The Higher-Order, Call-by-Value Applied Pi-Calculus*

Nobuyuki Sato and Eijiro Sumii

Tohoku University
{nsato,sumii }@kb.ecei.tohoku.ac.jp

Abstract. We define a higher-order process calculus with algebraic operations
such as encryption and decryption, and develop a bisimulation proof method for
behavioral equivalence in this calculus. Such development has been notoriously
difficult because of the subtle interactions among generative names, processes
as data, and the algebraic operations. We handle them by carefully defining the
calculus and adopting Sumii et al.’s environmental bisimulation, and thereby give
(to our knowledge) the first “useful” proof method in this setting. We demonstrate
the utility of our method through examples involving both higher-order processes
and asymmetric cryptography.

1 Introduction

Higher-order communication and encryptiolThe combination of cryptographic op-
erations and higher-order, concurrent programs is ubiquitous in modern computer sys-
tems. For instance, software distribution systems (such as Windows Update) usually
employ some digital signature scheme to verify the authenticity of the downloaded pro-
grams before installing them. For another example, Web-based e-mail user agents (such
as Gmail) often distribute complex code (typically in HTML and JavaScript) interpreted

at the client side, where the code itself is transferred through a secure channel, as well
as the messages sent and received by the code. Guaranteeing the security of such sys-
tems is even more important than in first-order programs, because of the higher chance
of “accidentally” executing arbitrary, malicious code.

Process calculi such as CCS andalculus have been useful for the verification of
concurrent systems in general. In particular, spi-calculus [2] and appléadculus [1]
are equipped with cryptographic operations such as encryption and decryption, and
can be used for formal reasoning about cryptographic protocols. On the other hand,
higher-orderr-calculus [7] allows communication of processes themselves, and is able
to model systems that transfer programs.

To our knowledge, however, there has been little reséaneiprocess calculus with
bothhigher-order communication and cryptographic operations, probably because their
combination is highly non-trivial. For instance, consider a pro¢essc((Q) that sends
another proces§) = c(encrypt(m,k)) to a public communication channel The
process itself, when executed, sends messagencrypted under a secret kiyNow,
is it possible for an observer arto obtainm by intercepting the communications? One
might say no, because is secret. Another might disagree, because the observer can
analyze the program text @j and extract: from it. Yet another one might argue that
such an analysis is impossible, becausés encryptedbefore is published on the

* Janury 23, 2009. Last revised on October 14, 2009. Detailed proofs are available online [12].
1 An exception is a type system for higher-order spi-calculus [6], but it does not consider general
algebra, decomposition, behavioral equivalence, nor bisimulations.

network. But what ifQ = c(x).¢{encrypt(z,k)) instead? How abouf) = c¢(z).c
(encrypt(m, k)) whenm is independent of.?

The above gedankenexperiment leads us to our first observation that, unlike in ap-
plied w-calculus, thevaluesof function applications must be explicitly distinguished
from the function applications themselves in this setting. Thus, let us ﬁ(m’g VD)
for the values of function applicationfg§ Vi, . . ., V;). In the last example, for instande,
(andm) can be extracted) = ¢(z).¢{encrypt(m, k)), but they cannot if) = ¢(z).c
(encrypt(m, k)

Accordingly, we need to provide a construct to decompose the syntax of communi-
cated terms (but not values) including communicated processes (brirmoihg pro-
cesses), so that an observer can analyze them. For this purpose we introduce operations
of the form match M as x in R, which decompose the syntax (not value)Mf and
bind x to the tuple of the decomposed elements. The point is that] i already a
value, |ikee@t(m, k), then it cannot be decomposed any further.

To make our theory realistic, we require that first-order terms are evaluated be-
fore they are sent to the network. Our calculus is thus “call-by-value.” As usual, how-
ever, call-by-name computation can easily be encoded by means of thunks (which are
straightforward to implement as processes).

Behavioural equivalence and bisimulatiorihe distinction between already computed
values and yet-to-be-computed terms is crucial but not sufficient for our development.
Specifically, we need a method for proving properties of processes. Traditidmlly,
havioral equivalencandbisimulationshave been known to be useful for specifying and
proving many interesting properties of concurrent systems, including security proper-
ties such as secrecy and authenticity.

However, traditional bisimulation proof methods fercalculi are not of help here.
Context bisimulation [7] is not useful by itself as a practical proof technique, because
of the universal quantification over all receiver (and sender) contexts. Normal bisim-
ulation [7] essentially encodes higher-order processes into the first order by passing
pointers only, and therefore would not be sound under the presence of decomposition
operation like ouré. Environment-sensitive bisimulations in spi-calculus (see [5] for
example) are not applicable in our higher-order language, because the environment it-
self would include processes.

For these reasons, we adapt more recent woriwironmental bisimulatiof®, 14,

15] and extend it to account for the decomposition operation as well as the algebraic op-
erations (which generalize various cryptographic operations, as in apptattulus).
Although environmental bisimulations have previously been applieddalculus with
encryption [14] and to higher-ordercalculus [9], our extension is far from trivial: to
formalize decomposition, we need to introduce quotations (as in Lisp) for terms as well

2 In general, fully abstract (i.e., equivalence-preserving) encoding of our calculus into another
would be extremely non-trivial. This includes an “obvious” translation from higher-order pro-
cesses into the first order, where one communicates first-order tejpnesentinghe syntax of
processes and runs a procesterpretthem. To prove it correct, one must anyway define a
higher-order calculus and then prove the translation to be fully abstract, which is more indirect
andrequires more work than the present approach.

as for processes, which requires careful definition of several kinds of contexts and con-
text closure operations. Specification of the algebra also requires careful generalization
of the conditions on terms in previous environmental bisimulations.

Our contributions in the present paper are thus twofold: the definition of the calculus
itself, and the environmental bisimulation proof method for this calculus.

Overview of the environmental bisimulatio@ur environmental bisimulatio®’ is a
set of triples of the form(&, P, Q), where P and @ are the tested processes ahibs
the environment, i.e., a binary relation on terms, representing the observer’s knowledge.
The membershig€, P, Q) € X, which is often writtenP X¢ () for readability, means
that processeB and(are bisimilar under environme#it There are several conditions
on X, each corresponding to a change of the state of the observer and the processes.
For instance, as in traditional (weak) bisimulations, if eitfeor Q makes an internal
transition, then the other should maker more internal transitions, and the resulting
processes should also be bisimilar (under the same environfhdrgcause the ob-
server’s state has not changed). For output action3,sénds a valu® and becomes
P’, then@ should also send some vallié and become)’, with the requirement that
P’ andQ’ are bisimilar under the environmeéitu {(V, W)}, which is extended with
the values the observer has learned.

For input, we must consider any pair of values that can be synthesized by the at-
tacker from its knowledgé. We use(&)* for the set of such value pairs, whefés the
set of pairs of values that can be obtained fréry first-order computation, ar((f)*
is the context closure @f. Roughly, we define:

& ={(eval(D[V]), eval(D[W])) | VEW, fn(D) =, D is first-order}

Ex={(C[V], C[W]) | VEW, fn(C)=0}

(Here,f/ denotes a sequendg, ..., V;, and VEW denotesV;EW; for all i. We use
similar notations for various kinds of meta-variables throughout the paper.) Recall that,
unlike in previous environmental bisimulations with “built-in” conditions for some par-
ticular algebra (e.g., [14]), we need to consider general algeBrascounts for the
synthesis of knowledge within such algebras.

For instance, letlecrypt(encrypt(x,y),y) = z. If the ciphertextg encrypt(V, k),
encrypt(W, k)) and the key pai(k, k) belong to€, then the plaintext§V, W) belong
to £. This is because the first-order observer context decrypt([]1, [|2) can compute
them by putting the ciphertexts into its first hdle and the key td]», like:

Dlencrypt(V, k), k] = decrypt(encrypt(V, k), k) =V
Dlencrypt(W, k), k] = decrypt(encrypt(W, k), k) = W

Thus, the bisimulation condition for input would be: for anys)* W, if P receives
V and become®”’, then(received¥ and become®’, with P’ andQ’ bisimilar again
under environment.
Furthermore, the observer can spawn arbitrary new processes from its knowledge
E. Thus, we also requir®| P’ X:Q|Q’ for any PX:Q and P’£Q’. This may seem to
be a heavy condition because of the universal quantification over prod@saed(’,
drawn from&. However, we in fact work out an up-to context technique, where the

requirement is weakened B\P’XS(*)Q\Q’ for a certain form of context closuwg(*)

for X. This essentially removes the universal quantification and significantly lightens

the burden of a bisimulation proof in higher-order process calc’u(ﬂmother subtle

but important trick here is that, unlike for input suffices in place 0(6’)* Informally,

this is because processeg#)* can only make the same observations as thogg)in
Finally, for decomposition of processes and terms, we reqig, 1/, n+) @ for

any PX:Q and MEN, where M’ and N’ are the result of decomposing and N,
respectively. (Obviously, thi§ does not have to b(a‘f)*, because there is no point in
synthesizing a term and then decomposing it.) Again, this condition may seem heavy
because, by repeatedly applying it, we need to transitively include all the subterms of
M andN. As in the previous case, however, most of them can be removed by the up-to
context technique.

Overview of the paperThe rest of this paper is structured as follows. Section 2 for-
mally presents the syntax and labeled transition semantics of our calculus, which is
(formally) parametrized by the semantics of terms. Sections 3 and 4 define the environ-
mental bisimulation and the up-to context technique. Section 5 proves their soundness
and completeness with respect to reduction-closed barbed equivalence. Section 6 gives
examples and Section 7 concludes.

Throughout the paper, readers are assumed to be familiar with standard technical
developments in the-calculus [11] and be comfortable with basic mathematical no-
tions such as inductive (and coninductive) definitions of sets (and relations).

2 The calculus

2.1 Syntax

As in appliedr-calculus [1], our language consists of terms and processes. Terms rep-
resent channel names and communicated data. Processes represent running programs.
The set of terms is defined as follows:

M == x (variable) | a (name) | f (function)

| ‘P (quotedprocess) | ‘M (quoted term)

| M(My,...,M) (uncomputed application)

| f,. W) (computed application)
Meta-variablesM, N range over termsy, b, ¢, d, k,n over namesg, y over variables
and f, g over functions. Term\ (M, ..., M;) represents function application that is
yet to be computed. Converself(Vi,...,V;) represents function application that is
already computed, where functighof arity [has been applied to valués, ..., V.

Note that function symbolg are first-class but different from names (or variables) and
therefore cannot be bound. TefR represents the syntax of processes, which allows
us to communicate terms containing processes (i.e, higher-order terms). Although it
has been written jusP in previous work (e.g., [7, 9]) and in the introduction, we here
put the quotation mark to clarify the distinction between communicated and running

3 This was previously not possible and therefore is yet another technical contribution of the
present work. See footnote 4 in the next section for details.

processe$.Term ‘M represents the syntax of terms themselves. It is necessary for the
decomposition operation explained below.

Simultaneously, we define a subset of terms as values, i.e., results of computation:

Vie=al f['P'M]|fV,....,V)

Meta-variabled/, W range over values. We writQuo for the set of values of the form
‘Por‘M.

The set of processes is defined by:

P == 0 (nil) | run(M) (execution)

| M(x).P (input) | M(N).P (output)
| 1P (replication) | wva.P (restriction)
|

(P|Q) (parallel composition)
if M = N then P else Q (conditional)
| match M asxin P (decomposition)

P, Q, R range over processes. Their informal semantics is as follows. Proaksss
nothing. Processun (M) executes quoted processes (i‘€?). Parallel composition
P|Q represents concurrent execution Bfand (). Replication! P executes as many
copies of P as necessary in parallel. Restriction. P creates a new nameand then
becomesP. Conditionalif M = N then P else Q compares the values éff and N
(up to a-equivalence, because they may contain processes), and executesd aither
Q accordingly. InputM (z).P receives a value and outpf (N).P sends the value
of N on channelM, before becomindg®. Processnatch M as x in P decomposes the
value of M (which should be eithetP or ‘N), bindsz to the decomposed elements,
and execute®. Formal semantics of processes will be given in the next subsection.

As usual, we identify processes (and terms containing processesygotoversion.
We write fn(M) andfn(P) for the set of free names that appeariihand P, respec-
tively. We often omit trailing).

Contexts and context closurBecause we have terms, values and processes in our lan-
guage, we correspondingly define term contexts, value contexts and process contexts.
They have multiple holes (indexed by positive integer3, . . .) for values.

Ciu=a|Cy| C(Cy,...,Ch)
Cpu=[ilalf1Cp| Ce| f(C. ..)
Cp = 0] run(Cy) | Ce(2).Cp | Co(Cr).Cp | 1Cy | va.Cy | (Cy|Cy) |
if Cy = Cy then Cp else Cp | match Cy as x in Cy,
We write C' for any of the contexts above, abd(C') for the set of names bound @i.

As usual, contexts (unlike processes)@oeidentified bya-conversion in general, e.g.,
vm.a{[]1).0 # vn.a([]1).0 sobn(vm.a([]1).0) = {m} # {n} = bn(vn.a([]1).0).

4 This distinction permits a more convenient up-to context technique (clause 6 in Definition 3)
when the observer spawns new processes synthesized from its knowledge, because (unlike in
traditional higher-orderr-calculus [7]) the execution of a process now requires an internal
transition stepun(‘P) = P. This was not the case in previous work [9] on environmental
bisimulation for higher-orderr-calculus (with a limited version of up-to context [8, Defini-
tion E.1]), which often forced one to construct a significantly largethan necessary in their
bisimulation proof.

Since we are interested in behavioural equivalence of processes under contexts, we
define context closure operations as follows. Eebe a (binary) relation on closed
values. (As is often the caseincalculi [11], “closed” in this paper means the lack of
freevariablesonly. Freenamesare still possible.) Relatioéi* on closed terms is:

{(GV], C[W]) | VEW, bn(Cy) Nin(V, W) =1n(C) =0 }
We sometimes (ab)ug# as a relation on closed processes, in which case it denotes:
{(Cp[V],CWT]) | VEW, bn(Cp) Nfn(V, W) =1n(Cp) =0}
In the definitions abovefn(C;) and fn(C),) are required to be empty so that con-
text cannot “guess” secret names just by chance. These conditions cofulChen
fn(V, W) = 0 andfn(C,) N fn(V, W) = 0, instead ofn(C;) = # andfn(C,) = 0, but
we preferred the latter for the sake of simplicity. This choice dassestrict observa-
tions made by contexts: one can put arbitrary free names into the holes of the contexts
by including them ir€ whenever necessary. Note also that contexts can create as many
fresh names as needed for observations, bedat{6g) andbn(C,,) arenotrequired to
be empty, though they should again be distinct from other free names as usual.

As already stated, our calculus is parametrized by the semantics of terms. To for-
malize our assumptions on these semantics, we digfsterdercontexts, i.e., contexts
with no quotation (and no names).

Dt = Dv ‘ Dt(Dt, .. .,Dt) D»U = HZ | f | f(Dv, .. .,DU)

By using first-order contexts, we define another kind of context cloStas follows.
Let £ be a relation on closed values. Then, relatiois defined to be:

{ (eval(Dy[V)), eval(D[W])) | VEW }
The functioneval will be defined in the next subsection. Intuitively, is the set of
(pairs of) values that can be computed fréronly at the first order, i.e., without using
quotation or processes. Note that D;) = fn(D;) = 0 by definition.

2.2 Semantics

Semantics of termsWe require that the meaning of terms is formally defined by a
rewriting system [3] (cf. [4, Section 5], though their formulation is slighly different from
ours) on closed terms, and that the system is confluent and strongly normalizing for
ground terms. An example representing asymmetric cryptography is given in Section 6.
Readers are referred to a standard textbook [3] for basic definitions in term rewriting.

In the system, we also assume tuples (and projection operations for them) and con-
stant (i.e., nullary function) symbolsame, fun, ... (and equality tests on them) to
represent the syntax of processes. Recall that (function and) constant symbols are dif-
ferent from names.

The partial functioneval returns the value of a given term. It is undefined if the
normal form of the term does not belong to the set of values defined in the previous
subsection. For exampleyal(#;(a,b)) = a andeval(#2(c)) is undefined.

Finally, we require thad/ (€)* N implies eval(M)(£)* eval(N). This requirement
is critical (and sufficient) throughout our developments. It means thavaheesof
(pairs of) terms synthesized fragncan be synthesized frofitself. That is,eval does
not introduce any new names or higher-order values. Recallttista closure (and
evaluation) under nameless and first-order contexts only.

Semantics of processe¥Ve define the semantics of processes by a labeled transition
system. The labels have three forms:a(V'), andvé.a(V), representing the silent
action, an input action, and an output action, respectively. Metavaraldages over
labels.bn(«) is defined adn(vé.a(V)) = {¢} andbn(r) = bn(a(V)) = 0. The
transitions are defined by the rules below, with symmetric rules (Par-R) and (Tau-R)
omitted. We write= for the reflexive and transitive closure 6f.

eval(M) = a eval(M) = a

(In) =
M(z).P 2 v/ P M(N).P HevalN)),
P %P obn(a)nfn(Q) =

PlQ = P'|Q

7 a(V) / 7 _

P Q — Q : {,b} Nfn(Q) =0 (Tau-L)
P|Q = vb.(P'1Q")

P|I'P % Q P P adbn(a)Ufn(a)

Re
P& Q (Rep) va.P % va.P’

(Out)

(Par L)

p vb.a(V)

(Scope)

p V) o cta cef(V)\{b} (Open) eval(M) =P (Run)

Ve P vb,c.a(V) P run(M) = P
eval(M) = eval(N) (fTrue) eval(M) # eval(N)
if M = N then P else @ = P if M = N then Pelse @ = Q
eval M) =V V €Quo n¢fn(V,P)
match M as xz in P = vn. {"=(V)/ A p

(IfFalse)

(Match)

Most of the rules are straightforward adaptation of standard labelled transition in the
m-calculus [11]. As usual in untyped small-step operational semantics, transition gets
stuck if the assumptions are not satisfied, e.gepifl(M) is not a name in rules (In)

and (Out). In rule (Match), the operatefify,, takes a quoted process or a quoted term
and decomposes it into a tuple. (The namis used for substituting a bound name or a
bound variable, if there is any, in the reified process.) Formally, it is defined as:

reify, (0) = (zo70) reify, (run(M)) = (&%8,°M)
reify, ((M(2).P)) = (38, M, "/} P) reify, (‘(Mi(Mz).P)) = (out, ‘M, M, ‘P)
reify, (1P) = (@B, 'P) reify, (ve.P) = (5o, 1, {"/c}P)

(
(
(
reify, (‘(P1|P2)) = (par, P1, ' P»)

reify,, (‘“if My = My then Py else Pp) = (cond, ‘M, ‘M, Py, ‘P,)

reify,, (‘match M as z in P) = (mtch, ‘M, n, {"/+} P)

reify,, (‘a) = (name, a) reify,, (‘f) = (fun, f)
reify,,(“P) = (pquo, ‘P) reify,,(“M) = (tquo, ‘M)
Teifyn(‘(M(Mh . ,Ml))) = (@, 4]\47 ‘Ml, ey ‘Ml)

reifyn(F(V,-.., V) = (6B, (Vi ..., V)

Structural equivalenceDefine evaluation contexts by ::= [| (C|P) | (P|C) |
ve.C. Structural equivalence is the smallest equivalence relation on processes that is
closed under evaluation contexts, with:
PEP|O Pl‘(PQ‘Pg)E(P1|P2)|P3 P1|P25P2|P1 'PEP“P
va.0=0 va.vb.P = vb.va.P Py|(va.Py) = va.(Py|P) (if a & fn(Py))

The next lemma is useful for proving the soundness of some up-to techniques.
Lemma 1 (reduction respects structural equivalence).

1. P=QandP < P implyQ = @ andP' = @’
2. P=QandQ = Q' implyP = P’ andP’ = Q'.

Proof. By induction on the derivation aP = Q.

3 Environmental bisimulation

As outlined in the introduction, an environmental relation is a set of elements of the
form (€, P,Q), whereP, @ are closed processes afids a binary relation on closed
values. Intuitively,P and() are the tested processes &@hi$ the environment, i.e., the
knowledge of the observer. We wrifeX:Q for (€, P, Q) € X.

Definition 1 (environmental bisimulation). Environmental relationt’ is an environ-
mental bisimulation iPXsQ implies:

1. P 5 P impliesQ = Q' and P’ X Q'

2. P XY, prwith aéb and V(€)W impliesQ =2~ @ and P' X Q'

3. P Y2M0 prwith aéb and @ ¢ fn(#1(E)), implies3d ¢ fn(#:(E)). Q =

AW and P' Xeug v, @

the converse of (1-3) af

VIiEW, andVaEWs imply Vi = Vo <= W =W,

“(PHEY(Q) impliesP|P' X:Q|Q’

PXey((ap)y@ foranya ¢ fn(P, #1(£)) andb & fn(Q, #2(£))

VEW implies:

(@) V =aimpliesW = b (i.e., ifV is a name, thedV is also a name)
(b) V = f impliesW = f

() V=7f(V,...,V)) impliesW = g(Wy,...,W,,)

(d) Ve QllO |mp||eSE|b g fn(gv P, Q) PXEU{(Teifyb(V),reifyb(W))}Q
9. the converse of 8 oW

© NoaM

Modulo symmetry, Definition 1 has 7 clauses. Clause 1 is the usual ondfansitions.
Clause 2 is the input case. The channel nameasidb are related by the observer’s
knowledget. The input value§’ andW are synthesized froi, as discussed in the in-
troduction. Clause 3 is the output case. Agaiandb are related by . The environment

is extended with the output values, again as discussed in the introduction. Clause 5 ac-
counts for conditional context$ [|; = []2 then P else Q. Clause 6 allows the observer

to run processes from the environment at any time. Clause 7 allows creation of fresh
names by the observer. Clause 8 accounts for decomposition, with 8a—8c for contexts
of the formmatch ‘[|; as x in P (which analyze the shape of the related values) and 8d
for match [J1 as x in P.

Environmental bisimilarity~ is the union of all environmental bisimulations, which
exists because the union of all environmental bisimulations is an environmental bisim-
ulation (all the conditions above are monotoneX¥n Therefore P ~¢ Q if PX:Q for
some environmental bisimulatioki. The most important case is whén= {(a,a) |
a € fn(P,Q)}. We write P ~ @ for P ~¢ Q in this case. It asserts the equivalence
between two processes when the observer knows all of their free names.

4 Up-to context technique

Up-to techniques are enhancements of the bisimulation proof method (see, e.g., [10]).
“Bisimulations up-to” have weaker conditions than the original bisimulation clauses,
and are therefore easier to use, but yet are included in the bisimilarity (provided that
they are sound). We here present one of the most useful up-to techniques for our bisim-
ulation.

We first define context closure for environmental bisimulations.

Definition 2. For an environmental relatiort’, we WritePXg(*)Q if P =ve.(Po|Pr)
andQ = vd.(Qo|Q1) wherePyXe Qo and Py (£')*Q1, and if
€ C LV, W) | VIEYW, fn(V)n{eh=fa(W)n{d} =0}

Intuitively, it is an extension of context closure for terms, where the observer’s processes
Py, Q; are running in parallel with the tested procesggsQ,, and fresh names d
have been generated but not exported yet.

Now we define the up-to technique. Essentially, this definition is obtained by re-
placingX with X*) in each clause of Definition 1.

Definition 3 (environmental bisimulation up-to context). Environmental relationt
is an environmental bisimulation up-to conteitP X Q implies:

1. P L P'impliesQ = Q' and P’ X"/
2. P Y prwith aéb and vV (€)W, impliesQ == ¢/ and P’ X Q

3. P Y prwith aéb and @ ¢ fn(#:(E)), implies3d & fn(#2(€)). Q =
L @ and P Ay, Q)

4. the converse of (1-3) af

5. ViEW and Vo WL imply V) =V, <— Wy = W,y

6. {(P)E(Q") impliesP|P' XM Q|

7. PXSU{(a,b)}Q for anya € fn(P7 #1(5)) andb ¢ fn(Q, #2(8))

8. VEW implies:

(@) V =aimpliesW = b (i.e., ifV is a name, thedV is also a name)
(b) V = fimpliesW = f
() V=7f(V,...,V)) impliesW = g(Wy,...,W,,)
il (+)
(d) V € Quo implies3b ¢ fn(&, P, Q). PXSU{(reifyb(V),reifyb(W))}Q
9. the converse of 8 oW

Environmental bisimulations up-to context require weaker conditions than environ-
mental bisimulations. (Thus an environmental bisimulation is always an environmental
bisimulation up-to context.) Specifically, in clauses 1 to 3, the processes after transi-
tions are required to be bisimilar only “up to context,” i.e., modulo context closure.
Similarly, in clauses 6 and 8d, the resulting processes are required to be bisimilar only
modulo the context. Note that clause 6 is not a tautology because it allows to extract

5 In fact, this is also up-to environment and up-to structural equivalence because of th&use of
and= in Definition 2.

(and execute) the quoted processéandQ’, while the context closuré,’g(*) does not
(see Definition 2).

Soundness of the up-to technique is guaranteed by the fact that an environmental
relation satisfying all the conditions above is a subset of

Theorem 1 (soundness of environmental bisimulation up-to contextl.et) be the

environmental bisimilarity up-to context. Thah= {(&, P,Q) | Py‘f:*)Q} is an envi-
ronmental bisimulation.

Proof. By checking each clause of environmental bisimulation agalhsThe non-
trivial cases are clauses 1, 2 and 3, which follow from the lemmas below (and their
symmetric versions).

Lemma 2 (input transition). Let P;£*Q, anda&b. Suppose thaf respects equality
of names on the left hand side, i.e., for anyhere exists somiesuch that, for anyvy,
aEW; impliesW; = b. If P; =), P/, then for anyiV, there exists som@/ such that

Q1 2™, Q1 with PJ(£ U {(V,W)})*Q}.

Proof. By induction on the derivation aP; ﬂ P.

Lemma 3 (output transition). Let P,E*Q; and a&b. Supposef respects equality
of names on the left hand side (see above for definitionfz, IF2>*Y. P! with
¢ & fn(#,(€)), then there exist som@’, W and d with V(£ U {(¢,d)})*W such

thatQ; ““ M), o1 with d ¢ fn(#(€)) and PL(€ U {(&, d)})* Q).

vé.a(

Proof. By induction on the derivation aP; vealv), P.

Note that, in the two lemmas above, no other assumption is necesséry for

Lemma 4 (r transition). Supposé; (£)*Q1 and Py Ve Qq for an environmental bisim-
ulation) up-to context. IfP, = P/, then there exists songg, such thatQ; — @/

with Py| P{ V" Qo[Q).
Proof. By induction on the derivation aP, — P;, using Lemma 2 and 3.

Full details of the above proofs are available online [12].

While the up-to technique is useful for a bisimulation proof in general, we also use
Theorem 1 to prove the soundness of the environmental bisimulation itself in the next
section.

5 Soundness and completeness of environmental bisimilarity

We first define our criterion of observational equivalence, i.e., reduction-closed barbed
equivalence. In this definition, meta-variahleranges over names and co-names (
etc.),P |, andP |; mean thatP can make an input and output transition @rand

P |, is an abbreviation of’ = | ,,.

Definition 4 (reduction-closed barbed equivalenceReduction-closed barbed equiv-
alence is the largest binary relation on closed processes such thats @ implies:

1. P 5 P impliesQ = Q' and P’ ~ @’
2. P |, implies@ |,

3. the converse of 1 and 2 @ép

4. P|R =~ Q|R for all processes?

Theorem 2 (soundness and completeness of environmental bisimulatiorif).P ~
Q, thenP ~ @ and vice versa.

Proof. For soundness (the forward implication), we check each clause in Definition 4
against~. The non-trivial case is clause 4. Suppd3e~ Q, i.e., P ~¢ Q for &€ =
{(a,a) | a € In(P,Q)}. LetE = {(b,d) | b € fn(R)}. By clause 7 of environmental
bisimulation,P ~¢y g Q. SinceR(€ U £')* R, we haveP|R N(gﬂg, Q|R by Defini-

tion 2. Since~ is an environmental bisimulation up-to conte®,R ~guer Q|R by
Theorem 1. Henc®|R ~ Q|R. For completeness (the backward implication), we take
an environmental relatio/t’ that subsumes reduction-closed barbed equivalence, and
prove it to be an environmental bisimulation. Again, see the online material [12] for
details.

Note that reduction-closed barbeahgruencés uninteresting in our calculus, since
it almost coincides witlv-equivalence (modulo possible differences between computed
applications) because of quotation and decomposition, i.e., contexisdiké ‘[|; as x
in P. (It is not interesting either to consider only contexts with no decomposition, be-
cause such contexts ammrestricted, missing the whole point of our work.) In addition,
it is anyway easy to (state and) prove the congruenck ahd(just by considering
the equivalence ai(‘P) anda(‘Q) instead, because an evaluation context can receive
‘P or ‘@ from ¢ and use them in arbitrary manners.

6 Examples

In the examples below, we use the following rewriting rules for terms, representing
asymmetric cryptography.

Pk(V) = pk(V) sk<v> sk(V)

fw, pk(7)) — f(V PE(W)) . sk’(A)) = [V, sk(W))

FUFV, pR(W)), sk(W)) — V f(f LV, sk(W)), pk(W)) -V
Functionspk and sk compute public and secret keys, respectively, from its argument.
Functionsf and f~! denote encryption (or verification) and decryption (or signing).
See e.g. [13] for more information on public-key encryption and digital signature.

The point of the examples is to show how to model and reason about higher-order
communication systems involving (public-key) encryption by using our approach. It
may also be possible to implement first-order variants of the systems, but they do not
devalue our examples (just as the existence of first-order programs sodilély
does not devalue higher-order systems such as Gmail).

6.1 Software distribution with digital signature

The following systemP consists of a server and clients. The server distributes a pro-
gram R, which is then executed by the clients. For comparison, another sygtem
defined where the clients “somehow” kndwin the first place.

P = vk.(Servery|Clienty,) Q = vk.(Servery|Client},)
Clienty, = la(z).run(f(z, pk(k))) Client), = la(z).ve.(e{f(z, pk(k)))|c(y).R)
Servery, = la(pk(k))|'a(f~*(‘R, sk(k)))

We assumé;, ¢ ¢ fn(R). Clienty, receives a quoted proceBssigned under the secret
key Qk(k;), and then verifies and executes it. By contra®ent), receives the same
process but discards it, and then executeg&quivalence of the two systenisand@
means that the clients can only execittenot any Trojan horses. To prove this, we give
an environmental relatio&’ such thatPXg(*)Q for& = {(b,b) | b e fn(P,Q)}.

Proposition 1. TheX below is an environmental bisimulation up-to context.

X ={(&, Py, Qo) | Po = Servery|Clienty:|Py| ... |P,
Qo = Servery|Clienty,|Q1] .. .|Q,
>0,
Py = run(f(Vi, ph(k'))) fori > 1,
Q: = ve.(e(F(Wi, ph(K"))) e(y).R) with ¢ ¢ fa(W;), for i > 1,
V(&) W,
Eo=E1U&,
& = {(ph(K"), pE(K")), (1 (R, sk()), 1 (R, sh(k")},
E 2 {(b,b) | b efn(R,a)},
&, is afinite bijection on names

k' ¢ fn(#1(E2)) andk” ¢ fn(#2(E2))}

Proof. By checking the conditions of environmental bisimulation up-to context, which
follow from the construction ofY. Note, in particular, that we doeot have to put (any
number of)R in parallel with Py and@y, thanks to the up-to context technique.

First, observe thaP X' Q by the definition oft’ (with I = 0) and by Definition 2
(context closure for environmental bisimulations). Hefte: (Q by Theorem 1 (sound-
ness of environmental bisimulation up-to contextyifs an environmental bisimulation
up-to context.

To checkX’ against the conditions of environmental bisimulation up-to context
(Definition 3), consider first the transitions frofy (Conditions 1, 2 and 3).

The output ofpk(k’) to a by Servery, on the left hand side can be matched by
that of pk (k") to a by Servery» on the right hand side. In these transitions, neither the
knowledge increases, nor the processes change (up-to structural equivalence). Ditto for
the output off ~1(‘R, sk(k')) andf 1 (‘R, sk(k")).

The input ofV; from a by Client;, spawns a new?;, which can be matched by that
of W; from a by Client},,, spawning a new);. Ditto for the internal communication
from Servery to Clienty (and fromServer to Client).,) overa.

The internal transition by the process execution(f(V;, pk(k’))) in P, succeeds

only if the verification succeeds, i.e., onhiif is of the formf—1(‘ R/, sAk(k’)) for some

R’. Sincek’ & fn(#1(&2)), this is possible only it; = f—\l(‘R, Qc(k’)), in which case
W; = P(‘R, sAk(k”)). ThenR is spawned both on the left hand side and on the right,
which is cancelled out by up-to context.

The transitions fron), (Condition 4) are similar. New processes spawned by the
context (Condition 6) are also cancelled out by up-to context. This is straightforward
because there are no quoted processes othetifiag,. Conditions 5, 8 and 9 follow
by straightforward induction on the first-order contéxt in the definition of&, (see
Section 2.1). Finally, fresh names generated by the context (Condition 7) are immedi-
ately subsumed by the sub-environmént

We therefore havé® ~ @ from the soundness of environmental bisimulation (up-to
context).
6.2 Secure mail user agent

Consider a client-server system where the user downloads (from the server) an e-malil
user agent (MUA) to send an encrypted message.

P = vky.(Servery, | Client, j,) Q = vky.(Servery, | Clienty x,)
Clicnt, g, = vrd(f(r, ph{J1))).r(v).run(31 () o) o)

Servery, = e(pk(k1)) | 'd(x).vko.vm. f=H(x, sk(k1))(Packm k,)
Packy , = (:MUAy g, m) MUAy g, = m(y).2(f(y. ph(k2))

In this exampleg andd are public channels. The client first sends a reqfiestpk (k1))
to download the MUA, and waits for a reply on chanmelThe server then sends the
MUA back to the client, with a fresh channel for accepting the message and a
fresh secret ke for encryptingy. (We are using the private channebnly for the
sake of simplicity. It could be implemented over a public network just as in the previous
example.) Finally, the client sends its messaghroughm. Secrecy of the message
x can be formalized by a standard non-interference property, i.e., that the system is
equivalent regardless of the valueaofWe here use two fresh, public nameandq for
the values ofr.

Again, to prove this equivalence, we give an environmental reIa’ticmt.PXS(*)Q
for & = {(b,b) | be n(P,Q)}.

Proposition 2. TheX in Figure 1 is an environmental bisimulation up-to context.

Proof. By checking each condition of environmental bisimulation up-to context. Again,
this is easy thanks to the constructionvfand to the up-to context technique.

As in the case of Proposition 1, we haﬁe’(é*)Q (by taking! = 0 in X}) and
thereforeP ~ @, provided thatY is an environmental bisimulation up-to context.

Let us first consider the transitions froffi-V/,, ;} P1 in X;. The output ofpk (k)
to ¢ by Servery, on the left hand side is matched by thapa{ k') to c by Server;, on
the right, with no increase of knowledge and no change of processes (up-to structural
equivalence). The input df; from d by Server;. is matched by that of’; from d by
Serveryy, just incrementing the numbénof processes ik, and Ry, respectively.

X =X UX, U~X3)
X1 = {(o, {0k 2} P AY o H Y 1 23 1) |
= Servery, | Rk, | Clientp i, ,
Ry, = vkawvm.f=1(z1, sk(k1)){(Packm ky)| - . . [Vka.vm.f= (21, sk(k1)){Packm, k),
1>0,
V(&) W,
Eo=&EU 52,
& = { (pk(k1), pk (k1)) },
& 2 {(d, d), (¢,), (p,p), (¢:9)},
&, is afinite bijection on names

1 € fn(#1(E2)) andky & fn(#2(€2))}
Xy = {(&o, {7 T/kl S N S /k1 2} P2),
(Eo ("4 iy 2} P A}y 2 0} Py),
(o, (57 iy Y Pa AL T 2V P2)
(50’{]61 /klw}Pf)a{q/p}{k W [k1.2.0}P5) |
Py = Servery, [Ry, |r(y).(run(tr () |#2(0)®)),
P3 = Servery, |Ri, |[vke.vm.(run(#1(Packm ik,))|#2(Packm, ks) (D)),

Py = Servery, | Rk, |1//€2.1/m.(M/qu,k2 \#z(mmkz)(p)),
Ps = Servery, | Ry, |vka.e(f(p, pk(k2))),
Ry, = vkawvm.f=1(21, sk(k1)){(Packm ky)| - . . [Vka.vm.f=1 (21, sk(k1)){Packm k),
>0,
V (&)W,
Eo=&EU 52,
& =A{ (pk k1) pk‘(k’{))
(F(r', pk(kD), (", pR(KY))) 3,
& 2 {(d,d),(c,c),(p,p): (q,0)}
82 is a finite bijection on names
;v ¢ fn(#1(€2)) andky, r” & fn(#2(E2))}
{(507 {0V iy 2P, A Y g 20} Pe) |
Ps = Servery, | R, ,
Ry, = vkawvm.f=1(21, sk(k1)){(Packm ky)| - . . [Vke.vm.f=1 (21, sk(k1)){Packm k),
1>0,
V (&)W,
Eo=&E1UE,,
& = { (pk(k1)), Ph(KY)),

A

(FO pR(kD), £, pR(RY))),

(f (mk(kz)) Fla, PR(k))) 3,
&isa finite bijection on names

ki, ' ky & fn(#1(E2)) andky, v ky & fn(#2(E2))}

I

Fig. 1. Environmental relation for the secure mail user agent

The possible output mm/,ké (with m” andk, fresh) by Rz, is matched by that

of Faﬁcmu’kg (with m” andksy fresh) by R, This increase of knowledge can then be
cancelled out by up-to context withn’, m”) and(k5, k5) added in&s.

The output off (', pk (k7)) (with 1’ fresh) tod by Client,, 5, is matched by that of
f(r", pk(kY)) (with " fresh) tod by Client,, ;. The results are included iti.

Consider the transitions fror{fg'v‘_/“//khg’r}Pg in X5. The input and output by
Servery, andRy are the same as in the caselgf(see above). The internal communi-

cation betweewks.vm. f~L(V;, sk(k}))(Packom 1,) (in Ry, with Vi = F(r/, pk(K})))

andr’(y).(run(#1(y))|#2(y)(p)) is matched by that betweets.vm. f ~L(W;, sk(k))
(Packm k,) (in Ryy, with Wi = f(r”, pk(k{))) andr” (y).(run(#1(y))1#2(y){(2))-
The processes then becorfleV"'/,., = .} Py and {9/, }{*''"W-""/,. - .} Ps, respec-
tively.

These processes make an internal transition by process execwitiGf; (@Cm,kQ),
becoming{*1V>"'/,.. s .} Py and{%/,}{*""W-""/,.. ; .} P,. They then make an internal
communication overn and becomg*1V"'/,.. .} Ps and {4/, }{¥ W/ s VP,
which sendf (p, ﬁ(kzé)) and f(q, ﬁ(kg’)) (with k5 andk? fresh) toc. The results are
included inX5. The other transitions are the same as in the cas{é'ldf”'/klygyr}Pg
(see above).)

The transitions fron{*1:V""'/,.. - .1 Ps in X3 are subsumed by the previous cases.
Transitions from the right hand side are symmetric. Conditions on the environments
follow again by straightforward induction on the first-order contBxin the definition
of & (Section 2.1). Again as in the case of Proposition 1, processes spawned by the
context are cancelled out by up-to context and fresh names generated by the context are
subsumed by,.

To repeat, the point of these examples is to illustrate our reasoning method for
higher-order cryptographic processes (“Gmail”), even if it is possible to define first-
order systems (hail(1)) with a similar functionality.

7 Conclusion

We defined a higher-order process calculus parametrized by general algebra (which,
for example, includes asymmetric cryptography), and developed a bisimulation proof
method for proving behavioral equivalence in this language. We gave examples involv-
ing the security of higher-order systems with public-key encryption and digital signing.
As is the case with any bisimulation technigue (or any “proof method” in general),
it is always possible in hindsight to prove the same results as ours without explicitly
using bisimulations, just by inlining (thereby duplicating) their soundness proof every-
where. In our case, doing so amounts to a brute-force proof based on the definition of
reduction-closed barbed equivalence only. We emphasize that it is way too heavy to re-
peat such a proof iaveryinstance of equivalence, so it pays to extract the proof pattern
as a separate technique like ours. As in the present work, such development gives an
essential insight—based on environments—for the (otherwise sightless) proof.

Acknowledgementsie thank the members of Kobayashi Laboratory in Tohoku Uni-
versity for their comments and helps. This work was partially supported by KAKENHI
18680003, 20240001, CASIO Science Promotion Foundation, and the Nakajima Foun-
dation.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]
(8]

El

(10]
(11]
(12]

(13]
(14]

(15]

M. Abadi and C. Fournet. Mobile values, new names, and secure communicatiBro-In
ceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 104-115, 2001.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calcufus.
formation and Computatigri48(1):1-70, 1999. Preliminary version appearerivceed-

ings of the 4th ACM Conference on Computer and Communications Seqit$6-47,
1997.

F. Baader and T. NipkowTerm Rewriting and All ThatCambridge University Press, 1999.

B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences
for security protocols. I120th Annual IEEE Symposium on Logic in Computer Science
pages 331-340, 2005.

J. Borgstbm and U. Nestmann. On bisimulations for the spi calculuftininternational
Conference on Algebraic Methodology and Software Technpladyme 2422 ot ecture
Notes in Computer Sciengeages 287—-303. Springer-Verlag, 2002.

S. Maffeis, M. Abadi, C. Fournet, and A. D. Gordon. Code-carrying authorization. In
Computer Security - ESORICS 20@8lume 5283 otecture Notes in Computer Science
pages 563-579. Springer-Verlag.

D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigm PhD thesis, University of Edinburgh, 1992.

D. Sangiorgi, N. Kobayashi, and E. Sumii. Appendices to “environmental bisimulations for
higher-order languages”.http://www.cs.unibo.it/"sangio/DOC_public/

appLICS07.pdf

D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order
languages. IMwenty-Second Annual IEEE Symposium on Logic in Computer Science
pages 293-302, 2007.

D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to” GONCUR '92
volume 630 ofLecture Notes in Computer Scienpages 32—46. Springer-Verlag, 1992.

D. Sangiorgi and D. WalkeiThe Pi Calculus — A Theory of Mobile Process€ambridge
University Press, 2001.

N. Sato and E. Sumii. Proofs for “the higher-order, call-by-value applied pi-calculus”.
http://www.kb.ecei.tohoku.ac.jp/"nsato/hoapp.pdf .

B. SchneierApplied CryptographyJohn Wiley & Sons, Inc., 1996.

E. Sumii and B. C. Pierce. A bisimulation for dynamic sealintheoretical Computer
Science375(1-3):169-192, 2007. Extended abstract appearBcoeedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languppge$61—
172, 2004.

E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursimurnal

of the ACM 54(5-26):1-43, 2007. Extended abstract appear&idneedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languaged3—74,
2005.

