= \text{bits}[\tau] \mid \text{key}[\tau] \mid \ldots

\text{new } x \text{ in } e \rightarrow [k/x]e \ (k \text{ fresh})

\text{let } \{x\}_{k_1} = \{v\}_{k_2} \text{ in } e_1 \text{ else } e_2 \\
\rightarrow [v/x]e_1 \ (\text{if } k_1 = k_2) \text{ or } e_2 \ (\text{if } k_1 \neq k_2)
Secrecy ⇔ Non-Interference ⇔ Contextual Equivalence

[Q] How to state the (partial) secrecy of the value of i?

[A] By conditional non-interference:
 if \(i \equiv j \pmod{2} \), then \(p(i) \) and \(p(j) \) are equivalent under any context

"Outsiders cannot observe the difference of the secret"
Overview

- Introduction
- The cryptographic λ-calculus
- Logical relations
- Application: protocol encoding
- Extensions
- Related work
- Conclusion
Logical Relation

[Q] How to prove contextual equivalence?
[A] By a logical relation "∼" between programs, defined by induction on their type

Main theorem:

\[e_1 ∼ e_2 : τ \implies e_1 \approx e_2 : τ \]

"related programs are contextually equivalent"
Logical Relation for Simple Types (standard)

- Integers are related iff they are equal
 \[i \sim j : \text{int} \iff i = j \]

- Functions are related iff they return related results when applied to related arguments
 \[f \sim g : \tau_1 \rightarrow \tau_2 \iff \forall v, w : \tau_1 \quad f v \sim g w : \tau_2 \]

- Pairs are related iff their elements are related
 \[(v_1, v_2) \sim (w_1, w_2) : \tau_1 \times \tau_2 \iff v_1 \sim w_1 : \tau_1 \quad \text{and} \quad v_2 \sim w_2 : \tau_2 \]
Logical Relation for Type Abstraction (also standard)

The relation environment φ gives the relation $\varphi(\alpha)$ between values of each abstract type α

$\varphi \; \square \; v_1 \sim v_2 : \alpha \iff (v_1, v_2) \in \varphi(\alpha)$
Logical Relation for Type Abstraction (also standard)

The relation environment \(\varphi \) gives the relation \(\varphi(\alpha) \) between values of each abstract type \(\alpha \)

\[
\varphi \sqsubseteq v_1 \sim v_2 : \alpha \iff (v_1, v_2) \in \varphi(\alpha)
\]

\[
\varphi \sqsubseteq \text{pack } \sigma_1, e_1 \text{ as } \exists \alpha.\tau
\]

\[
\sim \text{pack } \sigma_2, e_2 \text{ as } \exists \alpha.\tau : \exists \alpha.\tau \iff
\]

\[
\varphi, \alpha \mapsto r \sqsubseteq e_1 \sim e_2 : \tau \text{ for some } r \subseteq \sigma_1 \times \sigma_2
\]
Logical Relation for Type Abstraction (also standard)

The relation environment φ gives the relation $\varphi(\alpha)$ between values of each abstract type α

\[\varphi \models v_1 \sim v_2 : \alpha \iff (v_1, v_2) \in \varphi(\alpha) \]

\[\varphi \models \text{pack } \sigma_1, e_1 \text{ as } \exists \alpha.\tau \]

\[\sim \text{pack } \sigma_2, e_2 \text{ as } \exists \alpha.\tau : \exists \alpha.\tau \iff \]

\[\varphi, \alpha \mapsto r \models e_1 \sim e_2 : \tau \text{ for some } r \subseteq \sigma_1 \times \sigma_2 \]

E.g., pack int, $\langle 1, \lambda x. x \mod 2 \rangle$ as $\exists \alpha.\alpha \times (\alpha \rightarrow \text{int})$
and pack int, $\langle 3, \lambda x. x \mod 2 \rangle$ as $\exists \alpha.\alpha \times (\alpha \rightarrow \text{int})$
can be related by taking $\alpha \mapsto \{(1,3)\}$
The relation environment φ gives the relation $\varphi(k)$ between values encrypted by each secret key k

$$\varphi \sqsubseteq \{v_1\}_{k_1} \sim \{v_2\}_{k_2} : \text{bits}[^\tau] \iff (v_1, v_2) \in \varphi(k) \text{ where } k = k_1 = k_2$$
Logical Relation for Encryption (new!)

The relation environment φ gives the relation $\varphi(k)$ between values encrypted by each secret key k

$\varphi \quad \{v_1\}_{k_1} \sim \{v_2\}_{k_2} : \text{bits}[\tau] \iff (v_1, v_2) \in \varphi(k) \quad \text{where} \quad k = k_1 = k_2

$\varphi \quad \text{new } k \text{ in } e_1 \sim \text{new } k \text{ in } e_2 : \tau \iff \varphi, k \mapsto r \quad e_1 \sim e_2 : \tau \quad \text{for some } r$
The relation environment φ gives the relation $\varphi(k)$ between values encrypted by each secret key k.

\[\varphi \quad \{v_1\}_{k_1} \sim \{v_2\}_{k_2} : \text{bits}[\tau] \iff (v_1, v_2) \in \varphi(k) \quad \text{where} \quad k = k_1 = k_2 \]

\[\varphi \quad \text{new k in e}_1 \sim \text{new k in e}_2 : \tau \iff \varphi, k \mapsto r \quad \text{e}_1 \sim \text{e}_2 : \tau \quad \text{for some} \quad r \]

E.g., new k in $\langle \{1\}_k, \lambda\{x\}_k. x \mod 2 \rangle$
and new k in $\langle \{3\}_k, \lambda\{x\}_k. x \mod 2 \rangle$
can be related by taking $k \mapsto \{(1,3)\}$.
Overview

- Introduction
- The cryptographic λ-calculus
- Logical relations
- Application: protocol encoding
- Extensions
- Related work
- Conclusion
Application: Protocol Encoding

Encode:

- Sending of a message by the message itself
- Receiving of a message by a function
- Network and attacker by a context
Application: Protocol Encoding

Encode:

- Sending of a message by the message itself
- Receiving of a message by a function
- Network and attacker by a context

E.g.,

1. \(A \rightarrow B \ \{i\}_k \)
2. \(B \rightarrow * \ \ i \ \text{mod} \ 2 \)

- \(p = \text{new } k \text{ in } \langle \{i\}_k, \lambda \{x\}_k. \ x \ \text{mod} \ 2 \rangle \)
- \(\text{Network}(p) = \#_2(p) \ #_1(p) \rightarrow * \ \ i \ \text{mod} \ 2 \)
- \(\text{Attacker}(p) = \text{any} \ \text{context for } p \)
Examples

- Well-known attack on (a bad use of) Needham-Schroeder public-key protocol
- Correctness proof of (the same use of) "improved" Needham-Schroeder public-key protocol
- "Necessarily parallel" attack on ffgg protocol
Overview

- Introduction
- The cryptographic λ-calculus
- Logical relations
- Application: protocol encoding
- Extensions
- Related work
- Conclusion
Extensions

- Recursive functions/types for making the attackers Turing-complete
 - cf. [Pitts-98], [Crary-Harper], etc.

- State/linearity for encoding protocols more precisely
 - cf. [Pitts-Stark-98], [Bierman-Pitts-Russo-00]
Related Work

- Logical relations
 - Relational parametricity [Reynolds-83]
 - Representation independence [Mitchell-91]
 - λ-calculus with name generation [Stark-94]

- Protocol verification
 - Various logics, theorem proving, model checking, etc. [many!]
 - In particular, spi-calculus [Abadi-Gordon]
Conclusion

- We have adapted the theory of type abstraction to encryption.

- Can we do something in the other direction? E.g., implement type abstraction by encryption.
 I.e., encode the polymorphic λ-calculus into the untyped cryptographic λ-calculus (while preserving contextual equivalence).

\Rightarrow Extend the scope of type abstraction from the statically typed world to the untyped world (such as open network).