
A Theory of
Non-Monotone Memory
(Or: Contexts for free)

Eijiro Sumii
Tohoku University

Executive Summary

A sound and complete proof method
for arbitrary "contextual" properties

including contextual equivalence, space
improvement, and memory safety
based on environmental bisimulations
[Sumii-Pierce 04, 05] [Koutavas-Wand 06]
[Sangiorgi-Kobayashi-Sumii 07]

for untyped λ-calculus with references and
deallocation (free)
– hard to deal with by other methods

Motivation: An Example

Typical implementation of integer
multisets (e.g. by linked lists):

set = let r = ref nil in (addr, memr, delr)

where
addr = λx. ...insert x into !r...
memr = λx. ...search !r for x...
delr = λx. ...search !r for x and

remove the node containing it...

Motivation: Questions

set = let r = ref nil in (addr, memr, delr)

Is this implementation:
memory safe?
observationally equivalent to another
implementation (e.g. by binary trees)?
more (time- or space-) efficient than
another implementation?

etc.

Motivation: The Observation

set = let r = ref nil in (addr, memr, delr)

It makes no sense to consider the triple
(addr, memr, delr) by itself!
– because it does nothing (no good, no harm)

by itself

Rather, we must put it under arbitrary
contexts C

Motivation: The Problem

How to prove
– memory safety,
– observational equivalence,
– time/space improvement, etc.

under arbitrary contexts C?
(There are infinitely many of them!)

Naive induction on C does not work
Traditional logical relations have difficulties
with deallocation and with untyped languages
(or recursive types)

Our Solution: Generalize
Environmental Bisimulations

Represent the states of a context and
programs by a set X of tuples
(R, sBM, s'BM') and (R, s, s')
Environment R is a binary relation on values,
representing the knowledge of the context about
the programs
State sBM (resp. s'BM') is a pair of a store and a
term, representing the program running on the left
(resp. right) hand side of the relation
– M and M' are omitted when the programs have

stopped and are not running

How to use it and how it works

M and M' satisfy P under arbitrary contexts
if we can construct some X such that:
(∅, ∅Bλx1...xn.M, ∅Bλx1...xn.M') ∈ X for the
programs M and M' in question
– {x1,...,xn} ⊇ fv(M,M')

X is preserved by reduction of the programs
and operations from the context
Every element in X satisfies the property P
in question

The rest of the talk

The calculus
– Syntax
– Operational semantics
The environmental relations
– Definition
– Soundness and completeness
– Example
– Unary case
Conclusion

The calculus: Syntax

Standard untyped, call-by-value
λ-calculus with (first-class, higher-
order) references and deallocation

M ::= ... (standard λ-terms)
l (location)
ref M (allocation)
!M (dereference)
M1 := M2 (update)
free M (deallocation)
M1 == M2 (pointer equality)

The calculus:
Operational semantics

Standard small-step reduction
with evaluation contexts and stores

s B ref V → s]{laV} B l
s B !l → s B s(l)
s]{laV} B l := W → s]{laW} B ()
s]{laV} B free l → s B ()
s B l == l → s B true
s B l1 == l2 → s B false if l1 ≠ l2

...and other standard rules...

Caution

Because of deallocation, our reduction is
non-deterministic even modulo
renaming of fresh locations

{l a V} B free(l); (ref W == l)
→ ∅ B ref W == l
→ {l a W} B l == l
(or {l' a W} B l' == l)

→ {l a W} B true
(or {l' a W} B false)

The rest of the talk

The calculus
– Syntax
– Reduction
The environmental relations
– Definition
– Soundness and completeness
– Example
– Unary case
Conclusion

The environmental relations:
Definition (1/4)

Consider a predicate P on tuples of the forms
(R, sBM, s'BM') and (R, s, s')
– Recall: R is the context's knowledge and

sBM and s'BM' are the programs' states

Observational equivalence: sBM⇑ iff s'BM'⇑
Space improvement: |dom(s)| ≤ |dom(s')|

etc.

X ⊆ P is an environmental P-simulation if it is
reduction-closed and "operation-closed"

The environmental relations:
Definition (2/4)

X is reduction-closed if
for any (R, sBM, s'BM') ∈ X,
If sBM → tBN, then s'BM' → ... → t'BN'
and (R, tBN, t'BN') ∈ X (and vice versa)
– X is preserved by execution of the programs

If M = V and M' = V',
then (R∪{(V,V')}, s, s') ∈ X
– Context learns values returned by the programs

The environmental relations:
Definition (3/4)

X is "operation-closed" if for any (R, s, s') ∈ X,
For any (l, l') ∈ R,
– (R ∪ {(s(l), s'(l')}, s, s') ∈ X (dereference)
– (R, s[laV], s'[l'aV']) ∈ X (update)
– (R, s\l, s'\l') ∈ X (deallocation)
where V and V' are arbitrary values

composed from R by the context
Formally, (V, V') ∈ R* =

{ (C[W1,...,Wn], C[W1',...,Wn']) | (Wi, W'i) ∈ R }
...continuted...

The environmental relations:
Definition (4/4)

X is "operation-closed" if for any (R, s, s') ∈ X,
For any (l, l') ∈ R, ...
For any fresh l and (V, V') ∈ R*,
(R∪{(l,l)}, s]{laV}, s']{laV'}) ∈ X
(allocation)
For any (λx.M, λx.M') ∈ R and (V, V') ∈ R*,
(R, sB(λx.M)V, s'B(λx.M')V') ∈ X
(application)
For any ((V1,...,Vn), (V1',...,Vn')) ∈ R,
(R∪{(Vi,Vi')}, s, s') ∈ X (projection)

The rest of the talk

The calculus
– Syntax
– Reduction
The environmental relations
– Definition
– Soundness and completeness
– Example
– Unary case
Conclusion

The environmental relations:
Soundness and completeness

Theorem:
The largest P-simulation coincides with
the reduction- and context-closure of P

I.e., if programs belong to some P-simulation,
then they satisfy P throughout execution
of the programs under arbitrary contexts,
and vice versa

The rest of the talk

The calculus
– Syntax
– Reduction
The environmental relations
– Definition
– Soundness and completeness
– Example
– Unary case
Conclusion

The environmental relations:
Example

Let set and set' be implementations of
integer multisets by linked lists and
binary trees
Then we can prove that set and set'
– are contextually equivalent, by taking

P(R, sBM, s'BM') to be sBM⇑ ⇔ s'BM'⇑
– use the same number of locations, by

taking P(R, sBM, s'BM') and P(R, s, s')
to be |dom(s)| = |dom(s')|

etc., under arbitrary contexts

X =
{ (∅, ∅Bλ_.set, ∅Bλ_.set') } ∪
{ (R, s]{laV}, s']{l'aV'}) |

R = { (addl, add'l'), (meml, mem'l'), (dell, del'l') },
the linked list V and the binary tree V'
respectively represent the same set
under the stores s and s' } ∪

{ ...intermediate states during
insertion/membership/deletion operations... }

⇒ X is an environmental P-simulation
for each P in the previous slide
(up-to context and "up-to allocation")

The rest of the talk

The calculus
– Syntax
– Reduction
The environmental relations
– Definition
– Soundness and completeness
– Example
– Unary case
Conclusion

The environmental relations:
Degeneracy to unary case

All of these arguments apply to
unary relations (predicates) as well

In fact, the unary case is degenerated from
the binary case, by requiring the left hand
side be equal to the right
– "Simulation" between M and M itself

E.g., Take P(R, sBM, s'BM') to be true iff
s = s', M = M' and M is not accessing
locations not in dom(s) (memory safety)

Conclusion

We have developed a proof method
– for arbitrary contextual properties
– in untyped λ-calculus
– with "full" (unrestricted) references
– and deallocation

In the paper (with online appendices):
– Auxiliary "up-to" techniques
– More examples

