
ERRATA

• The logical relations (Figure 3) in this manuscript are not actually well-
defined. Specifically, the definition of RS(bits)φ refers to the definition
of RS(τ)φ for all τ . It is not well-founded, of course!

This problem is corrected in the CSFW/JCS version of our paper in an
obvious way of adding τ in bits as bits[τ], but it makes the calculus far
less expressive—strongly normalizing, indeed.

• Conjecture 15 (Full Abstraction) at the end of Section 4 (page 17) is solved
negatively by Dominique Devriese, Marco Patrignani, and Frank Piessens
in their POPL 2018 paper “Parametricity versus the Universal Type”.

1

Relating Cryptography and Polymorphism

Benjamin Pierce∗ Eijiro Sumii†

University of Pennsylvania

July 16, 2000‡

Abstract

Cryptography is information hiding. Polymorphism is also information hiding. So is cryptogra-
phy polymorphic? Is polymorphism cryptographic?

To investigate these questions, we define the cryptographic λ-calculus, a simply typed λ-
calculus with shared-key cryptographic primitives. Although this calculus is simply typed, it is
powerful enough to encode recursive functions, recursive types, and dynamic typing. We then
develop a theory of relational parametricity for our calculus as Reynolds did for the polymorphic
λ-calculus. This theory is useful for proving equivalences in our calculus; for instance, it implies
a non-interference property: values encrypted by a key cannot be distinguished from one another
by any function ignorant of the key. We close with an encoding of the polymorphic λ-calculus
into the cryptographic calculus that uses cryptography to protect type abstraction.

Our results shed a new light upon the relationship between cryptography and polymorphism,
and offer a first step toward extending programming idioms based on type abstraction (such
as modules and packages) from the civilized world of polymorphism, where only well-typed
programs are allowed, to the unstructured world of cryptography, where friendly programs must
cohabit with malicious attackers.

1 Introduction

Information hiding is a crucial concept in programming. It is essential not only for modularity
but also for security of programs. Type abstraction and encryption are common approaches to
information hiding.

Type abstraction forbids illegal access to secret data by concealing the type of the data. For
example, consider the following package, which provides a list ints of secret integers and a function
isdiv to test whether one of the secret integers is divisible by another.

pack int, {ints = [1, 2, 3], isdiv = λi. λj. (i mod j = 0)}
as ∃α. {ints : α list, isdiv : α → α → bool}

This achieves the security by concealing the type int of the data 1, 2, and 3. The typing rules for
existential types [17] guarantee that users of the package must treat the type abstractly.

∗bcpierce@cis.upenn.edu
†sumii@saul.cis.upenn.edu. Visiting scholar from the University of Tokyo. Research fellow of the Japan Society

for the Promotion of Science.
‡Last revised on October 6, 2000

1

On the other hand, encryption prevents illegal access to secret data by obfuscating the value of
the data, for example as follows. (The terms b—ck and d—ek denote encryption and decryption,
respectively, under the key k.)

let k = generate fresh key() in
{ints = [b1ck, b2ck, b3ck], isdiv = λx. λy. (dxek mod dyek = 0)}

Type abstraction is static and high-level: a potential violation of secrecy causes a type error
before execution, as long as the whole program (including the “attacker”) abides by the type system.
This leads to a powerful method of reasoning about type abstraction, known as parametricity [24].
The principle of parametricity assures us that “related” programs are equivalent, in the sense
that they are indistinguishable in any well-typed context, where the notion “related” is defined as
follows:

• Two values of a base type b are related if and only if they are equal.

• Two values of a function type τ1 → τ2 are related if and only if they map any related
arguments to related results.

• Two values of an abstract type α are related if and only if they satisfy the relation ϕ(α),
where ϕ maps each abstract type to a relation between its concrete types.

The power of parametricity comes from the fact that we can take any relation as ϕ(α) for each α
in order to let two programs related. For example, in the first program above, we can take ϕ(α) =
{(1, 2), (2, 4), (3, 6)}. Then, by parametricity, this program is equivalent to the same program with
[1, 2, 3] substituted with [2, 4, 6], because isdiv(i)(j) is equal to isdiv(i′)(j′) for any (i, i′) ∈ ϕ(α)
and (j, j′) ∈ ϕ(α). Therefore, the packaging is secure in the sense that it never leaks the secret
data, as long as everybody plays by the rules of the type system. However, type abstraction fails
if the scope of a value of an abstract type exceeds the scope of the type checker, e.g. if the value is
saved in a file or sent over a network. For instance, the security of the package above is broken if
the secret data ints is written to a file and read from the file just as a list of integers.

By contrast, encryption is dynamic and low-level: illegal access to secret data causes a decryp-
tion failure either in the user code (like dhead(ints)ebogus key) or in the provider code (like isdiv
b7cbogus keyb8cbogus key) during execution. It keeps attackers from breaking the protection with no
assumptions about what they do, except for the secrecy of the keys and the mathematical strength
of the underlying cryptosystem.

These comparisons between type abstraction and encryption lead us to wonder whether we can
establish some more formal relationships between them. In particular:

• Can we adapt the parametricity theory of type abstraction to reason about programs that
use encryption for information hiding?

• Can we have our cake and eat it too, first writing programs in the high-level but restrictive
setting of type abstraction, and then translating them to the lower-level but more flexible
setting of encryption without losing modularity and security?

In this paper, we give a full answer to the first question and a partial answer to the second.
Specifically, we (i) present the cryptographic λ-calculus, a simply typed λ-calculus with shared-key
cryptographic primitives, and illustrate its expressive power through several examples (Section 2),
(ii) establish a theory of relational parametricity à la Reynolds [24] for this calculus (Section 3),

2

and (iii) sketch an encoding of System F [13, 23] into the cryptographic λ-calculus (Section 4),
using encryption to simulate type abstraction. Our primary contributions are (ii) and (iii). The
expressiveness of the calculus is—though useful for modeling malicious attackers—a secondary
issue.

2 The Cryptographic λ-Calculus

2.1 Syntax and Semantics

Our calculus is a standard simply typed call-by-value λ-calculus with records, booleans, and inte-
gers, enriched with simple primitives for shared-key cryptography.

An encryption bt1ct2 encrypts the plaintext t1 with the key t2, and a decryption let bxct1 =
t2 in t3 else t4 tries to decrypt the ciphertext t2 with the key t1. If the decryption succeeds, it
binds the plaintext to the variable x and evaluates the body t3. If the decryption fails, it evaluates
the handler t4. A key generation new〈τ, α〉 generates a key to encrypt and decrypt values of the
type τ using the password α. A key 〈τ, α, n〉 consists of the type τ of the values to encrypt and
decrypt, the password α, and the sequence number n. The type is necessary for type soundness:
without it, two values of different types could be encrypted using the same key, and then confused
when they are decrypted, like let bxc〈 ,α,0〉 = btruec〈 ,α,0〉 in x− 1 else . . . (cf. Section 2.2). The
sequence number is taken from a global counter, incremented on each key generation. Passwords
are used for statically tracking knowledge about (possibly infinite) sets of dynamically generated
keys to state security properties of programs in our calculus. (This point is discussed further after
Corollary 10 in Section 3.) The primitive fail aborts evaluation.

We assume the following properties of these cryptographic primitives.

• No ciphertext can be decrypted or forged without using the key. In particular, no ciphertext
can be fabricated from other ciphertexts (non-malleability [10]).

• No operation can be performed on ciphertexts without decrypting them. In particular, no
ciphertexts can be compared for (in)equality. In practice, this condition can be satisfied by
including random nonces in ciphertexts.

• No password can be guessed by conjecture. In practice, this assumption can be fulfilled by
choosing “good” passwords for keys.

In short, we assume perfect encryption. Although no present-day cryptosystem—to our knowledge—
has been proven to be satisfy all these conditions (and some are known not to), they offer a clean
starting point for the arguments that we give in this paper. Investigating what kind of results can
be obtained when these assumptions are weakened is a topic for future work.

Formally, the syntax and semantics of the cryptographic λ-calculus are given in Figure 1.
(Throughout this paper, we abbreviate a sequence of the form X1, . . . , Xn to a vector of the form
X̃ when the number n is obvious.) In order to deal with the impurities such as key generation and
failure in a rigorous manner, the evaluation function [[t]]n takes an initial sequence number n and
either diverges (written ⊥) or returns (i) a value v and a final sequence number n′ (written [v]n′),
(ii) fail, or (iii) error. Note that fail denotes a safe, intentional failure while error denotes an
unsafe, unintentional error (a run-time type error).

We abbreviate [[t]]n = [v]n′ to [[t]] = v when n and n′ are unimportant. For the sake of readability,
we also use the syntactic sugarings (let x = t1 in t2)

def= (λx. t2)t1 and dt1et2 def= (let bxct2 =

3

t ::= x | λx. t | t1t2 | {˜̀= t̃} | #`(t) | true | false | if t1 then t2 else t3 | i | t1 − t2 | t > 0 |
〈τ, α, n〉 | new〈τ, α〉 | bt1ct2 | let bxct1 = t2 in t3 else t4 | fail

τ ::= τ1 → τ2 | {˜̀ : τ̃} | bool | int | 〈τ〉 | bits
v ::= λx. t | {˜̀= ṽ} | true | false | i | 〈τ, α, n〉 | bvc〈τ,α,n〉
V ::= [v]n | ⊥ | fail | error

[[λx. t]]n
def= [λx. t]n

[[t1t2]]n
def= case [[t1]]n of [λx. t]n1 ⇒

(case [[t2]]n1 of [v]n2 ⇒ [[t[x := v]]]n2

| V2 ⇒ V2)
| [] ⇒ error | V1 ⇒ V1

[[{˜̀= t̃}]]n def= case [[t1]]n of [v1]n1 ⇒
. . .

(case [[tm]]nm−1 of [vm]nm ⇒ [{˜̀= ṽ}]nm

| Vm ⇒ Vm)
. . .
| V1 ⇒ V1

[[#`(t)]]n
def= case [[t]]n of [{` = v, . . .}]n′ ⇒ [v]n′ | [] ⇒ error | V ⇒ V

[[true]]n
def= [true]n

[[false]]n
def= [false]n

[[if t1 then t2 else t3]]n
def= case [[t1]]n of [true]n′ ⇒ [[t2]]n′ | [false]n′ ⇒ [[t3]]n′

| [] ⇒ error | V ⇒ V

[[i]]n
def= [i]n

[[t1 − t2]]n
def= case [[t1]]n of [i1]n1 ⇒

(case [[t2]]n1 of [i2]n2 ⇒ [i1 − i2]n2

| [] ⇒ error | V2 ⇒ V2)
| [] ⇒ error | V1 ⇒ V1

[[t > 0]]n
def= case [[t]]n of [i]n′ ⇒ [i > 0]n′ | [] ⇒ error | V ⇒ V

[[〈τ, α,m〉]]n def= [〈τ, α, m〉]n
[[new〈τ, α〉]]n def= [〈τ, α, n + 1〉]n+1

[[bt1ct2]]n def= case [[t1]]n of [v1]n1 ⇒
(case [[t2]]n1 of [〈τ, α,m〉]n2 ⇒ [bv1c〈τ,α,m〉]n2

| [] ⇒ error | V2 ⇒ V2)
| V1 ⇒ V1

[[let bxct1 = t2 in t3 else t4]]n
def= case [[t1]]n of [〈τ, α,m〉]n1 ⇒

(case [[t2]]n1 of [bv2ck]n2 ⇒
if k = 〈τ, α, m〉 then [[t3[x := v2]]]n2 else [[t4]]n2

| [] ⇒ error | V2 ⇒ V2)
| [] ⇒ error | V1 ⇒ V1

[[fail]]n
def= fail

Figure 1: Syntax and Semantics

4

Γ, x : τ ` x : τ Γ ` true : bool Γ ` false : bool Γ ` i : int

Γ, x : τ1 ` t : τ2

Γ ` λx. t : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1t2 : τ2

Γ ` t̃ : τ̃

Γ ` {˜̀= t̃} : {˜̀ : τ̃}
Γ ` t : {` : τ, . . .}

Γ ` #`(t) : τ

Γ ` t1 : bool Γ ` t2 : τ Γ ` t3 : τ

Γ ` if t1 then t2 else t3 : τ

Γ ` t1 : int Γ ` t2 : int
Γ ` t1 − t2 : int

Γ ` t : int
Γ ` t > 0 : bool

Γ ` 〈τ, α, n〉 : 〈τ〉 Γ ` new〈τ, α〉 : 〈τ〉 Γ ` fail : τ

Γ ` t1 : τ Γ ` t2 : 〈τ〉
Γ ` bt1ct2 : bits

Γ ` t1 : 〈τ1〉 Γ ` t2 : bits Γ, x : τ1 ` t3 : τ2 Γ ` t4 : τ2

Γ ` let bxct1 = t2 in t3 else t4 : τ2

Figure 2: Typing Rules

t1 in x else fail). We assume distinction between the names of variables, and apply α-conversion
implicitly.

2.2 Type System

The typing rules for the cryptographic λ-calculus are shown in Figure 2. They are standard
except for the types given to keys and ciphertexts. The type 〈τ〉 describes keys for encrypting
and decrypting values of the type τ . The type bits (“bit string”) includes all ciphertexts. The fact
that the type of a plaintext is included in the type of the key used to encrypt it, rather than the type
of the ciphertext, is the source of the surprising expressive power of our calculus (cf. Section 2.4).

The correctness of the type system with respect to the semantics guarantees that a well-typed
program incurs no run-time type error.

Theorem 1 (Type Soundness). Suppose x̃ : τ̃ ` t : τ and let t′ = t[x̃ := ṽ] for any ∅ ` ṽ : τ̃ .
Then, for any n, we have [[t′]]n = ⊥, fail, or [v]n′ for some ∅ ` v : τ and n′ ≥ n.

Proof. By induction on the derivation of x̃ : τ̃ ` t : τ . 2

2.3 Example

As a first example of programming in our calculus, consider the following situation. There are three
entities S, A and B. The entities S and A share a password α, and the entities S and B share
another password β. A wants to send an integer i to B in a secure manner, assuming that S is
trustworthy.

To express A’s transmission of i to S under the password α, we use encryption (under α) and
application:

A
def= S(bic〈int,α,0〉)

To capture S’s actions—receiving the integer i under the password α, and forwarding it to B under
the password β—we use abstraction, decryption (under α), encryption (under β), and application:

S
def= λx′. let x = dx′e〈int,α,0〉 in B(bxc〈int,β,0〉)

5

Similarly, B’s receipt of i under the password β is expressed using abstraction and decryption:

B
def= λy′. let y = dy′e〈int,β,0〉 in t(y)

The whole program works as follows:

[[let B = λy′. (let y = dy′e〈int,β,0〉 in t(y)) in
let S = λx′. (let x = dx′e〈int,α,0〉 in B(bxc〈int,β,0〉))
S(bic〈int,α,0〉)]]

= [[let B = λy′. (let y = dy′e〈int,β,0〉 in t(y)) in
B(bic〈int,β,0〉)]]

= [[t(i)]]

The security of each part of this program is guaranteed by the fact that, to any observer who
does not know the passwords α and β, the functions S and B are indistinguishable from the function
λ . fail, and the ciphertext bic〈int,α,0〉 is indistinguishable from the ciphertext b0c〈int,α,0〉. Details
of such reasoning will be presented in Section 3.

2.4 Expressiveness

As we mentioned above, the cryptographic λ-calculus is rather expressive despite the fact that it
is simply typed, thanks to the dynamic nature of the type bits. In this section, we illustrate its
power by showing how to encode several constructs found in other λ-calculi. In these encodings,
secrecy plays no role and a single, public password ε suffices for all encryptions. We write 〈〈τ〉〉 for
the dummy key 〈τ, ε, 0〉 using this non-secret password.

The correctness of each encoding E(—) can be stated in the same way.

Theorem 2 (Soundness of Encodings). Suppose x̃ : τ̃ ` t : τ and let t′ = t[x̃ := ṽ] for any ∅ `
ṽ : τ̃ , where t, ṽ, τ and τ̃ are terms, values, and types in the source language. Then, ∅ ` E(t′) : E(τ)
and [[E(t′)]]n = E([[t′]]n) for any n, where E([v]n) = [E(v)]n, E(⊥) = ⊥ and E(fail) = fail.

Proof. By induction on the derivation of x̃ : τ̃ ` t : τ using the lemmas below, given at the end of
each section for each extension introduced in that section. 2

2.4.1 Disjoint Sums

A disjoint sum τ1 + τ2 is the tagged union of the types τ1 and τ2. Its syntax, semantics, and typing
rules are given below. (To simplify the encoding, we annotate each case expression with its result
type τ .)

t ::= . . . | inl(t) | inr(t) | case t1 of inl(x) ⇒ t2 [] inr(y) ⇒ t3 : τ
τ ::= . . . | τ1 + τ2

v ::= . . . | inl(v) | inr(v)

[[inl(t)]]n
def= case [[t]]n of [v]n′ ⇒ [inl(v)]n′ | V ⇒ V

[[inr(t)]]n
def= case [[t]]n of [v]n′ ⇒ [inr(v)]n′ | V ⇒ V

[[case t1 of inl(x) ⇒ t2 [] inr(y) ⇒ t3 : τ]]n
def= case [[t1]]n of [inl(v)]n′ ⇒ [[t2[x := v]]]n′ | [inr(v)]n′ ⇒ [[t3[y := v]]]n′

| [] ⇒ error | V ⇒ V

6

Γ ` t : τ1

Γ ` inl(t) : τ1 + τ2

Γ ` t : τ2

Γ ` inr(t) : τ1 + τ2

Γ ` t1 : τ1 + τ2 Γ, x : τ1 ` t2 : τ Γ, y : τ2 ` t3 : τ

Γ ` (case t1 of inl(x) ⇒ t2 [] inr(y) ⇒ t3 : τ) : τ

Since disjoint sums are the dual of products, they can be encoded into the cryptographic calculus
by a kind of CPS transformation as follows.

E(τ1 + τ2)
def= (E(τ1) → bits) → (E(τ2) → bits) → bits

E(inl(t)) def= let x = E(t) in λf. λg. f(x)

E(inr(t)) def= let x = E(t) in λf. λg. g(x)
E(case t1 of inl(x) ⇒ t2 [] inr(y) ⇒ t3 : τ)

def= dE(t1)(λx. bE(t2)c〈〈E(τ)〉〉)(λy. bE(t3)c〈〈E(τ)〉〉)e〈〈E(τ)〉〉

For the other cases, the encoding works in a homomorphic manner, i.e., along the structure of the
type or the term. For example, E(τ1 → τ2) = E(τ1) → E(τ2) and E(λx. t) = λx. E(t).

Lemma 3. [[E(case inl(v) of inl(x) ⇒ t1 [] inr(y) ⇒ t2 : τ)]]n = [[E(t1)[x := E(v)]]]n and [[E(case
inr(v) of inl(x) ⇒ t1 [] inr(y) ⇒ t2 : τ)]]n = [[E(t2)[y := E(v)]]]n for any v, t1, t2, and n.

We can now—if we like—define the type bool as the disjoint sum {}+ {} of the empty record
{}. For the sake of presentation, however, we continue to take booleans as primitives.

2.4.2 Recursive Types

A recursive type is a type whose definition mentions itself, like intlist def= {} + {head : int, tail :
intlist}. Such types are often written as µα. {} + {head : int, tail : α}, using the least fixed-
point operator µ. In general, a recursive type µα. τ satisfies the equation µα. τ ≡ τ [α := µα. τ].
Its syntax, semantics, and typing rules are given below. Here, we use the simpler iso-recursive
presentation (rather than the more powerful equi-recursive one), explicitly inserting the coercions
fold and unfold to convert between values of the folded type µα. τ and the unfolded type τ [α := µα.
τ]. Again, we provide type annotations to assist the encoding.

t ::= . . . | foldµα. τ (t) | unfoldµα. τ (t)
τ ::= . . . | α | µα. τ
v ::= . . . | foldµα. τ (v)

[[foldµα. τ (t)]]n
def= case [[t]]n of [v]n′ ⇒ [foldµα. τ (v)]n′ | V ⇒ V

[[unfoldµα. τ (t)]]n
def= case [[t]]n of [foldµα. τ (v)]n′ ⇒ [v]n′ | [] ⇒ error | V ⇒ V

Γ ` t : τ [α := µα. τ]
Γ ` (foldµα. τ (t)) : µα. τ

Γ ` t : µα. τ

Γ ` unfoldµα. τ (t) : τ [α := µα. τ]

7

Recursive types can be encoded into the cryptographic λ-calculus by taking values of recursive
types to be ciphertexts and the folding and unfolding operations to be encryption and decryption.

E(α) def= bits

E(µα. τ) def= bits

E(foldµα. τ (t))
def= btc〈〈E(τ)〉〉

E(unfoldµα. τ (t))
def= dte〈〈E(τ)〉〉

Lemma 4. [[E(unfoldµα. τ (foldµα. τ (v)))]]n = [[E(v)]]n for any v and n.

2.4.3 Recursive Functions

Since recursive types can be encoded, recursive functions can be encoded as well. Using the
encoding of recursive types above, the standard call-by-value fixed-point operator

fixτ1→τ2
def= λf. (λx. f(λa.unfoldτ (x)xa))

(foldτ (λx. f(λa.unfoldτ (x)xa)))

with τ = µα. α → τ1 → τ2 can be implemented as follows, with k = 〈〈bits → τ1 → τ2〉〉.

E(fixτ1→τ2) = λf. (λx. f(λa. dxekxa))bλx. f(λa. dxekxa)ck

2.4.4 Dynamic Typing

Dynamic typing [2] is a mechanism for injecting values of different types into a single dynamic type
dyn in a type-safe manner.

t ::= . . . | indynτ (t) | let indynτ (x) = t1 in t2 else t3
τ ::= . . . | dyn
v ::= . . . | indynτ (v)

[[indynτ (t)]]n
def= case [[t]]n of [v]n′ ⇒ [indynτ (v)]n′ | V ⇒ V

[[let indynτ (x) = t1 in t2 else t3]]n
def= case [[t1]]n of [indynτ (v)]n′ ⇒ [[t2[x := v]]]n′ | [indyn ()]n′ ⇒ [[t3]]n′

| [] ⇒ error | V ⇒ V

Γ ` t : τ

Γ ` indynτ (t) : dyn
Γ ` t1 : dyn Γ, x : τ ` t2 : τ Γ ` t3 : τ

Γ ` let indynτ (x) = t1 in t2 else t3 : τ

Thanks to the “dynamic” type bits, it is also straightforward to implement dynamic typing in the
cryptographic calculus.

E(dyn) def= bits

E(indynτ (t))
def= btc〈〈E(τ)〉〉

E(let indynτ (x) = t1 in t2 else t3)
def= let bxc〈〈E(τ)〉〉 = E(t1) in E(t2) else E(t3)

Lemma 5. [[E(let indynτ (x) = indynτ (v) in t1 else t2)]]n = [[E(t1)[x := E(v)]]]n and [[E(let
indynτ (x) = v′ in t1 else t2)]]n = [[E(t2)]]n for any n, v and v′ 6= indynτ (v).

8

RS(τ → τ ′)ϕ def= {(λx. t1, λx. t2) | ∀(v1, v2) ∈ RS(τ)ϕ. (t1[x := v1], t2[x := v2]) ∈ R′S(τ ′)ϕ}
RS({˜̀ : τ̃})ϕ def= {({˜̀= ṽ1}, {˜̀= ṽ2}) | (ṽ1, ṽ2) ∈ RS(τ̃)ϕ}
RS(bool)ϕ def= {(b, b) | b = true, false}
RS(int)ϕ def= {(i, i) | i = . . . ,−2,−1, 0, 1, 2, . . .}
RS(〈τ〉)ϕ def= {(〈τ, α, n〉, 〈τ, α, n〉) | α 6∈ S}
RS(bits)ϕ def= {(bv1c〈τ,α,n〉, bv2c〈τ,α,n〉) | ∅ ` v1 : τ ∧ ∅ ` v2 : τ ∧ α 6∈ S ∧ (v1, v2) ∈ RS(τ)ϕ

∪ {(bv1c〈τ1,α1,n1〉, bv2c〈τ2,α2,n2〉) | ∅ ` v1 : τ1 ∧ ∅ ` v2 : τ2 ∧ α1, α2 ∈ S ∧
(v1, v2) ∈ ϕ(〈τ1, α1, n1〉, 〈τ2, α2, n2〉)}

R′S(τ)ϕ def= {(t1, t2) | ∅ ` t1 : τ ∧ ∅ ` t2 : τ ∧
∀n. ([[t1]]n = [[t2]]n = ⊥ ∨

[[t1]]n = [[t2]]n = fail ∨
∃v1. ∃v2. ∃n′ ≥ n.

[[t1]]n = [v1]n′ ∧ [[t2]]n = [v2]n′ ∧ (v1, v2) ∈ RS(τ)ϕ)}

Figure 3: Logical Relation

3 Parametricity

In this section, we develop a tool for reasoning about information hiding in the cryptographic
λ-calculus, adapting the concept of parametricity [24] from the polymorphic λ-calculus [13, 23].

Consider the packages p1
def= {c = b1ck, f = λx. dxek + 2} and p2

def= {c = b3ck, f = λx. dxek},
where k = 〈int, α, n〉 for some α and n, and t1 + t2 stands for t1 − (0 − t2). A function that does
not know the password α cannot distinguish p1 and p2, because it cannot decrypt the ciphertexts
#c(p1) and #c(p2), and the function applications #f (p1)#c(p1) and #f (p2)#c(p2), which are the
only ways to do anything on the ciphertexts #c(p1) and #c(p2), return the same integer 3.

To formalize such reasoning, we define a relation RS(τ)ϕ between values of the type τ , where S
is a set of “secret” passwords {α̃} and ϕ maps a pair of secret keys to a relation between plaintexts.
Intuitively, two values v1 and v2 will be related by RS(τ)ϕ if and only if

• v1 and v2 do not reveal any information about the secret passwords S, and

• they are indistinguishable by any function that does not know the secret passwords.

The first condition is essential because if the values themselves leak the secret passwords, then
the observer can break the abstraction without knowing any secret password in advance. For
example, suppose k = 〈int, α, n〉 for some α ∈ S and n. Although the ciphertexts b4ck and
b5ck are indistinguishable to any observer who does not know the secret password α, the records
{c = b4ck, k = k} and {c = b5ck, k = k} are distinguishable to the observer λr. d#c(r)e#k(r). Thus,
the key k should not be related to itself if the password α is secret.

Just as we can take any relation for values of an abstract type in the parametricity theory of
type abstraction (cf. Section 1), we can take any relation for ciphertexts encrypted with secret
passwords because they are anyway indistinguishable to the observer. The map ϕ in the relation
RS(τ)ϕ provides such a relation between values of the type τ1 and values of the type τ2 for each
pair of keys 〈τ1, α1, n1〉 and 〈τ2, α2, n2〉 with α1, α2 ∈ S.

9

Formally, the relation RS(τ)ϕ is defined in Figure 3 by induction on the type τ . It is a standard
logical relation except for the following points.

• Since the cryptographic calculus is impure (because of key generation, failure, and divergence),
we actually define two relations RS(τ)ϕ and R′S(τ)ϕ, the former over values (i.e., results of
evaluations) and the latter over computations (i.e., closed terms with potential effects).

• Two keys are not related if their passwords are secret, because they would leak the secret
and break the first condition (like the second example above).

• Two ciphertexts encrypted with a non-secret key are related if and only if the plaintexts are
related.

• Two ciphertexts encrypted with secret keys k1 and k2 are related if and only if they satisfy
the relation ϕ(k1, k2).

For instance, in the first example above, let us take S = {α}, ϕ(k, k) = {(1, 3)} and ϕ(k1, k2) = ∅
when k1 6= k or k2 6= k. Then, (b1ck, b3ck) ∈ RS(bits)ϕ because (1, 3) ∈ ϕ(k, k) and α ∈ S, and
(λx. dxek + 2, λx. dxek) ∈ RS(bits → int)ϕ because [[(λx. dxek + 2)b1ck]] = [[(λx. dxek)b3ck]] = 3.
Therefore, (p1, p2) ∈ RS({c : bits, f : bits → int})ϕ.

Thus, we expect that the packages p1 and p2 are observationally equivalent, in the sense that
a function that does not know the password α cannot distinguish them. That is, g(p1) = g(p2) for
any g : {c : bits, f : bits → int} → bool where α does not appear in g. In order to prove this
fact, it suffices to show (g, g) ∈ RS({c : bits, f : bits → int} → bool)ϕ, which is a special case of
the general theorem below.

Definition 6. knows(t) = {α | α appears in t}.

Theorem 7 (Parametricity). Suppose x̃ : τ̃ ` t : τ . Then, (t[x̃ := ṽ1], t[x̃ := ṽ2]) ∈ R′S(τ)ϕ for
any (ṽ1, ṽ2) ∈ RS(τ̃)ϕ, provided that S ∩ knows(t) = ∅ and dom(ϕ) = {(〈σ1, α1, n1〉, 〈σ2, α2, n2〉) |
α1, α2 ∈ S}.

Proof. By induction on the derivation of x̃ : τ̃ ` t : τ . Let θ1 = [x̃ := ṽ1], θ2 = [x̃ := ṽ2], and
Γ = x̃ : τ̃ .

Case t = xi. Immediate from the assumption that (v1i, v2i) ∈ RS(τi)ϕ and the fact that v1i and
v2i are values.

Case t = λy. t′. Suppose τ = τ ′′ → τ ′, Γ, y : τ ′′ ` t′ : τ ′, and (v′1, v
′
2) ∈ RS(τ ′′)ϕ. Then, by the

induction hypothesis, (θ1t
′[y := v′1], θ2t

′[y := v′2]) ∈ R′S(τ ′)ϕ. Therefore, by the definition of R for
arrow types, (θ1t, θ2t) ∈ RS(τ)ϕ. Thus, since θ1t and θ2t are values, (θ1t, θ2t) ∈ R′S(τ)ϕ.

Case t = tatb. Suppose Γ ` ta : τb → τ and Γ ` tb : τb. Then, by the induction hypothesis,
(θ1ta, θ2ta) ∈ R′S(τb → τ)ϕ and (θ1tb, θ2tb) ∈ R′S(τb)ϕ. If the evaluations of θ1ta and θ2ta (or θ1tb
and θ2tb) diverge or fail, then so do the evaluations of θ1t and θ2t, and the theorem follows from
the definition of R′. Otherwise, suppose [[θ1ta]]n = [λy. t′1]na and [[θ2ta]]n = [λy. t′2]na where na ≥ n
and (λy. t′1, λy. t′2) ∈ RS(τb → τ)ϕ, and [[θ1tb]]na = [v′1]nb

and [[θ2tb]]na = [v′2]nb
where nb ≥ n and

(v′1, v
′
2) ∈ RS(τb)ϕ. Then, by the definition ofR for arrow types, (t′1[y := v′1], t

′
2[y := v′2]) ∈ R′S(τ)ϕ.

On the other hand, by the definition of the evaluation for function applications, [[θ1t]]n = [[t′1[y :=
v′1]]]nb

and [[θ2t]]=[[t′2[y := v′2]]]nb
. Therefore, (θ1t, θ2t) ∈ R′S(τ)ϕ.

10

Case t = {˜̀ = t̃′}. Suppose τ = {˜̀ : τ̃ ′} and Γ ` t̃′ : τ̃ ′. Then, by the induction hypothesis,
(θ1t̃

′, θ2t̃
′) ∈ R′S(τ̃ ′)ϕ. If the evaluations of θ1t

′
i and θ2t

′
i diverge or fail for some i, then so do the

evaluations of θ1t and θ2t, and the theorem follows from the definition of R′. Otherwise, suppose
[[θ1t

′
i]]ni−1 = [v′1i]ni and [[θ2t

′
i]]ni−1 = [v′2i]ni where ni ≥ ni−1 and (v′1i, v

′
1i) ∈ RS(τ ′i)ϕ for every

i. Then, by the definition the evaluation for record constructions, [[θ1t]]n0 = [{˜̀ = ṽ′1}]nm and
[[θ2t]]n0 = [{˜̀= ṽ′2}]nm . Therefore, by the definition of R for record types, (θ1t, θ2t) ∈ R′S(τ)ϕ.

Case t = #`(t′). By the induction hypothesis, (θ1t
′, θ2t

′) ∈ R′S({` : τ, . . .})ϕ. If the evaluations of
θ1t

′ and θ2t
′ diverge or fail, then so do the evaluations of θ1t and θ2t, and the theorem follows from

the definition of R′. Otherwise, suppose [[θ1t
′]]n = [{` = v′1, . . .}]n′ and [[θ2t

′]]n = [{` = v′2, . . .}]n′
where n′ ≥ n and (v′1, v

′
2) ∈ RS(τ)ϕ. Then, by the definition the evaluation for record destructions,

[[θ1t]]n = [v′1]n′ and [[θ2t]]n = [v′2]n′ . Therefore, (θ1t, θ2t) ∈ R′S(τ)ϕ.

Case t = true, false. Immediate from the definition of R for boolean types.

Case t = if ta then tb else tc. By the induction hypothesis, (θ1ta, θ2ta) ∈ R′S(bool)ϕ. If the
evaluations of θ1ta and θ2ta diverge or fail, then so do the evaluations of θ1t and θ2t, and the
theorem follows from the definition of R′. Otherwise, suppose [[θ1ta]]n = [b1]n′ and [[θ2ta]]n = [b2]n′
where n′ ≥ n and (b1, b2) ∈ RS(bool)ϕ. Then, by the definition of R for boolean types, b1 = b2.
Let us consider the case b1 = b2 = true. (The case b1 = b2 = false is similar.) By the definition
the evaluation for conditional branches, [[θ1t]]n = [[θ1tb]]n′ and [[θ2t]]n = [[θ2tb]]n′ . On the other hand,
by the induction hypothesis, (θ1tb, θ2tb) ∈ R′S(τ)ϕ. Therefore, (θ1t, θ2t) ∈ R′S(τ)ϕ.

Case t = i. Immediate from the definition of R for integer types.

Case t = ta− tb. By the induction hypothesis, (θ1ta, θ2ta) ∈ R′S(int)ϕ and (θ1tb, θ2tb) ∈ R′S(int)ϕ.
If the evaluations of θ1ta and θ2ta (or θ1tb and θ2tb) diverge of fail, then so do the evaluations of θ1t
and θ2t, and the theorem follows from the definition of R′. Otherwise, suppose [[θ1ta]]n = [i1]na and
[[θ2ta]]n = [i2]na where na ≥ n and (i1, i2) ∈ RS(int)ϕ, and [[θ1tb]]na = [j1]nb

and [[θ2tb]]na = [j2]nb

where nb ≥ na and (j1, j2) ∈ RS(int)ϕ. Then, by the definition of R for integer types, i1 = i2
and j1 = j2. On the other hand, by the definition of the evaluation for integer subtractions,
[[θ1t]]n = [i1 − j1]nb

and [[θ2t]]n = [i2 − j2]nb
. Therefore, (θ1t, θ2t) ∈ R′S(int)ϕ.

Case t = t′ > 0. By the induction hypothesis, (θ1t
′, θ2t

′) ∈ R′S(int)ϕ. If the evaluations of θ1t
′

and θ2t
′ diverge of fail, then so do the evaluations of θ1t and θ2t, and the theorem follows from

the definition of R′. Otherwise, suppose [[θ1t
′]]n = [i1]na and [[θ2t

′]]n = [i2]na where na ≥ n and
(i1, i2) ∈ RS(int)ϕ. Then, by the definition of R for integer types, i1 = i2. On the other hand, by
the definition the evaluation for integer comparisons, [[θ1t]]n = [i1 > 0]na and [[θ2t]]n = [i2 > 0]na .
Therefore, (θ1t, θ2t) ∈ R′S(bool)ϕ.

Case t = 〈τ ′, α′, n′〉. By the assumption that S∩knows(t) = ∅, α′ 6∈ S. Therefore, by the definition
of R for key types, (t, t) ∈ RS(〈τ ′〉)ϕ. Thus, since t is a value, (t, t) ∈ R′S(〈τ ′〉)ϕ.

Case t = new〈τ ′, α′〉. By the definition of the evaluation for key generations, [[t]]n = [〈τ ′, α′, n +
1〉]n+1 for any n. On the other hand, by the assumption that S ∩ knows(t) = ∅, α′ 6∈ S. Therefore,
by the definition of R for key types, (〈τ ′, α′, n + 1〉, 〈τ ′, α′, n + 1〉) ∈ RS(〈τ ′〉)ϕ. Thus, (t, t) ∈
R′S(〈τ ′〉)ϕ.

Case t = btactb. Suppose Γ ` ta : τa and Γ ` tb : 〈τa〉. Then, by the induction hypothesis,
(θ1ta, θ2ta) ∈ R′S(τa)ϕ and (θ1tb, θ2tb) ∈ R′S(〈τa〉)ϕ. If the evaluations of θ1ta and θ2ta (or θ1tb
and θ2tb) diverge or fail, then so do the evaluations of θ1t and θ2t, and the theorem follows from
the definition of R′. Otherwise, suppose [[θ1ta]]n = [v′1]na and [[θ2ta]]n = [v′2]na where na ≥ n

11

and (v′1, v
′
2) ∈ RS(τa)ϕ, and [[θ1tb]]na = [k1]nb

and [[θ2tb]]na = [k2]nb
where nb ≥ n and (k1, k2) ∈

RS(〈τa〉)ϕ. Then, by the definition of R for key types, k1 = k2 = 〈τa, α
′, n′〉 for some α′ 6∈ S and

n′. On the other hand, by the definition of the evaluation for encryptions, [[θ1t]]n = [bv′1ck1]nb
and

[[θ2t]]n = [bv′2ck2]nb
. Therefore, by the definition of R for ciphertext types, (θ1t, θ2t) ∈ R′S(bits)ϕ.

Case t = (let bxcta = tb in tc else td). Suppose Γ ` ta : 〈τ ′〉 and Γ ` tb : bits. Then, by the
induction hypothesis, (θ1ta, θ2ta) ∈ R′S(〈τ ′〉)ϕ and (θ1tb, θ2tb) ∈ R′S(bits)ϕ. If the evaluations of
θ1ta and θ2ta (or θ1tb and θ2tb) diverge or fail, then so do the evaluations of θ1t and θ2t, and the
theorem follows from the definition of R′. Otherwise, suppose [[θ1ta]]n = [k1]na and [[θ2ta]]n = [k2]na

where na ≥ n and (k1, k2) ∈ RS(〈τ ′〉)ϕ, and [[θ1tb]]na = [bv′1ck′1]nb
and [[θ2tb]]na = [bv′2ck′2]nb

where
nb ≥ n and (bv′1ck′1 , bv′2ck′2) ∈ RS(bits)ϕ. Then, by the definition of R for key types, k1 = k2 =
〈τa, α

′, n′〉 for some α′ 6∈ S and n′. By the definition of R for ciphertext types, the following two
sub-cases are possible:

Sub-case (k1 = k2 = k′1 = k′2) ∧ (v′1, v
′
2) ∈ RS(τ ′)ϕ. By the definition of the evaluation for

decryptions, [[θ1t]]n = [[θ1tc[x := v′1]]]nb
and [[θ2t]]n = [[θ2tc[x := v′2]]]nb

. On the other hand, by the
induction hypothesis, (θ1tc[x := v′1], θ2tc[x := v′2]) ∈ R′S(τ)ϕ. Therefore, (θ1t, θ2t) ∈ R′S(τ)ϕ.

Sub-case (k1 6= k′1)∧(k2 6= k′2). By the definition of the evaluation for decryptions, [[θ1t]]n = [[θ1td]]nb

and [[θ2t]]n = [[θ2td]]nb
. On the other hand, by the induction hypothesis, (θ1td, θ2td) ∈ R′S(τ)ϕ.

Therefore, (θ1t, θ2t) ∈ R′S(τ)ϕ.

Case t = fail. Immediate from the definition of R′. 2

From the parametricity theorem above, the non-interference property below follows immediately.
It states that values encrypted with secret passwords cannot be distinguished from one another by
any function ignorant of the secret passwords.

Corollary 8 (Non-Interference). Suppose ∅ ` t : bits → bool and α1, α2 6∈ knows(t). Then,
[[tbv1ck1]]n = [[tbv2ck2]]n for any n, k1 = 〈τ1, α1, n1〉, k2 = 〈τ2, α2, n2〉, ∅ ` v1 : τ1, and ∅ ` v2 : τ2.

Proof. Let S = {α1, α2}, ϕ(k1, k2) = {(v1, v2)}, and ϕ(k′1, k
′
2) = ∅ whenever (k′1, k

′
2) 6= (k1, k2).

Then, (t, t) ∈ RS(bits → bool)ϕ by Theorem 7 and (bv1ck1 , bv2ck2) ∈ RS(bits)ϕ by the definition
of RS(bits)ϕ. Therefore, by the definition of RS(bits → bool)ϕ, we have (tbv1ck1 , tbv2ck2) ∈
R′S(bool)ϕ. Thus, by the definition of R′S(bool)ϕ, [[tbv1ck1]]n = [[tbv2ck2]]n. 2

More generally, related terms can be proved as follows to be indistinguishable to any observer
who does not know the secret passwords.

Definition 9. Two closed terms t1 and t2 of type τ are said to be observationally equivalent with
respect to a set S of secret passwords, written t1

obs= S t2 : τ , if and only if [[t(t1)]]n = [[t(t2)]]n for
any n and t with ∅ ` t : τ → bool and S ∩ knows(t) = ∅.

Corollary 10 (Soundness of Parametricity). (t1, t2) ∈ R′S(τ)ϕ implies t1
obs= S t2 : τ for any

t1, t2, τ , S, and ϕ with dom(ϕ) = {(〈τ1, α1, n1〉, 〈τ2, α2, n2〉) | α1, α2 ∈ S}.
Proof. Immediate from Theorem 7 and the definition of the logical relation for arrow types. 2

The reason why we include passwords (in addition to sequence numbers) in keys can now
be explained more precisely. Consider two terms t1

def= (let k1 = new〈int, α〉 in b1ck1) and

t2
def= (let k2 = new〈int, α〉 in b2ck2), for example. Then, t1

obs= {α} t2 : bits. Without the password
α, it would be hard to specify the values of the secret keys k1 and k2, because we would have to
determine their sequence numbers, which depend on the contexts.

12

Example 11. Suppose p1
def= {c = b1ck, f = λx. dxek + 2} and p2

def= {c = b3ck, f = λx. dxek}
where k = 〈int, α, n〉 for some α and n. Then, as we saw in the first example at the beginning of
this section, (p1, p2) ∈ RS(τ)ϕ where τ = {c : bits, f : bits → int}, S = {α}, ϕ(k, k) = {(1, 3)},
and ϕ(k1, k2) = ∅ for (k1, k2) 6= (k, k). Therefore, p1

obs= S p2 : τ by Corollary 10.

Example 12. Suppose k = 〈int, α, n〉, α ∈ S, and (4, 5) ∈ ϕ(k, k). Then, (b4ck, b5ck) ∈ RS(bits)ϕ
but (k, k) 6∈ RS(〈int〉)ϕ, so ({c = b4ck, k = k}, {c = b5ck, k = k}) 6∈ RS({c : bits, k : 〈int〉})ϕ as
we saw in the second example at the beginning of this section. Indeed, b4ck obs= S b5ck : bits but

{c = b4ck, k = k}
obs
6= S {c = b5ck, k = k} : {c : bits, k : 〈int〉}.

The next example suggests how to enforce the abstractness of polymorphic types (e.g., a value
of the type ∀α. α → α is the universal identity function) by wrapping a term with encryption and
decryption. Section 4 develops this intuition in greater detail.

Example 13. Suppose k = 〈τ, α, n〉 and ∅ ` f : bits → bits, with α 6∈ knows(f). Then,
[[dfbvckek]] = v for any ∅ ` v : τ , provided that the evaluation does not fail or diverge.

Proof. Let S = {α}, ϕ(k, k) = {(v, v)}, and ϕ(k1, k2) = ∅ when (k1, k2) 6= (k, k). Then, by the
definition of the logical relation for ciphertexts, (bvck, bvck) ∈ RS(bits)ϕ. At the same time, by
Theorem 7, (f, f) ∈ RS(bits → bits)ϕ. Therefore, by the definition of the logical relation for arrow
types, ([[fbvck]], [[fbvck]]) ∈ RS(bits)ϕ. On the other hand, since the decryption dfbvckek does not
fail, [[fbvck]] = bv′ck for some v′. Thus, we have (bv′ck, bv′ck) ∈ RS(bits)ϕ, which implies v = v′ by
the definition of the logical relation for ciphertexts. Therefore, [[dfbvckek]] = [[dbv′ckek]] = v′ = v.

2

4 Encoding Type Abstraction

In the previous section, we adapted the parametricity theory of type abstraction for the crypto-
graphic λ-calculus, providing a high-level tool for reasoning about “cryptographic abstraction.” An
even more attractive scenario would be one where we could simply write our programs in terms of
polymorphism (for simplicity), and then translate uses of polymorphism into encryption to allow
our programs to operate in a more flexible setting (including networking, etc.) with a broader range
of attackers while preserving the abstraction guarantees of the original program. In this section, we
propose such an encoding of the polymorphic λ-calculus into the cryptographic calculus. We begin
in Section 4.1 with a naive version that illustrates most of the ideas but does not protect itself from
malicious functions that may be passed in from the environment. In Section 4.2 we show how to
add such protection.

The source language of the encoding is the standard polymorphic λ-calculus (System F) [13, 23]
with existential types, with two minor changes:

• Each type application (e1 : ∀α. T)[e2] is annotated with the type ∀α. T of the term e1, so that
the encoding can be defined on typed terms instead of their typing derivation trees. (This
type annotation will be elided when it is unimportant.)

• The primitive fail, the divergence ⊥, and the global counter increment inc are included for the
sake of convenience, since those effects are also present in the target language. Alternatively,
we could exclude them from the source language and weaken the conjecture of full abstraction
(Conjecture 15) to “full abstraction modulo effects,” i.e., the encodings of equivalent terms
are equivalent except for failure, divergence, and sequence numbers.

13

In the encoding, we assume that all bound type variables are pairwise distinct by α-conversion.

4.1 Naive Encoding

Before presenting an encoding that preserves type abstraction, let us consider an encoding that just
preserves well-typedness of terms. This is already non-trivial, since we are translating a polymorphic
language into a monomorphic one. Consider, for example, the term

let id : ∀α. α → α = Λα. λx : α. x
in {i = id [int]123, b = id [bool]true}

in the source language. If we only erase the types, we get an ill-typed term:

let id = λ . λx. x in {i = id{}123, b = id{}true}
Instead, as we did in the encoding of recursive types, we encode each type variable α as the
ciphertext type bits and insert encryption and decryption when we use values of universal types
(and, dually, when we make values of existential types). In the present example, the universal type
∀α. α → α is encoded as the type {} → bits → bits, the type abstraction Λα. λx : α. x is encoded
as the function λ . λx. x of type {} → bits → bits, and the instantiations id [int] and id [bool] are
encoded as functions λz. did{}bzc〈〈int〉〉e〈〈int〉〉 and λz. did{}bzc〈〈bool〉〉e〈〈bool〉〉 of types int → int and
bool → bool, respectively. These translations together yield the following well-typed term:

let id = λ . λx. x
in {i = (λz. did{}bzc〈〈int〉〉e〈〈int〉〉)123,

b = (λz. did{}bzc〈〈bool〉〉e〈〈bool〉〉)true}
Formally, the encoding E(e) is given in Figure 4. Type abstractions and type applications are

encoded as abstractions and applications of the empty record {}, so that the evaluation order is
preserved. The coercions C+ and C− insert the encryption and decryption, respectively, to convert
between (the encodings of) values of abstract types (such as α → α) and concrete types (such
as int → int) by η-expansion. More specifically, if α = T ′ and k : 〈E(T ′)〉, then the coercions
C±α (x, k, T) convert between (the encodings of) values of the abstract type T and a concrete type
T [α := T ′] by η-expanding the value x along the type T . For example, consider a function f of
type T = α → α in the source language. In order to instantiate its encoding f ′ = E(f) of type
bits → bits in the target language, say, with α = int, the coercion C−α (f ′, k, α → α) η-expands it
to a function λy. df ′byckek of type int → int with k : 〈int〉.

4.2 Better Encoding

Although the encoding above suffices as far as only “good citizens” translated from the source
language are concerned, it does not protect type abstractions from malicious attackers hand-coded
in the target language, because not all terms of type E(T) (such as {} → bits → bits) in the target
language behave like encodings of terms of the type T (such as ∀α. α → α) in the source language.
For example, consider the terms e1

def= λf : (∀α. α → α). f and

e2
def= λf : (∀α. α → α).Λβ. let f ′ : β → β = f [β] in λx : β. let y : β = f ′x in x

of type T
def= (∀α. α → α) → (∀α. α → α). In the source language, they are indistinguishable

because [[f [τ]v]] = v for any f : ∀α. α → α and v : τ unless the evaluation fails or diverges. On the

14

E(Λα. e) def= λ . E(e)

E((e : ∀α. T1)[T2])
def= let x = E(e){} in C−α (x, 〈〈E(T2)〉〉, T1)

E(pack T1, e as ∃α. T2)
def= let x = E(e) in C+

α (x, 〈〈E(T1)〉〉, T2)

E(open e1 as α, x in e2)
def= let x = E(e1) in E(e2)

E(x) def= x

E(λx : T. e) def= λx. E(e)

E(e1e2)
def= E(e1)E(e2)

E({˜̀= ẽ}) def= {˜̀= E(ẽ)}
E(#`(e))

def= #`(E(e))

E(if e1 then e2 else e3)
def= if E(e1) then E(e2) else E(e3)

E(true) def= true

E(false) def= false

E(i) def= i

E(e1 − e2)
def= E(e1)− E(e2)

E(e > 0) def= E(e) > 0

E(fail) def= fail

E(⊥) def= (λx. xbxc〈〈bits→{}〉〉)(λx. dxe〈〈bits→{}〉〉x)

E(inc) def= let = new〈{}, ε〉 in {}

E(α) def= bits

E(∀α. T) def= {} → E(T)

E(∃α. T) def= E(T)

E(T1 → T2)
def= E(T1) → E(T2)

E({˜̀ : T̃}) def= {˜̀ : E(T̃)}
E(bool) def= bool

E(int) def= int

C+
α (x, k, α) def= bxck
C−α (x, k, α) def= dxek
C±α (x, k, β) def= x (if α 6= β)

C±α (x, k,∀β. T) def= λ . let y = x{} in C±α (y, k, T)

C±α (x, k,∃β. T) def= C±α (x, k, T)

C±α (x, k, T1 → T2)
def= λa. let r = x(C∓α (a, k, T1)) in C±α (r, k, T2)

C±α (x, k, {˜̀ : T̃}) def= let ỹ = #˜̀(x) in {˜̀= C±α (ỹ, k, T̃)}
C±α (x, k,bool) def= x

C±α (x, k, int) def= x

Figure 4: Naive Encoding

15

T (e : T) def= let x = E(e) in G+(x, T)

G±(x, α) def= x

G+(x,∀α. T) def= λ . let y = x{} in G+(y, T)

G−(x,∀α. T) def= λ . let k = new〈bits, γ〉 in
let y = x{} in
let z = C−α (y, k, T) in G−(z, T)

G+(x,∃α. T) def= let k = new〈bits, γ〉 in
let z = C+

α (x, k, T) in G+(z, T)

G−(x,∃α. T) def= G−(x, T)

G±(x, T1 → T2)
def= λy. let a = G∓(y, T1) in

let r = xa in G±(r, T2)

G±(x, {˜̀ : T̃}) def= let ỹ = #˜̀(x) in {˜̀= G±(ỹ, T̃)}
G±(x,bool) def= x

G±(x, int) def= x

Figure 5: Better Encoding

other hand, their naive encodings t1 = λf. f and

t2 = λf. λ . let f ′ = f{} in λx. let = f ′x in x

of type τ = ({} → bits → bits) → ({} → bits → bits) are distinguishable, say, to the observer

λF. dF (λ . λx. btruec〈〈bool〉〉){}bfalsec〈〈bool〉〉e〈〈bool〉〉

of type τ → bool.
We can improve this naive encoding by wrapping all values coming from the outside of the

encoding with encryption and decryption, and thereby forcing them to behave as they should, so
that the decryption fails if they do not. For instance, in the example above, we can wrap the
incoming function f like

t′2 = λf. let f = λ . (let k = new〈bits, γ〉 in
let f ′ = f{} in λx. df ′bxckek)

in . . .

so that it does nothing but behaving as a function of type ∀α. α → α (cf. Example 13 in Section
3).

Formally, the better encoding T (e : T) is given in Figure 5. To protect type abstractions, the
guard G±(x, T) wraps incoming values of universal types (and, dually, outgoing values of existential
types) by η-expanding the variable x along the type T and inserting encryption and decryption
using a single secret password γ. Note that it never changes the types of the values that it wraps—
for instance, in the example above, both t2 and t′2 have type τ—since it encrypts values of the type
bits. This double encryption is not a waste of work: the first encryption (in the naive encoding)
focused on well-typedness, while this second encryption (in this better encoding) aims at protection.

The “correctness” of this encoding can be formalized as follows.

16

Definition 14. (e1
obs= e2 : T) def⇐⇒ (∅ ` e1 : T) ∧ (∅ ` e2 : T) ∧ [[e(e1)]]n = [[e(e2)]]n for any n and

∅ ` e : T → bool.

Conjecture 15 (Full Abstraction). For any e1 and e2, e1
obs= e2 : T if and only if T (e1 : T) obs= {γ}

T (e2 : T).

We leave it for future work to determine whether this conjecture is true or false. It is not straight-
forward for at least the following reasons:

• The target language is much more expressive than the source language. Consider, for instance,
two functions F1 and F2 of type (int → int) → bool. Even if [[E(F1)f]] = true and [[E(F2)
f]] = false for some function f : int → int in the target language, we cannot conclude that F1

and F2 are inequivalent in the source language, because the function f might be undefinable.
Neither does this imply that the encoding is not fully-abstract, because the “test” for the
function f might also be undefinable.

• As far as we are aware, it remains an open problem to find any fully-abstract model of the
polymorphic λ-calculus. Indeed, this was a hard problem even for the simply typed λ-calculus
(with recursion) [14, pp. 212–215].

5 Related Work

The history of abstraction is as long as the history of programming languages. More than 27 years
ago, Morris [18] informally presented the idea of protecting type abstractions by “sealing” values of
the abstract types. Our encoding of polymorphism into cryptography in Section 4 can be regarded
as a formalization of his idea.

Parametricity was first formalized by Reynolds [24] and further popularized by Wadler [26].
Although it was developed primarily in the setting of universal types, it can be applied easily to
the setting of abstract types, because abstract types can be interpreted as existential types [16] and
existential types can be encoded into universal types. Alternatively, parametricity can be extended
directly to existential types [16, 20].

Abadi, Fournet, and Gonthier [4–6] have studied process calculi with security features such as
authentication and private communication, and presented fully-abstract encodings of these systems
into process calculi with cryptographic primitives (adaptations of the spi calculus [1, 7] and the join
calculus [11, 12]). As their work itself shows, however, direct reasoning about such calculi is not
easy. Boreale, De Nicola, and Pugliese’s theory [8] of trace-based equivalence in spi-calculus would
mitigate the difficulty.

Zdancewic, Grossman, and Morrisett [28] developed a variant of the simply typed λ-calculus
that preserves abstractions between multiple principals by distinguishing them through the syntax
and the type system. They also gave a syntactic proof of (an adaptation of) parametricity in their
calculus, using the small-step semantics of their calculus. It would be interesting to see whether
and how their syntactic approach applies to our cryptographic framework and vice versa.

Heintze and Riecke [15] proposed a typed λ-calculus with information flow control, and proved a
non-interference property (that a value of high security does not leak to any context of low security)
by using a logical relation like parametricity as we did in Section 3. While their calculus is high-
level and uses static typing to keep secrecy, our calculus is low-level and uses dynamic encryption
to hide information. As a result, it is forbidden in their scheme to, say, communicate a secret value
over a public network, because the potential illegal access leads to a static type error.

17

Lillibridge and Harper [personal communication, July 2000] have independently developed a
typed seal calculus quite similar to our cryptographic λ-calculus, and studied encodings of various
constructs such as recursive types and polymorphism. The main thrust of their work is finding
various alternative implementations of the seal primitives in terms of lower-level mechanisms such
as exceptions and references and vice versa, rather than establishing techniques for reasoning about
properties of programs in their calculus or protecting translations of high-level programs from low-
level attackers.

6 Conclusion

We have (i) developed a λ-calculus with cryptography, (ii) adapted the parametricity theory of
polymorphism to this calculus, and (iii) proposed an encoding of type abstraction into encryption.
Besides investigating whether the encoding in Section 4.2 is fully abstract, at least the following
issues will be interesting for further research.

Dynamic Typing and Polymorphism. It is known that dynamic typing does not to coexist
well with polymorphism, because it breaks the type abstraction of polymorphism [3]. By imple-
menting polymorphism with cryptography, however, it would be possible to allow the coexistence
without losing the abstraction.

Aliasing and Information Hiding. It is also known that language features such as references
cells and communication channels break type abstractions in subtle ways via aliasing [19]. For
example, in an extension of the polymorphic λ-calculus with reference cells, a function

bogus id = Λα. let r : α option ref = ref(None) in
λx : α. case !r of None ⇒ (r := Some(x);x) | Some(y) ⇒ y

of type ∀α. α → α does not behave as the universal identity function, e.g. in the program let f :
int → int = bogus id [int] in (f1, f2). It would be interesting to see how such phenomenon affects
the information hiding that cryptography achieves.

Public-Key Cryptography. Although we have focused on shared-key cryptography so far, it
is natural to wonder what public-key cryptography corresponds to in term of the type theory. A
possible answer to this question might involve bounded quantification [9].

Conventional upper-bounded quantification corresponds roughly to digital signatures or trade-
marks [18]. If a package exports an abstract type α ≤ τ , then clients of the package can read
α-values without help from the package, but only authorized code inside the package can create
elements of α.

Conversely, a lower-bounded abstract type α ≥ τ roughly corresponds to a public key for
encrypting values of type τ , because those who do not know the concrete type (i.e., the private
key) can make a value of the type α (i.e., a ciphertext) but cannot use it. For example, using a
“public key” α ≥ int, we can program transmission of a secret datum i : int to a “remote host”
f : α → τ ′ over a “public network” g : α → α, as f(g(coerceα(i))). Because the type α is abstract,
the function g must return the argument as it is, or just diverge and discard it (which a real network
might also do).

18

Encoding Encryption into Type Abstraction. As the reverse of the encoding in Section 4,
it also seems possible to implement encryption using type abstraction with some extensions such as
references and dynamic typing. The following program in Standard ML illustrates this intuition,
implementing public-key cryptography in terms of existential polymorphism. The exn type is used
for dynamic typing and functor application is used for fresh key generation.

type ciphertext = exn
exception DecryptionFailure

signature CRYPT =
sig type plaintext

val encrypt : plaintext → ciphertext
val decrypt : ciphertext → plaintext

end

functor Crypt (type plaintext) : CRYPT =
struct type plaintext = plaintext

exception C of plaintext
fun encrypt x = C x
fun decrypt (C x) = x
| decrypt = raise DecryptionFailure

end

In this program, the functor Crypt takes the place of the fresh key generator, and the functions
encrypt and decrypt play the role of the encryption and decryption keys, respectively. For example,
it works as follows.

- structure IntCrypt1 = Crypt (type plaintext = int);
structure IntCrypt1 : CRYPT
- structure IntCrypt2 = Crypt (type plaintext = int);
structure IntCrypt2 : CRYPT
- val c = IntCrypt1.encrypt 123;
val c = C(-) : ciphertext
- IntCrypt1.decrypt c;
val it = 123 : IntCrypt1.plaintext
- IntCrypt2.decrypt c;
uncaught exception DecryptionFailure

Since it is possible to interpret the module system of Standard ML in terms of universal and exis-
tential polymorphism [25], it would be possible as well to encode cryptography into polymorphism
(with some extensions) by generalizing this example.

Encoding Subtyping into Cryptography. As a variation on our encoding of parametric poly-
morphism into cryptography, we might consider implementing subtype polymorphism in terms of
cryptography. The idea would be to encrypt the “private” part of a value. For instance, the co-
ercion between a sub record type {b : bool, i : int} and a super record type {b : bool} can be
simulated by encrypting and decrypting the second element i, e.g. like

let upcast = λr. {b = #b(r), other = b#i(r)ck} in
let downcast = λr. {b = #b(r), i = d#other (r)ek} in
downcast(f(upcast(r′)))

19

where r′ is a record of type {b : bool, i : int}, f is a function of type {b : bool, other : bits} →
{b : bool, other : bits}, and k is a key of type 〈int〉. This trick is reminiscent of the treatment of
record subtyping in terms of row polymorphism [22, 27].

Concurrency and Distribution. Last but not least, we would like to consider adaptating
these ideas to concurrent and/or distributed calculi with cryptographic primitives, such as Abadi
and Gordon’s spi-calculus [1, 7]. This adaptation is challenging because the semantics of these
languages is typically given in a small-step style, with no notion of “the value of a program.” Pierce
and Sangiorgi’s treatment of parametric polymorphism in π-calculus [19], Boreale, De Nicola, and
Pugliese’s theory of trace-based equivalence in spi-calculus [8], and Pitts and Ross’ work on big-step
semantics of process calculi [21] may provide clues.

Acknowledgements

Some of the ideas presented here originated in a coffee-break conversation with Greg Morrisett.
Mart́ın Abadi offered useful pointers to related literature and insightful technical suggestions. Mark
Lillibridge helped us understand the relation with his typed seal calculus and gave us valuable
comments on a late draft of the manuscript. Atsushi Igarashi provided useful comments on a
previous version of the paper.

This work was supported by the National Science Foundation under NSF Career grant CCR-
9701826 and by the Japan Society for the Promotion of Science.

References

[1] Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786,
1999.

[2] Mart́ın Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin. Dynamic typing
in a statically typed language. ACM Transactions on Programming Languages and Systems,
13(2):237–268, 1991.

[3] Mart́ın Abadi, Luca Cardelli, Benjamin C. Pierce, and Didier Rémy. Dynamic typing in
polymorphic languages. Journal of Functional Programming, 5(1):111–130, 1995.

[4] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of chan-
nel abstractions. Available at http://pauillac.inria.fr/~fournet/papers/secure-
implementation.ps.gz, 1999. Preliminary papers on this work appeared in Thirteenth An-
nual IEEE Symposium on Logic in Computer Science, pp. 74–88 and 1999 IEEE Symposium
on Security and Privacy , pp. 105–116.

[5] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. A top-down look at a secure message.
In Foundations of Software Technology and Theoretical Computer Science, volume 1738 of
Lecture Notes in Computer Science, pages 122–141. Springer-Verlag, 1999.

[6] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Authentication primitives and their
compilation. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 302–315, 2000.

20

[7] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1–70, 1999.

[8] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for cryptographic
processes, 1999. Available at ftp://rap.dsi.unifi.it/pub/papers/spi.ps.gz. An ex-
tended and revised version of the paper that appeared in 14th Annual IEEE Symposium on
Logic in Computer Science, pp. 157–166.

[9] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):471–522, 1985.

[10] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. Technical report,
Weizmann Institute of Science, 2000. Avalable at http://www.wisdom.weizmann.ac.il:81
/Dienst/UI/2.0/Describe/ncstrl.weizmann il%2fCS95-27. A preliminary version of this
work appeared in Proceedings of the Twenty-Third Annual ACM Symposium on Theory of
Computing , pp. 542–552.

[11] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 372–385, 1996.

[12] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In CONCUR ’96, volume 1119, pages 406–421, 1996.

[13] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[14] Carl A. Gunter. Semantics of Programming Languages. MIT Press, 1992.

[15] Nevin Heintze and Jon G. Riecke. The slam calculus: Programming with secrecy and integrity.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1998.

[16] John C. Mitchell. On the equivalence of data representations. In Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages 305–330.
Academic Press, 1991.

[17] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential types. ACM Trans-
actions on Programming Languages and Systems, 10(3):470–502, 1988.

[18] James H. Morris Jr. Protection in programming languages. Communications of the ACM,
16(1):15–21, 1973.

[19] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the polymorphic pi-
calculus. Journal of the ACM, 47(3):531–586, 2000.

[20] Andrew M. Pitts. Existential types: Logical relations and operational equivalence. In Proceed-
ings of the 25th International Colloquium on Automata, Languages and Programming, volume
1443 of Lecture Notes in Computer Science, pages 309–326. Springer-Verlag, 1998.

[21] Andrew M. Pitts and Joshua R. X. Ross. Process calculus based upon evaluation to committed
form. Theoretical Computer Science, 195:155–182, 1998.

21

[22] Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter
and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design. MIT Press, 1994.

[23] John C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation,
volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer-Verlag, 1974.

[24] John C. Reynolds. Types, abstraction and parametric polymorphism. In Information Process-
ing 83, Proceedings of the IFIP 9th World Computer Congres, pages 513–523, 1983.

[25] Claudio V. Russo. Types For Modules. PhD thesis, University of Edinburgh, 1998. Available
at http://www.dcs.ed.ac.uk/home/cvr/ECS-LFCS-98-389.html.

[26] Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on
Functional Programming Languages and Computer Architecture, pages 347–359. ACM, 1989.

[27] Mitchell Wand. Type inference for record concatenation and multiple inheritance. Information
and Computation, 93(1):1–15, 1991.

[28] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Principals in programming languages:
A syntactic proof technique. In Proceedings of the Fourth ACM SIGPLAN International
Conference on Functional Programming, pages 197–207, 1999.

22

