A Generalized
Deadlock-Free
Process Calculus

Eljiro Sumii
Naokil Kobayashi
University of Tokyo

Merit and Demerit of
Concurrent Languages

Compared with sequential languages...

Merit: more expressive power
Inherently concurrent application (e.g. GUI)
Parallel/distributed computation

Merit and Demerit of
Concurrent Languages

Compared with sequential languages...

Demerit: more complicated behavior
Non-determinism (possibility of various results)
Deadlock (failure of due communication)

Merit and Demerit of
Concurrent Languages

Compared with sequential languages...

Demerit: more complicated behavior
Non-determinism (possibility of various results)
Deadlock (failure of due communication)

Errors & inefficiencies

Example of Complication (1/2)

In ML:
f . int->int| f(3) : int

eventually returns a unique result
(unless ‘infinite loop’ or ‘side effect’)

Example of Complication (1/2)

In CML.:
f . int->int| f(3) : int
may return:
different results in parallel (® non-determinism
fun f(i) =
| et
val ¢ : int chan = channel ()
I N
(spawn(fn () => send(c, 1 + 1));
spawn(fn () => send(c, | + 2));

recv(c))

Example of Complication (1/2)

In CML:
f . int->int| f(3) : int
may return:

no result at all (® deadlock)
fun (1) =
| et
val ¢ : Iint chan = channel ()
I N
recv(c)
end

Example of Complication (2/2)

Mutex channel m: unit chan

correct use:

receive once, send once
recv(m; CriticalSection; send(m ())

Example of Complication (2/2)

Mutex channel m: unit chan

Incorrect use:

receive once, send never (® deadlock)
recv(m; CS; ()

receive once, send twice (® non-determinism)
recv(m,; CS, send(m ()); send(m ())

Example of Complication (2/2)

Mutex channel m n : unit chan

Incorrect use:

use in various order (® deadlock)
spawn(fn () => recv(m,; recv(n); ..),;
spawn(fn () => recv(n); recv(m; ..

Possible Approaches

Provide higher-level constructs
e.g.:
parallel functions

binary semaphores
concurrent objects

Possible Approaches

Provide higher-level constructs
e.g.:

parallel functions
binary semaphores

concurrent objects
X “chaos” outside them
X complicated syntax & semantics

Possible Approaches

Enrich channel types:
control communication
with a static type system

Possible Approaches

Enrich channel types:
control communication
with a static type system

Y
Our approach

Outline

Basic Ideas

The Type System
Related Work
Conclusion

Target Language

Asynchronous variant of Milner’s p-calculus

new x in P (channel creation)
x!'[y] (output)
x?[y]. P (input)
Pl Q (parallel execution)

def x[y]=P in Q (process definition)
If x then P el se Q (conditional branch)

Target Language

Asynchronous variant of Milner’s p-calculus

x?[y].P | x!'[z] ® P{zly}
def x[y]=P in x!][Zz]

™ AAFfF TN v —5D 1 '+ DIf=> AN

Outline

Basic ldeas

Usages & Usage Calculus
P “Inwhat way each channel may be used’

Time Tags & Time Tag Ordering
P “Inwhat order those channels may be used”

The Type System
Related Work

Conclusion

Usages (1/2): Input/Output

U (usage) : =
O (output)
I U (Input + sequential execution)
Ul V (parallel execution)
FE (none)
v x:[1/(91) F
x'[] | x?[]

X x:[1/(al)}
'] | xU (] | x?[] | x?[]

Usages (1/2): Input/Output

U (usage) : =
O (output)
| . U (Input + sequential execution)
Ul V (parallel execution)
FE (none)
v oy [1/(aal.)
yrl oyl Ioy?l].y?l]
X y:[1/(aal.)}
20 I I A I T B A I A A

Usages (2/2):
Obligation and Capability

U (usage) : =

O, (output)
.. U (Input + sequential execution)
a (attributes) : =

(none)

0 (obligation: “must be performed’)

C (capability: “can be performed successfully”)

co (both)

Usages (2/2):
Obligation and Capability

x:[1nt]/ Qo

“must send an integer valueto x”
v x:[int]/ Q| x![3]

X x:[int]/OGCopF O

Usages (2/2):
Obligation and Capability

y:[int]/lc
“can recelve an integer value fromy
successfully”

v y:[int]/lc} y?[v].O0

Y

eventually reducesto O
(by communication with an external process)

v y:[int]/lc} O

Usages (2/2):
Obligation and Capability

What to Ensure:
An obligation must be fulfilled eventually
A capability can be used successfully
Y
Otherwise “deadlock”

Reliability of Usages &
the Usage Calculus

X new x:[Iint]/lc in x?[v].P

Reliability of Usages &
the Usage Calculus

X new x:[Iint]/lc in x?[v].P

“For every | / Owith capability,
acorresponding Q' | with obligation”

v new x:[int]/(Ilc| Qo)
In (x?[v].P | x![3])

Reliability of Usages &
the Usage Calculus

“For every | / Owith capability,
acorresponding Q' | with obligation”

X new X:[]/(Oo|lc|lc)
in (x!'[] | x?[].P | x?[].Q

® new X:[]/lc 1n x?[].0Q

Reliability of Usages &
the Usage Calculus

“For every | / Owith capability,
acorresponding Q' | with obligation”

X new X:[]/(Oo|lc|lc)
in (x!'[] | x?[].P | x?[].Q

® new X:[]/lc 1n x?[].0Q

Qo|lcllc ® |c

Outline

Basic ldeas

Time Tags & Time Tag Ordering
P “Inwhat order those channels may be used”

The Type System
Related Work

Conclusion

Dependency between
Obligation and Capability

v x:[int]/Qo}

x![3]
X y:[1/1, x:[int]/Qo}
y?[]. x![3]

v y:[1/lc, x:[int]/Qo}
y?[]. x!'[3]

Dependency between
Obligation and Capability

t <s

“acapability witht may be used

before an obligation with s is fulfilled”

v y:[]/1ct, x:[int]/ Q0% t<s}
y?[]. x!'[3]

X y:[1/1ct, x:[int]/ 0% A}
y?[]. x!'[3]

X y:[1/1ct, x:[int]/ Q0% s<t}
y?[]. x'[3]

Preventing & Detecting
Cycles In the Dependency

G=oc:[]/(®°1c%), d:[]/(0"|Ict)

v G s<t | c?[].d[
X G s<tp d?[].c![

Preventing & Detecting
Cycles In the Dependency

G=oc:[]/(®°1c%), d:[]/(0"|Ict)

v G t<sl d?[].c![
X G t<sF c?[].d'[

Preventing & Detecting
Cycles In the Dependency

G=oc:[]/(®°1c%), d:[]/(0"|Ict)

X G s<tp c?[].d[d?[].c![
X G t<sp c?[].d[d?[].c![]

G s<t,t<s} c?[].d!'[] | d?[].c!'[]

Outline

The Type System
Type Judgment & Typing Rules
Correctness & Expressiveness
Type Checking

Related Work
Conclusion

Type Judgment

G <F P
G : type environment

(mapping from variables to types)

< : time tag ordering
(binary relation on time tags)

P uses communication channels according to:

the usage specified by G
the order specified by <

Example of Typing Rules
T-Out (simplified):

[includes obligations a Includes capability
s < timetagson obligationsincludedin t

Gincludes no obligation

G+ x:[t]/0° +y:t; <} x![y]

Example of Typing
-

def fib[1 :int, r:[inf]]
if 1 <2
then r![1]
else
new c: | int]
in (fibl[i-1,c] | fib'[i-2,c]
| c?[j].c?[k].r![]+K])

Example of Typing

ret: [int] -

def fib[1 :int, r:[inf] |

if 1 <2
then r![1]
else
new c: | int]
in (fibl[i-1,c] | fib'[i-2,c]
| c?[j].c?[k].r![]+K])

in fib! [10, ref]

Example of Typing

ret: [int] / Qo -
def fib[1 :int,r:[int]/ G| =
if 1 <2
then r![1]
else
new c:[int] (OCo |OCo|lc .Ic
in (fibl[i-1,c] | fibl[i-2,c]
| c?[j].c?[K].r![]+k])

in fib!' [10, ret]

Example of Typing

ret: [int] / Qo -

Outline

The Type System

Correctness & Expressiveness
Type Checking

Related Work
Conclusion

Correctness of the Type System

No immediate deadlock:
Well-typed processes are not in deadlock

Correctness of the Type System

No immediate deadlock:
Well-typed processes are not in deadlock

+

Subject reduction:
Well-typedness is preserved by reduction

Correctness of the Type System

No immediate deadlock:
Well-typed processes are not in deadlock

+

Subject reduction:
Well-typedness is preserved by reduction

3

Deadlock-freedom:
Well-typed processes never fall into deadlock
throughout reduction

Correctness of the Type System

Deadlock-freedom:
(the case of an output obligation)

G+ x:[t]/Q}; <} P
Every usagein G + x: [t]/ Q,! isreliable
<*Isadtrict partia order

P will eventually perform output on x
(unless ‘ infinite loop’)

Expressiveness of the Calculus

Expressive enough to encode:
Parallel functions
Typical concurrent objects
Various semaphores

Expressiveness of the Calculus

Too conservative to express:

Case-by-case dependency
c:[1/ (1 6%l O0®) s d:i [T/ (1co' | Opt)
s<t, t<s

ct[] | di[] |
If ...then c?[]...d?[]....dse d?[]...c?[].

Outline

The Type System

Type Checking

Related Work
Conclusion

Issues In Type Checking

Usages of channels:
must be explicitly specified by programmers

Reliability of usages:
can be automatically checked
(by a co-inductive method)

Time tag ordering:
can be automatically inferred
(by generation & satisfaction of constraints)

Outline

Related Work
Conclusion

Related Work (1/4)

[Kobayashi 97]
Partially deadlock-free typed process calculus

Iln what way each channel may be used
Linear Channels (used just once for communication)
Mutex Channels (used like binary semaphores)
Replicated Input Channels (used for process definitio
Iln what order those channels may be used
Time tags and their ordering

Related Work (2/4)

[Pierce & Sangiorgi 93]
/0O Types.

In what direction a channel may be used
(for input, for output, or for both)

c.-[inf] <« c:[intf]/!O

[Kobayashi & Pierce & Turner 96]
Linear Types.
How many times a channel may be used

(once or unlimitedly)
ALt L e~ Tintl /(O T

Related Work (3/4)

[Yoshida 96]
Graph Types.
In what order processes perform
Input/output on channels
— Only ‘capabillity + obligation’;
cannot express ‘ capability without obligation’
and ‘ obligation without capability’

Related Work (4/4)

[Boudol 97]
Hennessy-Milner logic with recursion:
On what channels processes are ready

to recalve values

— Deadlock-freedom only for output;
cannot guarantee deadl ock-freedom for input

Outline

Conclusion

Conclusion (1/2): Summary

Static type system that prevents deadlock:
Usages & Usage Calculus
“In what way each channedl isused”
+
Time Tags & Time Tag Ordering
“In what order those channelsare used”

Conclusion (2/2): Future Work

Develop a (partial) type inference algorithm
Apply to practical concurrent languages
Utilize for compile-time optimization

Prototype type checker available at:

http://ww. is.s.u-tokyo.ac.]p
[~sum 1 / pub/

