

Formal Verification of Cryptographic Protocols in Spi-Calculus

Eijiro Sumii Tohoku University

2006/12/22

第7回代数幾何・数論及び符号・暗号研究集会

Caution

- Literature on spi-calculus is confusing
 - Inconsistent terminology
 - Some "results" found too weak or even wrong
- This talk is my own combination of various results on spi-calculus

Outline

- What is spi-calculus?
 - Syntax and operational semantics
- Example protocol
- Attack against the example protocol
- Formalizing secrecy by <u>non-interference</u>
- Proving secrecy by <u>hedged</u> <u>bisimulations</u>
- Conclusions

What is spi-calculus? [Abadi-Gordon 99]

 spi-calulus = π-calculus + (sharedkey) perfect encryption primitives

The only equation is: dec(enc(Msg, key), key) = Msg

Cf. Textbook RSA is <u>malleable</u>: enc(Msg₁, pubkey) × enc(Msg₂, pubkey) = enc(Msg₁ × Msg₂, pubkey)

Syntax

M, N ::= \mathcal{X} $\{M_1,\ldots,M_n\}_N$ P, Q, R ::=0 $\overline{M}\langle N\rangle.P$ M(x).P $P \mid Q$ $(\nu x)P$!Pcase M of $\{x_1, \ldots, x_n\}_N$ in P[M = N]P

message name ciphertext process inaction sending receiving parallel composition restriction replication decryption matching

$$\begin{array}{c} & \overset{6}{\text{Operational Semantics (1/2):}} \\ & \overset{6}{\text{Structural Equivalence}} \\ & \overset{case}{\{M_1, \dots, M_n\}_N \text{ of } \{x_1, \dots, x_n\}_N \text{ in } P} \\ & \equiv [M_1, \dots, M_n/x_1, \dots, x_n]P \\ & [M = M]P \equiv P \quad !P \equiv P \mid !P \\ & P \mid (\nu x)Q \equiv (\nu x)(P \mid Q) \quad \text{if } x \notin free(P) \\ & P \mid 0 \equiv P \quad P \mid Q \equiv Q \mid P \quad (P \mid Q) \mid R \equiv P \mid (Q \mid R) \\ & \frac{P \equiv P'}{P \mid Q \equiv P' \mid Q} \quad \frac{P \equiv P'}{(\nu x)P \equiv (\nu x)P'} \\ & P \equiv P \quad \frac{P \equiv Q}{Q \equiv P} \quad \frac{P \equiv Q \quad Q \equiv R}{P \equiv R} \end{array}$$

1010-0.211-0.214

Operational Semantics (2/2):
Reaction Relation
$$\overline{x}\langle M \rangle . P \mid x(y) . Q \rightarrow P \mid [M/y]Q$$
 $\underline{P \equiv P' \quad P' \rightarrow Q' \quad Q' \equiv Q}{P \rightarrow Q}$ $\underline{P \rightarrow P'}{P \mid Q \rightarrow P' \mid Q}$ $\underline{P \rightarrow P'}{(\nu x)P \rightarrow (\nu x)P'}$

100-0.211-0.214

Outline

- What is spi-calculus?
 - Syntax and operational semantics
- Example protocol
- Attack against the example protocol
- Formalizing secrecy by <u>non-interference</u>
- Proving secrecy by <u>hedged</u> <u>bisimulations</u>
- Conclusions

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{Example: A Naive Protocol} \\ \hline \textbf{(Wide Mouthed Frog Protocol)} \\ \hline \textbf{(Wide Mouthed$$

The whole system is:

 $(\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$

How does the protocol run? $(\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $\rightarrow (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O case $\{K_{AB}\}_{K_{AS}}$ of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}
angle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).\texttt{case } n \texttt{ of } \{m\}_{K_{AB}} \texttt{ in } \mathsf{O} \mid$ $\overline{c_{BS}}\langle \{K_{AB}\}_{K_{BS}}\rangle \mid$ $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$)

How does the protocol run? $(\nu K_{AS})(\nu K_{BS})(\overline{\nu K_{AB}})$ $(c_{AB}(n).\texttt{case } n \texttt{ of } \{m\}_{K_{AB}} \texttt{ in } \mathsf{0} \mid$ $\overline{c_{BS}}\langle\{K_{AB}\}_{K_{BS}}\rangle\mid$ $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $\rightarrow (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).case n \text{ of } \{m\}_{K_{AB}} \text{ in } 0$ case $\{K_{AB}\}_{K_{BS}}$ of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $\equiv (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in $0 \mid$ $\overline{c_{AB}}\langle \{M\}_{K_{AB}}\rangle)$ $\rightarrow (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ case $\{M\}_{K_{AB}}$ of $\{m\}_{K_{AB}}$ in O $\equiv (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})0$

How does the protocol run? (2/2)

 $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in $0 \mid$ $\overline{c_{BS}}\langle \{K_{AB}\}_{K_{BS}}\rangle$ $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $\rightarrow (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in $0 \mid$ case $\{K_{AB}\}_{K_{BS}}$ of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$) $\equiv (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ $(c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in $0 \mid$ $\overline{c_{AB}}\langle \{M\}_{K_{AB}}\rangle$) $\rightarrow (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})$ case $\{M\}_{K_{AB}}$ of $\{m\}_{K_{AB}}$ in O $\equiv (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})0$

12

Outline

- What is spi-calculus?
 - Syntax and operational semantics
- Example protocol
- Attack against the example protocol
- Formalizing secrecy by <u>non-interference</u>
- Proving secrecy by <u>hedged</u> <u>bisimulations</u>
- Conclusions

Parallel runs of the protocol 1. $A \rightarrow S$: $\{K_{AB}\}_{K_{AS}}$ 2. $S \rightarrow B$: $\{K_{AB}\}_{K_{BS}}$ 3. $B \rightarrow A$: $\{M\}_{K_{AB}}$

Parallel runs of the protocol
(2/2)

$$P_{A} = (\nu K_{AB})\overline{c_{AS}}\langle\{K_{AB}\}_{K_{AS}}\rangle.$$

$$c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0$$

$$P_{S} = c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$$

$$\mid c'_{BS}(x').\text{case } x' \text{ of } \{y'\}_{K_{BS}} \text{ in } \overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$$

$$P_{B} = c_{BS}(x).\text{case } x \text{ of } \{y\}_{K_{BS}} \text{ in } \overline{c_{AB}}\langle\{M\}_{y}\rangle$$

$$\mid (\nu K_{BE})\overline{c'_{BS}}\langle\{K_{BE}\}_{K_{BS}}\rangle.$$

$$c_{BE}(n').\text{case } n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0$$

$$P_{E} = c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in } \overline{c_{BE}}\langle\{M'\}_{y'}\rangle$$

Exercise (?)

 ♦ Write down the reduction of (vK_{AS})(vK_{BS})(vK_{ES})(P_A | P_S | P_B | P_E).

What if E is evil in fact?

 Assumption: attacker has full access to open channels (Dolev-Yao model)
 Result: not only M' but also M may leak!

 $\begin{array}{l} 1'_{a} & B \to E(S) \ : \ \{K_{BE}\}_{K_{BS}} \\ 2. \ E(S) \to B \ : \ \{K_{BE}\}_{K_{BS}} \\ 1'_{b} & E(B) \to S \ : \ \{K_{BE}\}_{K_{BS}} \\ 2' & S \to E \ : \ \{K_{BE}\}_{K_{ES}} \\ 3. \ B \to E(A) \ : \ \{M\}_{K_{BE}} \end{array}$

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{u'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(c'_{BS}(z).\overline{c_{BS}}\langle z\rangle.c'_{BS}\langle z\rangle.$ $c_{ES}(x').$ case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle . c_{AB}(n)$.case n of $\{m\}_{K_{AB}}$ in $0 \mid$ $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $c'_{RS}(x')$.case x' of $\{y'\}_{K_{RS}}^{-}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$ | $c_{BS}(x)$.case x of $\{y\}_{K_{BS}}$ in $\overline{c_{AB}}\langle\{M\}_y\rangle$ | $c'_{BS}\langle \{K_{BE}\}_{K_{BS}}\rangle \cdot c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in 0

$$\begin{split} P'_E &= c'_{BS}(z).\overline{c_{BS}}\langle z\rangle.\overline{c'_{BS}}\langle z\rangle.\\ &c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in }\\ &c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in DoEvil}_m \end{split}$$

$$\to \begin{array}{l} P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B) \\ (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE}) \\ (\overline{c_{BS}}\langle \{K_{BE}\}_{K_{BS}}\rangle.c'_{BS}\langle \{K_{BE}\}_{K_{BS}}\rangle. \\ &c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in } \\ &c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in DoEvil}_m \\ \hline \overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0 \\ &c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle \{y\}_{K_{BS}}\rangle \\ &c_{BS}(x').\text{case } x' \text{ of } \{y'\}_{K_{BS}} \text{ in } \overline{c_{ES}}\langle \{y'\}_{K_{ES}}\rangle \\ &c_{BS}(x).\text{case } x \text{ of } \{y\}_{K_{BS}} \text{ in } \overline{c_{AB}}\langle \{M\}_{y}\rangle \\ &c_{BE}(n').\text{case } n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0 \\ \end{array}$$

$$\begin{split} P'_E &= c'_{BS}(z).\overline{c_{BS}}\langle z\rangle.\overline{c'_{BS}}\langle z\rangle.\\ &c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in }\\ &c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in DoEvil}_m \end{split}$$

$$\to \begin{array}{l} P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B) \\ (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE}) \\ (\overline{c_{BS}}\langle \{K_{BE}\}_{K_{BS}}\rangle.\overline{c'_{BS}}\langle \{K_{BE}\}_{K_{BS}}\rangle.\\ &c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in }\\ &c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in DoEvil}_m \mid \\ &\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0\\ &c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle \{y\}_{K_{BS}}\rangle \mid \\ &c_{BS}(x').\text{case } x \text{ of } \{y\}_{K_{BS}} \text{ in } \overline{c_{ES}}\langle \{y\}_{K_{ES}}\rangle \mid \\ &c_{BS}(x).\text{case } x \text{ of } \{y\}_{K_{BS}} \text{ in } \overline{c_{AB}}\langle \{M\}_y\rangle \mid \\ &c_{BE}(n').\text{case } n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0) \end{split}$$

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $\rightarrow^* (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(\overline{c'_{RS}}\langle \{K_{BE}\}_{K_{RS}}\rangle.$ $c_{ES}(x')$.case $\overline{x'}$ of $\{y'\}_{K_{ES}}$ in $c_{AB}(n).$ case n of $\{m\}_{y'}$ in DoEvil_m $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle . c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $c'_{RS}(x')$.case x' of $\{y'\}_{K_{RS}}^{-}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}\rangle$ $\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle$ $c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in O)

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}^{\sim}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $\rightarrow^* (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(\overline{c'_{BS}}\langle \{K_{BE}\}_{K_{BS}}\rangle.$ $c_{ES}(x')$.case $ilde{x'}$ of $\{y'\}_{K_{ES}}$ in $c_{AB}(n).$ case n of $\{m\}_{y'}$ in DoEvil_m $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle . c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $c'_{RS}(x')$.case x' of $\{y'\}_{K_{RS}}$ in $\overline{c_{ES}}\langle\{y'\}_{K_{ES}}
angle$ | $\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle \mid$ $c_{BE}(n').case n' ext{ of } \{m'\}_{K_{BE}} ext{ in } 0)$

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $\rightarrow^* (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(c_{ES}(x').case \ x' \text{ of } \{y'\}_{K_{ES}}$ in $c_{AB}(n).$ case n of $\{m\}_{y'}$ in DoEvil_m $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle.c_{AB}(n).$ case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $\overline{c_{ES}}\langle \{K_{BE}\}_{K_{ES}}\rangle \mid$ $\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle$ $c_{BE}(n').case n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0)$

$$P'_{E} = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.\overline{c'_{BS}}\langle z \rangle.$$

$$c_{ES}(x').\text{case } x' \text{ of } \{y'\}_{K_{ES}} \text{ in }$$

$$c_{AB}(n).\text{case } n \text{ of } \{m\}_{y'} \text{ in } \text{DoEvil}_{m}$$

$$\Rightarrow^{*} (\nu K_{AS})(\nu K_{BS})(\nu K_{BS})(P_{A} \mid P_{S} \mid P_{B})$$

$$(\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$$

$$(c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{BE}} \text{ in } \text{DoEvil}_{m} ||$$

$$\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}} \rangle.c_{AB}(n).\text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in }$$

$$c_{AS}(x).\text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}}\langle \{y\}_{K_{BS}} \rangle ||$$

 $c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in 0)

0

 $P'_E = c'_{BS}(z).\overline{c_{BS}}\langle z \rangle.c'_{BS}\langle z \rangle.$ $c_{ES}^{\sim}(x')$.case x' of $\{y'\}_{K_{ES}}$ in $c_{AB}(n)$.case n of $\{m\}_{y'}$ in DoEvil_m $P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B)$ $\rightarrow^* (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE})$ $(c_{AB}(n).case \ n \ of \ \{m\}_{K_{BE}} \ in \ \mathsf{DoEvil}_m \mid d$ $\overline{c_{AS}}\langle \{K_{AB}\}_{K_{AS}}\rangle . c_{AB}(n)$.case n of $\{m\}_{K_{AB}}$ in O $c_{AS}(x)$.case x of $\{y\}_{K_{AS}}$ in $\overline{c_{BS}}\langle\{y\}_{K_{BS}}\rangle$ $\overline{c_{AB}}\langle \{M\}_{K_{BE}}\rangle \mid$ $c_{BE}(n')$.case n' of $\{m'\}_{K_{BE}}$ in O)

$$\begin{array}{rcl} P'_E &=& c'_{BS}(z).\overline{c_{BS}}\langle z\rangle.\overline{c'_{BS}}\langle z\rangle.\\ && c_{ES}(x').\text{case }x' \text{ of }\{y'\}_{K_{ES}} \text{ in}\\ && c_{AB}(n).\text{case }n \text{ of }\{m\}_{y'} \text{ in }\text{DoEvil}_m\end{array}$$

 $\begin{array}{l} \begin{array}{l} P'_E \mid (\nu K_{AS})(\nu K_{BS})(P_A \mid P_S \mid P_B) \\ \rightarrow^* & (\nu K_{AS})(\nu K_{BS})(\nu K_{AB})(\nu K_{BE}) \\ & (\boxed{\mathsf{DOEvil}_M} \mid \\ & \overline{c_{AS}} \langle \{K_{AB}\}_{K_{AS}} \rangle . c_{AB}(n). \text{case } n \text{ of } \{m\}_{K_{AB}} \text{ in } 0 \\ & c_{AS}(x). \text{case } x \text{ of } \{y\}_{K_{AS}} \text{ in } \overline{c_{BS}} \langle \{y\}_{K_{BS}} \rangle \mid \\ & c_{BE}(n'). \text{case } n' \text{ of } \{m'\}_{K_{BE}} \text{ in } 0 \end{array}$

Outline

- What is spi-calculus?
 - Syntax and operational semantics
- Example protocol
- Attack against the example protocol
- Formalizing secrecy by <u>non-interference</u>

 Proving secrecy by <u>hedged</u> <u>bisimulations</u>

Conclusions

Formalizing secrecy by <u>non-</u> interference

 "Definition": Process P keeps message x totally secret if [M/x]P and [N/x]P are "equivalent" for any M and N

Cf. partial secrecy: [M/x]P and [N/x]P are equivalent for any M and N satisfying some condition (e.g., M mod 2 = N mod 2)

♦ What equivalence should we take?
 ⇒ (Strong) barbed equivalence

Definitions (1/2)

 Process P immediately exhibits input barb c, written P ↓ c, if

 $P \equiv (vx_1)...(vx_n)(c(y).Q | R)$ for some x₁, ..., x_n (distinct from c), y, Q and R.

Similar for output.

- A (strong) <u>barbed simulation</u> S is a binary relation on processes such that P S Q implies:
 - for each barb β , if $P \downarrow \beta$, then $Q \downarrow \beta$, and
 - if $P \rightarrow P'$, then $Q \rightarrow Q'$ and P' S Q' for some Q
- S is a barbed <u>bisimulation</u> if both S and S⁻¹ are barbed simulations

Definitions (2/2)

- Barbed <u>bisimilarity</u> is the largest barbed bisimulation
 - Equals the union of all barbed bisimulations, which is also a barbed bisimulation
- Processes P and Q are <u>barbed equivalent</u> if P | R and Q | R are barbed bisimilar for every R

Example

 $(\nu k)\overline{c}\langle \{x\}_k\rangle$ keeps x totally secret. I.e., $(\nu k)\overline{c}\langle \{M\}_k\rangle$ and $(\nu k)\overline{c}\langle \{N\}_k\rangle$ are barbed equivalent for any M and N. Proof sketch: given M and N, take $S = \{ (P, Q) \mid P \equiv (vk) [\{M\}_k/y]R, \}$ $Q \equiv (vk) [\{N\}_k/y]R,$ $k \notin free(R)$ and prove it to be a barbed bisimulation by case analysis (and induction) on the

reduction rules

Example

 $\bullet P = (\nu k) (\overline{c} \langle \{x\}_k \rangle \mid k)$ c(y).case y of $\{z\}_k$ in $\overline{c}\langle k \rangle$) does not keep x totally secret. Indeed, [M/x]P and [N/x]P are not barbed equivalent for any $M \neq N$. Proof: given M and N, take $R = c(y).\overline{c}\langle y \rangle.c(k).$ case y of $\{m\}_k$ in [m = M] world $\langle hello \rangle$ Cf. $P = (\nu k)(\overline{k}\langle x \rangle \mid k(y).\overline{c}\langle k \rangle)$ does keep x secret

Side Step: The Vice of May Testing Equivalence

 Many papers (including Abadi and Gordon's original work!) use <u>may testing</u> <u>equivalence</u> for defining secrecy by non-interference, but it is too weak

Definitions

• Process P may eventually exhibit barb β , written P $\Downarrow \beta$, if P $\rightarrow \dots \rightarrow$ P' $\checkmark \beta$ for some P'

 Processes P and Q are <u>may testing</u> <u>equivalent</u> if (P | R) ↓ β ⇔ (Q | R) ↓ β for every R and β

So what's wrong?

 Surprisingly, $P = (\nu d)(\overline{d}\langle\rangle \mid d().\overline{c}\langle\rangle)$ and $Q = (\nu d)(\overline{d}\langle\rangle \mid d().\overline{c}\langle\rangle \mid d().0)$ are may testing equivalent. As a result, processes like if x > 0 then P else Q are regarded as keeping x totally secret (under may testing equivalence) But the leak is possible!

Outline

- What is spi-calculus?
 - Syntax and operational semantics
- Example protocol
- Attack against the example protocol
- Formalizing secrecy by <u>non-interference</u>

 Proving secrecy by <u>hedged</u> <u>bisimulations</u>

Conclusions
Hedged Bisimulation: Motivation

- Direct proof of barbed equivalence is difficult because of "arbitrary R"
- ⇒ Devise a proof technique without "arbitrary R"
- What can R do?
 - Gain "knowledge" by receiving from a known channel
 - Send to a known channel a message synthesized from the knowledge

Definitions (1/4)

- A hedge H is a binary relation on messages
- → H → M (messages M and N <u>can be</u> synthesized from hedge H) is defined by induction:

$(M,N)\in\mathcal{H}$	$\mathcal{H} \vdash M_1 \leftrightarrow N_1 \mathcal{H} \vdash M_2 \leftrightarrow N_2$
$\mathcal{H} \vdash M \leftrightarrow N$	$\mathcal{H} \vdash \{M_1\}_{M_2} \leftrightarrow \{N_1\}_{N_2}$

 $\begin{array}{ccc} \mathcal{H} \vdash \{M_1\}_{M_2} \leftrightarrow \{N_1\}_{N_2} & \mathcal{H} \vdash M_2 \leftrightarrow N_2 \\ & \mathcal{H} \vdash M_1 \leftrightarrow N_1 & \mathcal{H} \vdash x \leftrightarrow x \end{array}$

Definitions (2/4)

- A <u>hedged simulation</u> is a set X of triples (P, Q, H) that satisfies:
- 1. For any $P \to P'$, there exists some Q' such that $Q \to Q'$ and $(P', Q', \mathcal{H}) \in X$.
- 2. If for some $\mathcal{H} \vdash c \leftrightarrow d$,
 - $P \equiv (\nu x_1) \dots (\nu x_m) (\overline{c} \langle M \rangle P_1 \mid P_2)$
 - $x_i \not\in \{c\} \cup free(fst(\mathcal{H})),$
 - then $Q \equiv (\nu y_1) \dots (\nu y_n) (\overline{d} \langle N \rangle Q_1 | Q_2)$ $y_i \notin \{d\} \cup free(snd(\mathcal{H}))$

and $(P_1 | P_2, Q_1 | Q_2, \mathcal{H} \cup (M, N)) \in X.$

Definitions (4/4)

 A hedged simulation X is a hedged bisimulation if X^{-1} is also a hedged simulation, where X^{-1} is defined as: $\{(Q, P, H^{-1}) \mid (P, Q, H) \in X\}$ Hedged bisimilarity is the largest hedged bisimulation (i.e., the union of all hedged bisimulations, which is also a hedged bisimulation) \bullet Notation: $P \sim_H Q \Leftrightarrow (P, Q, H)$ is in the hedged bisimilarity

Example 1

• For any M and N, $(\nu k)\overline{c}\langle\{M\}_k\rangle.0 \sim_{\{(c,c)\}} (\nu k)\overline{c}\langle\{N\}_k\rangle.0$ Proof: take

$$X = \{((\nu k)\overline{c}\langle\{M\}_k\rangle.0, \\ (\nu k)\overline{c}\langle\{N\}_k\rangle.0, \\ \{(c,c)\}\}\} \cup \{(0, \\ 0, \\ \{(c,c), (\{M\}_k, \{N\}_k)\})\}$$

and check conditions 1-5.

Theorem

Hedged bisimilarity is sound w.r.t. barbed equivalence. I.e., if $P \sim_H Q$ for $H = \{ (x, x) \mid x \in free(P) \cup free(Q) \},\$ then P and Q are barbed equivalent. Proof sketch: take $S = \{ (P', Q') \mid P \sim_{H} Q, \}$ $P' \equiv (vx_1)...(vx_l) (P \mid [M_1,...,M_n/z_1,...,z_n]R),$ $Q' \equiv (vy_1)...(vy_m) (Q | [N_1,...,N_n/z_1,...,z_n]R),$ $H \vdash M_1 \leftrightarrow N_1, ..., H \vdash M_n \leftrightarrow N_n,$ free(R) distinct from free(P), free(Q), and free(H)) } and prove it to be a barbed bisimulation by case analysis (and induction) on the reduction rules.

As Spi-Calculus Processes...

Exercise (?)

Write down the reduction(s) of
 P'_E | (vK_{AS})(vK_{BS})(P_A | P_S | P_B)

 for the same attacker P'_E as before,
 for the fixed version of P_A, P_S, and P_B.
 Pinpoint where the attack fails.

Claim

 $(\nu K_{AS})(\nu K_{BS})(P_A | P_S | P_B)$ keeps z totally secret. I.e., $P = (\nu K_{AS})(\nu K_{BS})(P_A | P_S | [M/z]P_B)$ and $Q = (\nu K_{AS})(\nu K_{BS})(P_A | P_S | [N/z]P_B)$

are barbed equivalent for any M and N.

Proof Sketch

- Let H = { (x, x) | $x \in free(P) \cup free(Q)$ }
- We construct some hedged bisimulation
 X ⇒ (P, Q, H)
 - The X is far from minimal, but this is fine as far as X is a hedged bisimulation
 - It is a nightmare to write down minimal X for real...

$$X = \{ (P', Q', H') | P' \equiv (vc_1)...(vc_u) ([M_1/n]P_{A_1} | [M_2/x]P_{S_1} | [M_3,A/x',e]P'_{S_k} | [M_4,E,M/x,a,z]P_{B_1} | [M_5/n']P'_{B_m}), Q' \equiv (vd_1)...(vd_v) ([N_1/n]P_{A_1} | [N_2/x]P_{S_1} | [N_3,A/x',e]P'_{S_k} | [N_4,E,N/x,a,z]P_{B_1} | [N_5/n']P'_{B_m}), H' \subseteq H \cup \{ (\{K_{AB},B\}_{KAS}, \{K_{AB},B\}_{KAS}), (\{K_{AB},A\}_{KBS}, \{K_{AB},A\}_{KBS}), (\{M\}_{KAB}, \{N\}_{KAB}, A\}_{KBS}), (\{M\}_{KAB}, \{N\}_{KAB}, A\}_{KBS}), (\{K_{BE},B\}_{KES}, \{K_{BE},B\}_{KES}), (\{K_{BE},B\}_{KES}, \{K_{BE},B\}_{KES}) \}, H' \vdash M_w \leftrightarrow N_w \text{ for } w = 1, 2, 3, 4, 5, c_1, ..., c_u \notin \text{free}(\text{fst}(H')), d_1, ..., d_v \notin \text{free}(\text{snd}(H')) \}$$

995

Stau West

Electron (

-

Exercise (?)

 Try to prove the total secrecy of z in the original version of this protocol by means of hedged bisimulation. Explain how the "proof" fails.

Side Step II: Completeness of **Hedged Bisimulation** Conjecture: Hedged bisimilarity is complete with respect to barbed equivalence. I.e., if P and Q are barbed equivalent, then P ~_H Q for $H = \{ (x, x) \mid x \in free(P) \cup free(Q) \}$ - Proved for "structurally image finite" processes, but not for the general case (to my knowledge)

Outline

- What is spi-calculus?
 - Syntax and operational semantics
- Example protocol
- Attack against the example protocol
- Formalizing secrecy by <u>non-interference</u>

 Proving secrecy by <u>hedged</u> <u>bisimulations</u>

Conclusions

Other Topics in Spi-Calculus

- Other bisimulations [Abadi-Gordon 98] [Boreale-DeNicola-Pugliese 99] [Elkjær-Höhle-Hüttel-Overgård 99]
 - More complex and "less complete"
- Secrecy by typing [Abadi 97]
 [Abadi-Blanchet 01]
- Authenticity by typing [Gordon-Jeffery 01] [Gordon-Jeffery 02] [Blanchet 02]
 - Cf. http://www.soe.ucsc.edu/~abadi/ http://www.di.ens.fr/~blanchet/ http://netlib.bell-labs.com/who/ajeffrey/ etc.