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Motivation

Two approaches to information hiding:

= Encryption
= mainly studied in security systems

= Type abstraction

= mainly studied in programming languages
(polymorphism, modules, objects, etc.)

How are these related?



Results

Adapting the theory of type abstraction
for encryption

= Cryptographic | -calculus +

= Logical relation of the polymorphic | -
calculus

P Method of proving secrecy in programs
using encryption
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Example

A program p(i) consisting of
— a secret integer | and
— an interface function | x. x mod 2
= Information hiding by type abstraction
p(i) = pack int, &, | x. x mod 2n
as $a.a’  (a ® int)
= Information hiding by encryption
p(i) = new k in &i},, | {x}.. Xx mod 21
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The Cryptographic | -Calculus

Simply typed call-by-value | -calculus
+ (perfect) cryptographic primitives
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The Cryptographic | -Calculus

Simply typed call-by-value | -calculus
+ (perfect) cryptographic primitives

D

= {e}., | let{x}.,=e,Ine;elsee,
| newxine | k | ...
2= bits[t] | key[t] | ...

newxine ® [k/x]le (kfresh)

let {x},, = {V}., In e, else e,
® [v/x]e, (If kK, =k,)ore, (ifk, * k,)

o



Secrecy @Non-Interference @
Contextual Equivalence

[Q] How to state the (partial) secrecy of the
value of 17

[A] By conditional non-interference:
If1° ] (mod 2), then p(i) and p()) are
equivalent under any context

"Outsiders cannot observe
the difference of the secret"
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Logical Relation

[Q] How to prove contextual equivalence?

[A] By a logical relation "~" between
programs, defined by induction on their

type

Main theorem:
e,~e,:t b e, »e,:t
"related programs are contextually equivalent”



Logical Relation for Simple
Types (standard)

= Integers are related iff they are equal

i~j:int U i=j
= Functions are related iff they return related
results when applied to related arguments

fv~gw:t, forany v~w:t,
m Pairs are related iff their elements are related
(Vi, Vo) ~ Wy, W) 2ty " t, U
Vi ~wy ity and v, ~w, It



Logical Relation for Type
Abstraction (also standard)

The relation environment | gives the relation  (a)
between values of each abstract type a

J |‘V1~V2:a U (V1’V2)T J (a)
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Logical Relation for Type
Abstraction (also standard)

The relation environment | gives the relation  (a)
netween values of each abstract type a
Jrvi~vpra U (v,v)l J(a)
j F pack s,, e, as $a.t

~pack s,, e, as $a.t : $a.t U
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E.g., pack int, &, | x. x mod 2fias $a.a” (a® int)
and pack int, &3, | x. x mod 2ias $a.a” (a® int)
can be related by taking a — {(1,3)}
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Logical Relation for Encryption
(new!)

The relation environment | gives the relation | (k)
between values encrypted by each secret key k

J |' {Vitu :‘{Vz}kz : bits[t] O
(v, v.,) T j (k) where k =Kkl = k2
j F newkine, ~newkine,:t U
j,ki>rf e ~e,:t forsomer

E.g., new k in &1}, | {x}.. Xx mod 2i
and new k in &3}, | {x}.. x mod 2
can be related by taking k — {(1,3)}
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Application: Protocol Encoding

Encode:

— Sending of a message by the message itself
— Recelving of a message by a function

— Network and attacker by a context

E.Q., 1. A® B {i},
2. B® * 1 mod 2

= p = new K in &i},, | {x}.. x mod 2
= Network(p) = #,(p) #,(p) ®* 1 mod 2
= Attacker(n) = anv caontext for n



Examples

= Well-known attack on (a bad use of)
Needham-Schroeder public-key protocol

= Correctness proof of (the same use of)
"Improved" Needham-Schroeder public-
key protocol

= "Necessarily parallel" attack on ffgg
protocol
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Extensions

= Recursive functions/types
for making the attackers Turing-complete
— cf. [Pitts-98], [Crary-Harper], etc.
= State/linearity
for encoding protocols more precisely
— cf. [Pitts-Stark-98], [Bierman-Pitts-Russo-00]



Related Work

= Logical relations

Relational parametricity [Reynolds-83]
Representation independence [Mitchell-91]

-calculus with name generation [Stark-94]

= Protocol verification
= Various logics, theorem proving, model

checking, etc. [many!]

= In particular, spi-calculus [Abadi-Gordon]



Conclusion

= We have adapted the theory of type abstraction
to encryption

= Can we do something in the other direction?
E.g., implement type abstraction by encryption

|.e., encode the polymorphic | -calculus
Into the untyped cryptographic | -calculus
(while preserving contextual equivalence)

b Extend the scope of type abstraction from the
statically typed world to the untyped world
(such as open network)




