
Environmental Bisimulations
for Higher-Order Languages

Davide Sangiorgi

Naoki Kobayashi

Eijiro Sumii

� Pure λ-calculi (call-by-name/call-by-value)

� Cbv λ-calculus with higher-order store

� Higher-order π-calculus

– Sound & complete (i.e., characterizes

contextual equivalence) in each language

Main Result

A bisimulation proof technique

for various higher-order languages

Talk Outline

� Background

– Contextual equivalence

– Bisimulation

– Problems of bisimulation for

higher-order languages

� Environmental bisimulation

� Up-to techniques

� Related work

Contextual Equivalence
[Morris 73]

Two programs M, N are contextually equivalent

M ≡ N
if they "behave the same" under any context

E.g., in pure lambda-calculi, M ≡ N if

∀C. C[M] ⇓ iff C[N] ⇓

� Direct proof is hard because of "∀C"

⇒ Proof technique is desired

Bisimulation

Two programs M, N are bisimilar

M ∼∼∼∼ N
if they can simulate

each other's input/output behavior

� Soundness: Bisimilar programs are

contextually equivalent

� Completeness: Vice versa

⇒ Gives a proof technique for contextual

equivalence

Problem: Bisimulation for
Higher-Order Languages (1/2)

M ∼∼∼∼ N if:

1. If M outputs M1 and becomes M',

then N outputs N1 and becomes N'

with M' ∼∼∼∼ N'

What condition is needed for M1 and N1?

� "M1 ∼∼∼∼ N1" is too strong, because M1 and

M' (N1 and N') may share a "secret"

⇒ Incomplete in impure languages

Problem: Bisimulation for
Higher-Order Languages (2/2)

M ∼∼∼∼ N if:

2. If M becomes M' for input M1,

then N becomes N' for input N1
with M' ∼∼∼∼ N'

What condition is needed for M1 and N1?

� "M1 ∼∼∼∼ N1" is ill-formed, because
it appears in a negative position

⇒ Bisimilarity (∼∼∼∼) may not exist

Talk Outline

� Background

� Environmental bisimulation

– Key idea

– General definition

– Specific definitions

� Up-to techniques

� Related work

Environmental Bisimulation

Key idea:

Use relation-indexed relation ∼∼∼∼R
to represent the "changing world"

– R is called an environment

– Accounts for the generativity of

� Locations (in λ-calculus with store),

�Channels (in higher-order π-calculus), etc.

� Complete also in impure languages

� Monotone (union-closed) and well-defined

General Definifion (1/3)

X is an environmental simulation

if M XR N implies:

1. If M→ M', then N⇒ N' and M' XR N'

2. If M outputs M1 and becomes M',

then N outputs N1 and becomes N'

with M' XR ∪ {(M1, N1)} N'

General Definifion (2/3)

X is an environmental simulation

if M XR N implies:

3. For all M1 R* N1,

if M becomes M' for input M1,

then N becomes N' for input N1
with M' XR N'

– R* is the context closure of R

{ (C[M1,...,Mn], C[N1,...,Nn]) | ∀i. Mi R Ni }

– Represents "synthesis of knowledge"

by the context

General Definition (3/3)

� X is an environmental bisimulation if both

X and X-1 are environmental simulations

– X-1 is defined by (X-1)R = (XR)
-1

� ∼∼∼∼ is the largest environmental bismulation

Instance 1: Env. Bisim. for
Higher-Order ππππ-Calculus (Simplified)

X is an environmental simulation

if P XR Q implies:

1. If P → P', then Q ⇒ Q' and P' XR Q'

2. If P = c!M.P', then Q ⇒ c!N.Q'

and P' XR ∪ {(M, N)} Q'

3. If P = c?x.P', then Q ⇒ c?x.Q'

and P'{P1/x} XR Q'{Q1/x} for all P1 R* Q1

4. P | P1 XR Q | Q1 for all P1 R Q1

Instance 2: Env. Bisim. for
Pure Call-by-Name λλλλ-Calculus

X is an environmental simulation

if M XR N implies:

1. If M→ M', then N⇒ N'

and M' XR N'

2. If M = λx.M', then N⇒ λx.N'
and λx.M' XR ∪ {(λx.M', λx.N')} λx.N'

� Moreover, M'{M1/x} XR N'{N1/x}

for all M1 R* N1

Simple Example (for Pedagogy)

M = λx.(λy.y)x and N = λx.x

� Consider X0 = { (R, M, N) } where R = {(M, N)}

� For any M1 R* N1,

M M1 → (λy.y)M1 → M1

N N1 → N1

� Extend X0 to X =

{ (R*, (λy.y)M1, N1), (R*, M1, N1) | M1 R* N1 }

� X is an environmental bisimulation

Talk Outline

� Background

� Environmental bisimulation

� Up-to techniques

– Big-step environmental bisimulation up to

reduction and context

� Related work

Big-Step Env. Bisim. up to
Reduction and Context

X is a big-step environmental simulation

up to reduction and context

if M XR N impilies:

� If M ⇒ λx.M', then N ⇒ λx.N' and

for all M1 R* N1,

M'{M1/x}⇒(XR ∪ {(λx.M', λx.N')})*⇐ N'{N1/x}

– Recall R* is the context closure of R

The Example Revisited

M = λx.(λy.y)x and N = λx.x

� Take X = { (R, M, N) } where R = {(M, N)}

� For any M1 R* N1,

M M1 ⇒ M1

R R* R* = (XR)*

N N1 ⇒ N1

� X is a big-step environmental bisimulation up to

reduction and context

– The proof is now as easy as it should be!

In the paper

� Environmental bisimulations for

– Pure cbv λ-calculus

– Cbv λ-calculus with higher-order store

� Up-to techniques

– Up-to environment / bisimilarity / reduction /

expansion / contexts / full contexts

– Combinations of the above

� Soundness and completeness proofs

� More examples

Talk Outline

� Background

� Environmental bisimulation

� Up-to techniques

– Big-step environmental bisimulation up to

reduction and context

� Related work

Applicative Bisimulation
[Abramsky 90]

λx.M ∼∼∼∼ λx.N if (λx.M)M1 ∼∼∼∼ (λx.N)M1

for any closed term M1

– Soundness proof is hard [Howe 96]

– Unsound in languages with information

hiding

�Abstract types (∃α), generative names (νx), etc.

Reason:

The lhs and the rhs are "different worlds"

Normal Form Bisimulation
[Sangiorgi 94, Lassen et al.]

λx.M ∼∼∼∼ λx.N if (λx.M)y ∼∼∼∼ (λx.N)y
for a fresh variable y

– Easy to use: one argument suffices

– Complete only in languages with control (µ),
and state (:=) [Lassen et al.]

Logical Bisimulation
[Sangorgi-Kobayashi-Sumii 07]

λx.M ∼∼∼∼ λx.N if
(λx.M)C[M1,...,Mn] ∼∼∼∼ (λx.N)C[N1,...,Nn]
for all C with M1,...,Mn ∼∼∼∼ N1,...,Nn

– Sound (and complete in pure λ-calculi)

– Not monotone, but works for pure λ-calculi

Previous "Environmental"
Bisimulations

� For first-order languages

– Polymorphic π-calculus [Pierce-Sangiorgi 00]

– Spi calculus [Abadi-Gordon 98]

� For higher-order languages

(with a few "built-in" up-to techniques)

– λ-calculi with perfect encryption /
existential types [Sumii-Pierce 04, 05]

– Imperative λ-calculus / object calculi
[Koutavas-Wand 06, 06, 07]

Conclusion

� Sound and complete bisimulations for

– Pure λ-calculi (call-by-name/call-by-value)

– Cbv λ-calculus with higher-order store

– Higher-order π-calculus

� Up-to techniques for the bisimulations

Future work:

� "More formal" general framework

� More formal comparison with other proof

techniques

