A Theory of
Non-Monotone Memory
(Or: Contexts for free)

Eijiro Sumii
Tohoku University
A

Executive Summary
O

A sound and complete proof method
for arbitrary "contextual" properties

e including contextual equivalence, space
improvement, and memory safety

e based on environmental bisimulations
[Sumii-Pierce 04, 05] [Koutavas-Wand 06]
[Sangiorgi-Kobayashi-Sumii 07]

e for untyped A-calculus with references and
deallocation (free)

- hard to deal with by other methods

Motivation: An Example
S
Typical implementation of integer
multisets (e.g. by linked lists):

set = let r = ref nil in (add., mem_, del)

where
add. = Ax...insert x into Ir...
mem,. = AX. ..Search Ir for x...
del. = Ax. ..search Ir for x and

r

remove the node containing it...

Motivation: Questions
- 0]

set = let r = ref nil in (add., mem_, del)

Is this implementation:
e memory safe?

e observationally equivalent to another
implementation (e.g. by binary trees)?

e more (time- or space-) efficient than
another implementation?

etfc.

Motivation: The Observation
«

set = let r = ref nil in (add., mem_, del)

It makes no sense to consider the friple

(add., mem,, del.) by itself!

- because it does nothing (no good, no harm)
by itself

Rather, we must put it under arbitrary
contexts C

Motivation: The Problem
]

How to prove
- memory safety,
- observational equivalence,

- time/space improvement, etc.
under arbitrary contexts C?

e Naive induction on C does not work

e Traditional logical relations have difficulties
with deallocation and with untyped languages
(or recursive types)

Our Solution: Generalize

Environmental Bisimulations
<

Represent the states of a context and

programs by a set X of tuples
(R,s>M,s'>M")and (R, s, s')

e Environment R is a binary relation on values,

representing the knowledge of the context about
the programs
e State s>M (resp. s >M") is a pair of a store and a
term, representing the program running on the left
(resp. right) hand side of the relation
- M and M' are omitted when the programs have
stopped and are not running

How to use it and how it works

M and M' satisfy P under arbitrary contexts
if we can construct some X such that:

o (0, O>Ax1..x,. M, O>Axq..x,.M") € X for the
programs M and M in question

x,} 2 fv(M,M")

e X is preserved by reduction of the programs
and operations from the context

e Every element in X satisfies the property P
In question

The rest of the talk
I
e The calculus

- Syntax
- Operational semantics

e The environmental relations
- Definition
- Soundness and completeness
- Example
- Unary case

e Conclusion

The calculus: Syntax
e —
Standard untyped, call-by-value
A-calculus with (first-class, higher-
order) references and deallocation

(standard \-terms)
(location)
(allocation)

| (dereference)

M;:= M, (update)

free M (deallocation)

M; == M, (pointer equality)

The calculus:

Operational semantics
<

Standard small-step reduction
with evaluation contexts and stores

s>refV —» sas{4—Vl> v

s>l > s> s(¥)

s{->Vi =W - ss{i—=>Wl > ()
se{/—>V} > freet — s> ()
s>f==/{ > s> true

s> f, ==/, — s false if £; =4,
...and other standard rules...

Caution
c -
Because of deallocation, our reduction is
non-deterministic even modulo
renaming of fresh locations

{¢{ > V} > free(?); (ref W == ¢)
—> 0> ref W==/
> > W} /==
(or {¢/' > W} /¢ ==10)
— {{ > W} > true
(or {¢' —» W} > false)

The rest of the talk
]

e The environmental relations
- Definition
- Soundness and completeness
- Example
- Unary case

e Conclusion

The environmental relations:
Definition (1/4)
]

Consider a predicate P on tuples of the forms
(R,s>M,s'>M")and (R, s, s")

- Recall: R is the context's knowledge and
s>>M and s'>M' are the programs’ states

e Observational equivalence: sc>M1) iff s'>M"1
e Space improvement: |dom(s)| < [dom(s")|
etc.

X C P is an environmental P-simulation if it is
reduction-closed and "operation-closed"

The environmental relations:
Definition (2/4)
]

X is reduction-closed if
for any (R, s>M, s’ >M") € X,

e If s>M —» t>N, thens'>M' - ... > t' >N’
and (R, t>N, +'>N") € X (and vice versa)

- X is preserved by execution of the programs
e If M=Vand M =V,
then (RU{(V,V')}, 5,5) e X

- Context learns values returned by the programs

The environmental relations:
Definition (3/4)
o]
X is "operation-closed" if for any (R, s,s’) € X,
e Forany (4,¢") € R,
- (RuU{(s(v),s'(¢")}, s, s') € X (dereference)

- (R, s[4—V], s'[£'—=V']) € X (update)
- (R, s\7, s'"\/") € X (deallocation)

where V and V' are arbitrary values
composed from R by the context

m Formally, (V,V') € R* =
{ C[W,.. W] CIW," . W,/']) | W, W)eR}

The environmental relations:
Definition (4/4)
]

X is "operation-closed" if for any (R, s,s’) € X,

e For any fresh /and (V, V') € R*,
(RU{(¢,0)}, sw{t—>V}, s's{e—V'}) € X
(allocation)

e For any (Ax.M, AxM') e Rand (V, V') € R*,
(R, s>(Ax.M)V, s >(Ax.M V') € X
(application)

e For any ((Vy,...Vy). (V1'...V,')) €R,
(RU{(V,V.")},s,s) € X(projection)

The rest of the talk
]

e The environmental relations

- Soundness and completeness
- Example
- Unary case

e Conclusion

The environmental relations:

Soundness and completeness
<

Theorem:
The largest P-simulation coincides with

the reduction- and context-closure of P

Ie., if programs belong tfo some P-simulation,
then they satisfy P throughout execution
of the programs under arbitrary contexts,
and vice versa

The rest of the talk
]

e The environmental relations

- Example
- Unary case

e Conclusion

The environmental relations:

Example
I —
e Let set and set’ be implementations of
infeger multisets by linked lists and
binary trees

e Then we can prove that set and set

- are contextually equivalent, by taking
P(R, s>M, s >M") to be sbM) & s'>M'1)

- use the same number of locations, by
taking P(R, s>M, s'>M ") and P(R, s, s')

to be |dom(s)| = |dom(s")]
etc., under arbitrary contexts

{0, 0>)_set, 0>)_.set’)} U

{ (R, st{t—>V}, s'w{t'—=V'Y}) |
R={(add,, add’,), (mem,, mem,), (del,, del",) },
the linked list V and the binary tree V'
respectively represent the same set
under the storessands' } U

{ ..infermediate states during
insertion/membership/deletion operations... }

= X is an environmental P-simulation
for each P in the previous slide
(up-to context and "up-to allocation")

The rest of the talk
]

e The environmental relations

- Unary case
e Conclusion

The environmental relations:

Degeneracy to unary case
O

All of these arguments apply to
unary relations (predicates) as well

e In fact, the unary case is degenerated from
the binary case, by requiring the left hand
side be equal to the right

- "Simulation" between M and M itself

E.g., Take P(R, s>>M, s'>M") to be true iff
s=s',M=M"and M is not accessing
locations not in dom(s)

Conclusion

o
e We have developed a proof method

for arbitrary contextual properties
in untyped \-calculus

with "full" (unrestricted) references
and deallocation

In the paper (with online appendices):
- Auxiliary "up-to" techniques
- More examples

