
Theories of Information Hiding
in Lambda-Calculus

Logical Relations and Bisimulations
for Encryption and Type Abstraction

Eijiro Sumii
University of Pennsylvania

Main Results

w Proof methods for two forms of
information hiding in computer programs
n Logical relations for perfect encryption
n Bisimulations for perfect encryption
n Bisimulations for type abstraction
l First solution to a problem of 20 years

Background

w Information hiding (or abstraction) is
crucial for building large systems
n ...including computer software!

w Type abstraction is the primary method of
information hiding in programming
languages
n The basis of objects, modules, components, etc.

A Classical Example

interface Complex =
type t
fun make : real × real → t
fun mul : t × t → t
fun re : t → real

Cartesian Implementation

module Cartesian : Complex =
type t = real × real
fun make(x,y) = (x,y)
fun mul((x1,y1),(x2,y2)) =
(x1*x2-y1*y2 , x1*y2+x2*y1)

fun re(x,y) = x

Polar Implementation

module Polar : Complex =
type t = real × real
fun make(x,y) =
(sqrt(x*x+y*y),atan2(y,x))

fun mul((r1,θ1),(r2,θ2)) =
(r1*r2,θ1+θ2)

fun re(r,θ) = r*cos(θ)

The Abstraction Property

Contextual equivalence:
├ Cartesian ≡ Polar : Complex

I.e., the different implementations give the
same result under any well-typed context in
the language
n In this study, "result" means only the final value

(or possible divergence)
l Time, energy, rounding errors, etc. are out of scope

How to Prove it?

Logical relations [Reynolds 83]:
Induction on the type of the interface
(Complex in previous example)

w So far, so good.

The Problems

w Logical relations become complex for
expressive languages (e.g. with recursion
or concurrency)
n ...yet attackers must be expressed in the

language (as well as users)

w Type abstraction doesn't work against
untyped users/attackers
n ...but we cannot "type-check the Internet"

Our Solutions

w Use bisimulations in place of logical
relations
w Use encryption instead of type abstraction

Outline

1. Logical relations for type abstraction
[Reynolds 83] [Mitchell 91]

2. Bisimulations for type abstraction
[Sumii-Pierce, POPL'05]

3. Bisimulations for encryption
[Sumii-Pierce, POPL'04 & TCS]

n Cf. Logical relations for encryption
[Sumii-Pierce, CSFW'01 & JCS]

Logical Relations
(without Type Abstraction)

Relations between programs, defined by
induction on their types
w Constants are related iff they are equal
w Tuples are related iff their elements are

related
w Functions are related iff they map related

arguments to related results

Examples

w 123 and 123 are related at type Int
w λx.x+1+2 and λx.x+3 are related at

type Int→Int
w λx.(123,x+1+2) and λx.(123,x+3)

are related at type Int→(Int×Int)

Logical Relations for
Type Abstraction

In addition to the previous cases:
w Abstract data of type α are related iff they

are related by ϕ(α)
n where ϕ is a relation environment mapping

abstract types to the relation between their
implementations

Example

Take
ϕ(Complex.t) =

{((x,y),(r,θ)) | x = r cos θ, y = r sin θ}
Then

ϕ├ Cartesian ∼ Polar : Complex
That is, Cartesian and Polar are

logically related at type Complex under ϕ

Soundness of
Logical Relations

w Corollary of the "fundamental property"
(a.k.a. the "basic lemma")
n Proved by induction on the typing of terms,

with assumptions on their free variables

Logical relations imply contextual equivalence

w Recursive functions (or while-loops)
complicate the fundamental property
w Recursive types complicate the definition

of logical relations

Shortcoming of
Logical Relations

Extra work required in every use of logical relations
(cannot be done once and for all in meta theory)

Don't "scale" to more expressive languages

Outline

1. Logical relations for type abstraction
[Reynolds 83] [Mitchell 91]

2. Bisimulations for type abstraction
[Sumii-Pierce, POPL'05]

3. Bisimulations for encryption
[Sumii-Pierce, POPL'04 & TCS]

Bisimulations
(without Type Abstraction)

Applicative bisimulations [Abramsky 90]:
Relations between values that satisfy some
conditions to exclude inequivalent values
n Bisimilar constants are equal
n Bisimilar tuples have bisimilar elements
n Bisimilar functions return bisimilar results

when applied to the same argument

Examples

w {(123, 123)} is a bisimulation
w {(4, 4), (5, 5)} is a bisimulation
w {((4,5),(4,5)), (4, 4), (5, 5)}

is a bisimulation
w {(λx.x+1+2, λx.x+3), (i, j) | i = k+1+2,
j = k+3, k : int} is a bisimulation
w Union of bisimulations is a bisimulation

Shortcoming of
Applicative Bisimulations

w Cartesian.re and Polar.re do not
return bisimilar results (i.e. the same real
number) when applied to the same
argument
n They expect different representations

Don't extend to type abstraction

Bisimulations for Type
Abstraction: First Try

Bisimilar functions return bisimilar results
when applied to bisimilar arguments
n No condition for abstract data themselves,

as long as the other conditions are satisfied

THIS IS UNSOUND!
w Because contexts (users or attackers) can combine

bisimilar values to make more complex arguments

Counter-Example

w (1,fst)and(2,fst)are not contextually
equivalent at type α ×(α × α → int)

But
{((1,fst),(2,fst), α ×(α × α → int)),
{(1, 2, α),
{(fst, fst, α × α → int)}

satisfies all the bisimulation conditions so far!

Bisimulations for Type
Abstraction: Second Try

Bisimilar functions return bisimilar results
when applied to C[v1,...,vn] and C[v1',...,vn']
w for any bisimilar values v1,...,vn and v1',...,vn',

and
w for any value context C.

Example

R = { (Cartesian, Polar, Complex),
R= { (Cartesian.make, Polar.make,
R= { (real × real → Complex.t),
R= { (Cartesian.mul, Polar.mul,
R= { (Complex.t × Complex.t → Complex.t),
R= { (Cartesian.re, Polar.re,
R= { (Complex.t → real),
R= { ((x,y),(r,θ), Complex.t),
R= { (z, z, real) | x = r cos θ, y = r sin θ }

The Last Problem

w Because the union of two bisimulations
wouldn't always be a bisimulation
n Counter-example: the union R∪R-1 of the

previous R and its inverse R-1

⇒ Standard co-inductive method wouldn't apply

The previous definition is sound,
but completeness is unclear

Our Solution

w Intuition: Each relation represents a "world"
w Another intuition: Each relation represents the

knowledge of an attacker, which increases by time
(but nevertheless stays in the bisimulation)
w Also gives a natural account for the generativity of

existential types

Consider sets of relations as bisimulations

Examples

For the previous R,
w { R } is a bisimulation
w { R−1 } is another bisimulation
w { R, R−1 } is also a bisimulation
w { R∪R−1 } is not a bisimulation

Soundness and Completeness

w Contextual equivalence is also generalized
as a set of relations
w Then, it coincides with bisimilarity (the

largest bisimulation)
n Everything is formalized and proved in λ-

calculus with full universal, existential, and
recursive types (first result in 20 years!)

Other Examples

w Object encodings
wML-like functors
w Higher-order polymorphic functions

(the "dual" of abstract types)

Outline

1. Logical relations for type abstraction
[Reynolds 83] [Mitchell 91]

2. Bisimulations for type abstraction
[Sumii-Pierce, POPL'05]

3. Bisimulations for encryption
[Sumii-Pierce, POPL'04 & TCS]

Idea:
Abstraction by Encryption

Reinvention of dynamic sealing [Morris 73]

w Secret key is generated for each abstract
type
w Abstract data are encrypted when

exported out of a module
w ...and decrypted when imported back

Cartesian Implementation of
Complex with Encryption

module Cartesian =
fun make(x,y) = encryptk(x,y)
fun mul(c1,c2) =
let (x1,y1) = decryptk(c1) in
let (x2,y2) = decryptk(c2) in
encryptk(x1*x2-y1*y2 , x1*y2+x2*y1)

fun re(c) =
let (x,y) = decryptk(c) in x

Polar Implementation of
Complex with Encryption

module Polar =
fun make(x,y) =
encryptk'(sqrt(x*x+y*y),atan2(y,x))

fun mul(c1,c2) =
let (r1,θ1) = decryptk'(c1) in
let (r2,θ2) = decryptk'(c2) in
encryptk'(r1*r2,θ1+θ2)

fun re(c) =
let (r,θ) = decryptk'(c) in r*cos(θ)

The Abstraction Property

Untyped contextual equivalence:
Cartesian ≡ Polar

w Abstraction holds against any context in
the language, even if untyped

How to Prove it?

Bisimulations!
w Conditions for constants, tuples, functions

are the same as before

Bisimulations for Encryption

w Bisimulation respects equality of keys
n I.e., if k1 and k1' are bisimilar, and if k2 and
k2' are bisimilar, then k1 = k2 ⇔ k1' = k2'

w For any bisimilar ciphertexts
encryptk(v) and encryptk'(v'),
n Neither k nor k' is in the relation, or
n v and v' are bisimilar

Example

R = { (Cartesian, Polar),
R= { (Cartesian.make, Polar.make),
R= { (Cartesian.mul, Polar.mul),
R= { (Cartesian.re, Polar.re),
R= { (encryptk(x,y), encryptk'(r,θ)),
R= { (z, z) |
R= { x = r cos θ, y = r sin θ, z : real }

Formalization

w Defined untyped λ-calculus extended with:
n Keys k and fresh key generation new x in e
n Encryption {e1}e2

and
decryption let {x}e1

= e2 in e3 else e4
l Assumes perfect encryption

w Proved soundness and completeness of our
bisimulations in this language

Operational Semantics
of the Language (1/2)

w Big-step evaluation (s)e ⇓ (t)v from terms
e to values v
n Annotated with the set of keys s and t before

and after the evaluation

k ∉ s (s∪{k}) [k/x]e ⇓ (t)v
———————————————

(s) new x in e ⇓ (t)v

Operational Semantics
of the Language (2/2)

w Success of decryption:
(s)e1 ⇓ (s1)k (s1)e2 ⇓ (s2){v}k

(s2) [v/x]e3 ⇓ (t)w
———————————————
(s) let {x}e1

= e2 in e3 else e4 ⇓ (t)w
w Failure of decryption:

(s)e1 ⇓ (s1)k (s1)e2 ⇓ (s2){v}k'
k ≠ k' (s2)e4 ⇓ (t)w

———————————————
(s) let {x}e1

= e2 in e3 else e4 ⇓ (t)w

Other Examples

w Generative functors
w Non-generative functors
w Encodings of security protocols

Our Protocol Encoding

w A protocol is encoded as a tuple of
participants (and their public keys)
n Senders are encoded as the values being sent
n Receivers are encoded as functions from

received values to returned values

w Then, contexts play the role of the network,
scheduler, and attackers by applying the
receivers to the senders

Example

1. A → B : {N}K

2. B → A : N mod 2

SysN = new x in
(encryptx(N),

λy.(decryptx(y) mod 2))

Non-Interference:
Secrecy as Equivalence

With our bisimulations, it is easy to prove
SysM ≡ SysN

for any M and N with
M mod 2 = N mod 2

Which means:
SysN keeps N secret (except for its least
significant bit) under any context

Example

R = { (SysM, SysN),
R= { (encryptk(M), encryptk'(N)),
R= { (λy.(decryptk(y) mod 2),
R= { (λy.(decryptk'(y) mod 2)),
R= { (M mod 2, N mod 2) }

Protocols Encoded and
Proved (or Disproved)

w Needham-Schroeder (insecure)
w Needham-Schroeder-Lowe (secure)
w "ffgg" protocol [Millen 99] (insecure)

n Attack is "necessarily parallel" but can be
simulated in λ-calculus via interleaving

Various properties (such as integrity) can be
checked as long as expressed as equivalence

Needham-Schroeder-Lowe
Protocol

Encoding of Needham-
Schroeder-Lowe Protocol

Bisimulation for Needham-
Schroeder-Lowe Protocol

Outline

1. Logical relations for type abstraction
[Reynolds 83] [Mitchell 91]

2. Bisimulations for type abstraction
[Sumii-Pierce, POPL'05]

3. Bisimulations for encryption
[Sumii-Pierce, POPL'04 & TCS]

Related Work (1/5):
Logical Relations

w Semantic logical relations
[Tait 67, Plotkin 73, Reynolds 83, Mitchell 93, etc.]

n Suffers from the complexity and imprecision
of denotational semantics for recursion

w Syntactic logical relations
[Pitts 98, Birkedal-Harper 97, etc.]

n Still suffers from complications for recursive
functions/types

Related Work (2/5):
Applicative Bisimulations

w For untyped λ-calculus [Abramsky 90]

w For object calculi with universal and
subtyping polymorphism [Gordon-Rees]

None can deal with type abstraction
(i.e., existential polymorphism)

Related Work (3/5):
Bisimulations for π-Calculi

w For polymorphic π-calculus
[Pierce-Sangiorgi 97, Berger-Honda-Yoshida 03]

w For spi-calculus
[Abadi-Gordon 98, Boreale-DeNicola-Pugliese 99,
Borgstrom-Nestmann 02, Abadi-Fournet 01, etc.]

Incomplete, or completeness claimed
but proof unpublished (or found wrong)

Related Work (4/5):
Operational Models of Types

w Indexed models [Appel et al.]

w Operational ideal models [Voillon-Melliès 04, etc.]

Only unary case (safety) considered;
Binary case (equivalence) left open
n Non-trivial in the presence of existential types

Related Work (5/5)

w Categorical reformulation of our logical
relations for perfect encryption
[Goubault-Larrecq-Lasota-Nowak-Zhang, CSL 04]

Future Directions (1/3)

w Translations between different forms of
information hiding
n E.g. from type abstraction to encryption
n Challenge: How to prove full abstraction

(preservation of equivalence)?

w Extension to even more expressive
languages (e.g. higher-order π-calculus)

Future Directions (2/3)

w Adoptation/generalization for other forms
of information hiding (e.g. security typing)
n Generative security levels?

w A system allowing unchecked, dynamically
checked, and statically typed code without
losing abstraction
n C, Perl, ML, etc. coexist in peace?

Future Directions (3/3)

