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Main Results

¢ Proof methods for two forms of
Information hiding in computer programs
= Logical relationsfor perfect encryption
= Bisimulationsfor perfect encryption

=« Bisimulations for type abstraction
e First solution to a problem of 20 years
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Background

* |nformation hiding (or abstraction) Is
crucial for building large systems

= ...Including computer softwar e

* Type abstraction isthe primary method of
Information hiding in programming
languages
= T hebasis of objects, modules, components, etc.
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A Classical Example

| nterface Conpl ex =

type t

fun make : real =~ real ® t
fun mul : t "t ® t

fun re : t ® real
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Cartesian | mplementation

nodul e Cartesian : Conplex =

typet = real ~ real
fun make(x,y) = (Xx,VY)

fun mul ((X,Yy), (X, Y,)) =
(X1 Xom V1" Yo X{FYoHX0Y,)
fun re(x,y) = x
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Polar | mplementation

nodul e Polar : Conpl ex =
type t = real ° real
fun make(x,y) =
(sgrt(x*x+y*y),atan2(y, X))

fun mul ((ry, qy),(r,Qy)) =
(ri*r,, g;+0y)
fun re(r,q) = r*cos(q)
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The Abstraction Property

Contextual equivalence:
- Cartesian © Polar : Conpl ex

|.e., the different implementations givethe
sameresult under any well-typed context in
the language
= In thisstudy, "result" meansonly thefinal value
(or possible divergence)
e Time, energy, rounding errors, etc. ar e out of scope
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How to Proveit?

L ogical relations [Reynolds 83]:

| nduction on thetype of the interface
(Conpl ex In previous example)

¢ So far, so good.




The Problems

¢ | ogical relations become complex for
expressive languages (e.g. with recursion
Or concurrency)

= ...yet attackers must be expressed in the
language (as well asusers)
¢ Type abstraction doesn't work against
untyped user gattackers

= ...but we cannot " type-check the Internet"
cp RERT
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Our Solutions

+ Use bisimulations in place of logical
relations

* Use encryption instead of type abstraction
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Outline

L ogical relations for type abstraction
[Reynolds 83] [Mitchell 91]

Bisimulations for type abstraction
[Sumii-Pierce, POPL'05]

Bisimulationsfor encryption
[Sumii-Pierce, POPL'04 & TCS]

Cf. Logical relationsfor encryption
[Sumii-Pierce, CSFW'01 & JCS]
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L ogical Relations
(without Type Abstraction)

Relations between programs, defined by
Induction on their types

+ Constantsarerelated iff they are equal

* Tuplesarerelated iff their elementsare
related

¢ Functionsarerelated iff they map related
argumentstorelated results
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Examples

¢ 123 and 123 arerelated at typel nt

¢ | x. x+1+2 and | x. x+3 arerelated at
typel nt ® | nt

¢ | x. (123, x+1+2) and | x. (123, x+3)
arerelated at typel nt® (I nt "I nt)
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L ogical Relationsfor
Type Abstraction

|n addition to the previous cases:

* Abstract data of typea areredated iff they
arerelated by | (a)
= Where|] isareation environment mapping

abstract typesto therelation between thar
Implementations
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Example

Take
i (Conpl ex.t) =
{((x,y),(r,q))[x=rcosq,y=rsnd}
Then
j | Cartesian~Polar : Conpl ex

That is, Cart esi an and Pol ar are
logically related at type Conpl ex under |
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Soundness of
L ogical Relations

L ogical relations imply contextual equivalence

¢ Corollary of the" fundamental property"
(a.k.a. the" basic lemma’)

= Proved by induction on thetyping of terms,
with assumptions on their free variables
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Shortcoming of
L ogical Relations

Don't " scale" to more expressive languages

* Recursive functions (or while-loops)
complicate the fundamental property

* Recursivetypes complicate the definition
of logical relations

Extrawork required in every use of logical relations
(cannot be done once and for all in meta theory)
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Outline

1. Logical relationsfor type abstraction
[Reynolds 83] [Mitchell 91]

2. Bismulationsfor type abstraction
[Sumii-Pierce, POPL'05]

3. Bismulationsfor encryption
[Sumii-Pierce, POPL'04 & TCS]
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Bismulations

(without Type Abstraction)

Applicative bissmulations [Abramsky 90]:

Relations between values that satisfy some
conditionsto exclude inequivalent values

= Bisimi
= Bisimi
= Bisimi

ar constants are equal
ar tuples have bismilar elements
ar functionsreturn bismilar results

when applied to the same argument

UNIVERSITY of PENNSYLVANIA
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Examples

¢ {(123,123)} Isabismulation
*{(4,4),(5,5)} Isabismulation
*{((4,5).(4,3)),(4,4),05,9)}
IS a bismulation
o {(I x. x+1+2,I x. x+3),(1,]) |1 =k+1+2,
] =k+3,k:1 nt}isabismulation
¢ Union of bismulationsisa bissmulation
=iy Nl
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Shortcoming of
Applicative Bismulations

Don't extend to type abstraction

¢ Cartesi an. re and Pol ar. r e do not

return bismilar results (i.e. the same real
number) when applied to the same
argument

= [ hey expect different representations
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Bissimulationsfor Type
Abstraction: First Try

Bissmilar functionsreturn bissmilar results
when applied to bisimilar arguments

= No condition for abstract data themselves,
aslong asthe other conditions are satisfied

THISTS UNSOUND!

+ Because contexts (usersor attackers) can combine
bismilar valuesto make more complex arguments
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Counter-Example

¢ (1, fst)and( 2, fst)arenot contextually
equivalent attypea "(a” a® I nt)

But
{(1,fst),(2,fst),a’"(a”" a® int)),
(1,2,a),
(fst,fst,a” a® int)}

satisfies all the bismulation conditions so far!
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Bissimulationsfor Type
Abstraction: Second Try

Bismilar functionsreturn bismilar results
when applied to C|v,,...,v.] and C|v,',...,v.)']
¢ for any bismilar valuesv,,....v,and v,,....v.',

and
¢ for any value context C.
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Example

R={(Cart esi an, Pol ar, Conpl ex),
(Cart esi an. nake, Pol ar. nake,
real " real ® Conpl ex. 1),
(Cart esi an. mul , Pol ar. nul
Compl ex.t ~ Conpl ex.t ® Conpl ex. t),
(Cartesi an.re,Pol ar.re,
Conpl ex.t ® real),

((x,y).(r,q),Conpl ex. t),
(z,z,real) | x=r cosqg, y =r sinq}
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ThelLast Problem

The previous definition I1s sound,
but completenessisunclear

¢ Because the union of two bissmulations
wouldn't always be a bismulation

= Counter-example: the union RER! of the
previousR and itsinverse R-1

P Standard co-inductive method wouldn't apply

Cp REK T
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Our Solution

Consider setsof relations as bismulations

¢ Intuition: Each relation representsa " world"

¢ Another intuition: Each relation representsthe
knowledge of an attacker, which increases by time
(but nevertheless staysin the bissmulation)

+ Also gives a natural account for the generativity of
existential types
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Examples

For theprevious R,

* { R} Isabismulation

* { R'* } Isanother bismulation
* { R, R1}isalsoabismulation
* { RER-1} isnot a bisimulation

UNIVERSITY of PENNSYLVANIA
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Soundness and Completeness

+ Contextual equivalenceis also generalized
asa set of relations

¢ Then, it coincideswith bisimilarity (the
lar gest bisimulation)

» Everythingisformalized and proved in| -
calculuswith full universal, existential, and
recursivetypes (first result in 20 years!)

cp RERT
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Other Examples

¢ Object encodings
* ML-likefunctors

¢ Higher-order polymor phic functions
(the" dual” of abstract types)
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Outline

1. Logical relationsfor type abstraction
[Reynolds 83] [Mitchell 91]

2. Bismulationsfor type abstraction
[Sumii-Pierce, POPL'05]

3. Bismulationsfor encryption
[Sumii-Pierce, POPL'04 & TCS]
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| dea:
Abstraction by Encryption

Reinvention of dynamic sealing [Morris 73]

* Secret key Isgenerated for each abstract
type

+ Abstract data are encrypted when
exported out of a module

¢ _..and decrypted when imported back
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Cartesian | mplementation of
Conpl ex with Encryption

nodul e Cartesian =
fun make(x,y) = encrypt . (X,VY)
fun mul (c,, Cc,) =
let (Xq,Y4) decrypt , (cy) In
let (X,,Y, = decrypt,(c,) 1In
encrypt  (X,*X,-y1* Y, X" YotX*y,)
fun re(c) =
let (X,y) = decrypt, (c) In X

I
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Polar | mplementation of
Conpl ex with Encryption

nodul e Pol ar =
fun make(x,y) =
encrypt . (sqrt(x*x+y*y), atan2(y, X))
fun mul (c,, Cc,) =
let (r,,q;) = decrypt,. (cy) 1In
let (r,, g, = decrypt,.(c,) In
encrypt,. (r,*r,, g;+0y)
fun re(c) =
let (r,q) = decrypt,.(c) In r*cos(q)
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The Abstraction Property

Untyped contextual equivalence:
Cartesi an ° Pol ar

¢ Abstraction holds against any context in
thelanguage, even if untyped
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How to Proveit?

Bissmulations!

¢ Conditionsfor constants, tuples, functions
arethe same as before
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Bissimulations for Encryption

* Bisimulation respects equality of keys
o e, ifk, and k" arebisimilar, and if k, and
k,' arebisimilar,thenk, =k, U k," =k,
¢ For any bissimilar ciphertexts
encrypt , (v) andencrypt,. (v'),
= Neither k nor k' isin therelation, or
= Vand V' arebismilar
cp RERT
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Example

R={(Cartesi an, Pol ar),
(Cart esi an. make, Pol ar . nake),
(Cart esi an. mul , Pol ar. nul ),
(Cartesi an.re, Pol ar. re),

(encrypt (X, y),encrypt,.(r,q)),
(z,2) |

X=r cosqg, y=rsng, z:real }
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Formalization

* Defined untyped | -calculus extended with:
= Keysk and fresh key generation new x in e

= Encryption {e;}, and
decryption let {x}, =€,Ine; else e,
e Assumes perfect encryption
* Proved soundness and completeness of our
bismulationsin thislanguage
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Operational Semantics
of the Language (1/2)

* Big-step evaluation (s)e 3 (t)v from terms
etovaluesv

= Annotated with the set of keyssand t before
and after the evaluation

ki's  (sE{k})[k/X]eR (t)v

(s) new xineld (t)v

& Penn cp RERT
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Operational Semantics
of the Language (2/2)

* Success of decryption:
(S)e B (sPk  (s)&, [ (SH{vl
(Sp) [V/Xx]e; B3 (t)w
(s) let {x}, =& Ine; else g, 3 (t)w
+ Failure of decryption:

(s)e B (sPk  (spe; B (s)H{ v}k
ki k' (s)e R (t)w

(s) let {x}, =& Ine; else g, 3 (t)w
Cp BERT
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Other Examples

¢ Generativefunctors
+ Non-generative functors
¢ Encodings of security protocols
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Our Protocol Encoding

+ A protocol isencoded as a tuple of
participants (and their public keys)
» Sendersare encoded asthe values being sent
= Recealversare encoded as functions from

recelved valuesto returned values

* Then, contexts play therole of the network,
scheduler, and attackers by applying the
receiverstothe senders

HHLK F
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Example

1. A® B : {N},
2. B® A : Nmod 2

Sysy = hew X In

(encrypt,(N),

ly. (decrypt, (y) nod 2))
R K ¥
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Non-Interference:
Secrecy as Equivalence

With our bismulations, it iIseasy to prove

SEVIREES A
for any M and N with
M mod 2 = Nmod 2

Which means:
Sys, keeps N secret (except for its least
significant bit) under any context

( ’ %Uﬁlﬁm%
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Example

R={(Sysm, Sysy),
(encrypt (M), encrypt . (N)),
(ly. (decrypt,(y) nod 2),
ly. (decrypt,.(y) nod 2)),
(M mod 2, N mod 2) }

( ’ %Uuﬁrrﬁi

sl




Protocols Encoded and
Proved (or Disproved)

* Needham-Schroeder (insecure)
* Needham-Schroeder -L owe (secure)

* "ffgg" protocol [millen 99] (Insecure)

= Attack Is" necessarily parallel” but can be
simulated in | -calculusvia interleaving

Various properties (such asintegrity) can be
checked aslong as expressed as equivalence

@:,.- f Penn [ =y e
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Needham-Schr oeder -L owe
Pr otocol

B—A : B

A— B : {NA7A}]€B
B~ A : {Nu Ng, B},
A— B : {NB}kB
B A : {ily,

A
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Encoding of Needham-
Schr oeder -L owe Pr otocol

W = Az {aty,, Ao {aty,, kp, U, V)

U = (B, \{{z, y)}kB. assert(y = A);
vz. ({(z, 2, B) } 1,
)\{zo}kB.assert(zO = z);

{i}z2))
V. = MAzr.let ky = (if x = B then kp else
if x = E then kp else 1) in
vy. ({(y, A) b iy
M(wo, 2, 20) tr - assert(yo = y);
assert(xpg = x);

12}k,
L) — . %)
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Bismulation for Needham-
Schroeder -L owe Protocol

LU WL DWW
-
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Outline

1. Logical relationsfor type abstraction
[Reynolds 83] [Mitchell 91]

2. Bismulationsfor type abstraction
[Sumii-Pierce, POPL'05]

3. Bisimulationsfor encryption
[Sumii-Pierce, POPL'04 & TCS
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Related Work (1/5):
L ogical Relations

+ Semantic logical relations
[Tait 67, Plotkin 73, Reynolds 83, Mitchell 93, etc.]

» Suffersfrom the complexity and imprecision
of denotational semanticsfor recursion

¢ Syntactic logical relations
[Pitts 98, Birkedal-Harper 97, etc.]

» Still suffersfrom complicationsfor recursive
functions/types

cp RERT
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Related Work (2/5):
Applicative Bismulations

¢ For untyped
* For object ca

subtyping po

-calculus [Abramsky 90]

culi with universal and
ymor phism [Gordon-Rees]

None can deal with type abstraction
(1.e., existential polymorphism)

UNIVERSITY of PENNSYLVANIA
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Related Work (3/5):
Bissimulations for p-Calculi

¢ For polymor phic p-calculus
[Pierce-Sangiorgi 97, Berger-Honda-Y oshida 03]

¢ For spi-calculus

[Abadi-Gordon 98, Boreale-DeNicola-Pugliese 99,
Borgstrom-Nestmann 02, Abadi-Fournet 01, etc.]

|ncomplete, or completeness claimed
but proof unpublished (or found wrong)

M:'.‘.: [ =y e

(_ < ’ THE UNIVERSITY OF TOKYO

UNIVERSITY of PENNSYLVANIA



Related Work (4/5):
Operational Models of Types

¢ |ndexed models [Appd et al ]
¢ Operational ideal models[Voillon-Melliés 04, etc]

Only unary case (safety) consider ed,
Binary case (equivalence) left open

= Non-trivial in the presence of existential types

& Penn cp RERT
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Related Work (5/5)

¢ Categorical reformulation of our logical

relationsfor perfect encryption
[Goubault-L arrecg-L asota-Nowak-Zhang, CSL 04]
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Future Directions (1/3)

¢ Trandations between different forms of
Information hiding
» E.g. from type abstraction to encryption

= Challenge: How to prove full abstraction
(preservation of equivalence)?

¢ Extension to even more expressive
languages (e.g. higher-order p-calculus)

HHLK F
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Future Directions (2/3)

+ Adoptation/generalization for other forms
of information hiding (e.g. security typing)
= Generative security levels?

* A system allowing unchecked, dynamically

checked, and statically typed code without
losing abstraction

s C, Perl, ML, etc. coexist in peace?

@:,.- f Penn [ =y e
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Future Directions (3/3)

Unchecked code
Dymamically checked code

| ¢ Other hosts with
Unsealing \j | Sealing of abstract dite similar structure
Statically checked code

-
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