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Abstract. Developing a theory of bisimulation in higher-order
languages can be hard. Particularly challenging can be the proof of con-
gruence and, related to this, enhancements of the bisimulation proof
method with “up-to context” techniques.

We present logical bisimulations, a form of bisimulation for higher-
order languages, in which the bisimulation clause is somehow reminiscent
of logical relations. We consider purely functional languages, in particu-
lar untyped call-by-name and call-by-value lambda-calculi, and, in each
case: we present the basic properties of logical bisimilarity, including
congruence; we show that it coincides with contextual equivalence; we
develop some up-to techniques, including up-to context, as examples of
possible enhancements of the associated bisimulation method.

1 Introduction

Applicative bisimulations and behavioral equivalence in higher-order languages.
Equivalence proof of computer programs is an important but challenging prob-
lem. Equivalence between two programs means that the programs should behave
“in the same manner” under any context [1]. Finding effective methods for equiv-
alence proofs is particularly challenging in higher-order languages (i.e., languages
where program code can be passed around like other data).

Bisimulation has emerged as a very powerful operational method for prov-
ing equivalence of programs in various kinds of languages, due to the associated
co-inductive proof method. Further, a number of enhancements of the bisimu-
lation method have been studied, usually called up-to techniques. To be useful,
the behavioral relation resulting from bisimulation—bisimilarity—should be a
congruence. Bisimulation has been transplanted onto (sequential) higher-order
languages by Abramsky [2]. This version of bisimulation, called applicative bisim-
ulations, and variants of it, have received considerable attention [3,4,5,6,7]. In
short, two functions P and Q are applicatively bisimilar when their applications
P (M) and Q(M) are applicatively bisimilar for any argument M .
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Applicative bisimulations have two significant limitations. First, they do not
scale very well to languages richer than pure λ-calculus. For instance, they are un-
sound under the presence of generative names [8] or data abstraction [9] because
they apply bisimilar functions to an identical argument. Secondly, congruence
proofs of applicative bisimulations are notoriously hard. Such proofs usually rely
on Howe’s method [10]. The method appears however rather subtle and fragile,
for instance under the presence of generative names [8], non-determinism [10], or
concurrency (e.g., [11,12]). Also, the method is very syntactical and lacks good
intuition about when and why it works. Related to the problems with congru-
ence are also the difficulties of applicative bisimulations with “up-to context”
techniques (the usefulness of these techniques in higher-order languages and its
problems with applicative bisimulations have been extensively studied by Lassen
[7]; see also [6,13]).

Congruence proofs for bisimulations usually exploit the bisimulation method
itself to establish that the closure of the bisimilarity under contexts is again a
bisimulation. To see why, intuitively, this proof does not work for applicative
bisimulation, consider a pair of bisimilar functions P1, Q1 and another pair of
bisimilar terms P2, Q2. In an application context they yield the terms P1P2 and
Q1Q2 which, if bisimilarity is a congruence, should be bisimilar. However the
arguments for the functions P1 and Q1 are bisimilar, but not necessarily identical:
hence we are unable to apply the bisimulation hypothesis on the functions.

The above congruence argument would work if the bisimulation were required
to apply bisimilar functions to bisimilar arguments. This definition of bisimula-
tion, that in this discussion we call BA-bisimulation1, breaks the monotonicity
of the generating functional (the function from relations to relations that rep-
resents the clauses of bisimulation). Indeed, BA-bisimulations in general are
unsound. For instance, take the identity function I = λx. x and Σ = EE where
E = λx. λy. xx. Term Σ is a ”purely convergent term” because it always re-
duces to itself when applied to any argument, regardless of the input received.
Of course I and Σ should not be regarded as bisimilar, yet {(I, Σ)} would be a
BA-bisimulation (the only related input is the pair (I, Σ) itself, and the result
of the application is again the pair) according to the definition above.

Logical bisimulations. In this paper we investigate a different approach to defin-
ing bisimilarity on functions. The main feature of our bisimulations, that we call
logical bisimulations, is to apply related functions (i.e., functions in the bisimu-
lation relation) P and Q to arguments in the context closure of the bisimulation,
that is, arguments of the forms C[V1, . . . , Vn] and C[W1, . . . , Wn] for a context C
and related values (V1, W1), . . . , (Vn, Wn). Thus the arguments can be identical
terms, as for applicative bisimilarity, or related terms, as in BA-bisimulation, or
combinations of these. As in BA-bisimulation, so in logical bisimulations the gen-
erating functional is non-monotone. However, as in applicative bisimilarity—and
in contrast with BA-bisimulations—logical bisimulations are sound and the cor-
responding functional has a greatest fixed-point which coincides with contextual
equivalence.
1 BA indicates that the bisimilarity uses “Bisimilar Arguments”.
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The intuition behind the bisimulation requirement of logical bisimulations is
the following. Consider an observer that is playing the bisimulation game, test-
ing related terms. Values produced by related terms are like outputs towards
the observer, who can use them at will: they have become part of the observer’s
knowledge. Thus the observer can check the consistency of such values (for in-
stance, the outermost construct should be same). In addition, however, the ob-
server can use them to build more complex terms (such as C[V1, . . . , Vn] and
C[W1, . . . , Wn] above) and use them as arguments when testing pairs of related
functions. Of course this power is useless if the values are first-order, since re-
lated values must then be identical. But it is relevant in a higher-order language
and yields the bisimulation requirement described above.

A possible drawback of logical bisimulations over applicative bisimulations is
that the set of arguments to related functions that have to be considered in the
bisimulation clause is larger (since it includes also non-identical arguments). As
a remedy to this, we propose the use of up-to techniques, as enhancements to
the bisimulation proof method. We consider a number of such enhancements in
the paper, including forms of up-to context and up-to expansion.

Another difference of logical bisimulations over applicative bisimulations (as
well as most definitions of bisimulation for functions in the literature) is that
we use a small-step, rather than big-step, semantics. For this reason, logical
bisimulations are defined on arbitrary closed terms, rather than values. The
use of small-step semantics may seem cumbersome—in particular for languages
without non-determinism—because it seems to require more elements in bisim-
ulations than big-step semantics. However, again, this disadvantage disappears
by means of up-to techniques. In fact, the extension to small-step semantics of-
ten simplifies an equivalence proof, because we can now compare terms in the
middle of evaluations without reducing them to values. Further, big-step ver-
sions of logical bisimulations will be derived as a corollary of the soundness of
certain up-to techniques (precisely “up-to reduction”). Another reason for choos-
ing a small-step semantics is that this is often required for non-determinism or
concurrency.

In summary, with logical bisimulations we aim at (1) maintaining the defini-
tion of the bisimulation as simple as possible, so to facilitate proofs of its basic
properties (in particular congruence and up-to-context techniques, which are
notoriously hard in higher-order languages); and (2) separately developing en-
hancements of the bisimulation method, so as to have simple bisimilarity proofs
between terms.

The bisimulation clause on functions of logical bisimulations is somehow rem-
iniscent of logical relations, see, e.g., [14, Chapter 8] and [15]. (The analogy
is stronger for the BA-bisimulations discussed earlier; we recall that in logical
relations two functions are related if they map related arguments to related re-
sults.) However, logical relations represent a type-directed technique and as such
remain quite different from bisimulations, which can be untyped. Logical rela-
tions work well in pure simply-typed or polymorphic λ-calculus, but they tend
to become incomplete and/or require more advanced meta theory in languages
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with recursive types [16,17,18,19], existential types [15,17,20,19], store [20], or
encryption [21], to give just a few examples.

The idea of logical bisimulations stems from bisimulations for higher-order
calculi with information hiding mechanisms (such as encryption [22], data ab-
straction [9], and store [13]), where the use of context closures of function ar-
guments was necessary because of the information hiding. In this respect, our
contribution in this paper is to isolate this idea and propose it as a general
method for higher-order languages. Moreover, we simplify and strengthen the
method and develop its basic theory.

In this paper we consider purely functional languages, in particular untyped
call-by-name and call-by-value lambda-calculi. It seems difficult to adapt logical
bisimulation, at least in the form presented here, to non-functional languages;
for instance, languages with information hiding constructs (e.g., for store, en-
cryption, data abstraction) or with parallelism. To treat these languages we have
added an explicit notion of environment to the bisimulations. The technical de-
tails become rather different, and can be found in [23].

2 Preliminaries

In this section, we introduce general notations and terminologies used throughout
the paper. Familiarity with standard terminologies (such as free/bound variables,
and α-conversion) for the λ-calculus is assumed.

We use meta-variables M, N, P, Q, . . . for terms, and V, W, . . . for values (in
untyped λ-calculus the only closed values are the abstractions). We identify α-
convertible terms. We write M{N/x} for the capture-avoiding substitution of
N for x in M . A term is closed if it contains no free variables. The set of free
variables of a term M is fv(M). A context C is an expression obtained from a term
by replacing some sub-terms with holes of the form [·]i. We write C[M1, . . . , Mn]
for the term obtained by replacing each occurrence of [·]i in C with Mi. Note that
a context may contain no holes, and therefore any term is a context. A context
may bind variables in M1, . . . , Mn; for example, if C = λx. [·]1 and M = x, then
C[M ] is λx. x, not λy. x. The set Λ of λ-terms is defined by:

M, N ::= x | λx. M | MN

We write Λ• for the subset of closed terms.
We use meta-variables R, S, . . . for binary relations; RS is the composition

of R and S, whereas R� is the closure of relation R under contexts, i.e.

{(C[M1, . . . , Mn], C[N1, . . . , Nn]) | MiRNi for each i}

By definition R� contains both R and the identity relation. By default, we restrict
R� to closed terms unless noted otherwise.

Sequences M1, . . . , Mn are often abbreviated to ˜M , and notations are ex-
tended to tuples componentwise. Hence, we often write C[˜M ] for C[M1, . . . , Mn],
and ˜MR ˜N for (M1RN1) ∧ · · · ∧ (MnRNn).
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We have some remarks on the results in the remainder of this paper:

– Although the results are often stated for closed values only, they can be
generalized to open terms in a common way. This can be done by defining
an ad hoc relation—the least congruence containing (M, (λx. M)x) for every
M—and proving its preservation under evaluation, as in Sumii-Pierce [22]
and Koutavas-Wand [13]. (Alternatively, we may also consider a bisimula-
tion between M and (λx. M)x. The proof is straightforward in either case.)
Thus properties between open terms M and N can be derived from the
corresponding properties between the closed terms λx̃. M and λx̃. N , for
{x̃} ⊇ fv(M) ∪ fv(N).

– The results in this paper are stated for untyped languages. Adapting them
to languages with a simply-typed discipline is straightforward. (We will use
a simply-typed calculus in an example.)

3 Call-by-Name λ-Calculus

The call-by-name reduction relation −→ is the least relation over Λ• closed under
the following rules.

β : (λx. M)N −→ M{N/x} μ :
M −→ M ′

MN −→ M ′N

We write =⇒ for the reflexive and transitive closure of −→. The values are the
terms of the form λx. M .

3.1 Logical Bisimulations

If R is a relation on closed terms, then we extend it to open terms thus: if
fv(M, N) = {x̃}, then M Ro N holds if for all ˜M, ˜N ∈ Λ• with ˜M R�

˜N we
have M{�M/�x} R N{ �N/�x}.

Definition 1 (logical bisimulation). A relation R ⊆ Λ• × Λ• is a logical
bisimulation if whenever M R N ,

1. if M −→ M ′ then N =⇒ N ′ and M ′ R N ′;
2. if M = λx. M ′ then N =⇒ λx. N ′ and M ′ Ro N ′;
3. the converse of (1) and (2) above, on N .

We write ≈ for the union of all logical bisimulations, and call it logical bisimi-
larity.

As R occurs in negative position in the definition of logical bisimulation, the
existence of the largest bisimulation is unclear. Indeed the union of two logical
bisimulations is not necessarily a logical bisimulation. We however prove below
that ≈ itself is a bisimulation, so that it is also the largest bisimulation. We often
omit “logical” in the remainder of the paper.
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Remark 1. The negative occurrence of R in the definition of logical bisimula-
tion breaks the monotonicity of the generating functional (the function from
relations to relations that represents the clauses of bisimulation). Therefore we
cannot appeal to the Knaster-Tarski’s fixed point theorem for the existence of
a largest bisimulation. (Such a theorem guarantees the existence of the greatest
fixed point for a monotone function on a complete lattice; moreover this point
coincides with the greatest post-fixed point of the function; see [24] for discus-
sions on the theorem and on coinduction). Thus, if we take Knaster-Tarski as the
justification of coinduction, then we could not call coinductive the proof method
for logical bisimulations. However we can show that the largest logical bisimu-
lation exists, and therefore the proof method given by logical bisimulations is
sound and complete. We call the method coinductive because it has the form of
standard coinductive proof methods. We thus take coinduction with a meaning
broader than that given by Knaster-Tarski’s theorem, namely as a notion for
reasoning about functions on complete lattices that have a greatest post-fixed
point.

First we prove that ≈ is an equivalence relation; the only non-trivial case is
transitivity.

Lemma 1. Suppose R is a bisimulation, M R N , and M =⇒ M ′. Then there
is N ′ such that N =⇒ N ′ and M ′ R N ′.

Proof. Induction on the length of M =⇒ M ′.

Lemma 2. Suppose R1 and R2 are bisimulations. Then also R1 R2 (the rela-
tional composition between them) is a bisimulation.

Proof. We prove that R1 R2 is a bisimulation. As an example, consider clause
(2) of the bisimulation. Thus, suppose M R1 R2 N because M R1 L R2 N , and
M = λx. M ′.

Since R1 is a bisimulation, there is L′ such that L =⇒ λx. L′ and M ′ Ro
1 L′.

Using Lemma 1, since also R2 is a bisimulation, there is N ′ such that N =⇒
λx. N ′ and L′ Ro

2 N ′.
We have to prove that for all (M1, N1) ∈ (R1 R2)�, we have M ′{M1/x} R1 R2

N ′{N1/x}. If (M1, N1)∈(R1 R2)�, then there is a context C and terms ˜M ′
1,

˜N ′
1

with ˜M ′
1 R1 R2

˜N ′
1 such that M1 = C[ ˜M ′

1] and N1 = C[˜N ′
1]. By definition of

relational composition, there are ˜L′
1 such that ˜M ′

1R1
˜L′

1R2
˜N ′

1. Hence, since R1
and R2 are bisimulations, we have

M ′{C[�M ′
1]/x} R1 L′{C[�L′

1]/x} and L′{C[�L′
1]/x} R2 N ′{C[�N ′

1]/x}.

We can therefore conclude M ′{C[�M ′
1]/x} R1 R2 N ′{C[�N ′

1]/x}.

Next we prove that ≈ is preserved by contexts, which allows us to conclude
that ≈ is a congruence relation. In bisimilarities for higher-order languages, the
congruence properties are usually the most delicate basic properties to estab-
lish. In contrast with proofs for applicative bisimilarity, which usually involve
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sophisticated techniques such as Howe’s, for logical bisimilarity simple inductive
reasoning on contexts suffices.

Lemma 3. If R is a bisimulation, then also R� is a bisimulation.

Proof. We prove that R� is a bisimulation. Suppose (C[˜M ], C[ ˜N ])∈R� with
˜M R ˜N . We prove clauses (1) and (2) of the bisimulation by induction on the
size of C. There are three cases to consider.

The case C = [·]i is immediate, using the fact that (R�)�=R�.
In the case C = λx. C′, only clause (2) of bisimulation applies: let M1, N1 be

the arguments of the functions, with M1 R� N1; we have also C′[˜M ]{M1/x} R�

C′[ ˜N ]{N1/x}, and we are done.
It remains the case C = C1C2, where only clause (1) of bisimulation applies.

There are two possibilities of reduction for C1[˜M ]C2[˜M ]: the left-hand side C1[˜M ]
reduces alone; the left-hand side is a function, say λx. P , and the final derivative
is P{C2[�M ]/y}. The first possibility is dealt with using induction. In the second
one, by the induction hypothesis, we infer: C1[ ˜N ] =⇒ λy. Q and P (R�)o Q.
Hence P{C2[�M ]/y}R�Q{C2[ �N ]/y}, and we are done.

Corollary 1. ≈ is a congruence relation.

Finally, we prove that ≈ itself is a bisimulation, exploiting the previous results.

Lemma 4. ≈ is a bisimulation.

Proof. In the proof that ≈ is a bisimulation, clause (1) of Definition 1 is straight-
forward to handle.

We consider clause (2). Thus, suppose λx. M ≈ N . By definition of ≈, there is
a bisimulation R such that λx. M R N ; hence there is N ′ such that N =⇒ λx. N ′

and M Ro N ′. We have to prove that also M ≈o N ′ holds.
Take M1 ≈� N1; we want to show M{M1/x} ≈ N ′{N1/x}. If M1 ≈� N1, then

there is a context C and terms M ′
1, . . . , M

′
n, N ′

1, . . . , N
′
n with M ′

i Si N ′
i for some

bisimulation Si such that M1 = C[M ′
1, . . . , M

′
n] and N1 = C[N ′

1, . . . , N
′
n]. We

have:

M{C[M ′
1, . . . , M

′
n]/x} R N ′{C[M ′

1, . . . , M
′
n]/x} (since M Ro N ′)

S�
1 N ′{C[N ′

1, M
′
2, . . . , M

′
n]/x}

. . .

S�
n N ′{C[N ′

1, , . . . , N
′
n−1N

′
n]/x}

This closes the proof, because each S�
i is a bisimulation (Lemma 3) and because

bisimulations are closed under composition (Lemma 2).

Example 1. We have I1 ≈ I2 for I1
def= λx. x and I2

def= λx. (λy. y)x, by taking
R def= {(M, N), (M, (λy. y)N) | M S� N}, for S

def= {(I1, I2)}. Note that the
singleton relation {(I1, I2)} by itself is not a logical bisimulation because of the
implicit use of R� in clause (2) of bisimulation. Burdens like this are frequent
in bisimulation proofs, and will be removed by the up-to techniques described
later in this section. Specifically, the singleton relation {(I1, I2)} will be a logical
bisimulation “up to reduction and contexts”.
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3.2 Up-to Techniques

We show a few “up-to” techniques, as enhancements of the bisimulation proof
method. They allow us to prove bisimulation results using relations that in gen-
eral are not themselves bisimulations, but are contained in a bisimulation. Rather
than presenting complete definitions, we indicate the modifications to the bisim-
ulation clauses (Definition 1). For this, it is however convenient to expand the
abbreviation M ′ Ro N ′ in clause (2) of the definition, which thus becomes “for
all (M1, N1) ∈ R� it holds that M ′{M1/x} R N ′{N1/x}”, and to describe the
modifications with respect to this expanded clause.

We also omit the statements of soundness of the techniques.

Up-to bisimilarity. This technique introduces a (limited) use of ≈ on tested
terms. This can allow us to avoid bisimulations with elements that, behaviorally,
are the same. In clause (1), we replace “M ′ R N ′” with “M ′ R ≈ N ′”; in (2),
we replace “M ′{M1/x} R N ′{N1/x}” with “M ′{M1/x} ≈ R ≈ N ′{N1/x}”. We
cannot strengthen up-to bisimilarity by using ≈ also on the left-hand side of R in
clause (1), for the technique would be unsound; this is reminiscent of the prob-
lems of up-to bisimilarity in standard small-step bisimilarity for concurrency.
[25].

Up-to reduction. This technique exploits the confluent property of reduction so
to replace tested terms with derivatives of them. When reduction is confluent
this technique avoids the main disadvantage of small-step bisimulations over the
big-step ones, namely the need of considering each single derivative of a tested
term.

In clause (1), we replace “M ′ R N ′” with “there are M ′′, N ′′ with M ′ =⇒ M ′′

and N ′ =⇒ N ′′ such that M ′′ R N ′′”; similarly, in (2) we replace “M ′{M1/x} R
N ′{N1/x}” with “there are M ′′, N ′′ with M ′{M1/x} =⇒ M ′′ and N ′{N1/x} =⇒
N ′′ such that M ′′ R N ′′”.

The technique allows us to derive the soundness of the “big-step” version of
logical bisimulation, in which clauses (1) and (2) are unified by requiring that

– if M =⇒ λx. M ′ then N =⇒ λx. N ′ and M ′ Ro N ′.

Up-to expansion. In concurrency, a useful auxiliary relation for up-to techniques
is the expansion relation. (A similar relation is Sands’ improvement for functional
languages [6]). We adapt here the concept of expansion to the λ-calculus. We
write M =⇒n M ′ if M reduces to M ′ in n steps. We present the big-step version
of expansion, since we will use it in examples. As for bisimilarity, so for expan-
sion the small-step version is equally possible. Similarly, the up-to techniques
described for bisimilarity can also be used to enhance expansion proofs, and
then the big-step version of expansion below can be derived from the small-step
version plus a “weighted” version of up-to reduction.

Definition 2. A relation R is an expansion relation if whenever M R N ,

1. M =⇒m λx. M ′ implies N =⇒n λx. N ′ with m ≤ n, and M ′ Ro N ′;
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2. The converse, i.e., N =⇒n λx. N ′ implies M =⇒m λx. M ′ with m ≤ n and
M ′ Ro N ′;

Expansion, written �, is the union of all expansion relations.

Thus if M −→ M ′ then M � M ′ holds, but not necessarily M ′ � M .

Lemma 5. � is a pre-congruence and is an expansion relation itself.

Proof. Similar to the proofs for ≈.

In the bisimulation up-to expansion technique, in Definition 1, we replace the
occurrence of R in clause (1), and that in clause (2), with � R �.

Since −→ ⊆ �, the up-to expansion technique subsumes, and is more powerful
than, up-to reduction. Still, up-to reduction is interesting because it can be
simpler to combine with other techniques and to adapt to richer languages.

Up-to values. Using up-to expansion, and exploiting the basic properties of ex-
pansion (notably pre-congruence, and the fact that any pair of closed divergent
terms is in the expansion relation) we can prove that the quantification over R�

in clause (2) can be restricted to ̂R
�
, where ̂R indicates the subset of R with

only pairs of values.

Up-to contexts. This technique allows us to cancel a common context in tested
terms, requiring instead that only the arguments of such context be pairwise
related. Thus in clauses (1) and (2) the final occurrence of R is replaced by R�.

Up-to full contexts. The difference between “up-to contexts” and “up-to full
contexts” is that in the latter the contexts that are cancelled can also bind
variables of the arguments. As a consequence, however, a relation for the “up-to
full contexts” is on open terms. Clauses (1) and (2) of Definition 1 are used only
on closed terms, but with the last occurrence of R in each clause replaced by
R�. We add a new clause for open terms:

– If M R N then also M Ro N (i.e., if x̃ = fv(M, N), then for all ( ˜M1, ˜N1) ∈
R�, it holds that M{�M1/�x} R� N{�N1/�x}).

Again, the up-to full contexts subsumes, and is more powerful than, up-to con-
texts, but the latter is simpler to establish and use.

Remark 2. An up-to-full-contexts technique similar to the one above has been
proposed by Lassen [26, Lemma 7] and proved sound with respect to applicative
bisimilarity. (Lassen was actually hoping to prove the soundness of the up-to-
full-contexts technique for applicative bisimilarity itself, but failed; indeed forms
of up-to contexts for applicative bisimilarities are notoriously hard). Further,
Lassen’s paper contains a number of interesting examples, such as least-fixed
point properties of recursion and a syntactic minimal invariance property, that
are proved for applicative bisimilarity by making use of up-to techniques. Similar
proofs can be given for logical bisimilarity.
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Big-step versions and combinations of up-to. The previous techniques can be
combined together, in the expected manner. Further, for each technique both
the small-step and the big-step versions are possible. We give two examples.
The (small-step) “up-to expansion and full contexts” is defined as “up-to full
contexts”, but expansion appears in the conclusions. Thus clause (1) becomes:

– if M, N ∈ Λ• and M −→ M ′ then N =⇒ N ′ and M ′ �R�� N ′

Clause (2) is modified similarly; and in the clause for open terms, “M{�M1/�x} R�

N{�N1/�x}” is replaced by “M{�M1/�x} �R�� N{�N1/�x}”.
In the big-step up-to expansion and context, the bisimulation clause becomes:

– if M =⇒ λx. M ′ then N =⇒ λx. N ′ and for all (M1, N1) ∈ R� it holds that
M ′{M1/x} �R�� N ′{N1/x}. (*)

Of course, in general the more powerful the up-to is, the more work is required
in its proof of soundness.

3.3 Contextual Equivalence

Definition 3 (contextual equivalence). Terms M and N are contextually
equivalent, written M ≡ N , if, for any context C such that C[M ] and C[N ] are
closed, C[M ] ⇓ iff C[N ] ⇓.

Theorem 1 (soundness and completeness of bisimulation). Relations ≡
and ≈ coincide.

Proof. For closed terms, we prove that M ≡ N implies M ≈ N by showing that
≡ is a bisimulation; the proof is simple, proving first that ≡ is an equivalence,
that ≡� = ≡ and that reduction is included in ≡. The converse implication
(M ≈ N implies M ≡ N) immediately follows from the congruence of ≈. The
result for open terms is obtained as discussed in Section 2.

3.4 Example 1

This example gives the proof of the equivalence between the two fixed-point
combinators:

Y
def= λy. y(Dy(Dy))

Θ
def= ΔΔ

where
Δ

def= λx. λy. (y(xxy))
D

def= λy. λx. y(xx)

We establish Y ≈ Θ using a relation R that has just one pair, namely (Y, Θ), and
proving that R is a big-step logical bisimulation up to expansion and context.
First, we note that, for any term M ,

DM(DM) � Y M (1)



374 D. Sangiorgi, N. Kobayashi, and E. Sumii

This holds because DM(DM)=⇒2 M(DM(DM)) and Y M =⇒1 M(DM(DM)).
We now check the bisimilarity clause (*) on the pair (Y, Θ). Term Y is a function;
the other term, Θ, becomes a function as follows:

Θ −→ λy. (y(ΔΔy)) def= Θ1

Consider now any argument M R� N for Y and Θ1. The results are M(DM
(DM)) and N(ΔΔN), respectively. Now, by (1), it holds that

M(DM(DM)) � M(Y M)

and we are done, since M(Y M) R� N(ΔΔN) = N(ΘN).

4 Call-by-Value λ-Calculus

The one-step call-by-value reduction relation −→ ⊆ Λ• × Λ• is defined by these
rules:

βv : (λx. M)V −→ M{V/x}

μ :
M −→ M ′

MN −→ M ′N
νv :

N −→ N ′

V N −→ V N ′

We highlight what changes in the theory for call-by-name of the previous
sections. For a relation R we write R�� for the subset of R� that only relate pairs
of values.

– The input for two functions must be values. Therefore, in the definition
of bisimulation, the input terms M1 and N1 should be in R�� (rather than
R�). A similar modification on the quantification over inputs of functions is
needed in all definitions of bisimulations and up-to techniques.

– In clause (2) of bisimilarity we add the requirement that the two functions
themselves are related, i.e., λx. M ′ R λx. N ′. Roughly, this is needed be-
cause, in call-by-value, by definition, function arguments are evaluated be-
fore applications. The proof of congruence itself for bisimilarity requires this
addition. We will nevertheless be able to remove the requirement later, ex-
ploiting appropriate up-to techniques.

Remark 3. To make the definition of logical bisimulation uniform for call-by-
name and call-by-value, the requirement “λx. M ′ R λx. N ′” could also be added
in call-by-name. This would not affect the proofs of the result presented. As in
call-by-value, the requirement could then be removed by means of appropriate
up-to techniques.

For ease of reference, we report the complete definition of bisimulation. If R is a
relation on closed terms, and fv(M, N) = x̃, then M R�o N holds if for all ˜V , ˜W

with ˜V R��
˜W it holds that M{�V/�x} R N{�W/�x}.

Definition 4. A relation R ⊆ Λ• × Λ• is a logical bisimulation if whenever
M R N ,
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1. if M −→ M ′ then N =⇒ N ′ and M ′ R N ′
2. if M = λx. M ′ then N =⇒ λx. N ′ and

(a) λx. M ′ R λx. N ′
(b) M ′ R�o N ′

3. the converse of (1) and (2) above.

With these modifications, all definitions and results in Section 3 are valid for call-
by-value. The structure of the proof also remains the same, with the expected
differences in technical details due to the change in reduction strategy. It is
however worth revisiting the proof of Lemma 3; although the structure of the
proof is the same, the few differences are important, in particular to understand
the requirement (2.a) in Definition 4.

Lemma 6. If R is a bisimulation, then also R� is a bisimulation.

Proof. As before we prove that R� is a bisimulation reasoning by induction on
the size of the common contexts of terms (C[˜M ], C[ ˜N ]) ∈ R� with ˜M R ˜N . In
the case C = [·]i we use the fact that (R�)��=R��.

The interesting case is C = C1C2 when both C1[˜M ] and C2[˜M ] are values,
say λx. P and V , respectively. By the induction hypothesis, we infer:

C2[ ˜N ] =⇒ W,

for some W with V R�� W . (Note that here we exploit the requirement (2.a) of
Definition 4.) Similarly we infer C1[ ˜N ] =⇒ λx. Q, for some Q with P (R�)�o Q.
This implies, since V R�� W , that P{V/x} R� Q{W/x}.

4.1 Up-to Techniques

All up-to techniques described for call-by-name are valid also for call-by-value,
modulo the technical differences in definitions that we have discussed in the
previous subsection. In addition, however, we can also derive the soundness (and
completeness) of a form of logical bisimulation with big-step restricted to values
(in call-by-value, applicative bisimulation is normally defined this way) and that
we call value big-step logical bisimulation.

Definition 5. A relation E on closed values is a value big-step logical bisimu-
lation if for all V E W and V1 E�� W1, if V V1 =⇒ V ′ then there is W ′ such that
WW1 =⇒ W ′ and V ′EW ′; and the converse, on the reductions from W .

We also provide a further up-to technique, that we call up-to environment
whereby clause (2.a) of bisimilarity (the requirement λx. M ′ R λx. N ′) is re-
moved. Its soundness is proved as follows. If R is a bisimulation up-to environ-
ment, define

R1
def= {(λx. M, λx. N) | ∃M ′, N ′. M ′RN ′ and M ′ =⇒ λx. M, N ′ =⇒ λx. N}

and then take
R2

def= R ∪ R1

We then show that R2 is a bisimulation up-to bisimilarity.
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4.2 Example 2

This example uses a simply-typed call-by-value extended with integers, an op-
erator for subtraction (−̂), a conditional, and a fixed-point operator Y . The
reduction rule for Y is Y V −→ V (λx. Y V x). As mentioned in Section 2, it is
straightforward to accommodate such additions in the theory developed. (We
could also encode arithmetic into the untyped calculus and adapt the example,
but it would become harder to read.) Let P, Q be the terms

P
def= λf . λg. λx. λy. if x = 0 then y else g(f g (x−̂1) y)

Q
def= λf . λg. λx. λy. if x = 0 then y else f g (x−̂1) (g y)

Let F1
def= λz. Y P z and F2

def= λz. Y Q z.
The terms F1 g n m and F2 g n m (where g is a function value from integers to

integers and n, m are integers) computes gn(m) if n ≥ 0, diverge otherwise. In
both cases, however, the computations made are different. We show F1 g n m ≈
F2 g n m using an up-to technique for logical bisimulations. For this, we use the
following relation R:

{(gr(F1 g n m), F2 g n (gr(m))) |
r, m, n ∈ Z, r ≥ 0, and g is a closed value of type int → int}.

We show that R is a bisimulation up-to expansion and context.
Let us consider the pair (gr(F1 g n m), F2 g n (gr(m))). If n = 0, then we have:

gr(F1 g 0 m) −→=⇒ gr(m)
R�

F2 g 0 (gr(m)) −→� gr(m)

So, the required condition holds. If n �= 0, then we have

gr(F1 g n m) −→=⇒ gr(g(F1 g (n−̂1)m))
� gr+1(F1 g (n − 1)m).

and
F2 g n (gr(m)) −→� F2 g (n−̂1) (g(gr(m)))

� F2 g (n − 1) (gr+1(m)).

Here, the first � comes from the fact that y is not copied inside the function F2.
We are done, since

(gr+1(F1 g (n − 1)m), F2 g (n − 1) (gr+1(m))) ∈ R.

The example above makes use of key features of logical bisimulations: the
ability to compare terms in the middle of evaluations, and (some of) its up-to
techniques.
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5 Data Hiding and Concurrency

To handle higher-order calculi with information hiding mechanisms, such as
store, encryption, data abstraction, we have to enrich logical bisimulations with
environments, which roughly collect the partial knowledge on the transmitted
values, acquired by an observer interacting with the terms. The same happens
in concurrency, where bisimulations with forms of environment have been first
proposed, for instance to handle information hiding due to types [27,28] and
encryption [29] (this in π-calculus-like languages; information hiding in higher-
order concurrency remains largely unexplored). Bisimulations with environments
have also been used in λ-calculi with information hiding mechanisms (such as
encryption [22], data abstraction [9], and store [13]); as pointed out in the in-
troductions, these works have motivated and inspired ours. The resulting form
of bisimulation, that we have called environmental bisimulation, seems robust.
The technical details—which are non-trivial—are presented in [23].

6 Conclusions

In this paper we have developed the basic theory of logical bisimulations and
tested it on a few representative higher-order calculi.

Bisimulation and co-inductive techniques are known to represent a hard prob-
lem in higher-order languages. While we certainly would not claim that logical
bisimulations are definitely better than applicative bisimulations or other co-
inductive techniques in the literature (indeed, probably a single best bisimulation
for this does not exist), we believe it is important to explore different approaches
and understand their relative merits. This paper reports our initial experiments
with logical bisimulations. More experiments, both with concrete examples and
with a broader spectrum of languages, are needed.
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