A Complete Characterization of Observational Equivalence in Polymorphic lambda-Calculus with General References

Eijiro Sumii (Tohoku University)

Executive Summary

Sound and <u>complete</u> "proof method" for contextual equivalence in a language with

- Higher-order functions,
- First-class references (like ML), and
- Abstract data types

Caveat: the method is not fully automatic!

The equivalence is (of course) undecidable in general

- Still, it successfully proved all known examples

(Very) General Motivation

- 1. Equations are important
 - $1 + 2 = 3, x + y = y + x, E = mc^{2}, ...$
- 2. Computing is (should be) a science
- 3. Therefore, equations are important in (so-called) computer science
- 4. Computing is described by programs
- 5. Therefore, equivalence of programs is important!

Program Equivalence as Contextual Equivalence

In general, equations should be preserved under any <u>context</u>

E.g., x + y = y + x implies (x + y) + z = (y + x) + z by considering the context [] + z

⇒ <u>Contextual equivalence</u> (a.k.a. <u>observational equivalence</u>): Two programs "give the same result" under any context

 Termination/divergence suffices for the "result"

Contextual Equivalence: Definition

Two programs P and Q are <u>contextually</u> <u>equivalent</u> if, for any context C, C[P] terminates ⇔ C[Q] terminates

– C[P] (resp. C[Q]) means "filling in" the "hole" [] of C with P (resp. Q)

Example: Two Implementations of Mutable Integer Lists

(* pseudo-code in imaginary ML-like language *) signature S type t (* abstract *) val nil:t val cons : int \rightarrow t \rightarrow t val setcar : t \rightarrow int \rightarrow unit (* car, cdr, setcdr, etc. omitted *) end

First Implementation

```
structure L
 type t = Nil | Cons of (int ref * t ref)
 let nil = Nil
 let cons a d = Cons(ref a, ref d)
 let setcar (Cons p) a =
  fst(p) := a
end
```

Second Implementation

```
structure L'
 type t = Nil | Cons of (int * t) ref
 let nil = Nil
 let cons a d = Cons(ref(a, d))
 let setcar (Cons r) a =
  r := (a, snd(!r))
end
                       2
                                    3
           4
```

The Problem

The implementations L and L' <u>should</u> be contextually equivalent under the interface S

How can we prove it?

- Direct proof is infeasible because of the universal quantification: "for any context C"
- Little previous work deals with <u>both</u> abstract data types and references (cf. [Ahmed-Dreyer-Rossberg POPL'09])
 - None is complete (to my knowledge)

Our Approach: Environmental Bisimulations

- Initially devised for λ-calculus with perfect encryption [Sumii-Pierce POPL'04]
- Successfully adapted for
 - Polymorphic λ -calculus [Sumii-Pierce POPL'05]
 - <u>Untyped</u> λ-calculus with references [Koutavas-Wand POPL'06] and deallocation [Sumii ESOP'09]
 - Higher-order π -calculus

[Sangiorgi-Kobayashi-Sumii LICS'07]

- Applied HO π [Sato-Sumii APLAS'09, to appear]

etc.

Our Target Language

Polymorphic λ -calculus with existential types and first-class references M ::= ...standard λ -terms... | pack (τ , M) as $\exists \alpha.\sigma$ | open M as (α , x) in N | locations ref M | !M | M := N | ℓ | M == N equality of locations

 $\tau ::= ...standard polymorphic types...$ ∃α.τ | τ ref

An <u>environmental relation</u> X is a set of tuples of the form:

(∆, R, s⊳M, s'⊳M', τ)

An <u>environmental relation</u> X is a set of tuples of the form:

(∆, R, s⊳M, s'⊳M', τ)

 Program M (resp. M') of type τ is running under store s (resp. s')

– M and M' (and τ) are omitted when terminated

An <u>environmental relation</u> X is a set of tuples of the form:

(∆, R, s⊳M, s'⊳M', τ)

 Program M (resp. M') of type τ is running under store s (resp. s')

– M and M' (and τ) are omitted when terminated

• R is the <u>environment</u>: a (typed) relation between values known to the context

An <u>environmental relation</u> X is a set of tuples of the form:

(Δ, R, s⊳M, s'⊳M', τ)

 Program M (resp. M') of type τ is running under store s (resp. s')

– M and M' (and τ) are omitted when terminated

- R is the <u>environment</u>: a (typed) relation between values known to the context
- Δ maps an abstract type α to (the pair of) their concrete types σ and σ'

Environmental Bisimulations for Our Calculus

An environmental relation X is an <u>environmental bisimulation</u> if it is preserved by

execution of the programs and

operations from the context

Formalized by the following conditions...

Environmental Bisimulations: Condition for Reduction

If (Δ, R, S▷M, S'▷M', τ) ∈ X and
 S▷M converges to t▷V, then
 S'▷M' also converges to some t'▷V'
 with (Δ, R∪{(V,V',τ)}, t, t') ∈ X

(Symmetric condition omitted)

Strictly speaking, this is a "big-step" version of environmental bisimulations

Environmental Bisimulations: Condition for Opening

• If $(\Delta, R, s, s') \in X$ and (pack (τ, V) as $\exists \alpha.\sigma$, pack (τ', V') as $\exists \alpha.\sigma, \exists \alpha.\sigma) \in R$, then $(\Delta \cup \{(\alpha, \tau, \tau')\}, R \cup \{(V, V', \sigma)\}, s, s') \in X$

Environmental Bisimulations: Condition for Dereference

If (Δ, R, s, s') ∈ X and
 (ℓ, ℓ', σ ref) ∈ R, then
 (Δ, R∪{(s(ℓ),s'(ℓ'),σ)}, s, s') ∈ X

Environmental Bisimulations: Condition for Update

• If $(\Delta, R, s, s') \in X$ and $(\ell, \ell', \sigma \text{ ref}) \in R$, then $(\Delta, R, s\{\ell \mapsto W\}, s'\{\ell' \mapsto W'\}) \in X$ for any W and W' "synthesized" from R – Formally, $W = C[V_1, ..., V_n]$ $W' = C[V'_1, ..., V'_n]$

for some $(V_1, V'_1, \tau_1), \dots, (V_n, V'_n, \tau_n) \in R$ and some well-typed C

Environmental Bisimulations: Condition for Application

 If (Δ, R, s, s') ∈ X and (λx.M, λx.M', σ→τ) ∈ R, then (Δ, R, s⊳[W/x]M, s'⊳[W'/x]M', τ) ∈ X for any W and W' synthesized from R

Other Conditions

- Similar conditions for allocation, location equality, projection, etc.
- <u>No</u> condition for values of abstract types

If
$$(\Delta, \mathbf{R}, \mathbf{S}, \mathbf{S}') \in \mathbf{X}$$

and $(\mathbf{V}, \mathbf{V}, \alpha) \in \mathbf{R}$,
then ...?

Abstract

- Context cannot operate on them

Mutable Integer Lists Interface (Reminder)

(* pseudo-code in imaginary ML-like language *) signature S type t (* abstract *) val nil:t val cons : int -> t -> t val setcar : t -> int -> unit (* setcdr, car, cdr, etc. omitted *) end

First Implementation (Reminder)

structure L type t = Nil | Cons of (int ref * t ref) let nil = Nil let cons a d = Cons(ref a, ref d) let setcar (Cons p) a = fst(p) := a end

Second Implementation (Reminder)

structure L' type t = Nil | Cons of (int * t) ref let nil = Nil let cons a d = Cons(ref(a, d)) let setcar (Cons r) a = r := (a, snd(!r)) end 2 3 4

Environmental Bisimulaton for The Mutable Integer Lists

 $X = \{ (\Delta, R, s, s') \mid$ $\Delta = \{ (S.t, L.t, L'.t) \},\$ $R = \{ (L, L', S), \}$ (L.nil, L'.nil, S.t), (L.cons, L'.cons, int \rightarrow S.t \rightarrow S.t), (L.setcar, L'.setcar, S.t \rightarrow int \rightarrow unit), (L.Cons(ℓ_i ,m_i), L'.Cons(ℓ'_i), S.t) $(L.Nil, L'.Nil, S.t) | i = 1, 2, 3, ..., n \},$ $s(\ell_i) = fst(s'(\ell'_i))$ and $(s(m_i), snd(s'(\ell'_i)), S.t) \in \mathbb{R}, \text{ for each } i \}$

More complicated example (1/3)

(* Adapted from [Ahmed-Dreyer-Rossberg POPL'09], credited to Thamsborg *) pack (int ref, (ref 1, $\lambda x.V_x$)) as σ vs. pack (int ref, (ref 1, $\lambda x.V'$)) as σ where $V_x = \lambda f. (x:=0; f(); x:=1; f(); !x)$

 $V' = \lambda f. (f(); f(); 1)$ $\sigma = \exists \alpha. \alpha \times (\alpha \rightarrow (1 \rightarrow 1) \rightarrow int)$

- f is supplied by the context
- What are the reducts of V f and V f?

More complicated example (2/3)

$X = X_0 \cup X_1$

 $X_0 = \{ (\Delta, R, t\{\ell \mapsto 0\} \triangleright N, t' \triangleright N', int) |$ N and N' are made of contexts in T_0 , with holes filled with elements of R }

X₁ = { (Δ , R, t{ ℓ →1} ▷ N, t' ▷ N', int) | N and N' are made of contexts in T₁, with holes filled with elements of R }

More complicated example (3/3)

- (C; *l*:=1; D; *ll*) T₀ (C; D; 1)
- (D; !*l*) T₁ (D; 1)
- If E[zW] T₀ E'[zW], then
 E[C; l:=1; D; !l] T₀ E'[C; D; 1]
 (for any evaluation contexts E and E')
- If E[zW] T₀ E'[zW], then E[D; !*l*] T₁ E'[D; 1]
- If E[zW] T₁ E'[zW], then E[C; ℓ:=1; D; !ℓ] T₀ E'[C; D; 1]
- If E[zW] T₁ E'[zW], then E[D; !*l*] T₁ E'[D; 1]

Main Theorem: Soundness and Completeness

The largest environmental bisimulation ~ coincides with (a generalized form of) contextual equivalence ≡

Proof

- Soundness: Prove ~ is preserved under any context (by induction on the context)
- Completeness: Prove = is an environmental bisimulation (by checking its conditions)

The Caveat

Our "proof method" is <u>not</u> automatic

- Contextual equivalence in our language is undecidable
- Therefore, so is environmental bisimilarity

...but it proved <u>all</u> known examples!

Up-To Techniques

Variants of environmental bisimulations with weaker (yet sound) conditions

Up-to reduction (and renaming)
Up-to context (and environment)
Up-to allocation

Details in the paper

Related Work

 Environmental bisimulations for other languages (already mentioned)

- Bisimulations for other languages
- Logical relations
- Game semantics

None has dealt with <u>both</u> abstract data types and references

– Except [Ahmed-Dreyer-Rossberg POPL'09]

Conclusion

Summary: Sound and complete "proof method" for contextual equivalence in polymorphic λ -calculus with existential types and references

Current and future work:

- Parametricity properties ("free theorems")
- Semantic model