
A Complete Characterization of
Observational Equivalence in
Polymorphic lambda-Calculus with
General References

Eijiro Sumii
(Tohoku University)

Executive Summary

Sound and complete "proof method"
for contextual equivalence
in a language with
Higher-order functions,
First-class references (like ML), and
Abstract data types
Caveat: the method is not fully automatic!
– The equivalence is (of course) undecidable in

general
– Still, it successfully proved all known examples

(Very) General Motivation

1. Equations are important
– 1 + 2 = 3, x + y = y + x, E = mc2, ...

2. Computing is (should be) a science
3. Therefore, equations are important in

(so-called) computer science

4. Computing is described by programs
5. Therefore, equivalence of programs

is important!

Program Equivalence as
Contextual Equivalence

In general, equations should be
preserved under any context
– E.g., x + y = y + x implies (x + y) + z = (y +

x) + z by considering the context [] + z
⇒ Contextual equivalence

(a.k.a. observational equivalence):
Two programs "give the same result"
under any context
– Termination/divergence suffices for the

"result"

Contextual Equivalence:
Definition

Two programs P and Q are contextually
equivalent if, for any context C,
C[P] terminates ⇔ C[Q] terminates

– C[P] (resp. C[Q]) means "filling in" the
"hole" [] of C with P (resp. Q)

Example: Two Implementations
of Mutable Integer Lists

(* pseudo-code in
imaginary ML-like language *)

signature S
type t (* abstract *)
val nil : t
val cons : int → t → t
val setcar : t → int → unit
(* car, cdr, setcdr, etc. omitted *)

end

First Implementation

structure L
type t = Nil | Cons of (int ref * t ref)
let nil = Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) a =
fst(p) := a

end
1 2 34

1 2 3

Second Implementation

structure L'
type t = Nil | Cons of (int * t) ref
let nil = Nil
let cons a d = Cons(ref(a, d))
let setcar (Cons r) a =
r := (a, snd(!r))

end
4

The Problem

The implementations L and L' should be
contextually equivalent under the
interface S

How can we prove it?
Direct proof is infeasible because of the
universal quantification: "for any context C"
Little previous work deals with both
abstract data types and references
(cf. [Ahmed-Dreyer-Rossberg POPL'09])

– None is complete (to my knowledge)

Our Approach:
Environmental Bisimulations

Initially devised for λ-calculus with
perfect encryption [Sumii-Pierce POPL'04]

Successfully adapted for
– Polymorphic λ-calculus [Sumii-Pierce POPL'05]

– Untyped λ-calculus with
references [Koutavas-Wand POPL'06] and
deallocation [Sumii ESOP'09]

– Higher-order π-calculus
[Sangiorgi-Kobayashi-Sumii LICS'07]

– Applied HOπ [Sato-Sumii APLAS'09, to appear] etc.

Our Target Language

Polymorphic λ-calculus with existential
types and first-class references

M ::= ...standard λ-terms... |
pack (τ, M) as ∃α.σ |
open M as (α, x) in N |
ref M | !M | M := N | l | M == N

τ ::= ...standard polymorphic types... |
∃α.τ | τ ref

locations

equality of locations

Environmental Relations

An environmental relation X is a set of
tuples of the form:

(Δ, R, s>M, s'>M', τ)

Environmental Relations

An environmental relation X is a set of
tuples of the form:

(Δ, R, s>M, s'>M', τ)
Program M (resp. M') of type τ is running
under store s (resp. s')
– M and M' (and τ) are omitted when terminated

Environmental Relations

An environmental relation X is a set of
tuples of the form:

(Δ, R, s>M, s'>M', τ)
Program M (resp. M') of type τ is running
under store s (resp. s')
– M and M' (and τ) are omitted when terminated

R is the environment: a (typed) relation
between values known to the context

Environmental Relations

An environmental relation X is a set of
tuples of the form:

(Δ, R, s>M, s'>M', τ)
Program M (resp. M') of type τ is running
under store s (resp. s')
– M and M' (and τ) are omitted when terminated

R is the environment: a (typed) relation
between values known to the context
Δ maps an abstract type α to (the pair of)
their concrete types σ and σ'

Environmental Bisimulations
for Our Calculus

An environmental relation X is an
environmental bisimulation if it is
preserved by
execution of the programs and
operations from the context

Formalized by the following conditions...

Environmental Bisimulations:
Condition for Reduction

If (Δ, R, s>M, s'>M', τ) ∈ X and
s>M converges to t>V, then
s'>M' also converges to some t'>V'
with (Δ, R∪{(V,V',τ)}, t, t') ∈ X

(Symmetric condition omitted)

Strictly speaking, this is a "big-step"
version of environmental bisimulations

Environmental Bisimulations:
Condition for Opening

If (Δ, R, s, s') ∈ X and
(pack (τ, V) as ∃α.σ,
(pack (τ', V') as ∃α.σ, ∃α.σ) ∈ R, then
(Δ∪{(α,τ,τ')}, R∪{(V,V',σ)}, s, s') ∈ X

Environmental Bisimulations:
Condition for Dereference

If (Δ, R, s, s') ∈ X and
(l,(l', σ ref) ∈ R, then
(Δ, R∪{(s(l),s'(l'),σ)}, s, s') ∈ X

Environmental Bisimulations:
Condition for Update

If (Δ, R, s, s') ∈ X and
(l,(l', σ ref) ∈ R, then
(Δ, R, s{laW}, s'{l'aW'}) ∈ X
for any W and W' "synthesized" from R
– Formally,

W = C[V1,...,Vn]
W' = C[V'1,...,V'n]

for some (V1,V'1,τ1),...,(Vn,V'n,τn) ∈ R and
some well-typed C

Environmental Bisimulations:
Condition for Application

If (Δ, R, s, s') ∈ X and
(λx.M,(λx.M', σ→τ) ∈ R, then
(Δ, R, s>[W/x]M, s'>[W'/x]M', τ) ∈ X
for any W and W' synthesized from R

Other Conditions

Similar conditions for allocation,
location equality, projection, etc.
No condition for values of abstract
types

If (Δ, R, s, s') ∈ X
and (V,(V', α) ∈ R,

then ...?
– Context cannot operate on them

Abstract

Mutable Integer Lists Interface
(Reminder)

(* pseudo-code in
imaginary ML-like language *)

signature S
type t (* abstract *)
val nil : t
val cons : int -> t -> t
val setcar : t -> int -> unit
(* setcdr, car, cdr, etc. omitted *)

end

First Implementation
(Reminder)

structure L
type t = Nil | Cons of (int ref * t ref)
let nil = Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) a =
fst(p) := a

end
1 2 34

1 2 3

Second Implementation
(Reminder)

structure L'
type t = Nil | Cons of (int * t) ref
let nil = Nil
let cons a d = Cons(ref(a, d))
let setcar (Cons r) a =
r := (a, snd(!r))

end
4

Environmental Bisimulaton for
The Mutable Integer Lists

X = { (Δ, R, s, s') |
Δ = { (S.t, L.t, L'.t) },
R = { (L, L', S),

(L.nil, L'.nil, S.t),
(L.cons, L'.cons, int→S.t→S.t),
(L.setcar, L'.setcar, S.t→int→unit),
(L.Cons(li,mi), L'.Cons(l'i), S.t)
(L.Nil, L'.Nil, S.t) | i = 1, 2, 3, ..., n },

s(li) = fst(s'(l'i)) and
(s(mi), snd(s'(l'i)), S.t) ∈ R, for each i }

More complicated example (1/3)

(* Adapted from [Ahmed-Dreyer-Rossberg
POPL'09], credited to Thamsborg *)

pack (int ref, (ref 1, λx.Vx)) as σ
vs. pack (int ref, (ref 1, λx.V')) as σ
where

Vx = λf. (x:=0; f(); x:=1; f(); !x)
V' = λf. (f(); f(); 1)
σ = ∃α. α × (α→(1→1)→int)

f is supplied by the context
What are the reducts of V f and V' f?

More complicated example (2/3)

X = X0 ∪ X1

X0 = { (Δ, R, t{la0}>N, t'>N', int) |
N and N' are made of contexts in T0,
with holes filled with elements of R }

X1 = { (Δ, R, t{la1}>N, t'>N', int) |
N and N' are made of contexts in T1,
with holes filled with elements of R }

More complicated example (3/3)

(C; l:=1; D; !l) T0 (C; D; 1)
(D; !l) T1 (D; 1)
If E[zW] T0 E'[zW], then
E[C; l:=1; D; !l] T0 E'[C; D; 1]
(for any evaluation contexts E and E')
If E[zW] T0 E'[zW], then E[D; !l] T1 E'[D; 1]
If E[zW] T1 E'[zW], then
E[C; l:=1; D; !l] T0 E'[C; D; 1]
If E[zW] T1 E'[zW], then E[D; !l] T1 E'[D; 1]

Main Theorem:
Soundness and Completeness

The largest environmental bisimulation ~
coincides with (a generalized form of)
contextual equivalence ≡

Proof
Soundness: Prove ~ is preserved under any context
(by induction on the context)
Completeness: Prove ≡ is an environmental
bisimulation (by checking its conditions)

The Caveat

Our "proof method" is not automatic

Contextual equivalence in our
language is undecidable
Therefore, so is environmental
bisimilarity

...but it proved all known examples!

Up-To Techniques

Variants of environmental bisimulations
with weaker (yet sound) conditions

Up-to reduction (and renaming)
Up-to context (and environment)
Up-to allocation

Details in the paper

Related Work

Environmental bisimulations for other
languages (already mentioned)
Bisimulations for other languages
Logical relations
Game semantics

None has dealt with both abstract data
types and references
– Except [Ahmed-Dreyer-Rossberg POPL'09]

Could not prove some interesting examples

Conclusion

Summary:
Sound and complete "proof method"
for contextual equivalence in
polymorphic λ-calculus with
existential types and references

Current and future work:
– Parametricity properties

("free theorems")
– Semantic model

