
Linear Type Systems
for Concurrent Languages

Eijiro Sumii
Naoki Kobayashi

University of Tokyo

Merit and Demerit of
Concurrent Languages

Compared with sequential languages
z Merit: more expressive power

y Inherently concurrent application (e.g. GUI)
y Parallel/distributed computation

z Demerit: more complicated behavior
y Non-determinism (possibility of various results)
y Deadlock (failure of due communication)

è Errors & Inefficiencies

Example of Complication (1)

In ML:
r:int ref├
(r:=3; r:=7; !r) (* evaluates to 7 *)

In CML [Reppy 91]:
c:int chan├
(spawn(fn()=>send(c, 3));
spawn(fn()=>send(c, 7));
recv(c)) (* evaluates to either 3 or 7 *)

Example of Complication (2)

In ML:
let val r:int ref = ref 3
in !r + !r + !r
end (* evaluates to 9 *)

In CML:
let val c:int chan = channel()

val _ = spawn(fn()=>send(c, 3))
in recv(c) + recv(c) + recv(c))
end (* evaluation gets stuck! *)

Example of Complication (3)

In ML:
let val r1:bool ref = ref false

val r2:bool ref = ref true
in !r2 andalso !r1
end (* evaluates to false *)

In CML:
…

Example of Complication (3)

In ML:
…

In CML:
let val c1:bool chan = channel ()

val c2:bool chan = channel ()
val _ = spawn(fn()=>

(send(c1, false);
send(c2, true)))

in recv(c2) andalso recv(c1)
end (* evaluation gets stuck! *)

Our Approach

Identify deterministic/deadlock-free parts
by a static type system

Enrich Channel Types with Information of
― “In what way a channel is used”

⇒ Linear Channels, Usage Annotations
― “In what order channels are used”

⇒ Time Tags
Rationale:

Type systems are usually compositional & tractable
(unlike model checking, abstract interpretation, etc.)

Outline

z Introduction
z Basic Ideas

y Linear Channels [Kobayashi et al. 96]
y Time Tags [Kobayashi 97]

z Formalization in process calculi
z Extension by Usage Annotations

[Sumii & Kobayashi
98]

z Conclusion

Basic Ideas (1):
Linear Channels

c : pm τ chan
p (polarity) ::= ↑ (output) | ↓ (input)

| b (both) | 
(none)

“In which direction c can be used”
m (multiplicity) ::= 1 (exactly once) | ω (any times)

“How many times c can be used”
4 c:↑1 int chan├ send(c, 3):unit
8 c:↑1 int chan├ recv(c):int

Basic Ideas (1):
Linear Channels

c : pm τ chan
p (polarity) ::= ↑ (output) | ↓ (input)

| b (both) | 
(none)

“In which direction c can be used”
m (multiplicity) ::= 1 (exactly once) | ω (any times)

“How many times c can be used”
4 c:↑1 int chan├ send(c, 3):unit
8 c:↑1 int chan├ (send(c, 3);

send(c, 7)):unit

Basic Ideas (1):
Linear Channels

c:↑1 int chan├ send(c, 3):unit
c:↓1 int chan├ recv(c):int
────────────────────

c:b1 int chan├
(spawn(fn()=>send(c, 3));
recv(c)):int

Basic Ideas (2): Time Tags

4 c:↓s
1 bool chan,

d:↓t
1 bool chan; spt├

(recv(c) andalso recv(d)):bool
8 c:↓s

1 bool chan,
d:↓t

1 bool chan; spt├
(recv(d) andalso recv(c)):bool

Basic Ideas (2): Time Tags

8 c:↓s
1 bool chan,

d:↓t
1 bool chan; spt├

(spawn(fn()=>(send(c, true);
send(d, false)));

recv(d) andalso recv(c)):bool
8 c:↓s

1 bool chan,
d:↓t

1 bool chan; tps├
(spawn(fn()=>(send(c, true);

send(d, false)));
recv(d) andalso recv(c)):bool

Basic Ideas (2): Time Tags

4 c:↓s
1 bool chan,

d:↓t
1 bool chan; spt, tps├

(spawn(fn()=>(send(c, true);
send(d, false)));

recv(d) andalso recv(c)):bool

Outline

z Introduction
z Basic Ideas

y Linear Channels [Kobayashi et al. 96]
y Time Tags [Kobayashi 97]

z Formalization in process calculi
z Extension by Usage Annotations

[Sumii & Kobayashi
98]

z Conclusion

Type Judgment in
the Type System

Γ; p├ P
Γ : type environment

(mapping from variables to types)
p : time tag ordering

(binary relation on time tags)

è P uses channels according to
― the usage specified by Γ
― the order specified by p

Correctness of
the Type System

z Subject Reduction:
”Reduction preserves well-typedness"

Γ, c:bt
1 int chan; p├
(spawn(fn()=>send(c, 3));
let v = recv(c) in …)

⇓
Γ, c:t

1 int chan; p├
let v = 3 in …

Correctness of
the Type System

z Partial Confluence:
”Communication on linear channels

won't cause non-determinism"
Γ; p├ P and Q ⇐1 P ⇒ Q'

⇓
Q ⇒* R *⇐ Q' for some R

Correctness of
the Type System

z Partial Deadlock-Freedom:
”Non-cyclic communication on linear channels

won't cause deadlock"
Γ; p├ P

⇓
P ⇒ Q for some Q

Unless P is trying to receive/send a value
from/to some channel typed as pt

m τ chan
where either m ≠ 1, t p+ t, p = ↑ or ↓

Outline

z Introduction
z Basic Ideas

y Linear Channels [Kobayashi et al. 96]
y Time Tags [Kobayashi 97]

z Formalization in process calculi
z Extension by Usage Annotations

[Sumii & Kobayashi
98]

z Conclusion

Generalize Linear Channels
by Usage Annotations

U (usage) ::= O (output)
| I.U (input & sequential execution)
| U|V (concurrent execution)
| !U (replication)
| - (none)

4 c:(O|O|I.I.-)t int chan; ∅├
(spawn(fn()=>send(c, 3));
spawn(fn()=>send(c, 7));
let v = recv(c)

w = recv(c) in …)

Generalize Linear Channels
by Usage Annotations

Annotate I’s and O’s with
z Capability (c)

“The input/output will succeed (if it is performed)”
z Obligation (o)

“The input/output must be performed
(though it won’t succeed)”

 "Deadlock" if these assumptions don't hold

Generalize Linear Channels
by Usage Annotations

“For every I/O with capability,
a corresponding O/I with obligation”

4 c:(Oo|Ic.-)t int chan; ∅├
(spawn(fn()=>send(c, 3));
let v = recv(c) in …)

8 c:(Oo|Ic.-)t int chan; ∅├
let v = recv(c) in …

Generalize Linear Channels
by Usage Annotations

We can uniformly express usage of
y Linear Channels

Oco|(Ico.-)
y “Semaphore” Channels

Oo|!(Ic.Oo)
y “Client-Server” Channels

!Oc|!(Io.-)
etc.

Usage as LL-Formula

[| _ |] : Usage → LLFormula

[| Oco |] = m [| Ico.U |] = m −o [| U |]
[| Oc |] = m ⊕ 1 [| Ic.U |] = (m −o [| U |]) ⊕ 1
[| Oo |] = m & 1 [| Io.U |] = (m −o [| U |]) & 1
[| O |] = (m & 1) ⊕ 1 [| I.U |] = ((m −o [| U |])

& 1) ⊕ 1
[| U|V |] ＝ [| U |] ⊗ [| V |]
[| - |] ＝ 1
[| !U |] ≒ ! [| U |]

Usage as LL-Formula

U is a “reliable” usage
i.e., For every I/O with capability,

a corresponding O/I with obligation exists

c
[| U |] always reduces to 1

i.e., no unexpected garbage (producer/consumer) remains

e.g.
[| Oo|Ic.- |] −o 1 ≡ (m & 1) ⊗ ((m −o 1) ⊕ 1) −o 1

Conclusion

Summary:
“Resource- & order-conscious” type system

with linear channels & time tags
Future Work

y Type Inference Algorithm for Usage Annotations
(Cf. for time tag ordering [Kobayashi 97],

for linear channels [Igarashi & Kobayashi 97])

y Aggressive Optimization by the Type Information
y Semantics of Time Tag Ordering

 Linear Logic with Sequencing Operator?

