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Executive Summary

A sound and complete proof method
for arbitrary "contextual" properties

including contextual equivalence, space 
improvement, and memory safety
based on environmental bisimulations
[Sumii-Pierce 04, 05] [Koutavas-Wand 06]
[Sangiorgi-Kobayashi-Sumii 07]

for untyped λ-calculus with references and 
deallocation (free)
– hard to deal with by other methods



Motivation: An Example

Typical implementation of integer 
multisets (e.g. by linked lists):

set  =  let r = ref nil in (addr, memr, delr)

where
addr =  λx. ...insert x into !r...
memr =  λx. ...search !r for x...
delr =  λx. ...search !r for x and

remove the node containing it...



Motivation: Questions

set  =  let r = ref nil in (addr, memr, delr)

Is this implementation:
memory safe?
observationally equivalent to another 
implementation (e.g. by binary trees)?
more (time- or space-) efficient than 
another implementation?

etc.



Motivation: The Observation

set  =  let r = ref nil in (addr, memr, delr)

It makes no sense to consider the triple 
(addr, memr, delr) by itself!
– because it does nothing (no good, no harm) 

by itself

Rather, we must put it under arbitrary 
contexts C



Motivation: The Problem

How to prove
– memory safety,
– observational equivalence,
– time/space improvement, etc.

under arbitrary contexts C?
(There are infinitely many of them!)

Naive induction on C does not work
Traditional logical relations have difficulties 
with deallocation and with untyped languages 
(or recursive types)



Our Solution: Generalize 
Environmental Bisimulations

Represent the states of a context and 
programs by a set X of tuples
(R, sBM, s'BM') and (R, s, s')
Environment R is a binary relation on values, 
representing the knowledge of the context about 
the programs
State sBM (resp. s'BM') is a pair of a store and a 
term, representing the program running on the left 
(resp. right) hand side of the relation
– M and M' are omitted when the programs have 

stopped and are not running



How to use it and how it works

M and M' satisfy P under arbitrary contexts
if we can construct some X such that:
(∅, ∅Bλx1...xn.M, ∅Bλx1...xn.M') ∈ X for the 
programs M and M' in question
– {x1,...,xn} ⊇ fv(M,M')

X is preserved by reduction of the programs 
and operations from the context
Every element in X satisfies the property P
in question



The rest of the talk

The calculus
– Syntax
– Operational semantics
The environmental relations
– Definition
– Soundness and completeness
– Example
– Unary case
Conclusion



The calculus: Syntax

Standard untyped, call-by-value
λ-calculus with (first-class, higher-
order) references and deallocation

M ::= ... (standard λ-terms)
l (location)
ref M (allocation)
!M (dereference)
M1 := M2 (update)
free M (deallocation)
M1 == M2 (pointer equality)



The calculus:
Operational semantics

Standard small-step reduction
with evaluation contexts and stores

s B ref V → s]{laV} B l
s B !l → s B s(l)
s]{laV} B l := W  → s]{laW} B ()
s]{laV} B free l → s B ()
s B l == l → s B true
s B l1 == l2 → s B false if l1 ≠ l2

...and other standard rules...



Caution

Because of deallocation, our reduction is 
non-deterministic even modulo 
renaming of fresh locations

{l a V} B free(l); (ref W == l)
→ ∅ B ref W == l
→ {l a W} B l == l
(or  {l' a W} B l' == l)

→ {l a W} B true
(or  {l' a W} B false)



The rest of the talk

The calculus
– Syntax
– Reduction
The environmental relations
– Definition
– Soundness and completeness
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– Unary case
Conclusion



The environmental relations: 
Definition (1/4)

Consider a predicate P on tuples of the forms
(R, sBM, s'BM') and (R, s, s')
– Recall: R is the context's knowledge and

sBM and s'BM' are the programs' states

Observational equivalence: sBM⇑ iff s'BM'⇑
Space improvement: |dom(s)| ≤ |dom(s')|

etc.

X ⊆ P is an environmental P-simulation if it is 
reduction-closed and "operation-closed"



The environmental relations: 
Definition (2/4)

X is reduction-closed if
for any (R, sBM, s'BM') ∈ X,
If sBM → tBN, then s'BM' → ... → t'BN' 
and (R, tBN, t'BN') ∈ X (and vice versa)
– X is preserved by execution of the programs

If M = V and M' = V',
then ( R∪{(V,V')}, s, s' ) ∈ X
– Context learns values returned by the programs



The environmental relations: 
Definition (3/4)

X is "operation-closed" if for any (R, s, s') ∈ X,
For any (l, l') ∈ R,
– (R ∪ {(s(l), s'(l')},  s,  s') ∈ X (dereference)
– (R,  s[laV],  s'[l'aV']) ∈ X (update)
– (R,  s\l,  s'\l') ∈ X (deallocation)
where V and V' are arbitrary values 

composed from R by the context
Formally,  (V, V')  ∈  R*  =

{  (C[W1,...,Wn], C[W1',...,Wn']) |  (Wi, W'i) ∈ R }
...continuted...



The environmental relations: 
Definition (4/4)

X is "operation-closed" if for any (R, s, s') ∈ X,
For any (l, l') ∈ R, ...
For any fresh l and (V, V') ∈ R*,
( R∪{(l,l)},  s]{laV},  s']{laV'} )  ∈ X
(allocation)
For any (λx.M, λx.M') ∈ R and (V, V') ∈ R*,
( R,  sB(λx.M)V,  s'B(λx.M')V' )  ∈ X
(application)
For any ((V1,...,Vn), (V1',...,Vn')) ∈ R,
( R∪{(Vi,Vi')}, s, s' ) ∈ X (projection)
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The environmental relations: 
Soundness and completeness

Theorem:
The largest P-simulation coincides with 
the reduction- and context-closure of P

I.e., if programs belong to some P-simulation, 
then they satisfy P throughout execution 
of the programs under arbitrary contexts, 
and vice versa
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The environmental relations:
Example

Let set and set' be implementations of 
integer multisets by linked lists and 
binary trees
Then we can prove that set and set'
– are contextually equivalent, by taking

P(R, sBM, s'BM') to be sBM⇑ ⇔ s'BM'⇑
– use the same number of locations, by 

taking P(R, sBM, s'BM') and P(R, s, s')
to be |dom(s)| = |dom(s')|

etc., under arbitrary contexts



X  =
{ (∅, ∅Bλ_.set, ∅Bλ_.set') }  ∪
{ (R, s]{laV}, s']{l'aV'}) |

R = { (addl, add'l'), (meml, mem'l'), (dell, del'l') },
the linked list V and the binary tree V'
respectively represent the same set
under the stores s and s' }  ∪

{ ...intermediate states during
insertion/membership/deletion operations... }

⇒ X is an environmental P-simulation
for each P in the previous slide
(up-to context and "up-to allocation")
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The environmental relations:
Degeneracy to unary case

All of these arguments apply to
unary relations (predicates) as well

In fact, the unary case is degenerated from 
the binary case, by requiring the left hand 
side be equal to the right
– "Simulation" between M and M itself

E.g., Take P(R, sBM, s'BM') to be true iff
s = s', M = M' and M is not accessing 
locations not in dom(s) (memory safety)



Conclusion

We have developed a proof method
– for arbitrary contextual properties
– in untyped λ-calculus
– with "full" (unrestricted) references
– and deallocation

In the paper (with online appendices):
– Auxiliary "up-to" techniques
– More examples


