Environmental Bisimulations for Higher-Order Languages

Davide Sangiorgi
Naoki Kobayashi
Eijiro Sumii
Main Result

A bisimulation proof technique for various higher-order languages

- Pure λ-calculi (call-by-name/call-by-value)
- Cbv λ-calculus with higher-order store
- Higher-order π-calculus
 - Sound & complete (i.e., characterizes contextual equivalence) in each language
Talk Outline

- Background
 - Contextual equivalence
 - Bisimulation
 - Problems of bisimulation for higher-order languages
- Environmental bisimulation
- Up-to techniques
- Related work
Contextual Equivalence
[Morris 73]

Two programs M, N are contextually equivalent

\[M \equiv N \]

if they "behave the same" under any context

E.g., in pure lambda-calculi, $M \equiv N$ if

\[\forall C. \ C[M] \downarrow \text{ iff } C[N] \downarrow \]

- Direct proof is hard because of "$\forall C$"

\[\Rightarrow \text{ Proof technique is desired} \]
Bisimulation

Two programs M, N are bisimilar M ~ N if they can simulate each other's input/output behavior.

- Soundness: Bisimilar programs are contextually equivalent.
- Completeness: Vice versa.
 \[\implies \text{Gives a proof technique for contextual equivalence} \]
Problem: Bisimulation for Higher-Order Languages (1/2)

\[M \sim N \text{ if:} \]

1. If \(M \) outputs \(M_1 \) and becomes \(M' \), then \(N \) outputs \(N_1 \) and becomes \(N' \) with \(M' \sim N' \)

What condition is needed for \(M_1 \) and \(N_1 \)?

- "\(M_1 \sim N_1 \)" is too strong, because \(M_1 \) and \(M' \) (\(N_1 \) and \(N' \)) may share a "secret"

\[\Rightarrow \text{Incomplete in impure languages} \]
Problem: Bisimulation for Higher-Order Languages (2/2)

\[\mathbf{M} \sim \mathbf{N} \text{ if:} \]

2. If \(\mathbf{M} \) becomes \(\mathbf{M}' \) for input \(\mathbf{M}_1 \), then \(\mathbf{N} \) becomes \(\mathbf{N}' \) for input \(\mathbf{N}_1 \) with \(\mathbf{M}' \sim \mathbf{N}' \)

What condition is needed for \(\mathbf{M}_1 \) and \(\mathbf{N}_1 \)?

- "\(\mathbf{M}_1 \sim \mathbf{N}_1 \)" is ill-formed, because it appears in a negative position
 \[\Rightarrow \text{Bisimilarity (\(\sim \)) may not exist} \]
Talk Outline

● Background
● **Environmental bisimulation**
 - Key idea
 - General definition
 - Specific definitions
● Up-to techniques
● Related work
Environmental Bisimulation

Key idea:
Use relation-indexed relation \sim_R to represent the "changing world"

- R is called an environment
- Accounts for the generativity of
 - Locations (in λ-calculus with store),
 - Channels (in higher-order π-calculus), etc.

- Complete also in impure languages
- Monotone (union-closed) and well-defined
General Definition (1/3)

X is an environmental simulation if $M X_R N$ implies:

1. If $M \rightarrow M'$, then $N \Rightarrow N'$ and $M' X_R N'$
2. If M outputs M_1 and becomes M', then N outputs N_1 and becomes N' with $M' X_R \cup \{(M_1, N_1)\} N'$
X is an environmental simulation if $M X_R N$ implies:

3. For all $M_1 R^* N_1$,
 if M becomes M' for input M_1,
 then N becomes N' for input N_1
 with $M' X_R N'$
 - R^* is the context closure of R
 - Represents "synthesis of knowledge" by the context
X is an environmental bisimulation if both X and X\(^{-1}\) are environmental simulations
- X\(^{-1}\) is defined by \((X^{-1})_R = (X_R)^{-1}\)

\sim is the largest environmental bisimulation
Instance 1: Env. Bisim. for Higher-Order π-Calculus (Simplified)

X is an environmental simulation if $P X_R Q$ implies:

1. If $P \rightarrow P'$, then $Q \Rightarrow Q'$ and $P' X_R Q'$
2. If $P = c!M.P'$, then $Q \Rightarrow c!N.Q'$ and $P' X_R \cup \{(M, N)\} Q'$
3. If $P = c?x.P'$, then $Q \Rightarrow c?x.Q'$ and $P'{P_1/x} X_R Q'{Q_1/x}$ for all $P_1 R^* Q_1$
4. $P | P_1 X_R Q | Q_1$ for all $P_1 R Q_1$
Instance 2: Env. Bisim. for Pure Call-by-Name λ-Calculus

X is an environmental simulation if $M \xrightarrow{X_R} N$ implies:

1. If $M \rightarrow M'$, then $N \Rightarrow N'$ and $M' \xrightarrow{X_R} N'$

2. If $M = \lambda x. M'$, then $N \Rightarrow \lambda x. N'$ and $\lambda x. M' \xrightarrow{X_R} \cup \{ (\lambda x. M', \lambda x. N') \} \lambda x. N'$

- Moreover, $M'\{M_1/x\} \xrightarrow{X_R} N'\{N_1/x\}$ for all $M_1 \xrightarrow{R^*} N_1$
Simple Example (for Pedagogy)

\[\text{M} = \lambda x. (\lambda y. y)x \text{ and } \text{N} = \lambda x. x \]

- Consider \(\mathcal{X}_0 = \{ (R, \text{M}, \text{N}) \} \) where \(R = \{(\text{M}, \text{N})\} \)
- For any \(\text{M}_1 R^* \text{N}_1 \),
 \(\text{M} \text{M}_1 \rightarrow (\lambda y. y)\text{M}_1 \rightarrow \text{M}_1 \)
 \(\text{N} \text{N}_1 \rightarrow \text{N}_1 \)
- Extend \(\mathcal{X}_0 \) to \(\mathcal{X} = \)
 \[\{ (R^*, (\lambda y. y)\text{M}_1, \text{N}_1), (R^*, \text{M}_1, \text{N}_1) \mid \text{M}_1 R^* \text{N}_1 \} \]
- \(\mathcal{X} \) is an environmental bisimulation
Talk Outline

- Background
- Environmental bisimulation
- Up-to techniques
 - Big-step environmental bisimulation up to reduction and context
- Related work
X is a big-step environmental simulation up to reduction and context if \(M \xrightarrow{X_R} N \) implies:

- If \(M \Rightarrow \lambda x.M' \), then \(N \Rightarrow \lambda x.N' \) and for all \(M_1 R^* N_1 \),
 \[
 M'\{M_1/x\} \Rightarrow (X_R \cup \{ (\lambda x.M', \lambda x.N') \})^* \iff N'\{N_1/x\}
 \]
 - Recall \(R^* \) is the context closure of \(R \)
The Example Revisited

\[M = \lambda x. (\lambda y. y)x \text{ and } N = \lambda x. x \]

- Take \(X = \{ (R, M, N) \} \) where \(R = \{ (M, N) \} \)
- For any \(M_1 R^* N_1 \),
 \[M M_1 \Rightarrow M_1 \]
 \[R R^* \quad R^* = (X_R)^* \]
 \[N N_1 \Rightarrow N_1 \]
- \(X \) is a big-step environmental bisimulation up to reduction and context
 - The proof is now as easy as it should be!
In the paper

- Environmental bisimulations for
 - Pure cbv λ-calculus
 - Cbv λ-calculus with higher-order store
- Up-to techniques
 - Up-to environment / bisimilarity / reduction / expansion / contexts / full contexts
 - Combinations of the above
- Soundness and completeness proofs
- More examples
Talk Outline

- Background
- Environmental bisimulation
- Up-to techniques
 - Big-step environmental bisimulation up to reduction and context
- Related work
Applicative Bisimulation
[Abramsky 90]

\[\lambda x. M \sim \lambda x. N \text{ if } (\lambda x. M)M_1 \sim (\lambda x. N)M_1 \]

for any closed term \(M_1 \)

- Soundness proof is hard [Howe 96]
- Unsound in languages with information hiding
 - Abstract types (\(\exists \alpha \)), generative names (\(\nu x \)), etc.

Reason:
The lhs and the rhs are "different worlds"
Normal Form Bisimulation
[Sangiorgi 94, Lassen et al.]

\[\lambda x. M \sim \lambda x. N \text{ if } (\lambda x. M)y \sim (\lambda x. N)y \]

for a fresh variable \(y \)

- Easy to use: one argument suffices
- Complete only in languages with control (\(\mu \)), and state (\(:= \)) [Lassen et al.]
Logical Bisimulation
[Sangorgi-Kobayashi-Sumii 07]

\[\lambda x. M \sim \lambda x. N \text{ if} \]
\[(\lambda x. M)C[M_1,\ldots,M_n] \sim (\lambda x. N)C[N_1,\ldots,N_n] \]
for all C with \(M_1,\ldots,M_n \sim N_1,\ldots,N_n \)

- Sound (and complete in pure \(\lambda \)-calculi)
- Not monotone, but works for pure \(\lambda \)-calculi
Previous "Environmental" Bisimulations

- For first-order languages
 - Polymorphic π-calculus [Pierce-Sangiorgi 00]
 - Spi calculus [Abadi-Gordon 98]
- For higher-order languages
 (with a few "built-in" up-to techniques)
 - λ-calculi with perfect encryption / existential types [Sumii-Pierce 04, 05]
 - Imperative λ-calculus / object calculi [Koutavas-Wand 06, 06, 07]
Conclusion

- Sound and complete bisimulations for
 - Pure λ-calculi (call-by-name/call-by-value)
 - Cbv λ-calculus with higher-order store
 - Higher-order π-calculus
- Up-to techniques for the bisimulations

Future work:
- "More formal" general framework
- More formal comparison with other proof techniques