
The Higher-Order, Call-by-Value Applied Pi-Calculus?

Nobuyuki Sato and Eijiro Sumii
Tohoku University

{nsato,sumii }@kb.ecei.tohoku.ac.jp

Abstract. We define a higher-order process calculus with algebraic operations
such as encryption and decryption, and develop a bisimulation proof method for
behavioral equivalence in this calculus. Such development has been notoriously
difficult because of the subtle interactions among generative names, processes
as data, and the algebraic operations. We handle them by carefully defining the
calculus and adopting Sumii et al.’s environmental bisimulation, and thereby give
(to our knowledge) the first “useful” proof method in this setting. We demonstrate
the utility of our method through examples involving both higher-order processes
and asymmetric cryptography.

1 Introduction

Higher-order communication and encryption.The combination of cryptographic op-
erations and higher-order, concurrent programs is ubiquitous in modern computer sys-
tems. For instance, software distribution systems (such as Windows Update) usually
employ some digital signature scheme to verify the authenticity of the downloaded pro-
grams before installing them. For another example, Web-based e-mail user agents (such
as Gmail) often distribute complex code (typically in HTML and JavaScript) interpreted
at the client side, where the code itself is transferred through a secure channel, as well
as the messages sent and received by the code. Guaranteeing the security of such sys-
tems is even more important than in first-order programs, because of the higher chance
of “accidentally” executing arbitrary, malicious code.

Process calculi such as CCS andπ-calculus have been useful for the verification of
concurrent systems in general. In particular, spi-calculus [2] and appliedπ-calculus [1]
are equipped with cryptographic operations such as encryption and decryption, and
can be used for formal reasoning about cryptographic protocols. On the other hand,
higher-orderπ-calculus [7] allows communication of processes themselves, and is able
to model systems that transfer programs.

To our knowledge, however, there has been little research1 on process calculus with
bothhigher-order communication and cryptographic operations, probably because their
combination is highly non-trivial. For instance, consider a processP = c〈Q〉 that sends
another processQ = c〈encrypt(m, k)〉 to a public communication channelc. The
processQ itself, when executed, sends messagem encrypted under a secret keyk. Now,
is it possible for an observer onc to obtainm by intercepting the communications? One
might say no, becausek is secret. Another might disagree, because the observer can
analyze the program text ofQ and extractk from it. Yet another one might argue that
such an analysis is impossible, becausem is encryptedbeforeQ is published on the

? Janury 23, 2009. Last revised on October 14, 2009. Detailed proofs are available online [12].
1 An exception is a type system for higher-order spi-calculus [6], but it does not consider general

algebra, decomposition, behavioral equivalence, nor bisimulations.

network. But what ifQ = c(x).c〈encrypt(x, k)〉 instead? How aboutQ = c(x).c
〈encrypt(m, k)〉 whenm is independent ofx?

The above gedankenexperiment leads us to our first observation that, unlike in ap-
plied π-calculus, thevaluesof function applications must be explicitly distinguished
from the function applications themselves in this setting. Thus, let us writef̂(V1, . . . , Vl)
for the values of function applicationsf(V1, . . . , Vl). In the last example, for instance,k
(andm) can be extracted ifQ = c(x).c〈encrypt(m, k)〉, but they cannot ifQ = c(x).c
〈 ̂encrypt(m, k)〉

Accordingly, we need to provide a construct to decompose the syntax of communi-
cated terms (but not values) including communicated processes (but notrunning pro-
cesses), so that an observer can analyze them. For this purpose we introduce operations
of the formmatch M as x in R, which decompose the syntax (not value) ofM and
bind x to the tuple of the decomposed elements. The point is that, ifM is already a
value, like ̂encrypt(m, k), then it cannot be decomposed any further.

To make our theory realistic, we require that first-order terms are evaluated be-
fore they are sent to the network. Our calculus is thus “call-by-value.” As usual, how-
ever, call-by-name computation can easily be encoded by means of thunks (which are
straightforward to implement as processes).

Behavioural equivalence and bisimulations.The distinction between already computed
values and yet-to-be-computed terms is crucial but not sufficient for our development.
Specifically, we need a method for proving properties of processes. Traditionally,be-
havioral equivalenceandbisimulationshave been known to be useful for specifying and
proving many interesting properties of concurrent systems, including security proper-
ties such as secrecy and authenticity.

However, traditional bisimulation proof methods forπ-calculi are not of help here.
Context bisimulation [7] is not useful by itself as a practical proof technique, because
of the universal quantification over all receiver (and sender) contexts. Normal bisim-
ulation [7] essentially encodes higher-order processes into the first order by passing
pointers only, and therefore would not be sound under the presence of decomposition
operation like ours.2 Environment-sensitive bisimulations in spi-calculus (see [5] for
example) are not applicable in our higher-order language, because the environment it-
self would include processes.

For these reasons, we adapt more recent work onenvironmental bisimulation[9, 14,
15] and extend it to account for the decomposition operation as well as the algebraic op-
erations (which generalize various cryptographic operations, as in appliedπ-calculus).
Although environmental bisimulations have previously been applied toλ-calculus with
encryption [14] and to higher-orderπ-calculus [9], our extension is far from trivial: to
formalize decomposition, we need to introduce quotations (as in Lisp) for terms as well

2 In general, fully abstract (i.e., equivalence-preserving) encoding of our calculus into another
would be extremely non-trivial. This includes an “obvious” translation from higher-order pro-
cesses into the first order, where one communicates first-order termsrepresentingthe syntax of
processes and runs a process tointerpret them. To prove it correct, one must anyway define a
higher-order calculus and then prove the translation to be fully abstract, which is more indirect
and requires more work than the present approach.

as for processes, which requires careful definition of several kinds of contexts and con-
text closure operations. Specification of the algebra also requires careful generalization
of the conditions on terms in previous environmental bisimulations.

Our contributions in the present paper are thus twofold: the definition of the calculus
itself, and the environmental bisimulation proof method for this calculus.

Overview of the environmental bisimulation.Our environmental bisimulationX is a
set of triples of the form(E , P, Q), whereP andQ are the tested processes andE is
the environment, i.e., a binary relation on terms, representing the observer’s knowledge.
The membership(E , P, Q) ∈ X , which is often writtenPXEQ for readability, means
that processesP andQ are bisimilar under environmentE . There are several conditions
onX , each corresponding to a change of the state of the observer and the processes.
For instance, as in traditional (weak) bisimulations, if eitherP or Q makes an internal
transition, then the other should make0 or more internal transitions, and the resulting
processes should also be bisimilar (under the same environmentE , because the ob-
server’s state has not changed). For output actions, ifP sends a valueV and becomes
P ′, thenQ should also send some valueW and becomeQ′, with the requirement that
P ′ andQ′ are bisimilar under the environmentE ∪ {(V, W)}, which is extended with
the values the observer has learned.

For input, we must consider any pair of values that can be synthesized by the at-
tacker from its knowledgeE . We use(Ê)∗ for the set of such value pairs, whereÊ is the
set of pairs of values that can be obtained fromE by first-order computation, and(Ê)∗

is the context closure of̂E . Roughly, we define:

Ê = { (eval(D[Ṽ]), eval(D[W̃])) | Ṽ EW̃ , fn(D) = ∅, D is first-order}
E∗ = { (C[Ṽ], C[W̃]) | Ṽ EW̃ , fn(C) = ∅ }

(Here,Ṽ denotes a sequenceV1, . . . , Vl, andṼ EW̃ denotesViEWi for all i. We use
similar notations for various kinds of meta-variables throughout the paper.) Recall that,
unlike in previous environmental bisimulations with “built-in” conditions for some par-
ticular algebra (e.g., [14]), we need to consider general algebras.Ê accounts for the
synthesis of knowledge within such algebras.

For instance, letdecrypt(encrypt(x, y), y) = x. If the ciphertexts(encrypt(V, k),
encrypt(W,k)) and the key pair(k, k) belong toE , then the plaintexts(V, W) belong
to Ê . This is because the first-order observer contextD = decrypt([]1, []2) can compute
them by putting the ciphertexts into its first hole[]1 and the key to[]2, like:

D[encrypt(V, k), k] = decrypt(encrypt(V, k), k) = V
D[encrypt(W,k), k] = decrypt(encrypt(W,k), k) = W

Thus, the bisimulation condition for input would be: for anyV (Ê)∗W , if P receives
V and becomesP ′, thenQ receivesW and becomesQ′, with P ′ andQ′ bisimilar again
under environmentE .

Furthermore, the observer can spawn arbitrary new processes from its knowledge
E . Thus, we also requireP |P ′XEQ|Q′ for anyPXEQ andP ′ÊQ′. This may seem to
be a heavy condition because of the universal quantification over processesP ′ andQ′,
drawn from Ê . However, we in fact work out an up-to context technique, where the
requirement is weakened toP |P ′X (∗)

E Q|Q′ for a certain form of context closureX (∗)
E

for X . This essentially removes the universal quantification and significantly lightens
the burden of a bisimulation proof in higher-order process calculus.3 (Another subtle
but important trick here is that, unlike for input,Ê suffices in place of(Ê)∗. Informally,
this is because processes in(Ê)∗ can only make the same observations as those inÊ .)

Finally, for decomposition of processes and terms, we requirePXE∪{(M ′,N ′)}Q for

any PXEQ andM ÊN , whereM ′ andN ′ are the result of decomposingM andN ,
respectively. (Obviously, thiŝE does not have to be(Ê)∗, because there is no point in
synthesizing a term and then decomposing it.) Again, this condition may seem heavy
because, by repeatedly applying it, we need to transitively include all the subterms of
M andN . As in the previous case, however, most of them can be removed by the up-to
context technique.

Overview of the paper.The rest of this paper is structured as follows. Section 2 for-
mally presents the syntax and labeled transition semantics of our calculus, which is
(formally) parametrized by the semantics of terms. Sections 3 and 4 define the environ-
mental bisimulation and the up-to context technique. Section 5 proves their soundness
and completeness with respect to reduction-closed barbed equivalence. Section 6 gives
examples and Section 7 concludes.

Throughout the paper, readers are assumed to be familiar with standard technical
developments in theπ-calculus [11] and be comfortable with basic mathematical no-
tions such as inductive (and coninductive) definitions of sets (and relations).

2 The calculus

2.1 Syntax

As in appliedπ-calculus [1], our language consists of terms and processes. Terms rep-
resent channel names and communicated data. Processes represent running programs.
The set of terms is defined as follows:

M ::= x (variable) | a (name) | f (function)
| ‘P (quoted process) | ‘M (quoted term)
| M(M1, . . . ,Ml) (uncomputed application)
| f̂(V1, . . . , Vl) (computed application)

Meta-variablesM, N range over terms,a, b, c, d, k, n over names,x, y over variables
andf, g over functions. TermM(M1, . . . , Ml) represents function application that is
yet to be computed. Conversely,̂f(V1, . . . , Vl) represents function application that is
already computed, where functionf of arity l has been applied to valuesV1, . . . , Vl.
Note that function symbolsf are first-class but different from names (or variables) and
therefore cannot be bound. Term‘P represents the syntax of processes, which allows
us to communicate terms containing processes (i.e, higher-order terms). Although it
has been written justP in previous work (e.g., [7, 9]) and in the introduction, we here
put the quotation mark to clarify the distinction between communicated and running

3 This was previously not possible and therefore is yet another technical contribution of the
present work. See footnote 4 in the next section for details.

processes.4 Term ‘M represents the syntax of terms themselves. It is necessary for the
decomposition operation explained below.

Simultaneously, we define a subset of terms as values, i.e., results of computation:

V ::= a | f | ‘P | ‘M | f̂(V1, . . . , Vl)
Meta-variablesV,W range over values. We writeQuo for the set of values of the form
‘P or ‘M .

The set of processes is defined by:
P ::= 0 (nil) | run(M) (execution)

| M(x).P (input) | M〈N〉.P (output)
| !P (replication) | νa.P (restriction)
| (P |Q) (parallel composition)
| if M = N then P else Q (conditional)
| match M as x in P (decomposition)

P, Q,R range over processes. Their informal semantics is as follows. Process0 does
nothing. Processrun(M) executes quoted processes (i.e.,‘P). Parallel composition
P |Q represents concurrent execution ofP andQ. Replication!P executes as many
copies ofP as necessary in parallel. Restrictionνa.P creates a new namea and then
becomesP . Conditionalif M = N then P else Q compares the values ofM andN
(up to α-equivalence, because they may contain processes), and executes eitherP or
Q accordingly. InputM(x).P receives a value and outputM〈N〉.P sends the value
of N on channelM , before becomingP . Processmatch M as x in P decomposes the
value ofM (which should be either‘P or ‘N), bindsx to the decomposed elements,
and executesP . Formal semantics of processes will be given in the next subsection.

As usual, we identify processes (and terms containing processes) up toα-conversion.
We write fn(M) andfn(P) for the set of free names that appear inM andP , respec-
tively. We often omit trailing0.

Contexts and context closure.Because we have terms, values and processes in our lan-
guage, we correspondingly define term contexts, value contexts and process contexts.
They have multiple holes (indexed by positive integers1, 2, . . .) for values.

Ct ::= x | Cv | Ct(Ct, . . . , Ct)

Cv ::= []i | a | f | ‘Cp | ‘Ct | f̂(Cv, . . . , Cv)
Cp ::= 0 | run(Ct) | Ct(x).Cp | Ct〈Ct〉.Cp | !Cp | νa.Cp | (Cp|Cp) |

if Ct = Ct then Cp else Cp | match Ct as x in Cp

We writeC for any of the contexts above, andbn(C) for the set of names bound inC.
As usual, contexts (unlike processes) arenot identified byα-conversion in general, e.g.,
νm.a〈[]1〉.0 6= νn.a〈[]1〉.0 sobn(νm.a〈[]1〉.0) = {m} 6= {n} = bn(νn.a〈[]1〉.0).

4 This distinction permits a more convenient up-to context technique (clause 6 in Definition 3)
when the observer spawns new processes synthesized from its knowledge, because (unlike in
traditional higher-orderπ-calculus [7]) the execution of a process now requires an internal
transition steprun(‘P)

τ−→ P . This was not the case in previous work [9] on environmental
bisimulation for higher-orderπ-calculus (with a limited version of up-to context [8, Defini-
tion E.1]), which often forced one to construct a significantly largerX than necessary in their
bisimulation proof.

Since we are interested in behavioural equivalence of processes under contexts, we
define context closure operations as follows. LetE be a (binary) relation on closed
values. (As is often the case inπ-calculi [11], “closed” in this paper means the lack of
freevariablesonly. Freenamesare still possible.) RelationE∗ on closed terms is:

{ (Ct[Ṽ], Ct[W̃]) | Ṽ EW̃ , bn(Ct) ∩ fn(Ṽ , W̃) = fn(Ct) = ∅ }
We sometimes (ab)useE∗ as a relation on closed processes, in which case it denotes:

{ (Cp[Ṽ], Cp[W̃]) | Ṽ EW̃ , bn(Cp) ∩ fn(Ṽ , W̃) = fn(Cp) = ∅ }
In the definitions above,fn(Ct) and fn(Cp) are required to be empty so that con-
text cannot “guess” secret names just by chance. These conditions could befn(Ct) ∩
fn(Ṽ , W̃) = ∅ andfn(Cp)∩ fn(Ṽ , W̃) = ∅, instead offn(Ct) = ∅ andfn(Cp) = ∅, but
we preferred the latter for the sake of simplicity. This choice doesnot restrict observa-
tions made by contexts: one can put arbitrary free names into the holes of the contexts
by including them inE whenever necessary. Note also that contexts can create as many
fresh names as needed for observations, becausebn(Ct) andbn(Cp) arenot required to
be empty, though they should again be distinct from other free names as usual.

As already stated, our calculus is parametrized by the semantics of terms. To for-
malize our assumptions on these semantics, we definefirst-ordercontexts, i.e., contexts
with no quotation (and no names).

Dt ::= Dv | Dt(Dt, . . . , Dt) Dv ::= []i | f | f̂(Dv, . . . , Dv)

By using first-order contexts, we define another kind of context closureÊ as follows.
Let E be a relation on closed values. Then, relationÊ is defined to be:

{ (eval(Dt[Ṽ]), eval(Dt[W̃])) | Ṽ EW̃ }
The functioneval will be defined in the next subsection. Intuitively,Ê is the set of
(pairs of) values that can be computed fromE only at the first order, i.e., without using
quotation or processes. Note thatbn(Dt) = fn(Dt) = ∅ by definition.

2.2 Semantics

Semantics of terms.We require that the meaning of terms is formally defined by a
rewriting system [3] (cf. [4, Section 5], though their formulation is slighly different from
ours) on closed terms, and that the system is confluent and strongly normalizing for
ground terms. An example representing asymmetric cryptography is given in Section 6.
Readers are referred to a standard textbook [3] for basic definitions in term rewriting.

In the system, we also assume tuples (and projection operations for them) and con-
stant (i.e., nullary function) symbolsname, fun, . . . (and equality tests on them) to
represent the syntax of processes. Recall that (function and) constant symbols are dif-
ferent from names.

The partial functioneval returns the value of a given term. It is undefined if the
normal form of the term does not belong to the set of values defined in the previous
subsection. For example,eval(#1 (a, b)) = a andeval(#2 (c)) is undefined.

Finally, we require thatM(Ê)∗N implieseval(M)(Ê)∗eval(N). This requirement
is critical (and sufficient) throughout our developments. It means that thevaluesof
(pairs of) terms synthesized from̂E can be synthesized from̂E itself. That is,eval does
not introduce any new names or higher-order values. Recall thatÊ is a closure (and
evaluation) under nameless and first-order contexts only.

Semantics of processes.We define the semantics of processes by a labeled transition
system. The labels have three forms:τ , a(V), andνc̃.a〈V 〉, representing the silent
action, an input action, and an output action, respectively. Metavariableα ranges over
labels.bn(α) is defined asbn(νc̃.a〈V 〉) = {c̃} and bn(τ) = bn(a(V)) = ∅. The
transitions are defined by the rules below, with symmetric rules (Par-R) and (Tau-R)
omitted. We write⇒ for the reflexive and transitive closure of

τ−→.

eval(M) = a

M(x).P
a(V)−−−→ {V/x}P

(In)
eval(M) = a

M〈N〉.P a〈eval(N)〉−−−−−−−→ P
(Out)

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α−→ P ′|Q (Par-L)

P
νb̃.a〈V 〉−−−−−→ P ′ Q

a(V)−−−→ Q′ {b̃} ∩ fn(Q) = ∅
P |Q τ−→ νb̃.(P ′|Q′) (Tau-L)

P |!P α−→ Q

!P
α−→ Q

(Rep)
P

α−→ P ′ a 6∈ bn(α) ∪ fn(α)

νa.P
α−→ νa.P ′

(Scope)

P
νb̃.a〈V 〉−−−−−→ P ′ c 6= a c ∈ fn(V) \ {b̃}

νc.P
νb̃,c.a〈V 〉−−−−−−→ P ′

(Open)
eval(M) = ‘P

run(M)
τ−→ P

(Run)

eval(M) = eval(N)

if M = N then P else Q
τ−→ P

(IfTrue)
eval(M) 6= eval(N)

if M = N then P else Q
τ−→ Q

(IfFalse)

eval(M) = V V ∈ Quo n 6∈ fn(V, P)

match M as x in P
τ−→ νn.{reifyn(V)/x}P

(Match)

Most of the rules are straightforward adaptation of standard labelled transition in the
π-calculus [11]. As usual in untyped small-step operational semantics, transition gets
stuck if the assumptions are not satisfied, e.g., ifeval(M) is not a name in rules (In)
and (Out). In rule (Match), the operatorreifyn takes a quoted process or a quoted term
and decomposes it into a tuple. (The namen is used for substituting a bound name or a
bound variable, if there is any, in the reified process.) Formally, it is defined as:

reifyn(‘0) = (ẑero) reifyn(‘run(M)) = (dexe, ‘M)

reifyn(‘(M(x).P)) = (cin, ‘M, n, ‘{n/x}P) reifyn(‘(M1〈M2〉.P)) = (dout, ‘M1, ‘M2, ‘P)
reifyn(‘!P) = (drep, ‘P) reifyn(‘νc.P) = (dnew, n, ‘{n/c}P)
reifyn(‘(P1|P2)) = (dpar, ‘P1, ‘P2)

reifyn(‘if M1 = M2 then P1 else P2) = (ĉond, ‘M1, ‘M2, ‘P1, ‘P2)

reifyn(‘match M as x in P) = (m̂tch, ‘M, n, ‘{n/x}P)

reifyn(‘a) = (n̂ame, a) reifyn(‘f) = (dfun, f)

reifyn(“P) = (p̂quo, ‘P) reifyn(“M) = (t̂quo, ‘M)
reifyn(‘(M(M1, . . . , Ml))) = (ûapp, ‘M, ‘M1, . . . , ‘Ml)

reifyn(‘f̂(V1, . . . , Vl)) = (ĉapp, f̂(V1, . . . , Vl))

Structural equivalence.Define evaluation contexts byC ::= [] | (C|P) | (P |C) |
νc.C. Structural equivalence≡ is the smallest equivalence relation on processes that is
closed under evaluation contexts, with:

P ≡ P |0 P1|(P2|P3) ≡ (P1|P2)|P3 P1|P2 ≡ P2|P1 !P ≡ P |!P
νa.0 ≡ 0 νa.νb.P ≡ νb.νa.P P1|(νa.P2) ≡ νa.(P1|P2) (if a 6∈ fn(P1))

The next lemma is useful for proving the soundness of some up-to techniques.

Lemma 1 (reduction respects structural equivalence).

1. P ≡ Q andP
α−→ P ′ implyQ

α−→ Q′ andP ′ ≡ Q′
2. P ≡ Q andQ

α−→ Q′ implyP
α−→ P ′ andP ′ ≡ Q′.

Proof. By induction on the derivation ofP ≡ Q.

3 Environmental bisimulation

As outlined in the introduction, an environmental relation is a set of elements of the
form (E , P, Q), whereP , Q are closed processes andE is a binary relation on closed
values. Intuitively,P andQ are the tested processes andE is the environment, i.e., the
knowledge of the observer. We writePXEQ for (E , P, Q) ∈ X .

Definition 1 (environmental bisimulation). Environmental relationX is an environ-
mental bisimulation ifPXEQ implies:

1. P
τ−→ P ′ impliesQ ⇒ Q′ andP ′XEQ′

2. P
a(V)−−−→ P ′ with aÊb andV (Ê)∗W , impliesQ ⇒ b(W)−−−→⇒ Q′ andP ′XEQ′

3. P
νc̃.a〈V 〉−−−−−→ P ′ with aÊb and c̃ 6∈ fn(#1(E)), implies∃d̃ 6∈ fn(#2(E)). Q ⇒

νd̃.b〈W 〉−−−−−→⇒ Q′ andP ′XE∪{(V,W)}Q′
4. the converse of (1-3) onQ
5. V1ÊW1 andV2ÊW2 implyV1 = V2 ⇐⇒ W1 = W2

6. ‘(P ′)Ê ‘(Q′) impliesP |P ′XEQ|Q′
7. PXE∪{(a,b)}Q for anya 6∈ fn(P, #1(E)) andb 6∈ fn(Q, #2(E))
8. V ÊW implies:

(a) V = a impliesW = b (i.e., if V is a name, thenW is also a name)
(b) V = f impliesW = f
(c) V = f̂(V1, . . . , Vl) impliesW = ĝ(W1, . . . ,Wm)
(d) V ∈ Quo implies∃b 6∈ fn(E , P,Q). PXE∪{(reifyb(V),reifyb(W))}Q

9. the converse of 8 onW

Modulo symmetry, Definition 1 has 7 clauses. Clause 1 is the usual one forτ -transitions.
Clause 2 is the input case. The channel namesa and b are related by the observer’s
knowledgeÊ . The input valuesV andW are synthesized from̂E , as discussed in the in-
troduction. Clause 3 is the output case. Again,a andb are related bŷE . The environment
is extended with the output values, again as discussed in the introduction. Clause 5 ac-
counts for conditional contextsif []1 = []2 then P else Q. Clause 6 allows the observer
to run processes from the environment at any time. Clause 7 allows creation of fresh
names by the observer. Clause 8 accounts for decomposition, with 8a–8c for contexts
of the formmatch ‘[]1 as x in P (which analyze the shape of the related values) and 8d
for match []1 as x in P .

Environmental bisimilarity∼ is the union of all environmental bisimulations, which
exists because the union of all environmental bisimulations is an environmental bisim-
ulation (all the conditions above are monotone onX). Therefore,P ∼E Q if PXEQ for
some environmental bisimulationX . The most important case is whenE = {(a, a) |
a ∈ fn(P, Q)}. We writeP ' Q for P ∼E Q in this case. It asserts the equivalence
between two processes when the observer knows all of their free names.

4 Up-to context technique

Up-to techniques are enhancements of the bisimulation proof method (see, e.g., [10]).
“Bisimulations up-to” have weaker conditions than the original bisimulation clauses,
and are therefore easier to use, but yet are included in the bisimilarity (provided that
they are sound). We here present one of the most useful up-to techniques for our bisim-
ulation.

We first define context closure for environmental bisimulations.

Definition 2. For an environmental relationX , we writePX (∗)
E Q if P ≡ νc̃.(P0|P1)

andQ ≡ νd̃.(Q0|Q1) whereP0XE′Q0 andP1(Ê ′)∗Q1, and if

Ê ⊆ { (V, W) | V (Ê ′)∗W, fn(V) ∩ {c̃} = fn(W) ∩ {d̃} = ∅ }.

Intuitively, it is an extension of context closure for terms, where the observer’s processes
P1, Q1 are running in parallel with the tested processesP0, Q0, and fresh names̃c, d̃
have been generated but not exported yet.

Now we define the up-to technique. Essentially, this definition is obtained by re-
placingX with X (∗) in each clause of Definition 1.

Definition 3 (environmental bisimulation up-to context).Environmental relationX
is an environmental bisimulation up-to context5 if PXEQ implies:

1. P
τ−→ P ′ impliesQ ⇒ Q′ andP ′X (∗)

E Q′

2. P
a(V)−−−→ P ′ with aÊb andV (Ê)∗W , impliesQ ⇒ b(W)−−−→⇒ Q′ andP ′X (∗)

E Q′

3. P
νc̃.a〈V 〉−−−−−→ P ′ with aÊb and c̃ 6∈ fn(#1(E)), implies∃d̃ 6∈ fn(#2(E)). Q ⇒

νd̃.b〈W 〉−−−−−→⇒ Q′ andP ′X (∗)
E∪{(V,W)}Q

′

4. the converse of (1-3) onQ
5. V1ÊW1 andV2ÊW2 implyV1 = V2 ⇐⇒ W1 = W2

6. ‘(P ′)Ê ‘(Q′) impliesP |P ′X (∗)
E Q|Q′

7. PXE∪{(a,b)}Q for anya 6∈ fn(P, #1(E)) andb 6∈ fn(Q, #2(E))
8. V ÊW implies:

(a) V = a impliesW = b (i.e., if V is a name, thenW is also a name)
(b) V = f impliesW = f
(c) V = f̂(V1, . . . , Vl) impliesW = ĝ(W1, . . . ,Wm)
(d) V ∈ Quo implies∃b 6∈ fn(E , P,Q). PX (∗)

E∪{(reifyb(V),reifyb(W))}Q
9. the converse of 8 onW

Environmental bisimulations up-to context require weaker conditions than environ-
mental bisimulations. (Thus an environmental bisimulation is always an environmental
bisimulation up-to context.) Specifically, in clauses 1 to 3, the processes after transi-
tions are required to be bisimilar only “up to context,” i.e., modulo context closure.
Similarly, in clauses 6 and 8d, the resulting processes are required to be bisimilar only
modulo the context. Note that clause 6 is not a tautology because it allows to extract

5 In fact, this is also up-to environment and up-to structural equivalence because of the use of⊆
and≡ in Definition 2.

(and execute) the quoted processesP ′ andQ′, while the context closureX (∗)
E does not

(see Definition 2).
Soundness of the up-to technique is guaranteed by the fact that an environmental

relation satisfying all the conditions above is a subset of∼.

Theorem 1 (soundness of environmental bisimulation up-to context).LetY be the
environmental bisimilarity up-to context. ThenX = {(E , P, Q) | PY(∗)

E Q} is an envi-
ronmental bisimulation.

Proof. By checking each clause of environmental bisimulation againstX . The non-
trivial cases are clauses 1, 2 and 3, which follow from the lemmas below (and their
symmetric versions).

Lemma 2 (input transition). Let P1E∗Q1 andaEb. Suppose that̂E respects equality
of names on the left hand side, i.e., for anya, there exists someb such that, for anyW1,

aÊW1 impliesW1 = b. If P1
a(V)−−−→ P ′1, then for anyW , there exists someQ′

1 such that

Q1
b(W)−−−→ Q′1 with P ′1(E ∪ {(V,W)})∗Q′1.

Proof. By induction on the derivation ofP1
a(V)−−−→ P ′1.

Lemma 3 (output transition). Let P1E∗Q1 and aEb. SupposeÊ respects equality

of names on the left hand side (see above for definition). IfP1
νc̃.a〈V 〉−−−−−→ P ′1 with

c̃ 6∈ fn(#1(E)), then there exist someQ′
1, W and d̃ with V (̂E ∪ {(c̃, d̃)})∗W such

thatQ1
νd̃.b〈W 〉−−−−−→ Q′1 with d̃ 6∈ fn(#2(E)) andP ′1(E ∪ {(c̃, d̃)})∗Q′

1.

Proof. By induction on the derivation ofP1
νc̃.a〈V 〉−−−−−→ P ′1.

Note that, in the two lemmas above, no other assumption is necessary forE .

Lemma 4 (τ transition). SupposeP1(Ê)∗Q1 andP0YEQ0 for an environmental bisim-
ulationY up-to context. IfP1

τ−→ P ′1, then there exists someQ′
1 such thatQ1

τ−→ Q′1
with P0|P ′1Y(∗)

E Q0|Q′1.

Proof. By induction on the derivation ofP1
τ−→ P ′1, using Lemma 2 and 3.

Full details of the above proofs are available online [12].
While the up-to technique is useful for a bisimulation proof in general, we also use

Theorem 1 to prove the soundness of the environmental bisimulation itself in the next
section.

5 Soundness and completeness of environmental bisimilarity

We first define our criterion of observational equivalence, i.e., reduction-closed barbed
equivalence. In this definition, meta-variableµ ranges over names and co-names (ā
etc.),P ↓a andP ↓ā mean thatP can make an input and output transition ona, and
P ⇓µ is an abbreviation ofP ⇒↓µ.

Definition 4 (reduction-closed barbed equivalence).Reduction-closed barbed equiv-
alence is the largest binary relation≈ on closed processes such thatP ≈ Q implies:

1. P
τ−→ P ′ impliesQ ⇒ Q′ andP ′ ≈ Q′

2. P ↓µ impliesQ ⇓µ

3. the converse of 1 and 2 onQ
4. P |R ≈ Q|R for all processesR

Theorem 2 (soundness and completeness of environmental bisimulation).If P '
Q, thenP ≈ Q and vice versa.

Proof. For soundness (the forward implication), we check each clause in Definition 4
against'. The non-trivial case is clause 4. SupposeP ' Q, i.e., P ∼E Q for E =
{(a, a) | a ∈ fn(P, Q)}. Let E ′ = {(b, b) | b ∈ fn(R)}. By clause 7 of environmental
bisimulation,P ∼E∪E′ Q. SinceR(E ∪ E ′)∗R, we haveP |R ∼(∗)

E∪E′ Q|R by Defini-
tion 2. Since∼ is an environmental bisimulation up-to context,P |R ∼E∪E′ Q|R by
Theorem 1. HenceP |R ' Q|R. For completeness (the backward implication), we take
an environmental relationX that subsumes reduction-closed barbed equivalence, and
prove it to be an environmental bisimulation. Again, see the online material [12] for
details.

Note that reduction-closed barbedcongruenceis uninteresting in our calculus, since
it almost coincides withα-equivalence (modulo possible differences between computed
applications) because of quotation and decomposition, i.e., contexts likematch ‘[]1 as x
in P . (It is not interesting either to consider only contexts with no decomposition, be-
cause such contexts aretoorestricted, missing the whole point of our work.) In addition,
it is anyway easy to (state and) prove the congruence ofP andQ just by considering
the equivalence ofa〈‘P 〉 anda〈‘Q〉 instead, because an evaluation context can receive
‘P or ‘Q from a and use them in arbitrary manners.

6 Examples

In the examples below, we use the following rewriting rules for terms, representing
asymmetric cryptography.

pk(V) → p̂k(V) sk(V) → ŝk(V)
f(V, p̂k(W)) → f̂(V, p̂k(W)) f−1(V, ŝk(W)) → f̂−1(V, ŝk(W))
f−1(f̂(V, p̂k(W)), ŝk(W)) → V f(f̂−1(V, ŝk(W)), p̂k(W)) → V

Functionspk andsk compute public and secret keys, respectively, from its argument.
Functionsf andf−1 denote encryption (or verification) and decryption (or signing).
See e.g. [13] for more information on public-key encryption and digital signature.

The point of the examples is to show how to model and reason about higher-order
communication systems involving (public-key) encryption by using our approach. It
may also be possible to implement first-order variants of the systems, but they do not
devalue our examples (just as the existence of first-order programs such asmail(1)
does not devalue higher-order systems such as Gmail).

6.1 Software distribution with digital signature

The following systemP consists of a server and clients. The server distributes a pro-
gramR, which is then executed by the clients. For comparison, another systemQ is
defined where the clients “somehow” knowR in the first place.

P = νk.(Serverk|Clientk) Q = νk.(Serverk|Client ′k)
Clientk = !a(x).run(f(x, pk(k))) Client ′k = !a(x).νc.(c〈f(x, pk(k))〉|c(y).R)
Serverk = !a〈pk(k)〉|!a〈f−1(‘R, sk(k))〉

We assumek, c 6∈ fn(R). Clientk receives a quoted processR signed under the secret
key ŝk(k), and then verifies and executes it. By contrast,Client ′k receives the same
process but discards it, and then executesR. Equivalence of the two systemsP andQ
means that the clients can only executeR, not any Trojan horses. To prove this, we give
an environmental relationX such thatPX (∗)

E Q for E = {(b, b) | b ∈ fn(P,Q)}.
Proposition 1. TheX below is an environmental bisimulation up-to context.

X = {(E0, P0, Q0) | P0 = Serverk′ |Clientk′ |P1| . . . |Pl,
Q0 = Serverk′′ |Client ′k′′ |Q1| . . . |Ql,
l ≥ 0,
Pi = run(f(Vi, pk(k′))) for i ≥ 1,
Qi = νc.(c〈f(Wi, pk(k′′))〉|c(y).R) with c 6∈ fn(Wi), for i ≥ 1,

Ṽ (Ê0)∗W̃ ,
E0 = E1 ∪ E2,

E1 = {(p̂k(k′), p̂k(k′′)), (f̂−1(‘R, ŝk(k′)), f̂−1(‘R, ŝk(k′′)))},
E2 ⊇ {(b, b) | b ∈ fn(R, a)},
E2 is a finite bijection on names,
k′ 6∈ fn(#1(E2)) andk′′ 6∈ fn(#2(E2))}

Proof. By checking the conditions of environmental bisimulation up-to context, which
follow from the construction ofX . Note, in particular, that we donot have to put (any
number of)R in parallel withP0 andQ0, thanks to the up-to context technique.

First, observe thatPX (∗)
E Q by the definition ofX (with l = 0) and by Definition 2

(context closure for environmental bisimulations). HenceP ' Q by Theorem 1 (sound-
ness of environmental bisimulation up-to context) ifX is an environmental bisimulation
up-to context.

To checkX against the conditions of environmental bisimulation up-to context
(Definition 3), consider first the transitions fromP0 (Conditions 1, 2 and 3).

The output ofpk(k′) to a by Serverk′ on the left hand side can be matched by
that ofpk(k′′) to a by Serverk′′ on the right hand side. In these transitions, neither the
knowledge increases, nor the processes change (up-to structural equivalence). Ditto for
the output off−1(‘R, sk(k′)) andf−1(‘R, sk(k′′)).

The input ofVi from a by Clientk′ spawns a newPi, which can be matched by that
of Wi from a by Client ′k′′ , spawning a newQi. Ditto for the internal communication
from Serverk′ to Clientk′ (and fromServerk′′ to Client ′k′′) overa.

The internal transition by the process executionrun(f(Vi, pk(k′))) in Pi succeeds

only if the verification succeeds, i.e., only ifVi is of the formf̂−1(‘R′, ŝk(k′)) for some

R′. Sincek′ 6∈ fn(#1(E2)), this is possible only ifVi = f̂−1(‘R, ŝk(k′)), in which case

Wi = f̂−1(‘R, ŝk(k′′)). ThenR is spawned both on the left hand side and on the right,
which is cancelled out by up-to context.

The transitions fromQ0 (Condition 4) are similar. New processes spawned by the
context (Condition 6) are also cancelled out by up-to context. This is straightforward
because there are no quoted processes other thanR in Ê0. Conditions 5, 8 and 9 follow
by straightforward induction on the first-order contextDt in the definition ofÊ0 (see
Section 2.1). Finally, fresh names generated by the context (Condition 7) are immedi-
ately subsumed by the sub-environmentE2.

We therefore haveP ≈ Q from the soundness of environmental bisimulation (up-to
context).

6.2 Secure mail user agent

Consider a client-server system where the user downloads (from the server) an e-mail
user agent (MUA) to send an encrypted message.

P = νk1.(Serverk1 |Clientp,k1) Q = νk1.(Serverk1 |Clientq,k1)
Clientx,k1 = νr .d〈f(r , pk(k1))〉.r(y).run(#1(y))|#2(y)〈x〉
Serverk1 = !c〈pk(k1)〉 | !d(x).νk2.νm.f−1(x, sk(k1))〈P̂ackm,k2〉
P̂ackm,k2 = (‘MUAm,k2 ,m) MUAm,k2 = m(y).c〈f(y, p̂k(k2))〉

In this example,c andd are public channels. The client first sends a requestf(r , pk(k1))
to download the MUA, and waits for a reply on channelr . The server then sends the
MUA back to the client, with a fresh channelm for accepting the messagey, and a
fresh secret keyk2 for encryptingy. (We are using the private channelr only for the
sake of simplicity. It could be implemented over a public network just as in the previous
example.) Finally, the client sends its messagex throughm. Secrecy of the message
x can be formalized by a standard non-interference property, i.e., that the system is
equivalent regardless of the value ofx. We here use two fresh, public namesp andq for
the values ofx.

Again, to prove this equivalence, we give an environmental relationX s.t.PX (∗)
E Q

for E = {(b, b) | b ∈ fn(P, Q)}.
Proposition 2. TheX in Figure 1 is an environmental bisimulation up-to context.

Proof. By checking each condition of environmental bisimulation up-to context. Again,
this is easy thanks to the construction ofX and to the up-to context technique.

As in the case of Proposition 1, we havePX (∗)
E Q (by taking l = 0 in X1) and

thereforeP ' Q, provided thatX is an environmental bisimulation up-to context.
Let us first consider the transitions from{k′1,Ṽ/k1,z̃}P1 in X1. The output ofpk(k′1)

to c byServerk′1 on the left hand side is matched by that ofpk(k′′1) to c byServerk′′1 on
the right, with no increase of knowledge and no change of processes (up-to structural
equivalence). The input ofVi from d by Serverk′1 is matched by that ofWi from d by
Serverk′′1 , just incrementing the numberl of processes inRk′1 andRk′′1 , respectively.

X = X1 ∪ X2 ∪ X3

X1 = {(E0, {k′1,Ṽ/k1,z̃}P1, {q/p}{k′′1 ,W̃/k1,z̃}P1) |
P1 = Serverk1 |Rk1 |Clientp,k1 ,

Rk1 = νk2.νm.f−1(z1, sk(k1))〈P̂ackm,k2〉| . . . |νk2.νm.f−1(zl, sk(k1))〈P̂ackm,k2〉,
l ≥ 0,

Ṽ (Ê0)
∗W̃ ,

E0 = E1 ∪ E2,

E1 = { (cpk(k′1), cpk(k′′1)) },
E2 ⊇ {(d , d), (c, c), (p, p), (q, q)},
E2 is a finite bijection on names,
k′1 6∈ fn(#1(E2)) andk′′1 6∈ fn(#2(E2))}

X2 = {(E0, {k′1,Ṽ ,r′/k1,z̃,r}P2, {q/p}{k′′1 ,W̃ ,r′′/k1,z̃,r}P2),

(E0, {k′1,Ṽ ,r′/k1,z̃,r}P3, {q/p}{k′′1 ,W̃ ,r′′/k1,z̃,r}P3),

(E0, {k′1,Ṽ ,r′/k1,z̃,r}P4, {q/p}{k′′1 ,W̃ ,r′′/k1,z̃,r}P4),

(E0, {k′1,Ṽ ,r′/k1,z̃,r}P5, {q/p}{k′′1 ,W̃ ,r′′/k1,z̃,r}P5) |
P2 = Serverk1 |Rk1 |r(y).(run(#1(y))|#2(y)〈p〉),
P3 = Serverk1 |Rk1 |νk2.νm.(run(#1(P̂ackm,k2))|#2(P̂ackm,k2)〈p〉),
P4 = Serverk1 |Rk1 |νk2.νm.(MUAm,k2 |#2(P̂ackm,k2)〈p〉),
P5 = Serverk1 |Rk1 |νk2.c〈f(p, cpk(k2))〉,
Rk1 = νk2.νm.f−1(z1, sk(k1))〈P̂ackm,k2〉| . . . |νk2.νm.f−1(zl, sk(k1))〈P̂ackm,k2〉,
l ≥ 0,

Ṽ (Ê0)
∗W̃ ,

E0 = E1 ∪ E2,

E1 = { (cpk(k′1), cpk(k′′1)),

(bf(r ′, cpk(k′1)), bf(r ′′, cpk(k′′1))) },
E2 ⊇ {(d , d), (c, c), (p, p), (q, q)},
E2 is a finite bijection on names,
k′1, r

′ 6∈ fn(#1(E2)) andk′′1 , r ′′ 6∈ fn(#2(E2))}
X3 = {(E0, {k′1,Ṽ ,r′/k1,z̃,r}P6, {q/p}{k′′1 ,W̃ ,r′′/k1,z̃,r}P6) |

P6 = Serverk1 |Rk1 ,

Rk1 = νk2.νm.f−1(z1, sk(k1))〈P̂ackm,k2〉| . . . |νk2.νm.f−1(zl, sk(k1))〈P̂ackm,k2〉,
l ≥ 0,

Ṽ (Ê0)
∗W̃ ,

E0 = E1 ∪ E2,

E1 = { (cpk(k′1), cpk(k′′1)),

(bf(r ′, cpk(k′1)), bf(r ′′, cpk(k′′1))),

(bf(p, cpk(k′2)), bf(q, cpk(k′′2))) },
E2 ⊇ {(d , d), (c, c), (p, p), (q, q)},
E2 is a finite bijection on names,
k′1, r

′, k′2 6∈ fn(#1(E2)) andk′′1 , r ′′, k′′2 6∈ fn(#2(E2))}

Fig. 1. Environmental relation for the secure mail user agent

The possible output of̂Packm′,k′2 (with m′ andk′2 fresh) byRk′1 is matched by that

of P̂ackm′′,k′′2 (with m′′ andk′′2 fresh) byRk′′1 . This increase of knowledge can then be
cancelled out by up-to context with(m′,m′′) and(k′2, k

′′
2) added inE2.

The output off(r ′, pk(k′1)) (with r ′ fresh) tod by Clientp,k′1 is matched by that of
f(r ′′, pk(k′′1)) (with r ′′ fresh) tod by Clientq,k′′1 . The results are included inX2.

Consider the transitions from{k′1,Ṽ ,r ′/k1,z̃,r}P2 in X2. The input and output by
Serverk′1 andRk′1 are the same as in the case ofX1 (see above). The internal communi-

cation betweenνk2.νm.f−1(Vi, sk(k′1))〈P̂ackm,k2〉 (in Rk′1 , with Vi = f̂(r ′, p̂k(k′1)))
andr ′(y).(run(#1(y))|#2(y)〈p〉) is matched by that betweenνk2.νm.f−1(Wi, sk(k′′1))
〈P̂ackm,k2〉 (in Rk′′1 , with Wi = f̂(r ′′, p̂k(k′′1))) andr ′′(y).(run(#1(y))|#2(y)〈q〉).
The processes then become{k′1,Ṽ ,r ′/k1,z̃,r}P3 and{q/p}{k′′1 ,W̃ ,r ′′/k1,z̃,r}P3, respec-
tively.

These processes make an internal transition by process executionrun(#1(P̂ackm,k2)),
becoming{k′1,Ṽ ,r ′/k1,z̃,r}P4 and{q/p}{k′′1 ,W̃ ,r ′′/k1,z̃,r}P4. They then make an internal

communication overm and become{k′1,Ṽ ,r ′/k1,z̃,r}P5 and{q/p}{k′′1 ,W̃ ,r ′′/k1,z̃,r}P5,

which sendf̂(p, p̂k(k′2)) andf̂(q, p̂k(k′′2)) (with k′2 andk′′2 fresh) toc. The results are
included inX3. The other transitions are the same as in the case of{k′1,Ṽ ,r ′/k1,z̃,r}P2

(see above).
The transitions from{k′1,Ṽ ,r ′/k1,z̃,r}P6 in X3 are subsumed by the previous cases.

Transitions from the right hand side are symmetric. Conditions on the environments
follow again by straightforward induction on the first-order contextDt in the definition
of Ê0 (Section 2.1). Again as in the case of Proposition 1, processes spawned by the
context are cancelled out by up-to context and fresh names generated by the context are
subsumed byE2.

To repeat, the point of these examples is to illustrate our reasoning method for
higher-order cryptographic processes (“Gmail”), even if it is possible to define first-
order systems (“mail(1) ”) with a similar functionality.

7 Conclusion

We defined a higher-order process calculus parametrized by general algebra (which,
for example, includes asymmetric cryptography), and developed a bisimulation proof
method for proving behavioral equivalence in this language. We gave examples involv-
ing the security of higher-order systems with public-key encryption and digital signing.

As is the case with any bisimulation technique (or any “proof method” in general),
it is always possible in hindsight to prove the same results as ours without explicitly
using bisimulations, just by inlining (thereby duplicating) their soundness proof every-
where. In our case, doing so amounts to a brute-force proof based on the definition of
reduction-closed barbed equivalence only. We emphasize that it is way too heavy to re-
peat such a proof ineveryinstance of equivalence, so it pays to extract the proof pattern
as a separate technique like ours. As in the present work, such development gives an
essential insight—based on environments—for the (otherwise sightless) proof.

Acknowledgements.We thank the members of Kobayashi Laboratory in Tohoku Uni-
versity for their comments and helps. This work was partially supported by KAKENHI
18680003, 20240001, CASIO Science Promotion Foundation, and the Nakajima Foun-
dation.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. InPro-
ceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 104–115, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.In-
formation and Computation, 148(1):1–70, 1999. Preliminary version appeared inProceed-
ings of the 4th ACM Conference on Computer and Communications Security, pp. 36–47,
1997.

[3] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge University Press, 1999.
[4] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences

for security protocols. In20th Annual IEEE Symposium on Logic in Computer Science,
pages 331–340, 2005.

[5] J. Borgstr̈om and U. Nestmann. On bisimulations for the spi calculus. In9th International
Conference on Algebraic Methodology and Software Technology, volume 2422 ofLecture
Notes in Computer Science, pages 287–303. Springer-Verlag, 2002.

[6] S. Maffeis, M. Abadi, C. Fournet, and A. D. Gordon. Code-carrying authorization. In
Computer Security - ESORICS 2008, volume 5283 ofLecture Notes in Computer Science,
pages 563–579. Springer-Verlag.

[7] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigm. PhD thesis, University of Edinburgh, 1992.

[8] D. Sangiorgi, N. Kobayashi, and E. Sumii. Appendices to “environmental bisimulations for
higher-order languages”.http://www.cs.unibo.it/˜sangio/DOC_public/
appLICS07.pdf .

[9] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order
languages. InTwenty-Second Annual IEEE Symposium on Logic in Computer Science,
pages 293–302, 2007.

[10] D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to”. InCONCUR ’92,
volume 630 ofLecture Notes in Computer Science, pages 32–46. Springer-Verlag, 1992.

[11] D. Sangiorgi and D. Walker.The Pi Calculus – A Theory of Mobile Processes. Cambridge
University Press, 2001.

[12] N. Sato and E. Sumii. Proofs for “the higher-order, call-by-value applied pi-calculus”.
http://www.kb.ecei.tohoku.ac.jp/˜nsato/hoapp.pdf .

[13] B. Schneier.Applied Cryptography. John Wiley & Sons, Inc., 1996.
[14] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing.Theoretical Computer

Science, 375(1–3):169–192, 2007. Extended abstract appeared inProceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 161–
172, 2004.

[15] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion.Journal
of the ACM, 54(5-26):1–43, 2007. Extended abstract appeared inProceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 63–74,
2005.

