A Complete Characterization of
Observational Equivalence In

Polymorphic lambda-Calculus with
General References

Eijiro Sumii
(Tohoku University)
-

Executive Summary
S

Sound and complete "proof method"
for contextual equivalence
In a language with

e Higher-order functions,
e First-class references (like ML), and

e Abstract data types

Caveat: the method is not fully automatic!

- The equivalence is (of course) undecidable Iin
general

— Still, it successfully proved all known examples

(Very) General Motivation
O

1. Equations are important
- 1+2=3,x+y=y+x, E=mc? ..
Computing Is (should be) a science

herefore, equations are important in
(so-called) computer science

Computing Is described by programs

Therefore, equivalence of programs
IS Important!

Program Equivalence as

Contextual Equivalence

In general, equations should be
preserved under any context

~Eg.,x+y=y+ximplies(x+y)+z=(y+

X) + z by considering the context [| + z

= Contextual equivalence
(a.k.a. observational equivalence):
Two programs "give the same result"
under any context

- Termination/divergence suffices for the
"result"

Contextual Equivalence:
Definition
S

Two programs P and Q are contextually
equivalent if, for any context C,

C[P] terminates < C[Q] terminates

- C[P] (resp. C[Q]) means "filling In" the
"hole" [| of C with P (resp. Q)

Example: Two Implementations

of Mutable Integer Lists
S

(* pseudo-code In
Imaginary ML-like language *)
sighature S

type t (* abstract *)

val nil : t

valcons:int>t—>t

val setcar : t > Int = unit

(* car, cdr, setcdr, etc. omitted *)
end

First Implementation

structure L
typet = Nil | Cons of (int ref * t ref)
et nil = Nil
et cons ad = Cons(ref a, ref d)
et setcar (Cons p) a =
fst(p) .= a

P e

Second Implementation

structure L’

typet = Nil | Cons of (int *t) ref
et nil = Nil
et cons ad = Cons(ref(a, d))
et setcar (Cons r) a=

r .= (a, snd(!r))

NG

The Problem
S
The implementations L and L' should be
contextually equivalent under the
Interface S

How can we prove it?

e Direct proof is infeasible because of the
universal quantification: "for any context C"

e Little previous work deals with both

abstract data types and references
(cf. [Ahmed-Dreyer-Rossberg POPL'09])

- None is complete (to my knowledge)

Our Approach:

Environmental Bisimulations

e Initially devised for A-calculus with
perfect encryption [Sumii-Pierce POPL'04]

e Successfully adapted for

— Polymorphic A-calculus [sumii-pierce POPL'05]

- Untyped A-calculus with
references [koutavas-wand PoPL'06] and
deallocation [sumii ESOP'09]

- Higher-order w-calculus
[Sangiorgi-Kobayashi-Sumii LICS'07]

— Applled HOT [sato-Sumii APLAS'09, to appear] etc.

Our Target Language

Polymorphic A-calculus with existential
types and first-class references

M ::= ...standard A-terms... |
pack (r, M) as da.c |
open M as (a, x) in N | [locations
refM | IM | I\/I::N|£||\/|J::

equality of locations

1T ..=...Standard polymorphic types... |
da.t | tref

Environmental Relations

An environmental relation X i1s a set of
tuples of the form:

(A, R, s>M, s'>M', 1)

Environmental Relations

An environmental relation X i1s a set of
tuples of the form:

(A, R, s>M, s'>M', 1)

e Program M (resp. M) of type tIs running
under store s (resp. s')

- Mand M' (and 1) are omitted when terminated

Environmental Relations

An environmental relation X i1s a set of
tuples of the form:

(A, R, s>M, s'>M', 1)

e Program M (resp. M') of type tIs running
under store s (resp. s')

- Mand M' (and 1) are omitted when terminated

e R is the environment: a (typed) relation
between values known to the context

Environmental Relations
o«

An environmental relation X i1s a set of
tuples of the form:

(A, R, s>M, s'>M', 1)

e Program M (resp. M') of type tIs running
under store s (resp. s')

- Mand M' (and 1) are omitted when terminated

e R is the environment: a (typed) relation
between values known to the context

e A maps an abstract type o to (the pair of)
their concrete types o and ¢

Environmental Bisimulations

for Our Calculus

An environmental relation X IS an
environmental bisimulation if it I1s
preserved by

e execution of the programs and
e operations from the context

Formalized by the following conditions...

Environmental Bisimulations:

Condition for Reduction
- 000000000|
o If (A, R, sbM, s'>M', 1) € X and
s>M converges to t>V, then

s'>M" also converges to some t'>V
with (A, RU{(V,V',7t)}, t, 1') € X

(Symmetric condition omitted)

Strictly speaking, this is a "big-step”
version of environmental bisimulations

Environmental Bisimulations:

Condition for Opening
- 000000000|
o If (A,R,s,s') e Xand
(pack (t, V) as Ja.o,
pack (t', V') as Ja.o, Ja.c) € R, then

(AU{(a,7,7")}, RU{(V,V',0)},s,s') e X

Environmental Bisimulations:

Condition for Dereference
<
o If (A,R,s,s') e Xand
(4, V', oref) e R, then
(A, RU{(s(¥),s'(¢'),0)}, s,S') € X

Environmental Bisimulations:

Condition for Update
S
o If (A,R,s,s') e Xand
(4, V', oref) e R, then
(A, R, s{/—W}, s'{/'>W'}) e X

for any W and W' "synthesized" from R
- Formally,

for some (V,,V'},1,)
some well-typed C

Environmental Bisimulations:

Condition for Application
S
o If (A,R,s,s') e Xand
(AX.M, Ax.M', o—>71) € R, then
(A, R, sp[W/IX]M, s'>[W'/X]M', 1) € X

for any W and W' synthesized from R

Other Conditions

e Similar conditions for allocation,
location equality, projection, etc.

e No condition for values of abstract
types

If (A, R,S,8') e X

and \/ ~N \R

Abstract

- Context cannot operate on them

Mutable Integer Lists Interface

(Reminder)
O

(* pseudo-code In
Imaginary ML-like language *)
sighature S

type t (* abstract *)

val nil : t

val cons:int->t->t

val setcar : t -> Int -> unit

(* setcdr, car, cdr, etc. omitted *)
end

First Implementation
(Reminder)

structure L
typet = Nil | Cons of (int ref * t ref)
et nil = Nil
et cons ad = Cons(ref a, ref d)
et setcar (Cons p) a =
fst(p) .= a

P e

Second Implementation
(Reminder)

structure L’

typet = Nil | Cons of (int *t) ref
et nil = Nil
et cons ad = Cons(ref(a, d))
et setcar (Cons r) a=

r .= (a, snd(!r))

NG

Environmental Bisimulaton for

The Mutable Integer Lists
S

X = {(AR,s,s'") |
{(S.t, L.t, L"t) },
{(L,L,S),

_.nil, L'.nil, S.t),

_.cons, L'.cons, Int5S.t—>S.1),
_.setcar, L'.setcar, S.t—Iint—>unit),
_.Cons(4,m.), L'.Cons(¢"), S.t)

L NIl LN S) | 1=1,2,3,...,n
s(¢) = fst(s'(4';)) and

(s(m;), snd(s'(¢")), S.t) e R, for each 1}

More complicated example (1/3)

(* Adapted from [Ahmed-Dreyer-Rossberg
POPL'09], credited to Thamsborg *)

pack (int ref, (ref 1, AxX.V,)) as o
vs. pack (intref, (ref 1, Ax.V')) as o

where
V, = M. (x:=0; f(); x:=1; f(); !X)
Vio= At (fO; 105 1)
c = da. a x (a—>(1—>1)—>int)
e fis supplied by the context
e What are the reducts of Vfand V' {?

More complicated example (2/3)
S
X = XoU X,

Xo = { (A, R, t{Z/=0}>N, t'>N', Int) |

N and N' are made of contexts in T,
with holes filled with elements of R }

X; = { (A R, t{/=1}>N, t'>N', Int) |
N and N' are made of contexts in
with holes filled with elements of

More complicated example (3/3)
S

o (C; £:=1; D; ¥) T, (C; D; 1)

o (D;14) T, (D; 1)

o If E[zZW] T, E'[zZW], then

E[C; ¢:=1; D; 4] T, E'[C; D; 1]
(for any evaluation contexts E and E')

o If E[zZW] T, E'[zZW], then E[D; 4] T, E'[D; 1]
o If E[zZW] T, E'[zZW], then

E[C; ¢:=1; D; I4] T, E'[C; D; 1]
o If E[zZW] T, E'[zW], then E[D; /] T, E'[D; 1]

Main Theorem:

Soundness and Completeness
S

The largest environmental bisimulation ~
coincides with (a generalized form of)

contextual equivalence =

Proof

e Soundness: Prove ~ Is preserved under any context
(by induction on the context)

e Completeness: Prove =is an environmental
bisimulation (by checking its conditions)

The Caveat
<

Our "proof method" Is not automatic

e Contextual equivalence in our
language Is undecidable

e Therefore, so Is environmental
bisimilarity

...but it proved all known examples!

Up-To Technigues

Variants of environmental bisimulations
with weaker (yet sound) conditions

0-to reduction (and renaming)
0-to context (and environment)
n0-to allocation

Detalls in the paper

Related Work

e Environmental bisimulations for other
languages (already mentioned)

e Bisimulations for other languages

e Logical relations
e Game semantics

None has dealt with both abstract data
types and references

— Except [Ahmed-Dreyer-Rossberg POPL'09]

Conclusion

Summary:
Sound and complete "proof method"
for contextual equivalence in

polymorphic A-calculus with
existential types and references

Current and future work:

- Parametricity properties
("free theorems")

— Semantic model

