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L@ Caution

¢ Literature on spi-calculus Is confusing
— Inconsistent terminology

— Some "results" found too weak or even
wrong

¢ This talk is my own combination of
various results on spi-calculus




- Outline

¢ What is spi-calculus?
— Syntax and operational semantics

=+ Example protocol
B 4 Attack against the example protocol
¢ Formalizing secrecy by non-interference

¢ Proving secrecy by hedged
nisimulations

¢ Conclusions




== VVhat s spi-calculus?
& [Abadi-Gordon 99]

|= ¢ spi-calulus = n-calculus + (shared-
|t key) perfect encryption primitives

& The only equation is:
dec(enc(Msg, key), key) = Msg

Cf. Textbook RSA is malleable:
enc(Msg,, pubkey) x enc(Msg,, pubkey)
= enc(Msg, x Msg,, pubkey)




case M of {x1,
[M = N]P

message
name

Ciphertext

process

inaction

sending

receiving

parallel composition
restriction
replication
decryption

matching




Operational Semantics (1/2):

case {M1,..., Mn}y of {z1,..., 20}ty in P

B4 Structural Equivalence

— [Ml,,Mn/xl,,xn]P
M =M|P=P \P=P P

P|(vz)Q = wzx)(P|Q) if z & free(P)

PIQ=Q|P (P|Q)|R=P|(Q|R

P=P P=PF
PlQ=P|Q (vz)P = (va) P’




" Operational Semantics (2/2):
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I Z(M).P | 2(y).Q — P | [M/y)Q

=
Y
i ;.::ii
e

P=P P —-Q Q=qQ
P — Q)

P — P’ P — P’
PlQ—P|Q (vz)P — (vx) P’
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== | cxample: A Naive Protocol
8 (Wide I\/Iouthed Frog Protocol)

(vVKap)Cas{KaBYK 4q)-

cap(n).case n of {m}y,, in O
cas(z).case © of {y}k,. in cps({¥} Ky
cps(x).case w of {y}i,, in CAp({M}y)

T he whole system is:

(VK 45)(vKps)(Pa | Ps| Pp)




~~ How does the protocol run?
ol (vKus)(vKps)(Pa | Ps | Pp)
(VEAs)(VERSIVEABD oo,
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cps(z).case ¢ of {y}r,e in TuR({M }y))
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= How does the protocol run?
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— (VK 5)(vKBs) (VK 4B)
case {M}f,, of {m}g,, in O
(VK ps5)(vKRs) (WK 4p)0
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= How does the protocol run?
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(cap(n).case m of {m}f, , in O |
cBSUKaBKpg) |
cps(w).case x of {y}i, in Cug({M }y))
- (VK ag)(vKps) (VK 4p)

(cap(n).case m of {m}p,, in O |

case {KAB}fKpe of {UtKge in TAB({ M }y))
(WK ps)(vKps)(VKAR)
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e n ¥ x! ]
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(VK 4s5)(vKps)(vK 4p)0
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= Parallel runs of the protocol
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== Parallel runs of the protocol
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(vKap)Cast{KABYK 45)-
cap(n).case n of {m}g,, in O
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cas(z).case z of {y}x, in cps({y}rys)
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cpg(a’).case o' of {y'} i, . in ces({y'} K, 4
cps(w).case z of {y}x,. in CaAp{({ M }y)

(vKpr)cps{KBE}KRe)-
cpp(n').case n' of {m'}f . in O

cpg(a').case a’ of {y’}KES in CBE<{MI}y’>




Exercise (?)

¢ Write down the reduction of
(VKAS)(VKBS)(VKES)(PA | Ps | Ps | PE)'




@ What if E is evil in fact?

|7 ¢ Assumption: attacker has full access to

open channels (Dolev-Yao model)

¢ Result: not only M' but also M may leak!

1',. B> E(S) : {Kgek..
2. E(S) > B : {Kgeh..
1. E(B) = S & {Kgek..
2. S E : {Kgel.
3. B> EA) : {M}




)% How does the attack work?

cgo(2).Cps(z).cge(2).
cps(x’').case o’ of {y'}KES in
cap(n).case n of {m}, in DOEVvily

Py | (vK45)(vKps)(Pa | Ps | Pp)

= (WKp5)(vKps)(vKap)(VKpE)
(CBS(Z) cBS(» )CBS< z).
chS(a: ).case z’ of {3/ }KES in
icap(n).case n of {m} ; in DoEvil,, \
CaSH{EKAB}K 4q)- CAB(n) case n of {m}y,, in O |
cas(w).case w of {y}g, in CBs({Y}tKyze) |
cpg(z’).case o' of {y'} i, . in CEg(H{Y } o) |
%;s(w)casewof{y}KBSm@HM}y}I ....................... |
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How does the attack work?

o

cp(2).Cpg(z).c'go(2).
crps(x').case o’ of {y’}KES in
cap(n).case n of {m}, in DOEVily

Pp| (WK a5)(vKps)(Pa | Ps | Pp)

(WK ps)(vKps)(vKap)(vKpp)
EBs({KBE} ko) cCps{KBE kg
cps(a’).case o' of {y'} g, in

cas{KaB}YK 4q)-cap(n).case n of {m}g,, in O |
cas(w).case z of {y}x,, in Ces{y}Krye) |
cgg(a’).case @' of {y'}xk, s in CE5({Y } i) |
cps(z).case x.of {utKkyg. incap({M}y) |
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How does the attack work?

o

cp(2).Cpg(z).c'go(2).
crps(x').case o’ of {y’}KES in
cap(n).case n of {m}, in DOEVily

Pp| (WK a5)(vKps)(Pa | Ps | Pp)

(WK ps)(vKps)(vKap)(vKpp)
EBs({KBE} ko) cCps{KBE kg
cps(a’).case o' of {y'} g, in

cas{KaB}YK 4q)-cap(n).case n of {m}g,, in O |
cas(w).case z of {y}x,, in Ces{y}Krye) |

cpp(n').case n' of {m’}KBE in 0)
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How does the attack work?

o

cp(2).Cpg(z).c'go(2).
cps(x').case o’ of {y’}KES in
cyap(n).case n of {m}, in DOEVily

Pp | (WK 45)(vKps)(Pa | Ps| Pg)

(WK p5)(vKps)(vKap)(vKpp)
(cps{KBE} Ky ;
cps(x').case o of {y’}KES in

casi{KaB}YK 4q)-cap(n).case n of {m}g,, in O |
cas(x).case x of {y}i,. in cps({y}trye) |

/
Bs.

cge(n’).case n' of {m'}g,  in O)
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How does the attack work?

o

cp(2).Cpg(z).c'go(2).
cps(x').case o’ of {y’}KES in
cyap(n).case n of {m}, in DOEVily

Pr | (vK45)(vKps)(Pa | Ps | Pp)

(ps({KBE}YKg)- ;
%cES(a:’).case z' of {y’}KES in

CABUM Y Kpp) |
cgpp(n').case n' of {m’}KBE in 0)




)% How does the attack work?

g(2).Cps(z).c'go(2).
cps(x’).case o’ of {y'}KES in
cap(n).case n of {m},, in DOEVily,

P | (WK a5)(vKps)(P4 | Ps | Pp)

(CEs(QJI) case z' of {3/ }Kpg in
gcAB(n) case n of {m} ) in DOEVIIm 1

cABU{M } iy >|
cBE(n’).case n' of {m’}KBE in 0)
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How does the attack work?

o

cgo(2).Cp5(z).cgq().
cps(x').case o’ of {y’}KES in
cap(n).case n of {m}, in DOEVily

Pr | (vKas)(vKps)(Pa | Ps | Pp)

casi{KaB}YK 4q)-cap(n).case n of {m}f,, in O |
cas(x).case x of {y}p,. in eps({y}tKye) |

CABAAM } K g |
cgp(n’).case n' of {m'}g,  in O)
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How does the attack work?

o

cgo(2).Cp5(z).cgq().
cps(x').case o’ of {y’}KES in
cap(n).case n of {m}, in DOEVily

Pr | (vKas)(vKps)(Pa | Ps | Pp)

cas{KaB} K ,q)-cap(n).case n of {m}p . in O
cas(z).case x of {y}ty, o in cps{{y}tiys) |
cABAM }rcppt |
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How does the attack work?

¢

cg(2).Cps{z).c'go(2).
cps(z’).case o/ of {y’}KES in
cyp(n).case n of {m}, in DOEVily,

P | (WK 45)(vKpBs)(P4 | Ps | Pp)

CAS(1KAB}K 4o)-caB(n).case n of {m}f . in O

cas(x).case x of {y}i,. in cps({y}trye) |
cgp(n').case n' of {m'}y . in 0)
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¢ "Definition”: Process P keeps message
X totally secret if [M/x]P and [N/x]P are
"equivalent” for any M and N

Cf. partial secrecy: [M/x]P and [N/x]P are
equivalent for any M and N satisfying some
condition (e.g., M mod 2 = N mod 2)

¢ What equivalence should we take?
= (Strong) barbed equivalence




~ Definitions (1/2)

¢ Process P immediately exhibits input barb c,
written P { ¢, if

P = (vXy)...(vx,)(C(y).Q | R)
for some x., ..., X, (distinct from c), y, Q and R.
Similar for output.

¢ A (strong) barbed simulation S is a binary
relation on processes suchthatP S Q
Implies:
— for each barb B, if P { B, then Q { B, and
—1fP—>P,thenQ - Q"and P'S Q' for some Q
¢ S is a barbed bisimulation if both S and S-!
are barbed simulations




@ Definitions (2/2)

¢ Barbed bisimilarity is the largest barbed
bisimulation

— Equals the union of all barbed bisimulations, which
IS also a barbed bisimulation

8+ Processes P and Q are barbed equivalent
If P | Rand Q | R are barbed bisimilar for
every R




l.e., (Wk)e({ M }i) and (vk)ec({N}) are
barbed equivalent for any M and N.

S ={(P, Q[P = (vk) (Mj/y]R,
Q = (vk) {Nj/YIR,
k ¢ free(R) }

and prove it to be a barbed bisimulation
by case analysis (and induction) on the
reduction rules




c(y).case y of {z}r in ¢(k))
does not keep x totally secret. Indeed,
[IM/X]P and [N/x]P are not barbed

equivalent for any M = N.

Proof: given M and N, take
R = c¢(y).¢{y).c(k).case y of {m}, in
[m = M]world{hello)
Cf. P = (vk)(k{z) | k(y).c{k)) does keep
X secret




: » Many papers (including Abadi and
Gordon's original work!) use may testing
equivalence for defining secrecy by
non-interference, but it Is too weak




f ¢ Process P may eventually exhibit barb f3,
written P U B, if P > ... > P'{ B for
some P

equivalent if
PIR) VB < (QIR) U B

for every R and 3




(vd)(d() | d()-{) | d().0)

are may testing equivalent.

¢ As a result, processes like
If Xx >0 then P else Q
are regarded as keeping x totally secret
(under may testing equivalence)

¢ But the leak Is possible!
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= Hedged Bisimulation:

Motivation

Direct proof of barbed equivalence Is
difficult because of "arbitrary R"

-~ = Devise a proof technique without

"arbitrary R"

¢ What can R do?

— Gain "knowledge" by receiving from a
known channel

— Send to a known channel a message
synthesized from the knowledge




* ¢ Ahedge H is a binary relation on

" messages

! Kis - M < N (messages M and N can be
= synthesized from hedge H) is defined by
iInduction:

(M,N)eH HE M+ N1 HE Mo < No
HEM<— N /H|—{M1}M2<—>{N1}N2

H {Ml}M2 < {Nl}NQ H MQ < NQ X %f?”@fi(?’[)
H = My < Ny HEFx < x




Deflnltlons (2/4)

+ A hedged simulation is a set X of triples
7= (P, Q, H) that satisfies:
28 1. For any P — P/, there exists some @’
"] such that Q — Q' and (P, Q",H) € X.
. If for some H F c «d,
P=zx1)...(vzm)(@E&(M).P; | P>)
x; & {c} U free(fst(H)),
then Q = (vy1) ... (vyn)(d(N).Q1 | Q2)
Z {d} U free(snd(H))
and (Py | Po, Q1 | Qo, HU (M, N)) € X.




S

20
?%

."I'I

SRR

2 T
AT SRR AR
B o e e "
i o 3} i 5 -._ -] oy !-f o
N RAE R e
e RS
L
-5 ReR 1. g,

2
k|

pi

) Definitions (3/4)
B Mforsome Hrced

P=wzx1)...(vem)(c(z).P1 | P>)

x; € {c} U free(fst(H)),
then Q = (vy1) ... (vyn)(d(2).Q1 | Q2)

yi & {d} U free(snd(H))
and for any HE M < N,
([M/z]Py | P>, [N/2]Q1 | Q2,H) € X.
4. If HE= My <+ N1 and H E M> <+ No,
then M = M- implies N1 = N>.
5. IfHF{Ml}MQ%N and %FMQHNQ,
then N = {N;}y, for some Nj.



(@ Definitions (4/4)

¢ A hedged simulation X is a hedged
bisimulation if X-! is also a hedged
simulation, where X! is defined as:

{(Q,P,HY)[(P,Q, H) e X}
¢ Hedged bisimilarity is the largest
hedged bisimulation (i.e., the union of
all hedged bisimulations, which is also a
hedged bisimulation)

¢ Notation: P~, Q < (P, Q, H)Is In the
hedged bisimilarity




= Caution: a-Conversion of

i

. Hedged Bisimulation

=

¢ Every (P, Q, H) € X is regarded as
© @ o-equivalent to
(P, Q,{ (oM, N) [ (M, N) € H})
for every dom(oc) o free(P) v free(fst(H))

¢ Every (P, Q, H) € X Isregarded as
o-equivalent to
(P, 6Q,{(M,oN) [ (M, N) € H})
for every dom(c) o free(Q) u free(snd(H)

¢ Everything In the rest is considered
"up to" this a-equivalence




@ Example 1

¢ For any M and N,
L (WR)EUM )0~y WRIE({N}E).0
| Proof: take
e X = {((vk)e({M}y).0,
(vk)e{{N }).0,
{(c,c)P)}
U {(07
07
{(c,c), {M}p AN} 1)}

and check conditions 1-5.




= Cxample 2

¢ (vE)(wn)e({ntg) (vm)e{m) ~g (. o)
(vk)(vn)e({n}y).c(n)
Proof: take
X = {((wk)(wn)c{n}).(vm)cim),
(vk)(vn)e({n}ty).c(n),

{(e.)))
U {(E?ﬂ;)dm),

((ere), ({ndp {n}) D)
U {(o,

07
(e, ), (g, 1nge), (m,n) 1)}




= Example 3

= o (E)(wn)(whe{{{n}i ) -(vm)e{m) ~¢.on

- (k) (vn)e{{n}y).(vm)e(m)

| Proof: take

; = {((wk)(wn)(whe{{{n}r}) - (vm)e(m),
(vk)(vn)e{{n}y).(vm)c{m),

{(c,a)P)}
U {((vm)e(m),

(vm)e(m),

{(c,c), HAntetiAnti) D)}
U {(0,

07

{(Ca C), ({{n}k}l7 {n}k)v (m7 m)})}




= Theorem

Hedged bisimilarity is sound w.r.t. barbed
equivalence. l.e.,If P ~, Q for
H = {(X, X)| X e free(P) u free(Q) },
| then P and Q are barbed equivalent.
b Proof sketch: take

S={(P,Q)|P~,Q,
P' = (vXy)...(vx) (P | [M,...,M /Z,,...,Z,]R),
Q" = (vy1)--.(Wm) (Q | [Ny,....N/Zy,...,Z,]R),
HFM; <N, ..,HFM &N,
free(R) distinct from free(P), free(Q), and free(H)) }
and prove it to be a barbed bisimulation by case

analysis (and induction) on the reduction rules.
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= Real Example: Fixed Version
N L of Previous Protocol




(VK aB)eas(1KaB, Bl Kk ,q)-
ca(n).case n of {m}g,, in O

cas(z).case x of {y,b}f ,, in
[b = Blegs({y}rpg)

cpg(x').case o' of {3, e}k,  in
[e = Elcgs({y' ipg)
cps(w).case z of {y,a}K,. in
la = Alcap({z}y)
(vKpE)gs({KBE, E} K pe)-
cpp(n').case n' of {m'}p . in




2| Exercise (?)

¢ Write down the reduction(s) of
P'e | (VKag)(VKgs)(Pa | Ps | Pg)
for the same attacker P'c as before,
for the fixed version of P,, P, and Pg.
Pinpoint where the attack falls.




(VKas)(VKgs)(Pa | Ps | Pg)
keeps z totally secret. |.e.,

P = (VKxs)(VKgs)(Pa | Ps | [M/z]Pg)
and

Q = (VKas)(VKgs)(Pa | Ps | [N/z]Pg)
are barbed equivalent for any M and N.




&  Proof Sketch

o LetH={ (X, X) | x € free(P) U free(Q) }

¢ We construct some hedged bisimulation
. X2 (P,Q,H)

— The X is far from minimal, but this is fine as
far as X is a hedged bisimulation

e It Is a nightmare to write down minimal X for
real...




PAO

PAl

PA2

R

~|

(vKap)Cas{Kap: B}k 1) cap(n).case n of {m}g, . in O

D
|

PSO
PSl

PS3

cas(). case © of {y,blx . in [b = Blegs({v}tiys)

R R

o
|

| cps(a). case 2’ of {y, e}kys in [e = Elems({y'}ryg)




PBO

Pp,
Pg,
, T
Pp = cpg(x).case & of {y,a}k,, in [a = Alcap({z}y)

| (vKpg) cps{KpE, E}kps)-cpe(n'). case 0’ of {m/} g, in O

P/
B

R S R RN

pi
Bq

"

P/
Bo




M,/n]PA | IMy/X]Ps, | [M3,A/X' €]P'g |
M,.E.M/x,a,z]Pg | [Ms/nIP'g ),
»--(vd,)

N1/n]PA | [No/X]Ps | [N3,A/Xe]P’g |
N,.E.N/x,a,2]Pg, | [Ng/nTP'g ),

H' < H U { ({Kag:Ble,or {Kag:Ble,o):
(Kng Al (Kag: Al

(M} (NI, )
(K, Edgor tKee: Edeyl)
({Kse: Blceo {Kee: Bl o) b
H M, < N, forw=1,2, 3, 4,5,
Cys ---, C, € free(fst(H')),
d,, ..., d, ¢ free(snd(H")) }




® | Exercise (?)

¢ Try to prove the total secrecy of z
In the original version of this protocol
by means of hedged bisimulation.
Explain how the "proof" fails.




® Side Step Il: Completeness of -

Hedged bisimilarity is complete with
respect to barbed equivalence.
l.e., If P and Q are barbed equivalent,
then P ~, Q for

H = {(X, X) | x € free(P) u free(Q) }
— Proved for "structurally image finite"

processes, but not for the general case (to
my knowledge)




@ Outline
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¢ Formalizing secrecy by non-interference

¢ Proving secrecy by hedged
pisimulations

¢ Conclusions




@ Other Topics in Spi-Calculus

¢ Other bisimulations [Abadi-Gordon 98]
[Boreale-DeNicola-Pugliese 99]
[Elkjeer-Hohle-Huttel-Overgard 99]

— More complex and "less complete”

- ¢ Secrecy by typing [Abadi 97]
[Abadi-Blanchet 01]

¢ Authenticity by typing [Gordon-Jeffery 01]
|Gordon-Jeffery 02] [Blanchet 02]

Cf. http://www.soe.ucsc.edu/~abadi/
http://www.di.ens.fr/~blanchet/
http://netlib.bell-labs.com/who/ajeffrey/ etc.




