Environmental Bisimulations for Higher-Order Languages

Davide Sangiorgi Naoki Kobayashi Eijiro Sumii

Main Result

A bisimulation proof technique for various higher-order languages

- Pure λ -calculi (call-by-name/call-by-value)
- Cbv λ -calculus with higher-order store
- Higher-order π -calculus

 Sound & complete (i.e., characterizes contextual equivalence) in each language

Talk Outline

Background

- Contextual equivalence
- Bisimulation
- Problems of bisimulation for higher-order languages
- Environmental bisimulation
- Up-to techniques
- Related work

Contextual Equivalence [Morris 73]

Two programs M, N are <u>contextually equivalent</u> $M \equiv N$ if they "behave the same" under any context

E.g., in pure lambda-calculi, $M \equiv N$ if $\forall C. C[M] \Downarrow$ iff $C[N] \Downarrow$

Direct proof is hard because of "∀C"
 ⇒ Proof technique is desired

Bisimulation

Two programs M, N are <u>bisimilar</u> M ~ N if they can simulate each other's input/output behavior

- Soundness: Bisimilar programs are contextually equivalent
- Completeness: Vice versa
 ⇒ Gives a proof technique for contextual equivalence

Problem: Bisimulation for Higher-Order Languages (1/2)

$M \sim N$ if:

1. If M outputs M_1 and becomes M', then N outputs N_1 and becomes N' with M' ~ N'

What condition is needed for M_1 and N_1 ?

 "M₁ ~ N₁" is too strong, because M₁ and M' (N₁ and N') may share a "secret"
 ⇒ Incomplete in impure languages

Problem: Bisimulation for Higher-Order Languages (2/2)

$M \sim N$ if:

2. If M becomes M' for input M_1 , then N becomes N' for input N_1 with M' ~ N'

What condition is needed for M_1 and N_1 ?

 "M₁ ~ N₁" is ill-formed, because it appears in a negative position ⇒ Bisimilarity (~) may not exist

Talk Outline

- Background
- Environmental bisimulation
 - Key idea
 - General definition
 - Specific definitions
- Up-to techniques
- Related work

Environmental Bisimulation

Key idea:

Use <u>relation-indexed relation</u> ~_R to represent the "changing world"

- R is called an environment
- Accounts for the generativity of
 - Locations (in λ -calculus with store),
 - Channels (in higher-order π -calculus), etc.
- Complete also in impure languages
 Monotone (union-closed) and well-defined

General Definition (1/3)

X is an environmental simulation if $M X_R N$ implies:

1. If $M \rightarrow M'$, then $N \Rightarrow N'$ and $M' X_R N'$

2. If M outputs M_1 and becomes M', then N outputs N_1 and becomes N' with M' $X_{R \cup \{(M1, N1)\}}$ N'

General Definition (2/3)

X is an environmental simulation if $M X_R N$ implies:

3. For all $M_1 R^* N_1$, if M becomes M' for input M_1 , then N becomes N' for input N_1 with M' $X_R N'$

– R* is the <u>context closure</u> of R

{ (C[M₁,...,M_n], C[N₁,...,N_n]) | $\forall i. M_i R N_i$ }

 Represents "synthesis of knowledge" by the context

General Definition (3/3)

 X is an environmental <u>bisimulation</u> if both X and X⁻¹ are environmental simulations
 X⁻¹ is defined by (X⁻¹)_R = (X_R)⁻¹

~ is the largest environmental bismulation

Instance 1: Env. Bisim. for Higher-Order π -Calculus (Simplified)

X is an environmental simulation if $P X_R Q$ implies: 1. If $P \rightarrow P'$, then $Q \Rightarrow Q'$ and $P' X_R Q'$ 2. If P = c!M.P', then $Q \Rightarrow c!N.Q'$ and P' $X_{R \cup \{(M, N)\}}$ Q' 3. If P = c?x.P', then $Q \Rightarrow c?x.Q'$ and $P'\{P_1/x\} X_R Q'\{Q_1/x\}$ for all $P_1 R^* Q_1$ 4. $P \mid P_1 \mid X_R \mid Q \mid Q_1$ for all $P_1 \mid R \mid Q_1$

Instance 2: Env. Bisim. for Pure Call-by-Name λ -Calculus

X is an environmental simulation if $M X_R N$ implies: 1. If $M \rightarrow M'$, then $N \Rightarrow N'$ and M' X_R N' 2. If $M = \lambda x.M'$, then $N \Longrightarrow \lambda x.N'$ and $\lambda x.M' X_{R \cup \{(\lambda x.M', \lambda x.N')\}} \lambda x.N'$ • Moreover, $M'\{M_1/x\}$ X_R $N'\{N_1/x\}$

for all $M_1 R^* N_1$

Simple Example (for Pedagogy)

 $M = \lambda x.(\lambda y.y)x \text{ and } N = \lambda x.x$

- Consider $X_0 = \{ (R, M, N) \}$ where $R = \{ (M, N) \}$
- For any $M_1 R^* N_1$,
 - $M M_1 \rightarrow (\lambda y.y)M_1 \rightarrow M_1$
 - $N N_1 \rightarrow N_1$
- Extend $\overline{X_0}$ to X =
 - { (R*, $(\lambda y.y)M_1$, N₁), (R*, M₁, N₁) | M₁ R* N₁ }
- X is an environmental bisimulation

Talk Outline

- Background
- Environmental bisimulation
- Up-to techniques
 - Big-step environmental bisimulation up to reduction and context
- Related work

Big-Step Env. Bisim. up to Reduction and Context

X is a <u>big-step environmental simulation</u> <u>up to reduction and context</u> if $M X_R N$ impilies:

• If $M \Longrightarrow \lambda x.M'$, then $N \Longrightarrow \lambda x.N'$ and for all $M_1 R^* N_1$, $M'\{M_1/x\} \Longrightarrow (X_{R \cup \{(\lambda x.M', \lambda x.N')\}})^* \longleftarrow N'\{N_1/x\}$

Recall R* is the context closure of R

The Example Revisited

 $M = \lambda x.(\lambda y.y)x$ and $N = \lambda x.x$

- Take X = { (R, M, N) } where R = { (M, N) }
- For any $M_1 R^* N_1$,
 - $M M_1 \Longrightarrow M_1$
 - $R R^* \qquad R^* = (X_R)^*$

 $N N_1 \Rightarrow N_1$

- X is a big-step environmental bisimulation up to reduction and context
 - The proof is now as easy as it should be!

In the paper

Environmental bisimulations for

- Pure cbv λ -calculus
- Cbv λ -calculus with higher-order store
- Up-to techniques
 - Up-to environment / bisimilarity / reduction / expansion / contexts / full contexts
 - Combinations of the above
- Soundness and completeness proofs
- More examples

Talk Outline

- Background
- Environmental bisimulation
- Up-to techniques
 - Big-step environmental bisimulation up to reduction and context
- Related work

Applicative Bisimulation [Abramsky 90]

 $\lambda x.M \sim \lambda x.N$ if $(\lambda x.M)M_1 \sim (\lambda x.N)M_1$ for any closed term M_1

- Soundness proof is hard [Howe 96]
- Unsound in languages with information hiding
 - Abstract types ($\exists \alpha$), generative names (vx), etc.

Reason:

The lhs and the rhs are "different worlds"

Normal Form Bisimulation [Sangiorgi 94, Lassen et al.]

 $\lambda x.M \sim \lambda x.N$ if $(\lambda x.M)y \sim (\lambda x.N)y$ for a fresh variable y

Easy to use: one argument suffices

 Complete only in languages with control (μ), and state (:=) [Lassen et al.]

Logical Bisimulation [Sangorgi-Kobayashi-Sumii 07]

 $\lambda x.M \sim \lambda x.N$ if $(\lambda x.M)C[M_1,...,M_n] \sim (\lambda x.N)C[N_1,...,N_n]$ for all C with $M_1,...,M_n \sim N_1,...,N_n$

– Sound (and complete in pure λ -calculi)

– Not monotone, but works for pure λ -calculi

Previous "Environmental" Bisimulations

• For first-order languages

- Polymorphic π -calculus [Pierce-Sangiorgi 00]
- Spi calculus [Abadi-Gordon 98]
- For higher-order languages (with a few "built-in" up-to techniques)
 - λ -calculi with perfect encryption / existential types [Sumii-Pierce 04, 05]
 - Imperative λ-calculus / object calculi
 [Koutavas-Wand 06, 06, 07]

Conclusion

- Sound and complete bisimulations for
 - Pure λ -calculi (call-by-name/call-by-value)
 - Cbv λ -calculus with higher-order store
 - Higher-order π -calculus
- Up-to techniques for the bisimulations

Future work:

- "More formal" general framework
- More formal comparison with other proof techniques