A Theory of Non-Monotone Memory (Or: Contexts for free)

Eijiro Sumii Tohoku University

Executive Summary

A sound and complete proof method for <u>arbitrary</u> "contextual" properties

- <u>including</u> contextual equivalence, space improvement, and memory safety
- based on <u>environmental bisimulations</u> [Sumii-Pierce 04, 05] [Koutavas-Wand 06] [Sangiorgi-Kobayashi-Sumii 07]
- for untyped λ -calculus with references and <u>deallocation</u> (free)

- hard to deal with by other methods

Motivation: An Example

Typical implementation of integer multisets (e.g. by linked lists):

set = let $r = ref nil in (add_r, mem_r, del_r)$

where

add_r = λxinsert x into !r... mem_r = λxsearch !r for x... del_r = λxsearch !r for x and remove the node containing it...

Motivation: Questions

set = let $r = ref nil in (add_r, mem_r, del_r)$

Is this implementation:

- memory safe?
- observationally equivalent to another implementation (e.g. by binary trees)?
- more (time- or space-) efficient than another implementation?

Motivation: The Observation

set = let $r = ref nil in (add_r, mem_r, del_r)$

It makes no sense to consider the triple (add_r, mem_r, del_r) by itself!

 because it does nothing (no good, no harm) by itself

Rather, we must put it under <u>arbitrary</u> <u>contexts</u> C

Motivation: The Problem

How to prove

- memory safety,
- observational equivalence,
- time/space improvement, etc.
 under arbitrary contexts C?
 (There are infinitely many of them!)
- Naive induction on C does not work
- Traditional logical relations have difficulties with deallocation and with untyped languages (or recursive types)

Our Solution: Generalize Environmental Bisimulations

Represent the states of a context and programs by a set X of tuples (R, s⊳M, s'⊳M') and (R, s, s')

- <u>Environment</u> R is a binary relation on values, representing the knowledge of the context about the programs
- <u>State</u> s>M (resp. s'>M') is a pair of a store and a term, representing the program running on the left (resp. right) hand side of the relation
 - M and M' are omitted when the programs have stopped and are not running

How to use it and how it works

- M and M' satisfy P under arbitrary contexts if we can construct some X such that:
- $(\emptyset, \emptyset \triangleright \lambda x_1 ... x_n .M, \emptyset \triangleright \lambda x_1 ... x_n .M') \in X$ for the programs M and M' in question
 - $\{x_1, \dots, x_n\} \supseteq fv(M, M')$
- X is preserved by reduction of the programs and <u>operations from the context</u>
- Every element in X satisfies the property P in question

- The calculus
 - Syntax
 - Operational semantics
- The environmental relations
 - Definition
 - Soundness and completeness
 - Example
 - Unary case
- Conclusion

The calculus: Syntax

Standard untyped, call-by-value λ -calculus with (first-class, higher-order) references and deallocation

 $M ::= \dots \\ \ell \\ ref M \\ !M \\ M_1 := M_2 \\ free M \\ M_1 == M_2$

(standard λ-terms)
(location)
(allocation)
(dereference)
(update)
(deallocation)
(pointer equality)

The calculus: Operational semantics

Standard small-step reduction with evaluation contexts and stores $s \triangleright ref V \rightarrow s \uplus \{\ell \mapsto V\} \triangleright \ell$ $\mathsf{S} \triangleright ! \ell \rightarrow \mathsf{S} \triangleright \mathsf{S}(\ell)$ $\mathsf{S} \oplus \{\ell \mapsto \mathsf{V}\} \triangleright \ell := \mathsf{W} \rightarrow \mathsf{S} \oplus \{\ell \mapsto \mathsf{W}\} \triangleright ()$ $\mathsf{S} \oplus \{\ell \mapsto \mathsf{V}\} \triangleright \mathsf{free} \ell \rightarrow \mathsf{S} \triangleright ()$ $\mathsf{S} \triangleright \ell == \ell \rightarrow \mathsf{S} \triangleright \mathsf{true}$ $s \triangleright \ell_1 == \ell_2 \rightarrow s \triangleright false if \ell_1 \neq \ell_2$...and other standard rules...

Caution

Because of deallocation, our reduction is non-deterministic even modulo renaming of fresh locations $\{\ell \mapsto \mathsf{V}\} \triangleright \mathsf{free}(\ell); (\mathsf{ref W} == \ell)$ $\rightarrow \emptyset \triangleright \mathsf{ref W} == \ell$ $\rightarrow \{\ell \mapsto W\} \triangleright \ell == \ell$ (or $\{\ell' \mapsto W\} \triangleright \ell' == \ell$) $\rightarrow \{\ell \mapsto W\} \triangleright true$ (or $\{\ell' \mapsto W\} \triangleright \mathsf{false}$)

- The calculus
 - Syntax
 - Reduction
- The environmental relations
 - Definition
 - Soundness and completeness
 - Example
 - Unary case
- Conclusion

The environmental relations: Definition (1/4)

Consider a predicate P on tuples of the forms (R, s⊳M, s'⊳M') and (R, s, s')

Recall: R is the context's knowledge and
 M and s'>M' are the programs' states

- Observational equivalence: s ▷ M↑ iff s' ▷ M'↑
- Space improvement: $|dom(s)| \le |dom(s')|$ etc.

 $X \subseteq P$ is an <u>environmental P-simulation</u> if it is <u>reduction-closed</u> and "<u>operation-closed</u>"

The environmental relations: Definition (2/4)

- X is <u>reduction-closed</u> if for any $(R, s \triangleright M, s' \triangleright M') \in X$,
- If $s \triangleright M \rightarrow t \triangleright N$, then $s' \triangleright M' \rightarrow ... \rightarrow t' \triangleright N'$ and (R, $t \triangleright N$, $t' \triangleright N'$) $\in X$ (and vice versa)

- X is preserved by execution of the programs

 If M = V and M' = V', then (R∪{(V,V')}, s, s') ∈ X

- Context learns values returned by the programs

The environmental relations: Definition (3/4)

- X is "<u>operation-closed</u>" if for any $(R, s, s') \in X$, • For any $(\ell, \ell') \in R$,
 - $(\mathsf{R} \cup \{(\mathfrak{s}(\ell), \mathfrak{s}'(\ell')\}, \mathfrak{s}, \mathfrak{s}') \in \mathsf{X} \text{ (dereference)} \}$
 - (R, $s[\ell \mapsto V]$, $s'[\ell' \mapsto V']$) $\in X$ (update)
 - (R, s\l, s'\l') ∈ X (deallocation) where V and V' are arbitrary values composed from R by the context
 Formally, (V, V') ∈ R* = { (C[W₁,...,W_n], C[W₁',...,W_n']) | (W_i, W'_i) ∈ R }

• ...continuted...

The environmental relations: Definition (4/4)

- X is "operation-closed" if for any $(R, s, s') \in X$, • For any $(\ell, \ell') \in R$, ...
- For any fresh ℓ and $(V, V') \in \mathbb{R}^*$, $(\mathbb{R} \cup \{(\ell, \ell)\}, \mathbb{S} \cup \{\ell \mapsto V\}, \mathbb{S}' \cup \{\ell \mapsto V'\}) \in X$ (allocation)
- For any $(\lambda x.M, \lambda x.M') \in \mathbb{R}$ and $(V, V') \in \mathbb{R}^*$, (R, $s \triangleright (\lambda x.M)V$, $s' \triangleright (\lambda x.M')V'$) $\in X$ (application)
- For any $((V_1, ..., V_n), (V_1', ..., V_n')) \in \mathbb{R}$, ($\mathbb{R} \cup \{(V_i, V_i')\}, s, s'$) $\in X$ (projection)

- The calculus
 - Syntax
 - Reduction
- The environmental relations
 - Definition
 - Soundness and completeness
 - Example
 - Unary case
- Conclusion

The environmental relations: Soundness and completeness

Theorem: The largest P-simulation coincides with the reduction- and context-closure of P

I.e., if programs belong to some P-simulation, then they satisfy P throughout execution of the programs under arbitrary contexts, <u>and vice versa</u>

• The calculus

- Syntax
- Reduction

• The environmental relations

- Definition
- Soundness and completeness
- Example
- Unary case
- Conclusion

The environmental relations: Example

- Let set and set' be implementations of integer multisets by linked lists and binary trees
- Then we can prove that set and set'
 - are contextually equivalent, by taking $P(R, s \triangleright M, s' \triangleright M')$ to be $s \triangleright M \uparrow \Leftrightarrow s' \triangleright M' \uparrow$
 - use the same number of locations, by taking P(R, s⊳M, s'⊳M') and P(R, s, s') to be |dom(s)| = |dom(s')|

etc., <u>under arbitrary contexts</u>

X = { (\emptyset , $\emptyset \triangleright \lambda$ _.set, $\emptyset \triangleright \lambda$ _.set') } \cup { (R, $s \uplus \{\ell \mapsto V\}, s' \uplus \{\ell' \mapsto V'\}$) $R = \{ (add_{\ell}, add'_{\ell'}), (mem_{\ell}, mem'_{\ell'}), (del_{\ell}, del'_{\ell'}) \}, \}$ the linked list V and the binary tree V' respectively represent the same set under the stores s and s' $\} \cup$ { ... intermediate states during insertion/membership/deletion operations... }

⇒ X is an environmental P-simulation for each P in the previous slide (up-to context and "up-to allocation")

• The calculus

- Syntax
- Reduction

• The environmental relations

- Definition
- Soundness and completeness
- Example
- Unary case
- Conclusion

The environmental relations: Degeneracy to unary case

All of these arguments apply to unary relations (predicates) as well

 In fact, the unary case is degenerated from the binary case, by requiring the left hand side be <u>equal</u> to the right

- "Simulation" between M and M itself

E.g., Take P(R, s⊳M, s'⊳M') to be true iff s = s', M = M' and M is not accessing locations not in dom(s) (memory safety)

Conclusion

• We have developed a proof method

- for arbitrary contextual properties
- in untyped λ -calculus
- with "full" (unrestricted) references
- and deallocation

In the paper (with online appendices):

- Auxiliary "up-to" techniques
- More examples